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Abstract

Recent developments in RDMA networks are leading to the
trend of memory disaggregation. However, the performance
of each compute node is still limited by the network, espe-
cially when it needs to perform a large number of concurrent
fine-grained remote accesses. According to our evaluations,
existing IOPS-bound disaggregated applications do not scale
well beyond 32 cores, and therefore do not take full advan-
tage of today’s many-core machines.
After an in-depth analysis of the internal architecture

of RNIC, we found three major scale-up bottlenecks that
limit the throughput of today’s disaggregated applications:
(1) implicit contention of doorbell registers, (2) cache trash-
ing caused by excessive outstanding work requests, and
(3) wasted IOPS from unsuccessful CAS retries. However,
the solutions to these problems involve many low-level de-
tails that are not familiar to application developers. To ease
the burden on developers, we propose Smart, an RDMA
programming framework that hides the above details by
providing an interface similar to one-sided RDMA verbs.

We take 44 and 16 lines of code to refactor the state-of-the-
art disaggregated hash table (RACE) and persistent transac-
tion processing system (FORD) with Smart, improving their
throughput by up to 132.4× and 5.2×, respectively. We have
also refactored Sherman (a recent disaggregated B+Tree)
with Smart and an additional speculative lookup optimiza-
tion (48 lines of code changed), which changes its memory
access pattern from bandwidth-bound to IOPS-bound and
leads to a speedup of 2.0×. Smart is publicly available at
https://github.com/madsys-dev/smart.

CCS Concepts: • Computer systems organization→ Dis-

tributed architectures;Multicore architectures; • Net-
works → Network servers; Network performance analysis.

Keywords: disaggrgated memory, one-sided RDMA, scale-
up
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1 Introduction

Due to the development of high-speed network technologies
(e.g., RDMA), memory disaggregation has recently gained
extensive interest [1, 6, 7, 9, 10, 18, 20, 44, 46, 54, 55, 65, 66]. It
is considered to be beneficial for memory utilization, system
elasticity, and failure isolation [46, 54]. However, there is still
a significant gap in IOPS between local and remote memory
accesses. Thus, the performance of many important disag-
gregated applications, such as key-value stores [33, 37, 47, 52,
57, 68, 69] and transaction processing systems [58, 64], are
still limited by the network, because they need to perform a
large number of concurrent fine-grained remote accesses.

According to our evaluation, the throughput of these disag-
gregated systems typically peaks and begins to decline with
more than 32 cores. This lack of scale-up capability can be
a common problem for IOPS-bound memory disaggregated
applications that the cost of processing RDMA requests dom-
inates the total execution time, which includes many impor-
tant workloads such as disaggregated cache servers [29, 33],
online transaction processing (OLTP) databases [58], and
parameter servers [59]. Although these systems can still im-
prove the overall performance by scaling out the cluster, they
cannot take full advantage of the many-core machines now
common in data centers, which can contain dozens or even
hundreds of cores.
To address this issue, we performed a detailed analysis

of the architecture of the RNIC (RDMA Network Interface
Card) and found that several internal structures are resource
contention points at high concurrency (Figure 1). As a result,
simply increasing the parallelism (i.e., more threads) or con-
currency depth (i.e., more concurrent RDMA operations per
thread) does not necessarily improve performance. On the
contrary, it can lead to worse performance due to implicit
contention of certain internal RNIC resources. Furthermore,
we observe that the maximum throughput of RDMA oper-
ations can be largely improved by a better paradigm and
configuration of the use of the low-level APIs of the RNIC.

https://github.com/madsys-dev/smart
https://doi.org/10.1145/3617232.3624857
https://doi.org/10.1145/3617232.3624857
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ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Feng Ren, Mingxing Zhang, Kang Chen, Huaxia Xia, Zuoning Chen, and Yongwei Wu

Disaggregated Application

H
ar

dw
ar

e
So

ftw
ar

e

Load/
Store

① Implicit doorbell contention
② Cache thrashing

Control Path
Data Path

Compute Blades

Memory Blades③ IOPS wastes

DMA DMA

DRAM as 
App Cache

RNICCPU

RDMA-Core

QP CQ

Doorbell
Cache

DRAM

NVM

DR Doorbell Registers
I:    RNIC Internal Cache

Doorbell
Cache

Figure 1.Major resource contention points in the memory
disaggregation architecture.

Previous studies [26, 30] have already shown that low-
level details are surprisingly important for the efficiency of
RDMA systems. However, due to the complexity of RNIC,
these details are not familiar to application developers, espe-
cially when the application scenario is constantly changing.
For example, scaling to more than 32 threads is only consid-
ered important for newer RNICs, whose maximum IOPS are
greatly increased and therefore can only be fully exploited
by increasing parallelism. Therefore, we argue that these
details should be hidden from application developers with
good abstractions.
Contributions. In this paper, we analyze the impact of three
major resource contention points, which become scale-up
bottlenecks and have a broad impact on the performance of
IOPS-bound disaggregated applications. The analysis uses
both micro-benchmarks and RNIC performance counters
(§3).

In particular, existing works [5, 16, 27, 41] have observed
that the throughput of RDMA operations, especially one-
sided operations that rely on reliable connection (RC), do
not scale up well with the increasing of parallelism (i.e., the
number of threads performing RDMA operations in par-
allel). Researchers speculate that this scalability problem
may be due to cache contention within the RNIC. Recent
RNIC devices improve the performance of metadata object ac-
cess through on-chip SRAM caches. There is a huge penalty
for cache misses because the RNIC must fetch data from
DRAM through PCIe DMA reads that take several microsec-
onds [41].

To mitigate this problem, a commonly used optimization
called connection multiplexing [16, 52, 53] is proposed to
reduce the total number of queue pairs (QPs), because QP is
needed to establish RC connections and therefore should be
cached for good performance. Instead of assigning a separate
QP to each thread, each QP is shared by multiple threads
using connection multiplexing, which trades off parallelism
to reduce resource contention. However, existing works [16,
27] have shown that the sharing of QP leads to suboptimal
performance because access to the QP is serialized by locks.
It is also confirmed by our experiment (Figure 3).

In contrast, our investigation shows that the internal data
structures of RNIC are much more complex than its external

abstraction of QPs. Thus, a large number of QPs leads to poor
performance, which opens up the possibility of achieving
higher parallelism. In fact, we found that 1 the contention
in an internal data structure called the doorbell register,
instead of the cache, is the real contention point when a large
number of QPs are created. The creation of a doorbell register
is not directly exposed to application developers. However,
the default configuration and the connection mapping be-
tween threads, QPs, and doorbell registers are not optimized
for high parallelism. This is the key reason for performance
degradation and can be addressed by a general thread-aware
RDMA resource (e.g., doorbell registers) allocation mecha-
nism.
After removing the limitation of parallelism, cache con-

tention can indeed become a major scale-up bottleneck for
achieving the maximum throughput. But, rather than the
number of QPs, 2 the excessive number of outstanding
work requests (OWRs, work requests that have been posted
by applications but still have not yet been completed by the
RNIC) is actually the main cause of the cache thrashing prob-
lem. As a result, the occurrence of cache thrashing is not
only related to parallelism, but also to the depth of con-
currency (i.e., concurrent operations per thread executed
through asynchronous APIs). To address this issue, we pro-
pose a credit-based throttling policy where the depth thresh-
old is automatically determined according to the current
workload.

In addition, due to application-level concurrency control,
3 simply increasing the throughput of RDMA operations does
not necessarily improve the throughput of upper-layer appli-
cations. According to our investigation, many disaggregated
applications propose lock-based or lock-free solutions to
avoid data races caused by conflict updates from different
clients. This conflict results in wasted network IOPS, which is
exacerbated in high-concurrency environments. Hierarchical
on-chip lock (HOPL) [57] attempts to address this problem
with a lock-based solution. However, other solutions are
also needed in general cases, such as lock-free data struc-
tures [52, 68, 69] and optimistic locking [61]. To this end, we
propose an adaptive backoff technique that further throttles
the concurrency of unsuccessful CAS (compare-and-swap)
operations.
The above three major scale-up bottlenecks are summa-

rized in Figure 1. To help developers address these issues,
we propose Smart, an RDMA programming framework that
hides the technical details of corresponding solutions un-
der an easy-to-use interface (§4). Smart provides a set of
coroutine-based asynchronous APIs that are similar to the
original RDMA verbs, so the cost of refactoring is low.

Our optimization is also general for scaling up the appli-
cation throughput using RC verbs. Some of these bottlenecks
are also found in some non-disaggregated applications, and
we expect Smart’s techniques to be effective. For example,
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many distributed transaction systems [16, 60, 61] issue one-
sided RDMA requests at high frequency with many threads,
so thread-aware resource allocationwill be helpful to prevent
internal doorbell contention.
To demonstrate the benefits of Smart, we refactor two

typical and important IOPS-bound state-of-the-art disaggre-
gated applications: 1) a hash table (Smart-HT) over RACE [68,
69] (with 44 lines of code changed), and 2) a distributed
transaction processing system (Smart-DTX) over FORD [64]
(with 16 lines of code changed). We have also built a disag-
gregated B+Tree (Smart-BT) over Sherman [57] with Smart
(with 48 lines of code changed) and an additional speculative
lookup optimization that further reduces the read amplifica-
tion and transforms the workload from bandwidth-bound to
IOPS-bound. Evaluation results show that for many realistic
workloads, applications using Smart outperform their state-
of-the-art counterparts. Smart-HT outperforms RACE by
up to 132.4× in write-heavy workloads, Smart-DTX has up
to 5.2× higher throughput than FORD in SmallBank, and the
throughput of Smart-BT is up to 2.0× better than Sherman
in read-only workloads. In addition, Smart is also very help-
ful in reducing latency. For example, the median latency of
Smart-DTX is only 28.9% of FORD in SmallBank workloads.
2 Background

2.1 Memory Disaggregation

Traditional datacenters consist of monolithic servers that
have both compute and memory resources. However, as the
ratio of the resources is fixed, such an architecture results
in low memory utilization [46, 51]. To solve this problem,
the memory disaggregation architecture [3, 9, 52, 54, 64] is
proposed. Unlike traditional monolithic servers, the com-
pute and memory resources are physically separated into
compute pool and memory pool respectively. The compute
pool consists of compute blades, each of which has only a
small DRAM buffer but can contain many CPU cores. The
memory pool, on the other hand, is a collection of memory
blades, each of which has a large amount of memory butweak
computational power (e.g., 1 ∼ 2 CPU cores), so they are un-
able to handle extensive computation [64, 68]. Both blades
are interconnected by high-speed networks, such as RDMA,
Gen-Z [7], and CXL [6]. As RDMA has been deployed in
many datacenters, in this paper, we consider compute blades
accessing memory blades using one-sided RDMA verbs.
2.2 RDMA Network

RDMA is a key technology for memory disaggregation. Re-
cent RNICs such as Mellanox ConnectX-6 have achieved
up to 200 Gbps bandwidth and sub-600 ns latency, which is
sufficient for many disaggregated applications [14, 17]. In ad-
dition, RDMA supports one-sided verbs, i.e., READ, WRITE,
CAS (compare-and-swap), and FAA (fetch-and-add), which
operate directly on remote memory without involving weak
CPUs in memory blades.
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Figure 2. Doorbell registers in Mellanox ConnectX-6.

The programming interface of RDMA is centralized around
the abstraction of queue pairs (QPs). Each QP contains a pair
of send queue and receive queue and is associated with a
completion queue (CQ). For each RDMA operation, the li-
brary posts a work request (WR) to the QP. Then, after a WR
is acknowledged by the receiver’s RNIC, the sender’s RNIC
performs a PCIe DMA write that appends a CQ entry, and
the application is notified by continuously polling the CQ.
However, underneath this simple abstraction, the internal
structure of RNIC is very complex and unfamiliar to applica-
tion developers. According to our investigation, some of the
most important mechanisms are described below.
Doorbell Register (DB) is the mechanism used by the RNIC
to receive notifications of newly enqueued work requests.
Figure 2 illustrates the doorbell registers in ConnectX-6 [12].
By default, up to 16 DBs are allocated per RDMA device con-
text, including 4 low-latency DBs and 12medium-latency DBs.
Each low-latency DB is associated with only one QP, but mul-
tiple QPs can be associated with the same medium-latency
DB. These doorbell registers are mapped in the User Ac-
cess Region (UAR), and the driver library performs memory-
mapped I/O (MMIO) writes to update them. For drivers used
by Connect-IB to ConnectX-71, updates to the same DB are
all protected by a spinlock2. As a result, when a DB is shared
by multiple QPs used by different threads, an implicit thread
contention occurs and becomes an implicit bottleneck that
limits the parallelism of disaggregated applications. For ex-
ample, as shown in Figure 2(b), thread 𝑥 using QP16 may
be contended by thread 𝑦 using QP28 because both QPs are
associated with DB16. Obviously, such a default mapping is
not optimized for massively parallel applications.
Memory Translation and Protection Table. Many exist-
ing works worry that too many QPs will exhaust the small
on-chip SRAM cache in the RNIC and lead to cache thrash-
ing problems [5, 16, 25, 41]. But, the caches inside RNICs are
actually used to cache many other important objects whose
sizes are not proportional to the number of QPs [26]. For
example, once the RNIC is notified by the doorbell ringing,
1Also include ConnectX-2 (CX-2), CX-3 (Pro), CX-4, CX-5, CX-6.
2Enabling the MLX5_SINGLE_THREADED environment variable removes such
spinlocks, but leads potential races between two CPUs due to write-
combining buffers in multi-threaded applications [28, 38]. With BlueFlame
enabled, the RNIC may even receive corrupted work queue elements
(WQEs).
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it must perform virtual-to-physical address translation and
security checking by looking up the memory translation
table (MTT) and the memory protection table (MPT). These
mapping tables are cached in MTT/MPT caches to achieve
better performance, whose size does not depend on the num-
ber of QPs but to the number of device contexts, memory
regions (MRs), and memory windows (MWs).
According to internal performance counters collected by

Mellanox Neo-Host [13], in a typical environment where
all threads of the application share the same device context
and thus the same MTT/MPT, the cache hit ratio of the
MTT/MPT cache is higher than 95% inmost cases. In contrast,
the cache hit ratio of the MTT/MPT cache can drop to less
than 70% when multiple device contexts are created because
each device context allocates memory regions separately,
even though the size of eachmemory region is only a fewMB.
Therefore, sharing the device context to reduce redundancy
in global data structures is not only good formanagement but
also for performance. Similar phenomena are also confirmed
by other works [5, 30].
Outstanding Work Requests (OWRs) are enqueued work
requests whose completion entries have not yet been polled
from the CQ. After receiving messages from remote QPs,
the RNIC must retrieve metadata of the corresponding work
request, which may reside in the on-chip WQE cache. A
cache miss results in a PCIe DMA read, which is much more
expensive [5, 41]. As a result, cache thrashing occurs when
the number of outstanding work requests exceeds a certain
threshold. However, fewer OWRs can also lead to perfor-
mance degradation due to a lack of parallelism. As we will
see later in §3.2, the proper configuration depends on the cur-
rent overall parallelism of the system and should therefore
be dynamically adjusted.
3 Scalability Bottlenecks

In this section, we use the micro-benchmark and the PCIe/R-
NIC performance counters to analyze the factors that affect
the scalability of disaggregated applications. They also mo-
tivate the design of Smart. The setup of all evaluations in
this section is consistent with §6.
3.1 Implicit Doorbell Contention

After our investigation, we speculate that the implicit con-
tention in doorbell registers is the main limitation of par-
allelism in disaggregated applications. To validate this as-
sumption, we compare three different types of allocation
mechanisms that have been used by existing works and a
novel method that is aware of the structure of doorbell reg-
isters:

1. Shared QP [20]: all threads share a single QP.
2. Multiplexed QP [16, 52, 53]: each QP is shared by 𝑞

threads in a NUMA-aware manner.
3. Per-thread QP [1, 54, 57, 64]: each thread owns and

uses a dedicated QP.
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Figure 3. Throughput using different QP allocation policies.

4. Per-thread Doorbell (§4.1): each thread is associated
with not only a separate QP, but also a separate doorbell
register.

We build a bench tool to measure the throughput of READ-
/WRITE operations at any thread count and any concurrency
depth 𝑘 (i.e., OWRs per thread). Each thread repeatedly posts
𝑘 work requests, rings the doorbell, and then waits for ac-
knowledgments. The remote address of each work request is
chosen uniformly randomly within a 1 GB memory region.
Figure 3 shows the result of 8-byte READ/WRITEs with
different thread counts and the same concurrency depth 8.
The number of QPs is the main bottleneck when there are
fewer than 32 threads. Per-thread QP and per-thread door-

bell outperform other connection multiplexing policies by
2.4× ∼ 130.1× in these cases. However, when the thread
count exceeds 32, the throughput of the per-thread QP pol-
icy drops sharply. For example, the throughput of per-thread
QP is cut in half after the number of threads is increased to
96.
In contrast, per-thread doorbell is able to unleash the

potential of higher parallelism. For 8-byte READ requests,
the throughput of per-thread doorbell can be up to 5.6×/3.2×
higher than per-threadQP. Themaximum throughput of per-
thread doorbell can reach 110 MOPS. We have analyzed the
execution overhead of the per-thread QP policy (in Figure 3,
with a thread count of 96) using the Linux perf tool and
Intel VTune Profiler [11]. Up to 74.05% of the total execution
time is consumed by pthread_spin_lock() from doorbell-
associated spin-locks. This suggests that doorbell-associated
spinlocks incur significant overhead in a high parallelism
environment for per-thread QP. Readers may also notice the
throughput drops of per-thread doorbell at the tail of the
curve, which is related to the cache trashing problem that
will be discussed in the next section.

More details about the specific implementation of the per-
thread doorbell are explained in §4.1. We also ran the same
benchmarkwith a larger payload size (up to 64 bytes), and the
same observation still holds. A workload with the payload
size greater than 64 bytes is bandwidth-bound, not IOPS-
bound.
3.2 Cache Thrashing

After removing implicit doorbell contentions, we still ob-
serve that throughput drops as the number of outstanding
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Figure 4. Performance metrics with different thread counts
and outstanding work requests (OWRs).

work requests increases. It is highly suspicious that this phe-
nomenon is related to the cache thrashing problem discussed
above. Since both the cache size and the replacement policy
are confidential to the product vendors, we use the bench tool
in §3.1 to characterize this phenomenon. Specifically, we use
the per-thread doorbell policy to avoid doorbell contentions
and then adjust both the number of threads (i.e., parallelism)
and the number of OWRs (i.e., concurrency depth). We then
measure the throughput of random 8-byte READ andWRITE

requests for each setting. The specific depth of concurrency
per thread is achieved by polling the completion queue after
every 𝑘 work requests are posted, and the results are shown
in Figure 4a.

As we can see from the figure, a larger number of OWRs
can lead to better throughput, because they can hide the net-
work roundtrip latency. The maximum read IOPS is achieved
with 96 threads × 8 OWRs per thread = 768 concurrent work
requests. In contrast, less parallelism requires more concur-
rency to achieve similar throughput. For example, 32 out-
standing work requests are required to achieve 101 MOPS
for 36 threads, which requires 32 × 36 = 1152 concurrent
work requests (i.e., 50% more concurrency, but still 5% less
throughput). However, as the concurrency depth increases,
the throughput decreases.With 96 reader threads, the through-
put with 32 OWRs per thread is only 49.5% of 8 OWRs per
thread.

With our experiments based on control variables, we show
that different levels of parallelism require a correspondingly
appropriate concurrency depth to achieve the best through-
put. We confirmed the increase in cache misses in the RNIC
by measuring the PCIe inbound bandwidth, i.e., the traffic of
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Figure 5. Performance of hash table updates with different
(a) thread counts (concurrency depth = 8, Zipfian parameter
= 0.99) and (b) Zipfian distribution parameters (16 threads).

the RNIC’s access to the host DRAM. Figure 4b shows the
average DRAM access traffic per work request for different
thread counts and outstanding work requests. With 96 reader
threads and 32 OWRs per thread, it is 1.9× higher than with
8 OWRs per thread (180 bytes vs. 93 bytes). These extra PCIe
reads are mainly caused by WQE cache misses. Compar-
ing Figures 4a and 4b, we find that throughput decreases as
the DRAM access traffic per work request increases. Other
characterization studies have also observed a similar phe-
nomenon [24, 26], but existing solutions typically assume
that a fixed size of concurrency depth is sufficient to avoid
this problem. However, even a small number of concurrency
depth can become a problem in our scale-up scenario, which
may have more than a hundred threads.
3.3 Unsuccessful Retries

In addition to the sender-side contention with the observa-
tions above, receiver-side contention can also lead to scal-
ability bottlenecks in disaggregated applications. Accord-
ing to our investigation, update contention, which leads to
unsuccessful RDMA CAS retries, is the most common and
important scalability bottleneck in receiver-side contention.
Specifically, without server-side coordination, disaggre-

gated memory applications have to implement application-
side coordination with one-sided RDMA operations, which
is the main source of receiver-side contentions. For example,
Sherman [57] points out that basic spinlocks using RDMA
CAS suffer from the scalability problem: if the client thread
fails to acquire a lock, it immediately retries, which leads to
extra remote network accesses. This wastes the limited IOPS
of RDMA networks. Sherman solves this problem by using a
hierarchical on-chip lock (HOPL) technique.
However, in addition to lock-based methods, this scal-

ability problem caused by unsuccessful retries exists in a
wider range of applications, such as lock-free data struc-
tures [52, 68, 69] and optimistic locking [61]. Figure 5 il-
lustrates the throughput of RACE [68, 69], a disaggregated
lock-free hash table, with different parallelism and different
Zipfian distributions [19]. As we can see from the figure,
although the parallelism of RDMA operations can scale up
to a much larger number of threads, the peak throughput
of RACE is reached at only 8 threads. The throughput de-
creases and the 99% latency increases by up to 17.1× for more
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threads. We also investigate how data skewness affects the
scalability of application operations. As the Zipfian parame-
ter \ increases from 0 to 0.99, the median latency increases
by 1.9× and the 99% latency increases by 78.4×.

According to our scale-up analysis, a major cause of such
a scalability problem is the massive number of unsuccess-
ful retries caused by high data contention. In RACE, after a
failed RDMA CAS that attempts to update a bucket slot, a
retry is triggered that initiates three more RDMA requests
(i.e., re-read this bucket, write the key/value entry, and try
to atomically update this slot again). This retry wastes the
RNIC’s limited IOPS resources. In contrast, the original RACE
papers [68, 69] only evaluate up to 128 concurrent tasks dis-
tributed across four machines, and thus the above scalability
problem is not significant. As we will discuss later in §6.3,
67.9% of update operations result in one ormore unsuccessful
retries. The notification mechanism is not applicable in our
environment because it requires the involvement of remote
CPUs or specialized hardware such as SmartNICs [57].
4 Design

Motivated by the analysis of scale-up bottlenecks, we de-
sign Smart, a library for building scalable disaggregated
applications. We introduce the following techniques used in
Smart:

1. Thread-aware resource allocation (§4.1). Smart avoids
implicit inter-thread contention from both queue pairs
and doorbell register sharing.

2. Adaptive work request throttling (§4.2). Smart dynam-
ically controls the concurrency depth to avoid RNIC
cache thrashing. The threshold is set dynamically on
the fly.

3. Conflict avoidance (§4.3). Smart uses truncated expo-
nential backoff to reduce the rate of failed retries. It
further controls the concurrency depth according to
the retry rate.

More importantly, the details of these techniques are hidden
from the easy-to-use interface of Smart, which provides a
set of coroutine-based asynchronous APIs that are similar
to the original one-sided RDMA verbs.
4.1 Thread-aware Resource Allocation

To avoid thread contention due to resource sharing (as shown
in Figure 6a), besides allocating QPs on a per-thread ba-
sis [1, 54, 57, 64], Smart proposes thread-aware resource
allocation. In Smart, multiple QPs used by the same thread
are associated with a shared doorbell register3.
A simple approach is to create separate RDMA device

contexts per thread [36, 57]. This essentially avoids implicit
thread contention because different contexts use different
sets of doorbell registers. However, as discussed in §2.2, shar-
ing device contexts is not only good for management but
also helpful for performance. When using multiple device

3The number of threads does not exceed the number of CPU cores.
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contexts, the local memory must be registered as MRs and
MWs per context. The number of MRs/MWs is tens or even
hundreds of times higher, which increases the size of MP-
T/MTT and causes performance degradation due to MP-
T/MTT cache thrashing [41]. In addition, the sharing seman-
tics of ibv_open_device() depend on the specific imple-
mentation of device vendors. It may not return a different
context for each call [2].
In contrast, Smart proposes the thread-aware allocation

mechanism that shares the same device context, which is
the common practice of application developers. As shown in
Figure 6b, Smart allocates QPs, CQs, and DBs in a per-thread
manner, and these resources are not shared by multiple
threads. Other resources, including protection domains (PDs)
and memory regions (MRs), are shared among all threads,
thus the local memory is registered only once. A QP is cre-
ated for each pair of a local thread and a remote memory
blade. Thus each thread contains multiple QPs (for different
remote blades), but they are associated with the same CQ and
DB. Smart uses a single ibv_poll_cq() call to determine if
there are any completed work requests posted by the current
thread. QPs are also associated with the DB that belongs to
the same thread, so thread contention from sharing DBs is
avoided. Coroutines running in the same thread share the
same QPs and CQ.
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More specifically, Smart maintains a QP pool for each
thread, where all the QPs in the same pool are all associated
with the same CQ and DB. Some QPs are active (e.g., 𝑄𝑃1
and 𝑄𝑃5 in QP pool 1), while others are idle (e.g., 𝑄𝑃9). Each
thread allocates QPs only from its own QP pool and releases
them to its own QP pool after use.

To construct enough QP pools during application startup,
the number of medium-latency doorbell registers available
should not be fewer than the number of threads, but it is only
12 by default. The RNIC driver supports tuning the number of
doorbell registers per RDMA context, e.g., the environment
variable MLX5_TOTAL_UUARS for Mellanox products. How-
ever, the driver also limits the number of medium-latency
doorbell registers, so a minor modification to the driver code
is required. The maximum valid number of DBs is 512 in
the Mellanox ConnectX-6 RNIC [12], 256 in the Intel E810
RNIC [22], which are typically larger than the number of
CPU cores per machine4. This limitation also suggests that a
one-to-one mapping between DBs and QPs is not practical,
since the number of QPs can be much larger than 512.

On the other hand, since the structure of doorbell registers
is not exposed to the developers, there is no external API that
can be used to bind a QP with a specific doorbell register.
However, after digging into the source code of the RNIC
user-mode driver, we found that each newly created QP is
associated with doorbells in a round-robin fashion (Figure 2b
as an example). Therefore, before creating a QP, we can
know which doorbell register it will be associated with. It
can be used to determine the associated QP pool. Different
providers may have different DB allocation policies, but our
mechanism is possible as long as it is deterministic. We also
advocate that the provider provide explicit DB binding

APIs, as they are critical to performance.
Resource Allocation in Memory Blades. Because an RC
connection requires QP-to-QP communication, a memory
blade needs to establish asmanyQPs as the total thread count
of compute blades.We confirm that the outbound throughput
does not drop as the QP count increases [5]. Thus, there is
no need to allocate RDMA objects on a per-thread basis as
long as memory blades never post RDMA requests or poll
CQ entries.
4.2 Adaptive Work Request Throttling

To prevent performance degradation due to RNIC cache
thrashing, Smart uses credit-based throttling [41] to limit
the number of outstanding work requests of a QP. We lack
information about cache replacement policies used by spe-
cific RNICs, so Smart proposes a heuristic mechanism. As
discussed in §3.2, once the number of threads is determined,
performance degradation can be avoided by limiting the up-
per bound of OWRs. We also assume that the application
workload remains stable over a short period of time (about

4If DBs are insufficient, QPs used by multiple CPUs can associate with the
shared doorbell register.

Algorithm 1Work Request Throttling
1: thread_local𝐶max, 𝑐𝑟𝑒𝑑𝑖𝑡 ← 𝐶max
2: procedure SmartPostSend(𝑞𝑝, 𝑤𝑟,𝑏𝑎𝑑_𝑤𝑟 )
3: 𝑠𝑖𝑧𝑒 = Length(𝑤𝑟) ▷ length of the 𝑤𝑟 linked list
4: 𝑤𝑟(︀𝑠𝑖𝑧𝑒 − 1⌋︀.𝑤𝑟_𝑖𝑑 ← ∐︀𝑠𝑖𝑧𝑒, ...̃︀ ▷ fill metadata into 𝑤𝑟_𝑖𝑑
5: while 𝑐𝑟𝑒𝑑𝑖𝑡 − 𝑠𝑖𝑧𝑒 < 0 do
6: Wait ▷ defer posting unless credit is enough
7: 𝑐𝑟𝑒𝑑𝑖𝑡 ← 𝑐𝑟𝑒𝑑𝑖𝑡 − 𝑠𝑖𝑧𝑒 ▷ deduct the credit
8: 𝑖𝑏𝑣_𝑝𝑜𝑠𝑡_𝑠𝑒𝑛𝑑(𝑞𝑝, 𝑤𝑟,𝑏𝑎𝑑_𝑤𝑟) ▷ bad_wr returns failing WR
9: procedure SmartPollCQ(𝑐𝑞,𝑛𝑢𝑚_𝑒𝑛𝑡𝑟𝑖𝑒𝑠, 𝑤𝑐)
10: 𝑖𝑏𝑣_𝑝𝑜𝑙𝑙_𝑐𝑞(𝑐𝑞,𝑛𝑢𝑚_𝑒𝑛𝑡𝑟𝑖𝑒𝑠, 𝑤𝑐)
11: for each 𝑒 in 𝑤𝑐 do

12: ∐︀𝑠𝑖𝑧𝑒, ...̃︀ = 𝑒.𝑤𝑟_𝑖𝑑 ▷ extract metadata from 𝑤𝑟_𝑖𝑑
13: 𝑐𝑟𝑒𝑑𝑖𝑡 ← 𝑐𝑟𝑒𝑑𝑖𝑡 + 𝑠𝑖𝑧𝑒 ▷ replenish the credit
14: procedure UpdateCMax(𝑡𝑎𝑟𝑔𝑒𝑡 )
15: 𝑐𝑟𝑒𝑑𝑖𝑡 ← 𝑐𝑟𝑒𝑑𝑖𝑡 + (𝑡𝑎𝑟𝑔𝑒𝑡 −𝐶max),𝐶max ← 𝑡𝑎𝑟𝑔𝑒𝑡
16: procedure Update
17: 𝑡𝑎𝑟𝑔𝑒𝑡_𝑙𝑖𝑠𝑡 = (︀4, 6, 8, 10, 12⌋︀ ▷ candidate values of𝐶max
18: 𝑃𝑜𝑝𝑡 = −1, 𝑡𝑎𝑟𝑔𝑒𝑡𝑜𝑝𝑡 = −1
19: for each 𝑡𝑎𝑟𝑔𝑒𝑡 in 𝑡𝑎𝑟𝑔𝑒𝑡_𝑙𝑖𝑠𝑡 do
20: UpdateCMax(𝑡𝑎𝑟𝑔𝑒𝑡 )
21: 𝑃 = number of completed RDMA work requests for Δ millisec-

onds
22: if 𝑃 > 𝑃𝑜𝑝𝑡 then
23: 𝑃𝑜𝑝𝑡 ← 𝑃, 𝑡𝑎𝑟𝑔𝑒𝑡𝑜𝑝𝑡 ← 𝑡𝑎𝑟𝑔𝑒𝑡

24: UpdateCMax(𝑡𝑎𝑟𝑔𝑒𝑡𝑜𝑝𝑡 )

500 ms), so that the optimal threshold can be updated peri-
odically.
Throttling. Based on the above observations, we design an
adaptive throttling algorithm (Algorithm 1 Lines 1–13). The
thread-local variable credit indicates the number of available
credits. It is initially set to𝐶max, which is the maximum credit.
We use the work request id field (wr_id) to indicate the
number of work requests to submit (Line 4). Before issuing
ibv_post_send(), the credit is subtracted from size (Line 7).
However, if the credits are depleted, posting work requests
are throttled until the credits are replenished (Line 6). If the
CQ poll is successful, the credit is increased by the number
of completed work requests (Line 13).
Update Available Credits. According to our observations
(§3), the optimal maximum credit 𝐶max depends on both the
thread count and the workload. Smart updates 𝐶max peri-
odically during application execution. We follow the epoch-
based model, i.e., each epoch consists of an update phase
and a stable phase. The application runs normally whatever
phase it is in. To increase or decrease the available credits,
Smart uses the UpdateCMax function, where target is the
new value of𝐶max (Line 15). During the update phase, Smart
calls Update (Lines 14–24 in Algorithm 1) to find the optimal
value of 𝐶max. For each candidate value of 𝐶max, it changes
the available credits (Line 20) and then counts the number
of completed RDMA operations for the next Δ = 8 millisec-
onds. Such an interval allows the application to generate a
sufficient number of RDMA requests to accurately estimate
the throughput of RDMA requests. At the end of the update
phase, Smart determines the optimal target that achieves
the highest throughput, and updates the available credits
(Line 24). 𝐶max does not change during the stable phase. In
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Smart, the stable phase lasts longer, i.e., 𝑇 = 60 × Δ = 480
milliseconds.
4.3 Conflict Avoidance

After dealing with the scale-up bottlenecks at the sender side,
contention at the receiver side, especially the wasted IOPS
caused by unsuccessful CAS operations, leads to degraded
application performance. Our solution to this problem is
based on exponential backoff [39] with an adaptive limit.
Truncated Exponential Backoff. The basic idea of expo-
nential backoff is simple: once an unsuccessful retry is de-
tected (e.g., an RDMA CAS fails), we delay the next retry
by 𝑡 CPU cycles. Thus, each time an unsuccessful retry is
detected, the delay time is multiplied by two, i.e., 𝑡 = 𝑡0×2𝑖 in
the 𝑖-th retry. To avoid extremely long latencies, which make
the performance even worse [32], Smart uses the truncated
variant of exponential backoff by limiting the maximum
backoff cycle 𝑡max. To avoid collisions, the backoff cycles are
also randomized. In summary, for the 𝑖-th attempt,

𝑡 = min{𝑡0 × 2𝑖 , 𝑡max} + 𝑅𝑎𝑛𝑑(𝑡0), (1)
where𝑅𝑎𝑛𝑑(𝑥) is a random value between 0 and 𝑥 . In Smart,
the backoff unit is 𝑡0 = 4096 cycles, which is close to the time
of an RDMA roundtrip. 𝑡max is determined dynamically using
the algorithm below.
Dynamic Backoff Limit. The maximum backoff cycle, i.e.,
𝑡max, has a significant impact on performance. A smaller
𝑡max increases the probability of collisions, which degrades
scalability. However, a larger one also leads to lower per-
formance, especially if some of the operations suffer from
longer latency. The optimal 𝑡max depends on the number of
concurrent operations. We use an algorithm to automatically
find the optimal 𝑡max. Every millisecond, Smart collects and
statistics the percentage of retries for all operations. We call
it the retry rate, or 𝛾 . If 𝛾 is greater than the high-water mark
𝛾𝐻 , 𝑡max is multiplied by two. If 𝛾 is less than the low-water
mark 𝛾𝐿 , 𝑡max is divided by two. We make sure that 𝑡max is
between 𝑡0 (the backoff unit) and 𝑡𝑀 (the longest backoff
cycles, 𝑡𝑀 = 210 × 𝑡0 by default). In our prototype, we choose
𝛾𝐻 = 0.5 and 𝛾𝐿 = 0.1, which help 𝑡max converge to differ-
ent values depending on the workload skew. For example,
𝑡max = 𝑡𝑀 = 1.6𝑚𝑠 for skewed (high contention) updates,
while 𝑡max = 𝑡0 for uniform updates (i.e., retries are rare).
Concurrency Depth Throttling. To further reduce con-
flicts from concurrent operations performed by the same
thread, Smart reduces the number of concurrent operations
through credit-based coroutine throttling. This essentially
controls the number of concurrent tasks because Smart is
implemented as a coroutine-based asynchronous framework.
For example, under uniformworkloads, a coroutine suspends
its execution (yield) when it waits for RDMA ACKs. How-
ever, under high contention workloads, a coroutine does not
suspend until the current operation has been completed. To
achieve this, the scheduler must keep at most 𝑐max coroutines
that can be executed concurrently for each thread. Other

coroutines must be blocked until some running coroutines
have completed their current operations and replenished
their credits. Similar to 𝑡max, the value of 𝑐max is dynamically
determined according to the retry rate. We shrink or expand
𝑐max when 𝛾 is above 𝛾𝐻 or below 𝛾𝐿 . Note that 𝑡max is only
updated if 𝑐max reaches the lower or upper bound (e.g., the
abort rate 𝛾 > 𝛾𝐻 and 𝑐max = 1).
5 Implementation

We implement Smart in C++, with the core library consisting
of about 3,000 lines of code.
5.1 Programming Interface

Smart provides the following main APIs:
1. connect: connect to a memory blade;
2. read, write, faa, cas: append a work request (WR) to

the local buffer;
3. post_send: post WRs in the local buffer to the RNIC;
4. sync: wait for all previously posted WRs to complete;
5. backoff_cas_sync: perform a CAS operation with ex-

ponential backoff optimization.
When a user connects to a memory blade, Smart internally
allocates RDMA resources in a thread-aware manner (§4.1).
Smart wraps up RDMA verbs to support adaptive work re-
quest throttling (§4.2). Specifically, it maintains thread-local
work request buffers. Developers use verb functions such
as read() that add new work requests to the buffer. Then,
developers use post_send(), which posts buffered work re-
quests to the RNIC, which essentially calls SmartPostSend()
(Algorithm 1). Finally, when sync() is called, the current
coroutine is suspended until all CQ entries are received by
Smart, which executes SmartPollCQ() (Algorithm 1) inter-
nally. This suggests that Smart absorbs the backpressure by
internal stalling. For conflict avoidance (§4.3), Smart pro-
vides the backoff_cas_sync() API. Its semantics are the
same as the combination of the cas() and sync() APIs. If
CAS fails, it will also delay a few CPU cycles and configure
the concurrency depth before returning to the user code.
This allows applications to change the expected value.

Coroutines are used in Smart to achieve asynchronous
programming and increase the concurrency depth of each
thread. Similar to FORD [64] and other disaggregated mem-
ory applications, Smart uses Boost’s coroutine engine [42].
An application createsmultiple threads, each ofwhich spawns
multiple coroutines. All coroutines from the same thread
share the same QPs, CQ, and DB. They will be assigned to
each thread accordingly (§4.1). Smart also uses a dedicated
coroutine for each thread to poll CQs.
5.2 Applications

We also implement three typical and important IOPS-bound
applications for disaggregated memory to demonstrate the
scalability of Smart.
Lock-free Hash Table. Smart-HT (44 out of 1,078 lines
of code changed to refactor the original application with
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Smart) uses the same hashing scheme as RACE [68, 69].
Since the RACE code is not publicly available, we implement
our own version of RACE from scratch.
Persistent Transaction Processing. Smart-DTX (16 out
of 3,018 lines of code changed) is derived from FORD [64]
using techniques from Smart. For each thread, Smart-DTX
uses only one QP for each connection to a memory blade.
Lock-based B+Tree. Smart-BT (48 out of 1,210 lines of
code changed) borrows the main idea of Sherman [57], but
we do not use the two-level version mechanism, because we
found that our RNIC may not read or write data in increasing
address order. Smart-BT retrofits the per-cacheline version
mechanism introduced by FaRM [16]. It’s safe to update
a key/value entry belonging to a single cacheline without
changing the version field because data atomicity per cache-
line is guaranteed by RNIC.

Our profiling also shows that the original implementation
of Sherman leads to bandwidth-bound memory access pat-
terns due to its read amplification problem. Since compute
blades do not know the address of the target key/values,
Sherman must fetch the entire leaf node (larger than 1 KB)
from remote memory and then look up the requested key/-
value pair. We propose speculative lookup, an optimization
that solves this problem and thus makes Smart-BT IOPS-
bound. Each compute blade stores a small cache mapping
from the key to the data address in the remote. This allows a
lookup operation to first take a fast path by using the cached
address to fetch the data item (a small-sized READ request).
If the fast path succeeds, the lookup operation returns im-
mediately. Otherwise, either because the key is not cached
or the fetched data item is not valid (by an application-level
validator), the lookup falls back to the regular lookup. A de-
tailed breakdown analysis is given in §6.2.3 to demonstrate
the speedup of speculative lookup and Smart separately.
6 Evaluation

We evaluate Smart to answer the following questions:
● What performance does Smart achieve for different
types of disaggregated applications, and how does each
technique contribute to the overall performance? (§6.2)
● How effective is Smart in reducing resource contention?
(§6.3)

6.1 Evaluation Setup

We use eight machines in our cluster, each with two Intel
Xeon Gold 6240R CPUs (96 cores in total), 384 GB DRAM
(32 GB×12), 1.5 TB Intel Optane DC Persistent Memory
(128 GB×12)5, and a 200 Gbps Mellanox ConnectX-6 Infini-
Band RNIC. Each RNIC is connected to a 200 Gbps Mellanox
InfiniBand switch. The hardware limit of the RNIC on our
test platform is 110.0 MOP/s. These machines are installed
with Ubuntu 20.04 LTS (Linux kernel 5.4.0) and Mellanox
5Optane DC Persistent Memory is used only for evaluating Smart-DTX
with FORD [64]. Both DRAM and persistent memory DIMMs are properly
installed in both sockets, and the memory controllers are fully utilized.

OpenFabrics Enterprise Distribution for Linux (MLNX_OFED)
v5.3-1.0.0.1. For each experiment, some machines in the clus-
ter are used to emulate memory blades. 2 MB huge pages are
used to reduce page translation cache misses from RNICs.
We also enable the memory interleave policy. Unless other-
wise stated, the concurrency depth of each thread is 8 by
using coroutines to maximize the throughput.
6.2 End-to-end Performance

6.2.1 Hash Table. In this section, we report the perfor-
mance results of both Smart-HT and RACE hashing [68, 69].
Workloads. To be consistent with the existing works of dis-
aggregated indexes [57, 68, 69], we use YCSB [8] to evaluate
the performance of different hashing indexes. Specifically,
three types of read-write ratios are reported:

1. Write-heavy: 50% updates and 50% lookups,
2. Read-heavy: 5% updates and 95% lookups, and
3. Read-only: 100% lookups.

The queried keys follow the Zipfian distribution [19] (with
the skewness parameter \ = 0.99), which is more common
in production environments [8]. Each record in the index
consists of an 8-byte key and an 8-byte value. For each exper-
iment, we load 100 million items into the hash table and then
run the corresponding workloads. Unless otherwise noted,
all hash table experiments are performed with one compute
blade and two memory blades.
Scalability. Figure 7 shows the throughput of RACE and
Smart-HT with different thread counts. In Figure 7(a)–(c),
only one compute blade is running. Overall, Smart-HT has
higher throughput than RACE because it has better scala-
bility. For write-heavy workloads, the highest throughput
of RACE is 2.8MOP/s (with 8 threads), while Smart-HT is
5.7MOP/s (with 48 threads). For read-heavy and read-only
workloads, we find that the throughput of RACE is less than
11.4 MOP/s, while Smart-HT reaches 21.2 MOP/s and 23.7
MOP/s respectively. Each lookup operation requires three
RDMA READs. With 64 or more threads, Smart-HT cannot
improve the throughput any further because the bandwidth
resources of RNIC/PCIe are exhausted.
We also evaluated the scale-out cases as shown in Fig-

ure 7(d)–(f), using up to 6 compute blades. Each compute
blade runs 96 threads, so there are up to 6 × 96 = 576 con-
current threads in an execution. For both write-heavy and
read-heavy workloads, Smart-HT outperforms RACE by
up to 132.4× and 77.3× respectively, due to the higher con-
tention ratio caused by the higher concurrency. For read-only
workloads, although RACE’s throughput increases with the
number of compute blades, Smart-HT still has 2.0× ∼ 3.8×
higher throughput.
Performance Breakdown. To further understand the re-
sults, we break down performance gaps between RACE and
Smart-HT by applying each technique in turn: (1) +ThdResAlloc
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Figure 7. Throughput of hash tables with different numbers of computation threads.

(thread-aware resource allocation); (2) +WorkReqThrot (adap-
tive work request throttling); and (3) +ConflictAvoid (con-
flict avoidance). The results are shown in Figure 8.

ThdResAlloc removes implicit doorbell contentions.With
a higher ratio of lookup operations, such as the read-only
workloads, thread contention in doorbell registers is themain
factor that degrades the application performance. Enabling
thread-aware resource allocation is very effective in improv-
ing application scalability in these read-heavy scenarios. As
mentioned earlier, since the maximum number of doorbell
registers can be much smaller than the number of QPs, a
thread-aware allocation mechanism is required, rather than
simply increasing the number of doorbell registers.

WorkReqThrot throttles down the number of outstanding
work requests. This technique is effective for write-heavy
workloads when the thread count is between 8 and 32. Intro-
ducing work request throttling increases the IOPS of RDMA
messages, as we will demonstrate later in §6.3. This also
increases the throughput of index operations. However, as
the thread count and the network IOPS continue to increase,
an update operation is more likely to contend with others,
making unsuccessful retries more common. WorkReqThrot
also allows applications to create many more coroutines
(higher concurrency depth) without suffering from perfor-
mance degradation caused by cache thrashing.

ConflictAvoid reduces unsuccessful retries through the
exponential backoff mechanism. For write-heavy workloads
with skewed key distribution, unsuccessful retries play a
dominant role in wasted IOPS. Even for read-heavy work-
loads, where only 5% of updates occur, there are still massive
failed retries when the thread count exceeds 64. By enabling
conflict avoidance, the hash index achieves optimal through-
put and scalability in both workloads.

For Figure 7(d)–(f), multiple compute blades are involved
during execution. For write-heavy and read-heavy work-
loads, the most important optimization to improve the scala-
bility of RACE is still ConflictAvoid. For read-only work-
loads, there is still a throughput gap (up to 3.8×) between
RACE (essentially disabling ThdResAlloc) and Smart-HT.
RACE’s throughput increases because the doorbell registers
are not shared across multiple compute blades.
Throughput vs. Latency. Weexamine the latency-throughput
correlation in both Smart-HT and RACE, with 96 threads
running in each. We control the throughput by intention-
ally throttling execution. The latency-throughput curve is
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Figure 10. Throughput of distributed transactions with dif-
ferent numbers of executing threads.

shown in Figure 9. Note that the maximum throughput of
Smart-HT is less than 23 MOP/s, which is caused by the
additional overhead of measuring the execution time of each
operation. Compared to RACE, Smart-HT reduces the me-
dian latency (i.e., the 50th percentile latency) by 69.6%. By
enabling thread-aware resource allocation, the median la-
tency is less than 30.3`𝑠 , because this technique prevents
a thread that is about to post a work request from being
blocked by other threads. The minimum median latency is
11.2`s, achieved at a throughput of 12.2MOP/s. Smart-HT
also reduces the tail latency (i.e., 99th percentile latency) by
up to 80.6% of RACE.
6.2.2 Persistent Distributed Transaction.We compare
Smart-DTX with FORD [64]. For a fair comparison, we do
not use dedicated QPs to perform asynchronous undo log-
ging in FORD. The modified version is FORD+ which out-
performs the original FORD in throughput.
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Figure 11. Throughput vs. latency in distributed transac-
tions.

Workloads. We use two OLTP benchmarks to evaluate
the end-to-end performance of distributed transactions: (1)
SmallBank [50], which simulates bank account transactions,
and 85% of transactions are read-write; and (2) TATP [49],
which models a telecom application, consisting 80% of read-
only transactions. Two memory blades are used for each
test, and database records are stored in NVM as FORD. We
run 6 million transactions in each benchmark and count the
number of committed transactions per second. Latency is the
time it takes to commit a transaction.
Scalability. Figure 10 shows the throughput of both FORD+
and Smart-DTX. FORD+ achieves the highest throughput
with 24 and 32 threads for the SmallBank and TATP bench-
marks respectively. However, FORD+ suffers from perfor-
mance degradation with more threads. For example, the
throughput of SmallBank is only 1.0 MOP/s with 96 threads
running. This is mainly due to implicit doorbell contention.
Readers may notice that the throughput of 48 threads for
FORD+ is higher than both 40 and 56 threads for TATP. This
outlier is also related to the default doorbell register alloca-
tion policy. With 48 working threads, there are at most 4
threads using QPs associated with the same doorbell register,
but with 47 or 49 working threads, there are 8 threads that
can interfere with each other. The same scenario occurs with
72 and 96 threads.

According to our breakdown analysis, the improvement
of Smart-DTX is mainly due to the thread-aware allocation
of RDMA resources. In contrast to disaggregated data struc-
tures, committing a distributed transaction requires more
RDMA messages. As a result, resource contention during
RDMA message delivery can lead to significant performance
degradation. Smart-DTX outperforms FORD+ by up to 5.2×
in SmallBank, and 2.6× in TATP. Other techniques, such as
work request throttling and conflict avoidance, also slightly
improve the performance of SmallBank. Committing a trans-
action requires multiple READ/WRITE operations, depend-
ing on the read and write sets. The maximum throughput of
Smart-DTX is bounded by either network IOPS (consume
up to 90 MOP/s in SmallBank) or bandwidth (consume up to
104 Gbps in TATP6).
Throughput vs. Latency. Similar to Smart-HT, we also ex-
amine the relationship between the median latency and the

6Our evaluation platform only supports PCIe 3.0, and the maximal band-
width is 128 Gbps.

throughput. As shown in Figure 11, there are 96×8 = 768 con-
current tasks. In addition to improving maximum through-
put, Smart-DTX dramatically reduces the median latency
of SmallBank and TATP by up to 45.8% and 77.0%, respec-
tively, thanks to thread-aware resource allocation. When
the throughput of Smart-DTX and FORD+ is less than 0.8
MOP/s on the SmallBank benchmark, both have similar me-
dian latency. The same observation holds for TATP.
6.2.3 B

+
Tree. In this section, we compare Smart-BT with

Sherman [57]. The open-source version [56] may crash with
massive threads, so we fix it by using the per-cacheline ver-
sion mechanism (§5). We call the modified version Sherman+.
Workloads. We use the same workloads as described in
§6.2.1. To keep the setup consistent with the original pa-
per [57], we emulate each server as both a memory blade
(using 2 threads) and a compute blade (using a maximum of
94 threads).
Scalability. Figure 12 shows the throughput of Sherman+
and Smart-BT at different thread counts. In Figure 12(a)–
(c), only one server is involved. For write-heavy workloads,
update operations dominate the execution time, and the
throughput of Smart-BT is slightly higher than that of Sher-
man+. For read-heavy and read-only workloads, Smart-BT
outperforms Sherman+ by 1.8× and 2.0× respectively (us-
ing 94 threads). Figure 12(d)–(f) shows the throughput with
multiple blades. Each compute blade is running 94 threads.
With 6, 016 coroutines, Smart-BT outperforms Sherman+
by 1.1× and 2.0× in read-heavy and read-only workloads
respectively.
The performance improvements of Smart-BT in both

read-heavy and read-only workloads are firstly contributed
by speculative lookup. We evaluate the scalability of Sher-
man+ with Speculative Lookup (i.e., Sherman+ w/ SL), as
shown in Figure 12(a)–(c). Sherman+ w/ SL has up to 1.6×
higher throughput than Sherman+ under read-heavy work-
loads. By reading a single key/value entry instead of the
entire leaf node, high read amplification is mitigated. This
allows RNICs to achieve higher throughput when processing
RDMA messages. As a result, applications get more bene-
fits from speculative lookups with higher lookup ratios and
higher lookup skewness.
However, we find that Sherman+ w/ SL (which becomes

an IOPS-bound rather than bandwidth-bound application)
does not scale up well with 64 and more threads. Under
read-only workloads, the throughput of Sherman+ w/ SL is
only 16.3MOP/s when using 94 threads. Smart’s techniques,
especially thread-aware resource allocation, avoid the perfor-
mance penalty of implicit doorbell sharing. The remaining
techniques, such as adaptive work request throttling, have
almost no impact on overall performance. For write-heavy
workloads, the HOCL technique proposed by Sherman has
reduced the number of RDMA messages when acquiring a
spinlock.
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6.3 Micro-Benchmarks

In this section, we evaluate how Smart’s techniques are
effective in reducing resource contention.
Thread-aware Resource Allocation. To demonstrate that
Smart avoids resource contention, as shown in Figure 13,
we use the bench tool (§3.1) and measure the throughput
of 8-byte READs using different resource allocation poli-
cies. In Figure 13(a), we keep up to 16 OWRs for each QP.
Per-thread QP cannot scale to 24 or more threads (§3). By
enabling thread-aware resource allocation (+ThdResAlloc),
the throughput reaches up to 110.0 MOP/s, which is the
hardware limit of the RNIC on our test platform. It also out-
performs per-thread QP in throughput by 1.0× ∼ 4.3×.
Adaptive Work Request Throttling. By enabling adaptive
work request throttling (i.e., +WorkReqThrot), as shown in
Figure 13(a), the throughput remains stable at 56 threads
and above, and throughput degradation is avoided. Quanti-
tatively, the throughput is up to 5.0× and 1.9× higher than
per-thread QP and per-thread context respectively. This is
effective by controlling the send queue depth and avoiding
cache thrashing.
To investigate how outstanding work requests affect the

throughput, Figure 13(b) shows the throughputwith different
work request batch sizes. As the batch size is greater than 8,
+WorkReqThrot achieves the highest throughput of all the
configurations. This shows that Smart avoids performance
degradation due to massive outstanding work requests.
To evaluate the performance under dynamic workloads,

we extend the benchmark so that it changes the number of
concurrent threads at regular intervals (32 ∼ 2048 ms). The
range of concurrent threads varies between 36 and 96, and
the work request batch size is 64. Based on the analysis in
Section 3.2, we expect the throughput to be close to 110.0

Table 1. Throughput (MOP/s) of 8-byte RDMA read opera-
tions under dynamically changing workloads.

Changing interval (ms) 32 64 128 256 512 1024 2048

w/o WorkReqThrot 79.3 79.2 77.9 74.7 73.8 71.8 65.7
w/ WorkReqThrot 97.8 95.1 99.7 101.0 105.8 109.3 109.6
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Figure 14. Performance metrics of conflict avoidance: (a)
throughput; (b) average retries per operation; (c) distribution
of retry counts per operation with 96 threads.

MOP/s after enabling adaptive work request throttling. Ta-
ble 1 shows the throughput of 8-byte RDMA READ. If the
changing interval is longer than the epoch duration (512
ms by default), the throughput is nearly maximized with
minor performance oscillations. In other cases, throughput
decreases by up to 13.0% because the workload may not be
stable within an epoch, but the optimal maximum credit
𝐶max does not change. However, the adaptive work request
throttling technique can still provide performance gains even
when the workload changes frequently.
Conflict Avoidance. To reveal the impact of conflict avoid-
ance, we measure the number of retries per operation (i.e.,
retry count) and report the result of Smart-HT with 100%
updates. The evaluation setup is consistent with §6.2.
Figure 14(a) shows the scalability with different conflict

avoidance configurations, and Figure 14(b) shows the aver-
age number of retries. Note that the queried keys follow the
Zipfian distribution with \ = 0.99. Disabling conflict avoid-
ance causes significant performance overhead on massive
concurrent threads, and the average number of retries also
increases dramatically. This is because update operations
are more likely to be interrupted by other threads. We also
evaluate Smart-HT with different conflict avoidance set-
tings. Enabling exponential backoff only (+Backoff) keeps
the average retries per operation below 1.7, and the through-
put does not decrease significantly as the thread count in-
creases. Dynamical backoff limit (+DynLimit) increases the
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throughput by 1.6× of +Backoff. Enabling all techniques,
including coroutine throttling (i.e., +CoroThrot), improves
the throughput by up to 67% of +Backoff.

Figure 14(c) shows the distribution of the retry counts for
an update operation. With 96 threads, the average number of
retries without conflict avoidance is 11.5 per update, while
Smart-HT is only 1.1. 93.3% of updates in Smart do not
involve extra roundtrips or messages.
7 Related Work

Memory Disaggregation. In addition to the disaggregated
data structures [35, 57, 68] and transaction processing sys-
tems [62, 64, 65] discussed in this paper, current work also
includes the following categories: 1) Disaggregated memory
management [1, 21, 34], which provides a transparent and
efficient shared memory abstraction like local DRAM. 2) Dis-
aggregated application runtime [37, 44], which allows devel-
opers to manipulate data placement in a fine-grained manner.
3) Disaggregated key/value store [33, 47, 52], which enables
better utilization of data storage. Smart can be applied to
all the above types of disaggregated memory applications.

As RNICs are commercially available in datacenters, most
disaggregated applications are based on RDMA [1, 20, 52, 54,
57, 64, 68]. Our work is aimed at RDMA-based applications.
Other protocols, like CXL [18, 23] and Ethernet [44], are also
used in memory disaggregation.
SmartNIC. SmartNICs offload some network functions to
on-chip computation powers. For example, Microsoft’s Cat-
apult [43] and StRoM [48] rely on FPGA-based SmartNICs
to offload application-level kernels. RDMA is supported by
most SmartNICs, both one-sided and two-sided verbs. The
doorbell contention and cache thrashing issues are general
because of the hardware implementation limitations. The un-
successful retries issue can get help from SmartNIC because
we can harness the application-level semantics to mitigate
this problem in SmartNIC.
Scalability of RDMA Network. Improving the scalability
of RDMA connections has been a long-standing challenge.
Kalia et al. [26] and Collie [31] find that RC READs with
large WQE batch sizes cause performance degradation over
InfiniBand and RoCEv2 networks. Smart’s adaptive work re-
quest throttling addresses this issue. FaRM [16] proposes QP
multiplexing to address the scalability issue. X-RDMA [36]
allocates RDMA context resources on a per-thread basis.
Similarly, LITE [53] implements QP sharing between mul-
tiple processes. Smart’s thread-aware resource allocation
performs better in hardware resource utilization.

HERD [25], FaSST [27] and eRPC [24] use unreliable con-
nection (UD) for better scalability, because one QP can asso-
ciate with multiple QPs in this QP transport type. However,
UD does not support one-sided RDMA verbs, which limits
the scope of its use.
Two RPC communication frameworks, ScaleRPC [5] and

Flock [41], throttle the number of QPs that can be used at any

given time. This prevents cache thrashing from RNICs on
the RPC server side (memory blades). This is different from
disaggregated memory where the memory nodes have near-
zero compute resources and the cache thrashing happens in
the compute blades.
Finally, Dynamically Connected Transport (DCT) [15] is

a patented Mellanox technology that allows a QP to dy-
namically connect and disconnect from any remote node.
However, switching a connection from one remote node to
another often results in performance degradation [27].
RDMA-basedData Structures. The hashing index is widely
used for fast lookup in distributed systems. Existing hash-
ing schemes [16, 40, 61, 68, 69] could be implemented using
only one-sided RDMA verbs. RACE [68, 69] is optimized
for disaggregated memory by reducing network roundtrips.
Tree-based indexing (e.g., B+Tree [57, 67] and adaptive radix
tree [35]) supports range queries. FG [67] uses a B-link tree
structure and distributes tree nodes across different servers.
It is the first distributed sorted index that completely lever-
ages one-sided RDMA verbs. Sherman [57] improves the scal-
ability under skewed write workloads by proposing two-tier
locking. As discussed before, Smart can be used to improve
the scalability of these data structures as long as they are
IOPS-bound.
RDMA-basedDistributed Transactions. One-sided RDMA
verbs are widely used in both transaction execution [4, 16,
45, 61] and data replication [63]. Smart is effective for im-
proving the scalability of these systems by mitigating RDMA
resource contentions. Applications that use both one-sided
and two-sided RDMA verbs (e.g., DrTM+H [60]) can also
benefit from Smart.
8 Conclusion

This paper presents our observations on the three major
scale-up bottlenecks for IOPS-bound disaggregated appli-
cations and the corresponding general solutions. We also
propose Smart, an easy-to-use RDMA programming frame-
work that hides technical details from application develop-
ers. Our evaluation results show that typically less than 50
lines of code are sufficient to refactor the state-of-the-art
disaggregated systems with Smart to achieve significant
improvements in both operation throughput and latency.
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