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Abstract—In the big data era, the distributed file system is
getting more and more significant due to the characteristics of
its scale-out capability, high availability, and high performance.
Different distributed file systems may have different design
goals. For example, some of them are designed to have good
performance for small file operations, such as GlusterFS, while
some of them are designed for large file operations, such as
Hadoop distributed file system. With the divergence of big
data applications, a distributed file system may provide good
performance for some applications but fails for some other
applications, that is, there has no universal distributed file system
that can produce good performance for all applications. In this
paper, we propose a hybrid file system framework, HybridFS,
which can deliver satisfactory performance for all applications.
HybridFS is composed of multiple distributed file systems with
the integration of advantages of these distributed file systems.
In HybridFS, on top of multiple distributed file systems, we
have designed a metadata management server to perform three
functions: file placement, partial metadata store, and dynamic file
migration. The file placement is performed based on a decision
tree. The partial metadata store is performed for files whose
size is less than a few hundred Bytes to increase throughput.
The dynamic file migration is performed to balance the storage
usage of distributed file systems without throttling performance.
We have implemented HybridFS in java on eight nodes and
choose Ceph, HDFS, and GlusterFS as designated distributed
file systems. The experimental results show that, in the best
case, HybridFS can have up to 30% performance improvement
of read/write operations over a single distributed file system.
In addition, if the difference of storage usage among multiple
distributed file systems is less than 40%, the performance of
HybridFS is guaranteed, that is, no performance degradation.

I. INTRODUCTION

In recent years, the distributed file system (DFS), such

as Ceph [24], Hadoop distributed file system (HDFS) [3],

GlusterFS [10] , Google file system (GFS) [9], etc., is get-

ting more popular due to the characteristics of its scale-out

capability, high availability, and high performance for big

data applications. For different usage purposes, the design of

these distributed file systems is different. Some distributed file

systems are designed to handle small files, such as GlusterFS.

Some distributed file systems are designed for large files,

such as HDFS. While some file systems are designed with

multiple file storages for different use cases, such as Ceph.

Since the design goals of different distributed file systems

are different, their performance may vary for different file

sizes. For example, when the file sizes are less than 8MB, the

performance of read/write operations of GlusterFS is better

than that of HDFS. On the other hand, if the file sizes are

greater than or equal to 8MB, the performance of read/write

operations of HDFS is better than that of Ceph which is

better than that of GlusterFS. This indicates that there has

no universal distributed file system that can deliver good

performance for all kinds of file sizes.

To overcome the above drawback, some research has fo-

cused on promoting the performance, availability and scala-

bility of Multi-Cloud Storage (MCS) [18] [23] by using the

erasure code. The MCS with erasure code scheme divides a

data object into k equal-sized fragments that are the original

data shares. Each data share has m-k redundant, where m is the

number of storages to store a data object and m ≥ k. From the

m storages where a data object is stored, we only need shares

from any k storages to reconstruct the original data object.

This scheme suffers from low throughput and high latency for

not considering the characteristics of different storage systems

and the geographical locations of storages. Some research has
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focused on using multiple DFSs with a file placement strategy

to decide what DFS to store a file based on the usage of

DFSs and the current throughput of DFSs [21]. However, the

scheme proposed in [21] did not consider some important file

characteristics, such as access permission, etc., which have a

great impact on DFS performance, resulting in low write/read

throughputs.

In this paper, we propose a hybrid file system framework,

HybridFS, which is composed of multiple DFSs with the

integration of advantages of these DFSs. In contrast to the

scheme proposed in [21], the design of HybridFS takes the

characteristics of files and DSFs into considerations. There-

fore, HybridFS can deliver satisfactory performance for all

big data applications. To design a file system with multiple

DFSs, there are two challenges:

(1) How to intelligently decide what DFS to store a file such

that the system has highest overall performance;

(2) How to balance the usage of DFSs.

To cope with these challenges, in HybridFS, an intelligent

metadata management server (MMS) is designed on top of

multiple DFSs with three functions, file placement, partial

metadata store, and dynamic file migration. The file placement

function is used to intelligently decide what DFS to store a

file based on a decision tree that is one of the classic machine

learning algorithm. Machine learning has a natural advantage

for big data applications. It can automatically identify and

model attributes required with high efficiency. The decision

tree is constructed based on two file attributes size and

permission. The partial metadata store function is used to store

partial file metadata (file name, file path, primary file location,

file size, read frequency, write frequency, operation frequency,

and file data) of files whose size is less than a few hundred

Bytes to increase throughput. For example, if a read operation

is performed for a small size file, we can retrieve its data from

the partial metadata stored in MMS without the involvement

of DFSs. We use the small file optimization method proposed

in [15] to manage the metadata of small size of files and

dynamically adjust the store threshold based on the file size

and MMS space usage, etc. When using multiple DFSs, it

is possible that the storage usage of one DFS is full while

that of another DFS is almost empty if the files processed by

the file placement policy are favoring one DFS and there has

no file migration mechanism. In HybridFS, the dynamic file

migration function is used to migrate files from one DFS to

another in order to balance the storage usage of DFSs without

throttling performance. In the dynamic file migration function,

we propose a dynamic storage balance model based on the

file size, the file read/write throughput that is predicted by

the regression analysis [7], the difference of storage usage of

DFSs, etc. With this model, we can decide what file should

be migrated to what DFS and the performance is almost no

loss.

We have implemented HybridFS in java on eight nodes and

choose Ceph, HDFS, and GlusterFS as designated distributed

file systems. The experimental results show that, in the best

case, HybridFS can have up to 30% performance improvement

of read/write operations over a single distributed file system.

In addition, if the difference of storage usage among multiple

distributed file systems is less than 40%, the performance of

HybridFS is guaranteed, that is, no performance degradation.

The contributions of this paper are as follows:

• We have proposed a hybrid file system framework, Hy-

bridFS, which can deliver satisfactory performance for all

big data applications. The framework is generic and can

be used for different DFSs combinations as long as the

characteristics of files and DFSs can be derived.

• We use the decision tree to classify different character-

istics of files and design a novel place strategy to put a

files in a proper DFS.

• We have designed a dynamic file migration function to

balance the the storage usage of DFSs in HybridFS in

the premise that system throughput is almost unchanged.

The remainder of this paper is organized as follows. In

section II, the related work is given. Section III describes

the design details of HybridFS. The evaluation and analysis

of proposed framework is given in Section IV. Sections V

concludes the paper and points out some possible future

directions.

II. RELATED WORK

A. Distributed File System

Many efficient and practical DFSs have been proposed in

the literature, such as Ceph, HDFS, GlusterFS. Ceph is one of

the most efficient Distributed file system that maximizes the

separation between data and metadata management. It uses

pseudo-random data distribution function (CRUSH) to store

data and a dynamic subtree partitioning mechanism to place

metadata. Since the subtree partitioning metadata operation is

efficient, Ceph can deliver good performance for small file

operations.

HDFS is an Apache open source software. Its metadata

mechanism is different from that of Ceph. In HDFS, a na-

menode is the master server that manages the name space

of file system and handles file access requests by clients.

The datanodes are common storage nodes. The design goal

of HDFS is to provide a reliable store for large files across

machines in a large cluster. To achieve this goal, in HDFS,

each file is stored as a sequence of blocks on datanodes.

Each block has a number of replicas specified by the replica

placement policy managed by the active namenode. With

streaming data access patterns [25], HDFS are suitable for

large file operations.

In GlusterFS, the storage nodes are divided into two cat-

egories, client and server. The server nodes are typically

deployed as storage bricks. Each server node has a GlusterFS

daemon to export the local file system as a sub-volume. The

storage file-system is assigned to a volume that is composed

of all sub-volumes of server nodes. The system does not have

a metadata server to handle files. Instead it uses the elastic

hash algorithm for file placement. By eliminating the metadata

server, many file operations can be performed in parallel.
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Therefore, GlusterFS can handle small files more efficient than

Ceph and HDFS.

In [5] [8], the authors have evaluated the performance of

Ceph, GusterFS, and HDFS. The evaluation indicates that

Ceph and GlusterFS can produce better performance than

HDFS for small files operations. On the opposite, HDFS has

better performance than Ceph and GlusterFS for large files.

In [12] [16] [22] , some optimizations have been proposed

for HDFS to handle small file operations. However, these

optimizations still cannot meet the demand required by appli-

cations. In [4], an optimization method has been proposed for a

generic DFS based on metadata storage, usage of caching, and

design of replication algorithms. Since this method does not

consider the characteristics of a specific DFS, its performance

is not ideal.

B. Multiple Cloud Storage System

The MCS proposed in [18] [23] integrates multiple storages

that located in different geographical locations to form a

DFS with the erasure code scheme. The MCS provides better

features such as availability and scalability, but have low

performance and high latency due to not considering the char-

acteristics of different storage systems and the geographical

locations of storages.

Software define storage (SDS) [21] is a virtualization tech-

nology for cloud storage. It uses policy-based provisioning

mechanism for data storage management to improve accessi-

bility and usability of the hardware resources. In [21], a SDS

has been proposed by using Ceph, HDFS, and Swift as the

underlined storages. The proposed SDS can assign a file to

an appropriate storage based on the usage of DFS. However,

its performance is not good due to ignore some important file

attributes, such as permission, etc.

C. Machine Learning and Load Balancing

Using machine learning to optimize the file system is

another hot research. The machine learning method is very

suitable for predicating and classifying files and jobs in a

storage system. In [26], the authors proposed an efficient

job classification approach, Bejo, to classify different jobs

based on resource consumption. Bejo [26] treats the job as

a document and assigns each collected resource consumption

snapshot to a certain ’resource word’. Based on the distribution

of words, it can classify a job using support vector machine

(SVM). In [1], an unsupervised learning method was proposed

to cluster Hadoop jobs that have similar characteristics. A

decision tree defined in [19] is a decision supporting tool that

uses a tree-like graph or a model of decisions to determine

the possible consequences, such as chance event outcomes,

resource costs, utility, etc. In [17], a decision tree is used to

automatically classify the attributes of existing files (e.g., read-

only access pattern, short-lived, small in size). Based on the

classification, the attributes of new files can be predicated and

the locations of new files can be determined.

Storage usage unbalancing is another challenge. Many

methods have been proposed in the literature to solve this

problem. In [11], a fully distributed load rebalancing algorithm

was proposed to cope with the load imbalance problem based

on the analysis of storage usage of a DFS. In [6], a dynamic

and adaptive load balancing algorithm, SALB, based on a

distributed architecture was proposed. SALB is composed of

tow models. One is an online load prediction model that can

reduce the decision delay caused by the network transmission.

Another is a file migration model to select the possible migra-

tion candidates so as to minimal the overhead of file migration.

Mantle [20] is a system built on Ceph. It exposes the trade-offs

of resource migration and the processing capacity of the MDS

nodes by separating migration policies from the migration

mechanisms. It can select different techniques to distribute

metadata and to balance diverse metadata workloads. In [2],

the authors proposed a solution that enables administrators

to make decisions in the presence of multiple workloads

dynamically to strike an optimal balance point in between

utilization and performance.

III. THE DESIGN OF HYBRIDFS

In this section we will discuss the design details of Hy-

bridFS. The design goal of HybridFS is to provide a sat-

isfactory performance for all big data applications based on

multiple DFSs. To achieve this goal, the design of metadata

mechanism is critical. Two issues need to be considered. The

first one is how to decide a proper DFS to store a given

file such that a satisfactory performance can be guaranteed.

The second one is how to balance the storage usage of DFSs

without throttling the performance. To solve the first issue,

we use a machine learning approach. For the second issue,

we proposed a dynamic file migration mechanism that can

balance the storage usage of DFSs.

The system architecture of HybridFS is shown in Figure 1.

In Figure 1, we can see that HybridFS contains three compo-

nents, clients, metadata manage server (MMS), and multiple

DFSs. The clients are the file operations initiators. The MMS

is responsible for the metadata management of HybridFS. The

multiple DFSs are used to perform file operations. Among

them, the MMS is the core of HybridFS. The MMS has

three functions: file placement, partial metadata store, and

dynamic file migration. The file placement function is used

to determine a proper DFS to store a given file such that a

satisfactory performance can be guaranteed for a given big

data application. The partial metadata store function is used

for files whose size is less than a few hundred Bytes to increase

read or write throughput. The dynamic file migration function

is used to balance the storage usage of DFSs without throttling

performance. In the following, we describe the design of MMS

in details.

A. The Design of File Placement Function

The file placement function in HybridFS uses a decision

tree to determine what DFS to store a given file such that

the best read/write performance can be achieved. In general,

a decision tree algorithm recursively splits the samples into

clusters, where each leaf node is a cluster. The goal is to
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Fig. 1. The system architecture of HybridFS

create clusters whose files have similar attributes and the same

classification. When a file is created, some attributes such as

name, path, owner, group, size, time, permission, symbolic

link, etc., are associated with the file. Among those attributes,

only size and permission attributes are used in the decision

tree for file classification.

The construction of decision tree can be divided into two

phases. In the first phase, a 3-tuple (s, p, dfs) dataset is

generated, where s is the file size attribute, p is the file

permission attribute, and dfs is the designated DFS to store

a file with s and p attributes. To generate the 3-tuple dataset,

we need to determine the values of s, p, and dfs in the 3-

tuple. The values of the file size attribute s are continuous.

The information entropy theory [14] was used to discretize the

continuous values. For the file permission attribute, its values

are discrete. The values of file permission attribute p are read

only, write only, and read/write. Given m DFSs and the values

of s and p of a file f , the value of dfs is determined by the

following equation

dfs = max(Firt + Fiwt) for i = 1, 2, ...,m (1)

where Firt is the file read throughput in DFSi and Fiwt is

the file write throughput in DFSi.

We now give an example to explain how to generate a 3-

tuple dataset. Assume that the values of s are 1MB, 5MB, and

9MB. The values of p are read only, write only, and read/write.

The values of The designated multiple DFSs are DFS1, DFS2,

and DFS3. The read throughput of a file with s = (1MB, 5MB,

9MB) in DFS1, DFS2, and DFS3 are (10.5MB/s, 10MB/s,

9.5MB/s), (10.5MB/s, 10MB/s, 9.5MB/s), and (10.5MB/s,

11MB/s, 11.5MB/s), respectively. The write throughput of a

file with s = (1MB, 5MB, 9MB) in DFS1, DFS2, and DFS3

are (11MB/s, 10MB/s, 8MB/s), (10.5MB/s, 10MB/s, 9MB/s),

and (8MB/s, 10MB/s, 11MB/s), respectively. For (s, p, dfs) =

(1MB, read only, dfs), the value of dfs is DFS1 since DFS1

has the best read throughput (10.5MB/s) for file size = 1MB

among DFSs used. For (s, p, dfs) = (5MB, write only, dfs), the

value of dfs is DFS1 since DFS1 has the best write throughput

(10.5MB/s) for file size = 5MB among DFSs used. For (s, p,

dfs) = (9MB, read/write, dfs), the value of dfs is DFS3 since

DFS3 has the best read + write throughput (22.5MB/s) for file

size = 9MB among DFSs used. By enumerating cases of s
and p, we can generate the corresponding 3-tuple dataset that

like Figure 2(a).

In the second phase, a decision tree is generated based on

the ID3 algorithm proposed by J. Ross Quinlan [19] and the 3-

tuple dataset. The tree is built in a top-down manner. Initially,

the tree is empty and the information entropy theory is used

to determine the attribute that has the most impact on the

classification result. In our design, the file size attribute s has

the most impact on the classification result. It is selected as

root. The dataset associated with the root is the original 3-tuple

dataset. Next, a two-level decision tree can be constructed by

insertion of n children to the root, where n is number of

values of attribute s. Each newly inserted node is associated

with a sub-dataset in which each instance has the same value

in attribute s. For each newly inserted node, we apply the

same process as performed for root to construct a 3-level

decision tree and so on until all attributes are processed. When

a decision tree is constructed, if all leaf nodes branched from

a non-leaf node has the same classification result, the decision

tree can be further optimized by merging these nodes as a leaf

node.

Figure 2 illustrates how to construct a decision tree with a

3-tuple dataset. In Figure 2(a), there are 9 instances in the

3-tuples dataset. Based on the information entropy theory,

attribute s is selected as root. Since the values of attribute

s are 1M, 5M, and 9M, we insert 3 children nodes to the

root and get a two-level decision tree as shown in Figure 2(c).

The sub-datasets associated with each children node are shown

in Figure 2(b). Next, for each children node, we apply the

information entropy theory to attributes without s. Since only

attribute p is available, attributed p is selected as the roots of

children nodes of attribute s. The value of attribute p is read
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only, write only, and read/write, three children nodes are added

to each children node of attribute s. We obtain a three-level

decision tree as shown in Figure 2(d). Since all attributes are

processed, the construction of the decision tree is completed.

In Figure 2(d), by merging some leaf nodes, we can obtain an

optimized decision as shown in Figure 2(e).

To obtain the most realistic estimate of the true error, we

calculate the training error using Ten-fold cross-validation

[13]. Ten-fold cross-validation divide dataset into Ten-Equal

size, take nine of them as training data and one as test data in

turn. We can then use this estimate to automatically determine

whether or not the model is suitable enough

B. The Partial Metadata Store Function

For Internet of Thing (IoT) applications, in general, they

will produce many files with file size ranging from a few tens

to a few hundreds Bytes. Since the design goals of most of

DFSs are not for files with such small size, in HybridFS, we

have proposed a partial metadata store mechanism to handle

such files. In the partial metadata store mechanism, such small

files are stored as metadata in MMS, instead of storing them

on DFSs. A threshold is used to classify if a file is a small

file or a normal file. If a file is classified as a small file and

its file size is less than the available MMS storage capacity

assigned for such small files, it is stored in MMS as metadata.

Otherwise, it is stored in a DFS. In HybridFS, we use the

small file optimization method proposed in [12] to dynamically

adjust the threshold based on the file size and MMS space

usage, etc.

C. Dynamic migrate model

In HybridFS, it is possible that the storage usage of one DFS

is almost full while that of another DFS is almost empty if the

files processed by the file placement function are favoring one

DFS and there has no file migration mechanism. The purpose

of the dynamic file migration function is to migrate exiting

files from one DFS to another in order to balance the storage

usage of DFSs without throttling performance. To achieve this

goal, we propose a dynamic storage balance method based on

the file size, the file read/write throughputs that are predicted

by the regression analysis, and the difference of storage usage

of DFSs. With this model, we can decide what file should be

migrated to what DFS and the performance is almost no loss.

The read/write throughput of a file f is defined as the

average flow rate of read/write operations on file f . To predict

the read and write throughputs of a file, we first need to get

the read/write throughputs of different size files on each DFS.

Figure 3 shows an example of the read/write throughputs of

different size files on GlusterFS, Ceph, and HDFS. Based on

the curves of read/write throughputs shown in Figure 3, we

can predict the read and write throughputs of a file based

on the regression model proposed in [7]. In this paper, we

only used the first-order, second-order, third-order, and fourth-

order functions for read/write throughputs prediction. These

functions are shown in Table I. To determine what function has

the best prediction result for a curve ci shown in Figure 3, the

least-square method is first applied to calculate the unknowns

of each function by using the throughputs presented in curve

ci. Then, a root mean square error (RMSE) equation is applied

to calculate the error of throughputs predicted by each function

and curve ci. The function that has the smallest RMSE is

selected as the function to predict the throughput associated

with curve ci.
In the dynamic file migration function, the difference of

storage usage of DFSs is used as a threshold to determine

whether files should be migrated from one DFS to another

without throttling the performance. The threshold depends

on the characteristics of DFSs used. In general, we need to

perform a simulation before setting the threshold. We have

a dynamic file migration daemon to monitor whether the

threshold is satisfied. When a threshold is satisfied, the file

migration process is launched to migrate files from the DFS

with a higher storage usage, DFSi, to the DFS with a lower

storage usage, DFSj . The file migration process is performed

as follows:

Step 1. Calculate the read and write throughputs of file x on

DFSi and DFSj using the regression functions associated with

the corresponding curves, for x = 1, ..., z, where z the total

number of files in DFSi. Let Fxrt(DFSi) and Fxwt(DFSi) be

the read and write throughputs of file x in DFSi, respectively.

Step 2. Obtain the read and write frequency of all files in

DFSi from MMS. Let Fxrf and Fxwf denote the read and

write frequency of file x, respectively.

Step 3. For all files in DFSi, calculate the performance

difference if they are migrated to DFSj by using the following

equation:

diffx(DFSi,DFSj) = (sx ÷ Fxrt(DFSi)− sx ÷ Fxrt(DFSj))

×Fxrf + (sx ÷ Fxwt(DFSi)− sx ÷ Fxwt(DFSj))× Fxwf

(2)

where sx is the size of file x.

Step 4. Sort the values of diffx(DFSi, DFSj) in descending

order for all files in DFSi.

Step 5. Migrate the first y files with largest values of

diffx(DFSi, DFSj) from DFSi to DFSj such that the dif-

ference of storage usage of DFSi and DFSj is less than the

threshold. The dynamic file migration function is given in

Algorithm 1.

In Algorithm 1, lines 2-10 are used to determine if the

difference of storage usage of any two DFSs is over a threshold

p0 that is set by the system administrator. Line 14 uses

Equation (2) to calculate the performance difference of every

file in original DFS and in destination DFS. Line 15 is used

to sort the performance difference in descending order. Lines

17-19 perform real file migration based on migrateList[] until

the storage usage of two DFSs is less than threshold p0.

IV. EXPERIMENTAL EVALUTATION

In the experimental evaluation, we use an eight-node clus-

ters to verify the proposed methods. The configuration and
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Fig. 2. An example of decision tree construction

TABLE I
DIFFERENT-ORDER REGRESSION MODELS

Model Regression function
First-order model y(k) = a0 + a1e−pk

Second-over model y(k) = a0 + a1e−p1k + a2e−p2k

Third-order system model y(k) = a0 + a1e−pk + be−δwk cos (w
√
1− δ2k) + ce−δwk sin (w

√
1− δ2k)

Fourth-order system model y(k) = a0 + b1e−δ1w1k cos (w1

√
1− δ21k) + c1e−δ1w1k sin (w1

√
1− δ21k)

+ b2e−δ2w2k cos (w2

√
1− δ22k) + c2e−δ2w2k sin (w2

√
1− δ22k)

usage of the experimental environment is shown in Table

II. In this cluster, all nodes are equipped with 4GB RAM,

128GB SSD, and 1TB HDD. The OS used is ubuntu14.04.

The network between them is 100Mbps. The designated DFSs

used in the experimental evaluation are HDFS, GlusterFS, and

Ceph each with two nodes. By performing some file operations

on different files size on these three DFSs, we observe that,

for small files, the performance of these three DFSs has the

order GlusterFS > Ceph > HDFS. On the opposite, for large

files, the performance of these three DFSs has the order HDFS

> Ceph > GlusterFS. This indicates that the file size is the

most important attributed for throughput of DFSs. Therefore,

our experimental evaluation is mainly on analyzing the file

size impact to throughput. The read/write throughput of a

file f on a DFS is defined as the file size of f divided by

the time of read/write operation on file f . In the following,

we evaluate and discuss how the file placement function,

the partial metadata storage function, and the dynamic file

migration function affect the throughputs of HybridFS.
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TABLE II
NODES USAGE

Node number DFS Hostname Usage Notes
Node1 MMS Master Metadata manage server 1TB capacity
Node2 HDFS HDFS1 Name node 1TB capacity
Node3 HDFS HDFS2 Data node 1TB capacity
Node4 Ceph Ceph1 mds,mon,osd 1TB capacity
Node5 Ceph Ceph2 osd 1TB capacity
Node6 GlusterFS GlusterFS1 GlusterFS server1 1TB capacity
Node7 GlusterFS GlusterFS2 GlusterFS server2 1TB capacity
Node8 Client Client Client 1TB capacity
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Fig. 3. The write/read throughputs of files with various sizes in designated
DFS

A. The Impact of File Placement Function on Overall
Throughput

In order to understand the impact of file size on throughput

of DFSs, files with size ranging from 512 Bytes to 512MB

are used to test the throughputs of HybridFS, GlusterFS, Ceph,

and HDFS. Figure 4 demonstrates the test results. In Figure 4,

x−axis is file size and y−axis is the normalized throughputs

of designated DFSs by aligning the throughput of HybridFS

to 1, that is, the throughput of each DFS is divided by that of

HybridFS. From Figure 4, we have the following observations:

Observation 1: When the file size is less than 8MB, the

throughputs of the four DFSs have the order GlusterFS ≈
HybridFS > Ceph and HDFS.

Observation 2: When the file size is equal to 8MB, the

throughputs of the four DFSs have the order GlusterFS ≈
HybridFS ≈ HDFS > Ceph.

Observation 3: When the throughputs of the four DFSs is

greater than 8MB, have the order HDFS ≈ HybridFS > Ceph

and GlusterFS.

From above observations, we conclude that the GlusterFS is

suitable for storing small size files (size < 8M). The HDFS is

suitable for storing large size files (size > 8M). The proposed

HybridFS is suitable for storing both small and large size

files. This indicates that the file placement function proposed

Algorithm 1 The Dynamic File Migration Function

Input: p0, DFSs
Output: null

1: for i = 0 to DFSs.size() do
2: for j = i to DFSs.size() do
3: if (DFSs[i].usage − DFSs[j].usage) > p0 then
4: originalLoc = i
5: destinationLoc = j
6: stop
7: end if
8: end for
9: end for

10: if i=j then
11: return null
12: end if
13: files[] = DFSs[originalLoc].files

14: Throuhput [] = ClaculateThroughputDegrade (files[],

DFSs[originalLoc],DFSs[destinationLoc])
15: migrateList[] = sort(Throuhput [])

16: for i = 0 to migrateList.size() do
17: data = readFile(migrateList[i], DFSs[originalLoc])
18: writeFile(data,DFSs[destinatioLoc])
19: deleteFile(migrateList[i], DFSs[originalLoc])
20: if (DFSs[orig].usage − DFSs[des].usage )< p0 then
21: return null
22: end if
23: end for

in HybridFS can take the advantages of both GlusterFS and

HDFS. When small size files come, the file placement function

store them in GlusterFS. While large size files come, the files

are stored in HDFS.

Next, we evaluate the impact of the large size file portion

in a DFS to the throughputs of that DFS. We have generated

12 datasets in which the large size file portions are set as

0%, 5%, 10%, 20%, ..., to 100 %. Each dataset contains 1000

different size of files. Figure 5 shows the average read/write

throughputs for each dataset tested on the designated DFSs.

The average read/write throughput of a file on a DFS is defined

as the average of its read throughput and write throughput on

a DFS. From Figure 5, we have the following observation:

Observation 4: The average read/write throughput of Hy-

bridFS is the best when the large size file portion is less than
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Fig. 4. The throughputs of designated DFSs with different file sizes

or equal to 54%. When the large size file portion is greater

than 54%, the average read/write throughput of HybridFS is

slightly less than that of HDFS. In general, the large size file

portion in an application is in between 5% to 20%. Observation

4 indicates that HybridFS can deliver the best performance for

most of applications compared to HDFS, Ceph, and GlusterFS.
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Fig. 5. The average read/write throughputs of 12 datasets with various
portions of large size files on Ceph, HDFS, GlusterFS, and HybridFS.

B. The Impact of Partial Metadata Store Function on Small
File Performance

To evaluate the performance of partial metadata store func-

tion for file sizes between a few bytes to a few hundred

bytes, we have generated 100 files with file size = 1, 2, 3,

..., 500 Bytes, that is, the total number of files generated is

50000. Figure 6 shows the average time to perform read/write

operations on these files. From Figure 6, we have the following

observations:
Observation 5: With the partial metadata store function,

HybridFS can deliver the best performance for file with size

in between a few Bytes to a few hundred Bytes compared

to HDFS, Ceph, and GlusterFS. Without the partial metadata

store function, the GlusterFS will deliver the best performance

among the designated DFSs.

For HybridFS without the partial metadata store function,

all small files will be stored at GlusterFS. To get the location

of a small file, an additional query to MMS is required before

query the metadata of GlusterFS. Therefore, the performance

of HybridFS without the partial metadata store function is a

little worse than that of GlusterFS.
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Fig. 6. The average time to perform read/write operations for files with file
size ranging from 1 Byte to 500 Bytes on designated DFSs

C. The Impact of Dynamic File Migration Function on Bal-
anced Storage Usage

To evaluate the impact of dynamic migration function on

balanced storage usage, we need to decide the prediction

functions for read/write throughputs on designated DFSs. We

execute files with size = 0.5MB, 1MB, 5MB, 10MB,15MB,

20MB, 25MB, ..., 120MB on HDFS, Ceph and GlusterFS to

get the curves of their read and write throughputs as shown

in Figure 3. We apply the least-square method and the RMSE

equation to determine the prediction functions. The result is

shown in Table III.

To simulate the scenario of unbalanced storage usage of Hy-

bridFS, the storage capacities of HDFS, Ceph, and GlusterFS

are all set to 100GB. File sizes are set in between 100 Bytes

to 500MB. We randomly generate ten files every minute. For

those generated files, the ratio of the number of files with file

sizes less than 8M to the number of files with file size greater

than or equal to 8MB is 4 : 1.

The next thing is to set the threshold of storage usage

difference to determine when to launch the file migration

process. Since the threshold depends on the characteristics

of DFSs, we set the threshold as 10%, 20%,..., 90%. From

the experimental tests, we found that when the threshold is

less than or equal to 40%, the performance of HybridFS is

guaranteed, that is, no performance degradation. However, the
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TABLE III
DIFFERENT-ORDER REGRESSION MODELS

Curve Fitting results of different curve
HDFS write curve y(k) = 10.39065− 6.38257e−0.54163k

Ceph write curve y(k) = 8.79252− 4.65085e−0.06894k

GlusterFS write curve y(k) = 8.43731 + 0.10894e−0.04518k cos (−38.07854k)− 1.89347e−0.04518k sin (−38.07854k)
+ 1.49443e−0.61613k cos (33.75146k)− 0.05625e−0.61613k sin (33.75146k)

HDFS read curve y(k) = 11.0027− 49.0537e−97.8321k − 5.3826e−2.9596k cos (25.1327k)− 42.3298e−2.9596k sin (25.1327k)

Ceph read curve y(k) = 11.128770− 1.063236e−0.718258k

GlusterFS read curve y(k) = −0.0433 + 0.1108e0.00013k − 6.2434e−4.3548k cos (0.000019k) + 17.2060e−4.3548k sin (0.000019k)

overhead to migrate files is minimum when the threshold is

set as 40% since the less the threshold, the more the migration

times.

Figure 7 shows the storage usage and throughputs of Hy-

bridFS over a time period of 25 hours when the threshold

is set to 40%. From Figure 7, at the beginning, files are

stored either in HDFS or GlusterFS due to the characteristic

of file placement function proposed in HybridFS. There has

no files stored in Ceph. We also can see that the storage

usage of HDFS grows faster than that of GlusterFS since

large size of files are stored on HDFS. About 10 hours, the

dynamic file migration daemon detects that the threshold is

satisfied. The dynamic file migration function migrates some

files from HDFS to Ceph. About 23 hours, the threshold is

again satisfied. Some files are migrated from HDFS to Ceph

and GlusterFS. The purple line shown at the top of Figure 7 is

the throughput of HybridFS. From Figure 7, we can see that

the throughput of HybridFS is stable.
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Fig. 7. The storage usage and throughputs of HybridFS over a time period
of 25 hours when the threshold is set to 40%.

V. CONCLUSION

In this paper, we have proposed a hybrid distributed file

system framework, HybridFS, which is composed of multiple

DFSs. Three functions were designed to handle files. The file

placement function is used to determine the proper DFS to

store a given file. The partial metadata store function is used

to store files with sizes ranging from a few bytes to a few

hundred bytes. The dynamic file migration function is used to

balance the storage usage of DFSs with throttling the system

performance. The framework is generic and can be used for

different DFSs combinations as long as the characteristics of

files and DFSs can be derived. The experimental evaluation

shows that HybridFS can deliver satisfactory performance for

all big data applications with various file sizes.

To further enhance the capabilities of HybridFS, we have

the following possible directions:

1. For the DFSs used in HybridFS, they are statically

configured in the current design. In the future, we will

add mechanism to insert and delete DFS from HybridFS

dynamically. With this feature, the performance of big data

applications can be further improved.

2. For the current design of dynamic file migration function,

the threshold to determine when to launch the file migration

process is based on a simulation in advance. In the future,

we will derive a model based on the characteristics of DFSs

used to predict the threshold. With the model, the threshold

can be determined dynamically based on the current status of

HybridFS to further improve the overall system performance.
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