
GraphP: Reducing Communication for PIM-based Graph Processing
with Efficient Data Partition

1Mingxing Zhang†§ 1Youwei Zhuo‡ Chao Wang‡ Mingyu Gao∗ Yongwei Wu†

Kang Chen† Christos Kozyrakis∗ Xuehai Qian‡
†Tsinghua University2 ‡University of Southern California ∗Stanford University §Sangfor Technologies Inc.

Abstract—Processing-In-Memory (PIM) is an effective tech-
nique that reduces data movements by integrating processing
units within memory. The recent advance of “big data” and
3D stacking technology make PIM a practical and viable
solution for the modern data processing workloads. It is
exemplified by the recent research interests on PIM-based
acceleration. Among them, TESSERACT is a PIM-enabled
parallel graph processing architecture based on Micron’s
Hybrid Memory Cube (HMC), one of the most prominent
3D-stacked memory technologies. It implements a Pregel-like
vertex-centric programming model, so that users could develop
programs in the familiar interface while taking advantage of
PIM. Despite the orders of magnitude speedup compared to
DRAM-based systems, TESSERACT generates excessive cross-
cube communications through SerDes links, whose bandwidth
is much less than the aggregated local bandwidth of HMCs.
Our investigation indicates that this is because of the restricted
data organization required by the vertex programming model.

In this paper, we argue that a PIM-based graph processing
system should take data organization as a first-order design
consideration. Following this principle, we propose GRAPHP,
a novel HMC-based software/hardware co-designed graph
processing system that drastically reduces communication
and energy consumption compared to TESSERACT. GRAPHP
features three key techniques. 1) “Source-cut” partitioning,
which fundamentally changes the cross-cube communication
from one remote put per cross-cube edge to one update per
replica. 2) “Two-phase Vertex Program”, a programming model
designed for the “source-cut” partitioning with two operations:
GenUpdate and ApplyUpdate. 3) Hierarchical communication
and overlapping, which further improves performance with
unique opportunities offered by the proposed partitioning and
programming model. We evaluate GRAPHP using a cycle
accurate simulator with 5 real-world graphs and 4 algorithms.
The results show that it provides on average 1.7 speedup and
89% energy saving compared to TESSERACT.

I. INTRODUCTION

Processing-In-Memory (PIM) is an effective technique
that reduces data movements by integrating processing
units within memory. While conceptually appealing, early
works [1], [2] only achieved limited success due to both
technology restrictions and lack of appropriate applications.

1M. Zhang and Y. Zhuo equally contributed to this work.
2M. Zhang, Y. Wu, and K. Chen are with the Department of Computer

Science and Technology, Graduate School at Shenzhen, Tsinghua National
Laboratory for Information Science and Technology (TNLIST), Tsinghua
University, Beijing 100084, China; M. Zhang is also with Sangfor Tech-
nologies Inc.

However, with the recent advance of “big data” and 3D
stacking technology, both problems seem to become solv-
able.

On the application side, modern big data applications
operate on massive datasets with significant data movements,
posing great challenges to conventional computer architec-
ture. Among them, graph analytics [3], [4] in particular
received intensive research interests, because graphs nat-
urally capture relationships between data items and allow
data analysts to draw valuable insights from the patterns in
the data for a wide range of applications. However, graph
processing poses great challenges to memory systems. It
is well-known for the poor locality because of the random
accesses in traversing the neighborhood vertices, and high
memory bandwidth requirement, because the computations
on data accesses from memory are typically simple.

On the technology side, 3D integration [5] enables stack-
ing logic and memory chips together through TSV-based
interconnection, which provides high bandwidth with scala-
bility and energy-efficiency. One of the most prominent 3D-
stacked memory technologies is Micron’s Hybrid Memory
Cube (HMC) [6], which consists of a logic die stacked with
several DRAM dies. With this technology, it is possible
to build a system that consists of multiple HMCs, which
can provide 1) high capacity of main memory that is large
enough for in-memory big data processing; and, more impor-
tantly, 2) memory-capacity-proportional bandwidth, which
is essential for applications with poor locality and high
memory bandwidth requirement.

As a result, due to the advances in both application
and technology, the research community and industry again
became increasingly interested in applying PIM to various
applications like machine learning [7], natural language
processing [8], [9], [10], social influence analysis [11], [12],
[13] and many others [14], [15]. Among these kinds of ap-
plications, PIM (e.g., HMC) is specially suitable for building
efficient architecture for graph processing frameworks.

TESSERACT [16] is a PIM-enabled parallel graph process-
ing architecture. It implements a Pregel-like vertex-centric
programming model [3] on top of the HMC architecture, so
that users could develop programs in the familiar interface
while taking advantage of PIM. The results show that
TESSERACT can be orders of magnitude faster than DRAM-

based in-memory graph processing systems.
Despite the promising results, TESSERACT generates ex-

cessive cross-cube communications through SerDes links,
whose bandwidth is much less than the aggregated local
bandwidth of HMCs. Such cross-cube communications de-
lay the executions in memory cubes, and eventually affect
HMC’s internal bandwidth utilization. In fact, the results in
[16] confirms this observation: the bandwidth utilization of
TESSERACT is usually less than 40%. Moreover, TESSER-
ACT adopts the Dragonfly topology to connect HMCs [6],
which provides higher connectivity and shorter diameter
than the simpler topology like mesh. However, Dragonfly
is still not fully symmetric, which means that the bandwidth
of certain critical cross-cube links may sustain much higher
throughput than the others, becoming bottlenecks that further
hampering TESSERACT’s performance.

Our investigation shows that this problem is due to a
missing consideration, — data organization, and the subop-
timal order in considering different aspects of the system.
To develop an efficient graph processing system, a careful
co-design of both the software and hardware components of
the systems is needed. Typically, we need to consider the
following four issues: 1) programming model, which effects
the user programmability and algorithm expressiveness; 2)
runtime system, which maps programs to architecture; 3)
data organization, which determines the communication pat-
tern; and 4) architecture, which determines the efficiency of
execution; In TESSERACT, data organization aspect is not
treated as a primary concern and is subsequently determined
by the presumed programming model.

Specifically, TESSERACT follows the “vertex program”
programming model that first proposed by Pregel [3], where
a vertex function is defined for all vertices. This vertex
program takes the vertex’s value as parameter and updates
the outgoing neighbors, — the destinations of all outgoing
edges (potentially in different ways). If a vertex and all its
outgoing neighbors are in the same cube, the vertex function
is executed locally. Otherwise, the cross-cube messages are
incurred to remotely perform the reduce function. Let the
vertex be v and its k outgoing neighbors are fu1; u2; :::; ukg,
in TESSERACT, for any outgoing neighbor ui that is in a
different cube than v, a put message is sent from v’s cube
to ui’s cube, containing a reduce function and ui’s value
as the parameter. This message asks ui’s cube to perform
the reduce as a remote function. We see that, determined
by vertex program model, each cross-cube edge incurs a
cross-cube message, and hence the amount of cross-cube
communications is proportional to the number of cross-cube
edges.

In order to reduce this number, Junwhan et al. [16] have
tried to use METIS [17] to obtain a better partitioning for
TESSERACT, but the result is not that promising. Only very
small performance improvements are achieved for 3 out of
5 benchmarks tested; and the METIS-generated partitioning

even leads to worse performance for one of the rest two
benchmarks. Moreover, the complexity of METIS prohibits
its application in real-world large graphs.

To resolve the issue in the conventional design flow, we
argue that a PIM-based graph processing system should
take data organization as a first-order design consideration.
This principle is important because: 1) data organization
affects cross-cube communication, workload balance, and
synchronization overhead, which directly translate into the
energy consumption; 2) if the programming model is decided
first, this fixed programming model may prohibit users from
using the optimal data partitioning method; 3) co-designing
data organization and interconnection structure can enable
extra opportunities and benefits such as broadcasting and
overlapping. Therefore, we propose a different order of
design consideration: one should first choose the proper
data organization with less communication, then design the
programming model based on it, finally, the architecture and
runtime optimizations could be applied to further improve
performance.

Following the above design principle, we propose
GRAPHP, a novel HMC-based software/hardware co-
designed graph processing system that drastically re-
duces communication and energy consumption compared to
TESSERACT. GRAPHP features three key techniques.
� “Source-cut” Partitioning. This algorithm ensures that

a vertex and all its incoming edges are assigned in the same
cube. As a result, if an edge (u, v) is assigned to cube i,
all the incoming edges of vertex v will also be assigned
to cube i. But, at the same time, the source vertex u of
this edge may be assigned to other cubes. In such case,
for an edge with the source vertex in a remote cube, the
local cube maintains a replica of the source, which will
be synchronized with the master in remote cube in each
iteration. This mechanism fundamentally changes the cross-
cube communication from one remote put per cross-cube
edge to one update per replica. We show that it generates
strictly less communication compared to TESSERACT. More-
over, source-cut is a heuristic-based algorithm in which the
assignment of each edge can be processed independently.
As a result, the partitioning overhead is much less than
METIS [17].
� “Two-phase Vertex Program”, a programming model

designed for the “source-cut” partitioning with two opera-
tions: GenUpdate, which generates the vertex value update
based on all (local) incoming edges; and ApplyUpdate,
which applies the update to each vertex. The replica synchro-
nization is handled transparently by the software framework.
This model slightly trade-offs the expressiveness for less
communication. However, the real-world applications (e.g.,
pagerank) typically do not need the flexibility provided by
the general vertex program. We believe this model is suffi-
ciently expressive, in the worst case, it can be augmented to
express more general vertex function (see Section III-B).

� Hierarchical Communication and Overlapping. The
replica synchronization requires that the updates from master
to replicas are the same. This property enables the hierarchi-
cal communication which avoids sending the same messages
when possible, thus, reduces the communication amount in
certain bottleneck links between cubes. Moreover, two-phase
vertex program model naturally leads to an overlapping
mechanism, which can further hide the latency of cross-cube
communication.

According to our evaluation results, GRAPHP effectively
reduces the communication amount by 35% - 98% and
reaches 1.7x average, 3.9x maximum speedup and reduces
89% average, 96% maximum energy cost compared to
TESSERACT.

II. BACKGROUND AND MOTIVATION

A. Hybrid Memory Cube

Recently, 3D integration technology [5] is available to
enable Process-In-Memory (PIM) [18], we focus on Hybrid
Memory Cube (HMC) [6], which is one of the most promis-
ing implementations. Nevertheless, other alternatives, such
as JEDEC’s High Bandwidth Memory specification [19],
typically share similar principle as HMC, thus the proposed
techniques should also apply to them.

An HMC device (i.e., a cube) is a single chip stack that
consists of several memory dies/layers and a single logic
die/layer. Two kinds of bandwidth are defined: 1) Internal
bandwidth, which caps the maximum data transfer speed
between memory dies and the logic dies of a same cube;
and 2) External bandwidth, which is provided by a cube to
external devices (e.g., other cubes and the host processor).

Vaults
00slogic

Links0 Links1 Links2

Vaults
01slogic

Vaults
31slogic

Logicsdie

BIST

Reference
clock

InternalsSwitch

Serializedspacketsrequestsandsresponses

Links3

P00B

P00A

P01B

P01A

P31B

P31A

P00H P01H P31H

MemorysdiesB

Memorysdies...

MemorysdiesA

MemorysdiesH

MemorysPartitionss(Vaults)

Figure 1. An Example Implementation of HMC.

Figure 1 depicts the architecture of a cube defined by
Hybrid Memory Cube Specification 2.1 [6]. Each cube
contains 32 vertical slices (called vaults), at most 4 multiple
serial links as the off-chip interface, and a crossbar network
that connects them. Each vault consists of a logic layer
and several memory layers, which can provide up to 256
MB of memory space (i.e., 8 GB space per cube). These
layers are connected through low-power Trough Silicon Via

(TSV). Since each TSV can provide up to 10 GB=s of
bandwidth, the maximum internal bandwidth of a cube is
32�10 = 320 GB=s. In contrast, if the default configuration
is used, each off-chip link will contain 16 input lanes and 16
output lanes for full duplex operation, which provide at most
480 GB=s external bandwidth (i.e., 120 GB=s per link).

Besides the capability of providing high density and band-
width, HMC also makes it possible to integrate computation
logics into its logical die/layer. In TESSERACT, a single-
issue, in-order core and a prefetcher are placed in the logic
die of each vault (i.e., 32 cores per cube). It is possible,
because the area of 32 ARM Cortex-A5 processors including
an FPU (0.68 mm2 for each core [20]) corresponds to only
9.6% of the area of an 8 Gb DRAM die area (e.g., 226
mm2 [21]). We use the same configuration in GRAPHP.

B. Interconnection

The key benefit that HMC can provide is memory-
capacity-proportional bandwidth, which is achieved by
using multiple HMCs. Typically, a system that contains
N HMCs can provide N � 8 GB memory space and
N � 320 GB=s aggregation internal bandwidth. However,
this aggregated bandwidth depends on the interconnection
network that connects these HMCs and host processors.

The straightforward design choice is “processor-centric
network”, which simply reuses the current NUMA architec-
ture and replaces traditional DIMMs with HMCs. Figure 2
(a) presents a typical system that has four processor sockets.
In this case, Intel QuickPath Interconnect (QPI) technology
is used to built a fully-connected interconnection network
among the processors, and each HMC is exclusively attached
to a particular processor (i.e., there isn’t a direct connection
between HMCs). Although this network organization is
simple and compatible with the current architecture, Kim
et al. [22] concludes that this processor-centric organization
does not fully utilize the additional opportunities offered by
multiple HMCs.

Since the routing/switching capacity can be supported
by HMC’s logic die, it is possible to use more sophis-
ticated topologies and connectivities that were infeasible
with traditional DIMM-based DRAM modules. To take
this opportunity, Kim et al. [22] proposes “memory-centric
network”, in which HMCs can directly connect to other
HMCs and there is no direct connection between processors
(i.e., all processor channels are connected to HMCs and
not to any other processors). According to the evaluation,
the throughput of a memory-centric network can exceed the
throughput of a processor-centric network by up to 2:8�.

Moreover, Kim et al. [22] also evaluated various different
kinds of topologies to interconnect HMCs. Two of the most
prevalently used examples are presented in Figure 2 (b) and
Figure 2 (c). Among different topologies, Dragonfly [23] is
suggested as the favorable choice, because it 1) has higher
connectivity and shorter diameter than simple topology

CPUCPU

Group

CPUCPU

CPU

CPU

CPU

CPU

(a)4Processor-centric4Network

CPU CPU

CPUCPU

(b)4Memory-centric4Network:4Mesh (c)4Memory-centric4Network:4Dragonfly

C12 C13 C14 C15

C08 C09 C10 C11

C04 C05 C06 C07

C00 C01 C02 C03

C12 C13 C14 C15

C08 C09 C10 C11

C04 C05 C06 C07

C00 C01 C02 C03

Figure 2. Examples of HMCs’ Interconnection.

like Mesh; 2) achieves a similar performance as the best
interconnection topology, named flattened butterfly [24], in
their evaluation of 16 HMCs; and 3) does not face the same
scalability problem as flattened butterfly.

In this paper, we will use the memory-centric network
and Dragonfly topology as suggested and used by previous
works [22]. However, the techniques proposed are not tightly
coupled with this particular architecture.

C. Bottleneck

Based on the HMC implementation discussed in Sec-
tion II-A, the maximum external bandwidth of a cube
(480 GB=s) is actually larger than its internal bandwidth
(320 GB=s). However, due to the limitation on the number
of pins, this external bandwidth does not scale with the
number of HMCs. Thus, the aggregation internal bandwidth
of a real system will largely surpass the available external
bandwidth.

Take the Dragonfly topology shown in Figure 2 (c) as an
example, it presents a typical HMC-based PIM system that
contains 16 HMCs. As we can see, since at most 4 off-chip
links are provided by a cube, it is impossible to achieve a
full-connection between the cubes. To be realizable, Dragon-
fly splits the total 16 HMCs into 4 groups and only achieves
the full connection within each group. In contrast, only one
link is provided for each pair of groups. As a result, the
bandwidth that caps cross-group communication is bounded
by the bandwidth of a link, which is only 120 GB=s. As a
comparison, the aggregation internal bandwidth of the entire
PIM system is 16�320 GB=s = 5:12 TB=s. It is why data
organization is extremely important for a HMC-based PIM
system and should be taken as the first-order consideration.
In TESSERACT, the simple partitioning strategy leads to
excessive cross-cube communications, which prohibits the
applications from fully utilizing the aggregation internal
bandwidth of HMC.

It is also notable that the load of different external links
are not equal. For example, if we assume that the amount of
communication is equal for each pair of two HMCs, each
of the cross-group link in the Dragonfly topology will need
to serve 4 � 4 = 16 pairs of HMCs communication (e.g., 4
HMCs in each group). As a comparison, the link between
HMC C0 and HMC C1 only serves the communication
between (1) HMC C0 and C1 (1 pair) and (2) HMC C0
and the top-right HMC group (C2, C3, C6, C7) (4 pairs),
which is less than 1/3 of the 16 pairs formerly calculated.

This implies that the links across groups can easily become
the bottleneck and should be particularly optimized.

Essentially, these bottleneck is rooted from the fact that
only limited external links are provided by each HMC,
which means that they cannot be simply avoided by using
other topologies. As an illustration, Figure 2 (b) presents
the Mesh topology. In this case, there are only four links
between HMC group (C0�C7) and HMC group (C8�C15),
so that each of them need to server 8 � 8=4 = 16 pairs of
HMCs’ communication, which is the same as the bottleneck
of the Dragonfly topology. Even worse, the number of these
bottleneck links is 8 in Mesh and only 6 in Dragonfly.

D. PIM-Based Accelerator

The current 3D-stacking based PIM technologies offer
great opportunities for graph analytics because: 1) 3D-
stacking provides high density, which opens up the possibil-
ity of in-memory graph processing; 2) the memory-capacity-
proportional bandwidth is ideal for graph processing appli-
cations that lack temporal locality but require high memory
bandwidth; 3) various programming abstractions have been
proposed for graph processing to improve programmability,
for PIM-based accelerators, they can be naturally used to
hide architectural details.

1 c o u n t = 0 ;
2 do {
3 . . .
4 l i s t f o r (v : g raph . v e r t i c e s) {
5 v a l u e = 0 . 8 5 ∗ v . p a g e r a n k / v . o u t d e g r e e ;
6 l i s t f o r (w: v . s u c c e s s o r s) {
7 a r g = (w, v a l u e) ;
8 p u t (w. id , f u n c t i o n (w, v a l u e) {
9 w. n e x t p a g e r a n k += v a l u e ;

10 } , &arg , s i z e o f (a r g) , &w. n e x t p a g e r a n k) ;
11 }
12 }
13 b a r r i e r () ;
14 . . .
15 } w h i l e (d i f f > e && ++ c o u n t < m a x i t e r a t i o n) ;

Figure 3. Pseudocode of PageRank in Tesseract.

TESSERACT is a 16-HMC system using Dragonfly
interconnection in Figure 2 (c). It provides users with
low level APIs which can conveniently be composed
to a programming model that similar to Pregel’s vertex
program. Figure 3 shows the PageRank computation using
TESSERACT’s programming interface, where the main
procedure is a simple two-level nested loop (i.e., ling 5
� line 13). The outer loop iterates on all vertices in the
graph. For each vertex, the program iterates on all its
outgoing edges/neighbors in the inner loop and executes a
put function for each of them. The signature of this put

function is put(id, void* func, void* arg,
size_t arg_size, void* prefethc_addr). It
executes a remote function call func with argument arg
on the id-th HMC.

Specifically, for every vertex, the program first calcu-
lates the proper pagerank division based on the pagerank
sent to the vertex and out degree, the result is stored
in value (line 6). Then, a user-defined vertex function
is called for every outgoing edge to add value to the
corresponding destination vertex’s pagerank for the next
iteration (w.next_pagerank) (line 10). This function
is executed asynchronously and cross-cube communication
is incurred when the outgoing neighbor is in a different
cube. Finally, a barrier is applied to ensure that all
the updates performed by vertex functions in the current
iteration have been completed. It is easy to see that this API
is equivalent to Pregel’s [3] vertex program, which assures
the programmability of TESSERACT. For the cross-cube
remote function calls, blocking will lead to unacceptable
latency, therefore, TESSERACT implements them in a non-
blocking manner. A cube could also combine several remote
functions together to reduce the performance impact due to
interrupts on receiver cores.

Nevertheless, the optimization techniques in TESSERACT
are only used to hide cross-cube communication latency.
None of them can reduce the amount of cross-cube commu-
nication. Essentially, it is due to the inefficiency of TESSER-
ACT’s simple graph partitioning, which is constrained by
the vertex program model. Specifically, only edge-cut (i.e.,
the graph is partitioned in vertex granularity and a vertex
can only be assigned to one cube) can be used. The results
show that even the sophisticated METIS partitioner [17]
cannot improve performance much (in one case, even make
it worse). As another consequence, the bandwidth utilization
of TESSERACT is usually less than 40%.

III. GRAPHP ARCHITECTURE

In this section, we describe GRAPHP, a software/hardware
co-designed HMC-based architecture for graph processing.
First, we propose a new graph partitioning algorithm that
would drastically reduce cross-cube communication. Then,
a programming model is designed to match the partitioning
method. Finally, we discuss the optimization opportunities
offered by our approach, optimized broadcast and overlap-
ping, to further improve the performance.

A. Source-Cut Partitioning

Let us start with a detailed understanding of the graph
partition in TESSERACT through a matrix view. Consider
Figure 4 (a), A graph can be considered as a matrix, where
the rows and columns are corresponding to the source and
destination vertices. In TESSERACT, a graph is partitioned
among cubes, — each cube is assigned with a set of vertices
(i.e., vertex-centric partition), corresponding to a set of rows.

The edges are the non-zero elements in the matrix, denoted
as black dots. With the graph partitioned, the matrix could be
cut into grids, each of which contains edges from vertices
in cube i to cube j. It is similar to the concept in Grid-
Graph [25]. With N cubes, the whole matrix is divided into
N2 grids. The grids on the diagonal contain the local edges,
whose source and destination vertex are in the same cube.
As discussed earlier, each non-local edge incurs a cross-cube
communication in TESSERACT. They are essentially the
edges in the grey grids. Assume that edges distribute in the
graph uniformly, the amount of cross-cube communication
in one iteration is O(N(N � 1) |E|N2) = O((N−1)

N jEj). We
can see it is roughly the number of edges in the graph.

Next, we propose source-cut, in which a graph is parti-
tioned such that, when a vertex (e.g., vj) is assigned to a
cube (e.g., cube 1), all the incoming edges of vj are also
assigned to the same cube. The idea is shown in Figure 4
(b). Different from TESSERACT, the matrix is cut vertically,
— each cube is assigned with a set of columns, not rows.
To perform the essential operations in graph algorithm, —
propagating the value of the source vertex through an edge
to the destination, a replica (denoted as red �) is generated
if a cube only holds the edge and its destination vertex.
The masters (denoted as black �) are the vertices in a cube
that serve as the destination. With this data organization, the
column of vj corresponds to vj’s all incoming edges and
neighbors, therefore, vj’s update can be computed locally.
The sources of edges in a column can be masters (black �) or
replicas (�). Similar to earlier discussion, after the matrix is
divided into grids, the ones on the diagonal represent the
edges in a cube where both their source and destination
vertex are masters.

The communication in source-cut is caused by replica
synchronization, in which the value of master vertex is used
to update the replicas in all other cubes. In the matrix view, it
means that each master vertex in the diagonal grids updates
its replicas in other cubes in the same row. In Figure 4
(b), consider the master vertex vi in cube 0. In replica
synchronization, cube 0 needs to send vi’s value to both
cube 1 and cube 3, but not cube 2. Because cube 2 does not
have any edge from vi. Note that only one message is sent
from cube 0 to cube 1, even if there are three edges from vi

to different vertices in cube 1. This is the key property why
source-cut generates strictly less communication compared
to vertex-centric partition: in the same case, it will incur
three messages from cube 1 to cube 2 (refer to Figure 4
(a)). This property informally proves that: with the same
master-to-cube assignment, source-cut always generates less
or equal amount of communication compared to vertex-
centric partition.

In essence, source-cut generates one update per replica
while the graph partition for vertex program would incur
one put per cross-cube edge. It is illustrated in Figure 4
(c) in a graph view. Then, we can calculate the commu-

Figure 4. Graph Partitioning for Vertex Program (a) and Source-Cut (b)(c).

nication amount of source-cut. We de�ne thereplication
factor, � , which includesboth master and replicas. Then,
the communication amount due to replica synchronization
is O(N (� � 1) jV j

N) = O((� � 1)jV j). This is an estimation
as it assumes that each cube contains similar number of
vertices. The maximum value of� is (N � 1), therefore,
the maximum communication cost isO((N � 1)jV j). Com-
paring it with the earlier calculated vertex-centric partition
estimationO(N (N � 1) jE j

N 2) = O((N � 1)
N jE j), we see that

from the equations the communication amount of source-cut
is not strictly less than vertex-centric partition. We show that
there is no contradiction as follows.

For source-cut, to reach the maximum communication
O((N � 1)jV j), at leastN 2(N � 1) edges are needed. In
particular, they are all in non-diagonal grids. For example,
assumeN = 4 ; jV j = 16, and each cube contains 4 vertices,
we need at least 48 edges in the white grids in Figure 4
(b). Speci�cally, each grid contains 4 edges: from the 4
vertices corresponding to each row to any master vertex
in the column. In this way, 3 replica synchronizations are
needed for each row, with 16 rows, in total 48 cross-cube
communications. It is easy to see that, in vertex-centric
partition, the same amount of communication is incurred
as well, because the source and destination of each of the
48 edge are not in the same cube. However, if we put
jE j = 48; N = 4 to O((N � 1)

N jE j), we would get only 36
communications. It is because the equation assumes that the
edges are uniformly distributed in all cubes, which is not
true in this case. Overall, this is an example that for certain
graph, source-cut can incurat most the same amountof
communication as vertex-centric partition.

The implementation of source-cut is much simpler than
the complex algorithm used in METIS [17]. One simple
implementation of source-cut is to de�ne a hash function
hash(v) and assign an edge(u; v) to hash(v) %N ,
whereN is the number of HMCs (i.e., 16 in our system).
Note that, although source-cut ensures that all the incoming
edges of a vertex are assigned to the same HMC, it does not
provide any guarantee on the outgoing edges. As a result,
if an edge(u; v) is assigned to HMCi , all the edges with
form (� ; v) will also be assigned to HMCi , but some or
even all of the edges with form(u; �) are not assigned to
HMC i . In that case, we need to set up a replica of vertex

u in HMC i to store the newest value of vertexu.

B. Two-Phase Vertex Program

Based on source-cut, we propose a new programming
model named “Two-Phase Vertex Program”, in which the
unit of data processing is the incoming edges in source-cut.
As discussed in Section I, the programming model and data
organization can interact with each other, therefore, a co-
design is required. Our “Two-phase Vertex Program” splits
a vertex program into two phases:1) Generatephase, where
all the incoming edges of a vertex and their corresponding
sources are read and used to generate an update for their
shared destination vertex; and2) Apply phase, where the
update is applied to the corresponding vertex's every replica.
Our new model is designed for source-cut. First, since each
vertex and all its incoming edges are in the same cube,
the Generate phase could be performed locally. Second, the
communication only happens before the Apply phase, which
provides “one update per replica”, instead of “one put per
cross-cube edge” in vertex-centric partition in TESSERACT.

Figure 5 shows a PageRank implementation that1) uses
the same set of APIs as TESSERACT; 2) is equivalent to the
implementation described in Figure 3; but3) is programmed
in “Two-phase Vertex Program” model. As we can see, the
�rst loop iterates on all the replicas to calculate the proper
share given to each edge (by dividing new pagerank with
the outgoing degree of the corresponding vertex). In the
next two-level nested loop, the outer loop iterates on every
vertex. Then, for every vertexv, the program �rst iterates
all its incoming edges to calculate the new pagerank and
then broadcasts this new value to all its replicas. Due to
source-cut partition, all the computations during incoming-
edge iterations occur locally and hence do not incur any
communication.

While it is possible to express the operations of “Two-
phase Vertex Program” with TESSERACT's API, it is tedious
and the new model requires a number of internal data
structures that TESSERACTdoes not provide (e.g., the replica
list). Therefore, we propose our own APIs as the higher
level abstraction to enhance programmability. As shown in
Figure 6, users of GRAPHP only need to write two functions,
GenUpdate andApplyUpdate , and all the other chores,
e.g., replica synchronization will be handled by our system.

1 l i s t f o r (r : g raph . a l l r e p l i c a s) f
2 r . pagerank = r . nex tpage rank ;
3 r . va l ue = 0 .85 � r . pagerank / r . o u td e g r e e ;
4 g
5 l i s t f o r (v : g raph . v e r t i c s) f
6 upda te = 0 ;
7 l i s t f o r (e : v . incoming edges) f
8 upda te += e . s o u r c e . va l ue ;
9 g

10 l i s t f o r (r : v . r e p l i c a s) f
11 pu t (r . id , f u n c t i o n (r , a rg) f
12 r . nex t page rank = arg
13 g , &update , s i z e o f (upda te) , &e .

nex t page rank)
14 g
15 g
16 b a r r i e r () ;

Figure 5. PageRank in Two-Phase Vertex Program.

Speci�cally, the input of GenUpdate function is the
incoming edges of a speci�c vertex and the output is the cor-
responding update. In contrast, the input ofApplyUpdate
function is the vertex property and the update generated
in this iteration. It does not have output. In each iteration,
GenUpdate function will be executed on everyvertexonce
andApplyUpdate will be executed on everyreplica once.
One should note that bothGenUpdate andApplyUpdate
can be executed locally. The replica synchronization (i.e., the
broadcast of update to replicas) is transparently handled by
our software framework. In other words, the communication
pattern of our system is�xed. As we will see later in
Section III-C and Section III-D, this higher-level abstraction
not only ensures programmability but also provides the
�exibility to apply additional optimizations. Due to the �xed
communication pattern, it is possible to further optimize
the architecture to reduce cross-cube communication on the
bottleneck links.

1 GenUpdate (incomingedges) f
2 upda te = 0 ;
3 l i s t f o r (e : incoming edges) f
4 upda te += e . s o u r c e . va l ue ;
5 g
6 r e t u r n upda te ;
7 g
8
9 ApplyUpdate (v , upda te)f

10 v . pagerank = upda te ;
11 v . va l ue = 0 .85 � v . pagerank / v . o u td e g r e e ;
12 g

Figure 6. Two-Phase Vertex Program.

To illustrate the effectiveness of source-cut and “Two-
Phase Vertex Program” model. Table I compares the amount
of cross-cube communication on three real-world graphs. For
every graph, we have tried three partitionings:1) Random,
which randomly assigns a vertex to an HMC;2) METIS,
which takes advantage of the advanced partitioning applica-
tion METIS [17]; 3) Source-cut, which randomly assigns a
vertex and all its incoming edges to a cube. The �rst two are
vertex-centric partitions, which can be used in TESSERACT.
We report both the average and the maximum amount of
cross-cube communication for every case. We see that, when
Randomis used, the skewness among all the16� 16 = 256
pairs of cross-cube communication is not large. In contrast,
although the advanced partitionerMETIScan largely reduce
the average amount of cross-cube communication, it usually

leads to excessive skewness (i.e., a large difference between
maximum and average communication). As a result, the
maximum amount of cross-cube communication produced
by METIS is sometimes much higher thanRandom. This
observation explains the reason why in TESSERACT's evalu-
ation METIS does not improve the performance as expected.
Moreover, the cost of using METIS is huge: it not only takes
long time but also consumes large amount of memory. As
we note, the results of partitioning Twitter withMETISare
not given in the table. This is because the METIS program
failed for out of memory even when we use a machine with
1 TB memory.

For Source-cut, we assume that the argument size needed
for the remote function call is the same as the data size
of update generated byGenUpdate . From the results,
we see thatSource-cutincurs only 18.8% to 39.9% of
communication compared withRandom. Compared with
METIS, Source-cutincurs 55.9% communication on Orkut,
but it increases the communication on Livejournal graph by
54.4%. Note that it meanssource-cutmust have a different
vertex-to-cube assignment thanMETIS, because otherwise
source-cut can be proven to generate less cross-cube com-
munication (see Section III-A). However,Source-cuthas
much smaller maximum cross-cube communication: 68.4%
and 92.6% reduction compared toRandomand METIS on
average, respectively. This leads to more balanced execution.
More importantly, the partitioning cost ofMETIS is much
higher thanSource-cut.

Expressiveness of Two-Phase Vertex Program.Before
proposing further architecture optimizations, we compare
the expressiveness of the general vertex program and the
proposed Two-Phase Vertex Program. In Figure 7, con-
sider three vertices:f v1; v2g 2 HMC 0, f v3g 2 HMC
1; and two edges:(v1; v3) and (v2; v3). In Two-Phase
Vertex Program, there are replicas ofv1 and v2 in HMC
1, v3 's GenUpdate can generate the update based on
all v3 's incoming edges/neighbors. The restriction in Two-
phase Vertex Program model is that theGenUpdate has to
perform the same operation (e.g., de�ned asf(v1; v2; :::) for
all incoming edges/neighbors. In contrast, the general vertex
program semantically allows performing different operations
for each edge. For example,f1(v1) and f2(v2) and
then v3 could reduce the two results and apply. However,
real-world applications (e.g., pagerank) do not need such
�exibility. In fact, the extra �exibility may do more harm
than good, — it may lead to many duplications (e.g., same
remote function is sent for all outgoing neighbors) that is
hard to be automatically removed. In contrast, Two-Phase
Vertex Program inherently avoids these duplications.

We believe our model is suf�ciently expressive. More-
over, it is possible to express the general vertex program
with certain changes to the proposed model. Speci�cally,
the GenUpdate function can concatenate the list of in-
coming edges/neighbors, then inApplyUpdate function,

