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ABSTRACT
Amazon EC2 has built the Spot Instance Marketplace and
offers a new type of virtual machine instances called as spot
instances. These instances are less expensive but considered
failure-prone. Despite the underlying hardware status, if
the bidding price is lower than the market price, such an
instance will be terminated.

Distributed systems can be built from the spot instances
to reduce the cost while still tolerating instance failures. For
example, embarrassingly parallel jobs can use the spot in-
stances by re-executing failed tasks. The bidding frame-
work for such jobs simply selects the spot price as the bid.
However, highly available services like lock service or stor-
age service cannot use the similar techniques for availability
consideration. The spot instance failure model is different to
that of normal instances (fixed failure probability in tradi-
tional distributed model). This makes the bidding strategy
more complex to keep service availability for such systems.

We formalize this problem and propose an availability and
cost aware bidding framework. Experiment results show
that our bidding framework can reduce the costs of a dis-
tributed lock service and a distributed storage service by
81.23% and 85.32% respectively while still keeping availabil-
ity level the same as it is by using on-demand instances.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
System—client/server ; D.4.5 [Operating System]: Relia-
bility—fault-tolerance; G.1.6 [Numerical Analysis]: Op-
timization—Constrained optimization, Nonlinear program-
ming ; G.3 [Probability And Statistics]: Markov pro-
cesses
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1. INTRODUCTION
Virtual machines are widely used in cloud computing. A

running virtual machine is usually called as an instance. An
instance that supports the pay-as-you-use billing schema is
called as an on-demand instance on Amazon Elastic Cloud
Computing (EC2). Using on-demand instances can reduce
users’ cost comparing to owning dedicated physical clusters
in house. Many users including startup companies as well as
research institutes rely on cloud computing services. On the
other hand, cloud providers are willing to provide virtual
machines for improving the profits while keeping constant
maintaining costs of underlying physical infrastructure.

To further increase the resource utilization, Amazon EC2
proposed a new type of virtual computing instances, the
spot instances. Here are the descriptions from the website
of introducing spot instances: “Spot Instances allow you to
name your own price for Amazon EC2 computing capac-
ity. You simply bid on spare Amazon EC2 instances and
run them whenever your bid exceeds the current Spot Price,
which varies in real-time based on supply and demand.” [30].
From the providers’ point of view, the utilization of idle peri-
ods of the infrastructure can be further improved. For users,
spot instances are much cheaper and can be used to achieve
economical computing. However, as with the characteristics
of spot instances, they should not be considered as always
available but failure-prone despite the practical underlying
hardware status. It will become hard for analysing the avail-
ability level of services built on top of spot instances.

In distributed computing, some basic services are consid-
ered as ‘should be highly available’. The lock service is an
example. As a fundamental building block for applications,
a lock service should be always on-line. Any failure of the
lock service could hurt the running of applications. Another
example is the storage service, which is a fundamental build-
ing block for providing data storage. These services are usu-
ally considered critical and should be as reliable as possible.
They are different from the parallel batching processing jobs
which can be fixed after actual failure occurrence [24, 36, 35].
For critical services, safety property, such as a lock cannot
be assigned to more than one client, must be kept at any



time. Such services do have their own fault tolerance mech-
anism such as Paxos-based state machine replication (SMR)
[23]. The algorithms used can guarantee progress (eventu-
ally achieve the goal set forehand) if the majority number
of the nodes are available for enough amount of time.

As a Paxos based mechanism can tolerate any minority
of node failures in a distributed service, can we just re-
place normal nodes with spot instances to identically provide
highly available distributed service? It is easy to just replace
the on-demand instances with spot instances (maybe more
spot instances) of the same distributed systems. However, it
is non-trivial to analyze whether such a distributed service
building on top of spot instances has the same availability
level of the one bult on on-demand instances. The availabil-
ity analysis becomes complicated because of the unique out-
of-bid failure of spot instances. The failure probability is not
fixed as it is in the traditional distributed model(usually a
small constant). Thus, traditional way of using the number
of available nodes for indicating the availability level should
be amended by incorporating the probabilistic failure model.

To the best of our knowledge, there is no published so-
lution to address this bidding problem, i.e., using spot in-
stances to provide a distributed service while keeping the
same availability level with another system using on-demand
instances. In this paper, we will first formalize the model
for describing the work of providing highly available system
using spot instances. And based on this model, we propose
a bidding framework to automatically make the bidding de-
cisions for keeping appointed availability level and reducing
the total cost of a distributed service.

It is feasible to achieve high availability with failure-prone
spot instances when building distributed services. Take the
distributed lock service as an example. The downtime of
a distributed lock service using 5 geographical isolated on-
demand instances should be less than 30 seconds in a whole
month.1 To achieve the same availablility level by using
spot instances, we need to analyze the service availability
based on the failure probability model of spot instances. As
there are a large number of bidding decisions that satisfies
the service availability requirement, it will be a question to
decide which one is the most cost efficient. We think that
this problem can be modeled as a non-linear programming
problem. The objective is to minimize the total cost of spot
instances for building a distributed service. The constraint
is keeping the same availability level as using on-demand in-
stances. The failure probability of a spot instance under a
bid is correlative to the spot price. If the bid is lower than
the spot price provided by Amazon EC2, the correspond-
ing spot instance will not be available. As the spot prices
sequence has Markovian property but the sojourn time be-
tween spot prices is not memoryless in the statistical infer-
ences, we model the failure probability of a spot instance
based on a semi-Markovian process of spot prices.

However, solving this non-linear programming is NP-hard.
Exhaustive search is impractical for obtaining the optimal

1According to the Service Level Agreement (SLA) from
Amazon EC2, the availability of an on-demand instance will
be no less than 99% or otherwise users will have 30% fee as
the compensation. The 5 on-demand instances are failure in-
dependent as launching from different locations. The avail-
ability of the lock service can be calculated by subtracting
the probability that 3 or more instances are simultaneously
unavailable from 100%.

solution. In this paper, we have built an availability and cost
aware bidding framework for obtaining a near-optimal solu-
tion practically. The framework has two main components,
one is online bidding module for getting spot instances and
another is spot instance failure model for estimating failure
probability of spot instances. The online bidding module
employs an enumeration and greedy strategy based algo-
rithm to bid spot instances. The spot instance failure model
collects the spot price data continuously, and provides the
estimated failure probability of a spot instance for the next
hour under a bid.

To sum up, we have made the following contributions in
this paper:

• We point out that the analysis of bidding for highly
available service using spot instances is different from
the bidding for batching processing jobs.

• The spot instance failure model is intrinsic different
from the model in traditional distributed systems. It
has been formalized according to the bid and price in
the marketplace.

• We have built availability and cost aware bidding frame-
work based on the formalization of spot instance fail-
ure model and non-linear programming model. The
framework is effectively applied in two different highly
available distributed systems.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the spot instances in Amazon EC2 and the
availability of distributed services. In Section 3, we model
the failure probability of spot instances and formalize the
optimization problem. Section 4 describes a bidding frame-
work to obtain a near optimal solution. Section 5 gives eval-
uations with the two cases to demonstrate the effectiveness
of the bidding framework. Section 6 discusses the related
work and Section 7 concludes this paper.

2. BACKGROUND

2.1 Amazon EC2 Spot Instance
Same as on-demand instances, spot instances give tenants

a wide selection of instance types [5], which comprise vary-
ing combinations of CPU, memory, storage, and networking
capacity. Users can choose the instances for their applica-
tions based on the different characteristics provided. The
instances are located on an increasing number of regions all
over the world [4]. Each region is in a separated geographic
area and the region number keeps increasing. To achieve
the greatest possible fault tolerance and stability, each re-
gion has multiple, isolated locations known as “Availability
Zones”, which are shown in Table 1. We suppose the highly
available services are built on top of spot instances from
different availability zones. Thus, the failure model of the
instances is independent identically distributed. The geo-
graphical replicated configuration is widely used in highly
available services, such as Spanner [16], Dynamo [17] and
Azure [14].

To use a spot instance, a user should place a spot in-
stance request that specifies the instance type, the Avail-
ability Zone, and the maximum price he is willing to pay
per hour, called as a spot bid. The current default upper
limit of a spot bid is four times on-demand price [6]. The



Table 1: Amazon EC2 Regions and Availability
Zones

Region Location Availability Zones
US East 1 Virginia 4
US West 2 Oregon 3
US West 1 California 3
EU West 1 Ireland 3

EU Central 1 Frankfurt 2
AP Southeast 1 Singapore 2
AP Northeast 1 Tokyo 3
AP Southeast 2 Sydney 2

SA East 1 Sao Paulo 2
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Figure 1: Spot price history for a “us-east-
1a.linux.m1.small” spot instance

spot price is set by Amazon EC2, and fluctuates accord-
ing to the supply and demand of the spot instance capacity.
Figure 1 shows some spot price fluctuations for “us-east-
1.linux.m1.small” instances during 9:00 AM - 11:00 AM on
June 24th 2014. When a bid exceeds the spot price, the
spot instance is launched and will run until the spot price
rises above the bid(out-of-bid failure) or the user chooses to
terminate it. If the spot instance is terminated by Amazon
EC2, the user will not be charged for any partial hour of
usage. However, if the user terminates the spot instance,
he will pay for any partial hour of usage as he would in oc-
casions like using on-demand instances. Spot instances are
charged with the spot price. Obviously, a higher spot bid
returns a more reliable and available spot instance, and may
also induce a higher charge.

2.2 The Availability of Distributed Service
To achieve high availability, state machine replication

(SMR) is a general way for implementing a fault-tolerant
service by replicating servers and coordinating client inter-
actions with server replicas. Each operation should be a con-
sensus value decided by SMR. Paxos [23] has been proved
to be an effective consensus protocol in SMR to build highly
available distributed services. Paxos family protocols have
been widely used in varies of distributed services [13, 10, 26].

In fact, Paxos is one of the quorum based techniques [18]
for building a highly available distributed system. Such pro-
tocols often use ‘vote’ like algorithms. A request has to ob-
tain sufficient votes v by the nodes in the distributed system
to perform an operation. In this context, the distributed sys-

tem will be unavailable when the live nodes have insufficient
votes. A minimal number of v is called a quorum. If a quo-
rum of nodes is available, the distributed system is available
otherwise the system will be considered as unavailable.

Service availability can be defined as the probability that
a request can get an appropriate response according to the
specification. The availability is determined by the failure
probabilities of nodes in the system. The availability of quo-
rum systems is studied in [27]. For convenience, we intro-
duce a definition of Acceptance Set [2] .

Definition 1. A collection A of sets over a finite uni-
verse U representing the nodes of a distributed system is
called an acceptance set if

1) S ∩ T 6= ∅ for all S, T ∈ A. (Intersection)

2) If S ∈ A then T ∈ A for all T ⊇ S. (Monotonicity)

The collection of minimal quorums is S = S(A) = {S ∈ A |
S \ {u} /∈ A for all u ∈ S}.

Let A be an acceptance set of a distributed system, for
each set S ∈ A, the probability of which the elements of S
are alive and the rest are in failure is∏

i∈S

(1− pi)
∏
j∈S

pj ,

where S denotes U \ S, p = (p1, p2, · · · , pn) denotes the
failure probabilities of nodes in the distributed system over
a period of time.

As S are different sets, the non-failure probability (the
“availability”) of A can be further extended as

AA =
∑
S∈A

(
∏
i∈S

(1− pi)
∏
j∈S

pj) (1)

Here, we introduce another definition of Optimal Avail-
ability Acceptance Set.

Definition 2. An acceptance set A over a finite universe
U representing the nodes of a distributed service is called an
optimal availability acceptance set if

1) AA ≥ AB for all acceptance sets B over the same universe
U .

For a distributed system, the non-failure probability of
the optimal availability acceptance set Ao is equivalent to
the expected availability of the distributed service. The ac-
ceptance set discussed here assumes the indepedent failure
of spot instances. This is consistent to our discussion before
that the highly available services are built over instances
from different availability zones. As we have to estimate the
availability of distributed service, acceptance set will be a
constraint in the non-linear programming studied below.

3. PROBLEM FORMALIZE
Since configuring Paxos based SMR in a distributed sys-

tem can tolerate a minority of node failures, it seems that we
can replace the normal nodes in a distributed system with
spot instances directly. In fact, the original high availabil-
ity of the distributed service may no longer exist any more.
This can be illustrated in the following example.

Supposing that a Paxos based distributed system has 5
nodes. The failure probability of each node is 0.01. This



distributed system can tolerate any two-node simultaneous
failures. According to Equation (1), the expected availabil-
ity of the distributed service is 0.9999901494, which means
that there should be only about 25.5 seconds downtime in
one month. If replacing all the 5 nodes with Amazon EC2
spot instances and setting the bids same to spot price, a
same availability level can not be achieved. Although the
replaced distributed system can still tolerant the same num-
ber of node failures as before, the non-failure probability of
the distributed system is much less than the original one.
Taking 5 spot instances from different Amazon EC2 avail-
ability zones in June, 2014 as an example, the spot prices of
availability zone US East 1a, US East 1c, US West 1b, US
West 2a, US West 2b are $ 0.008, $ 0.008, $ 0.009, $ 0.009,
$ 0.009 at 0:00 AM on June 1st, 2014 respectively. If we bid
a spot instance in each the availability zone with the afore-
mentioned spot prices, node failures are encountered more
often in such a distributed system. The downtime of the
distributed service in June, 2014 may be more than 1500
seconds.

In essence, the number of tolerating simultaneous node
failures with spot instances does not indicate the same avail-
ability with on-demand ones for a distributed system. Be-
cause the failure probability of spot instances are usually
much higher than that of normal nodes. The failure values
are in fact constantly changing with the fluctuation of spot
prices. Therefore, we model the failure of spot instances
from the spot bid and spot price.

Based on the failure model, we have to address the bid-
ding decision problem i.e. how to keep a distributed service
staying highly available and how to bid to minimize the cost
of spot instance. We apply a non-linear programming to
solve this optimization problem.

3.1 Spot Instance Failure Model
The availability of a distributed system is based on the

availability of each component in the system. Consider-
ing Amazon EC2 instances, the availability of an instance
can be estimated by its failure probability. Furthermore, let
MTBF (Mean Time Between Failures) denotes the average
time between failures of an instance, MTTR (Mean Time
To Repair) denotes the average time for an instance to re-
cover from a failure, the availability A of an Amazon EC2
instance can be measured as following.

A =
MTBF

MTBF +MTTR
(2)

Diverse causes can bring down an Amazon EC2 instance
including software and hardware errors. According to Ama-
zon EC2’s SLA [7], the measured availability of an on-demand
instance is about 0.99. It means that the failure probability
of an on-demand instance is about 0.01.

For a spot instance in Amazon EC2, the new and major
type of failure is the out-of-bid failure as discussed in section
2.1. An out-of-bid failure is caused by the spot price fluc-
tuates above the bid of the spot instance. Considering this
type of failure only, the failure probability of a spot instance
at time t can be represented by

Pr(p(t) > b) (3)

Where p(t) denotes the price at time t, and b denotes the
bid.

As other kinds of failures are independent with the out-

of-bid failure of Amazon EC2 spot instances, and the avail-
ability of a spot instance without out-of-bid failures will be
the same as an on-demand instance, the failure probability
of a spot instance FP (t) can be further represented by

FP (t) = 1− (1− FP ′) · (1− Pr(p(t) > b)) (4)

Where FP ′ denotes the failure probability of a corre-
sponding on-demand instance. Here FP ′ = 0.01.

The total failure time of a spot instance is exactly the cu-
mulative time of out-of-bid failures. Thus the failure prob-
ability of a spot instance in a time duration d, d > 0 can be
further represented as ∫ d

0

FP (t)dt (5)

Amazon EC2 assigns spot instances to bidders in descend-
ing order of their bids until all available spot instances have
been allocated or all spot instance requests have been satis-
fied. The spot price is equal to the lowest winning bid. And
after a period of time, the spot price may or may not change
depending on the changing of demand and supply. Figure
1 depicts the spot price history during 9:00AM - 11:00AM
on June 24th, 2014 for the “us-east-1.linux.m1.small” spot
instances. The spot price first remains at $0.0071 before
switching to $0.0081, and reaches up to $0.0117 after about
half an hour. Thus, we should estimate the failure probabil-
ity of a spot instance based on the spot price variations.

As shown in Figure 1, the spot price remains at a fixed
value Si for a time duration di before switching to another
value Si+1. In essence, spot price sequence (Si, i = 1, 2, · · · , n)
and sojourn time sequence (di, i = 1, 2, · · · , n) are both ran-
dom process. Previous works [15] have proved that the spot
price sequence has Markovian property with investigating
the Chapman-Kolmogorov equation [19]. And the sojourn
time sequence can be modeled as a temporal point process
[12].

As the sojourn time between spot prices is not memo-
ryless, we characterize the spot price variations by a semi-
Markovian chain model, which is also employed in [31]. De-
note the set of all unique spot prices as S, where S = {si, i =
1, · · · , |S|}, and denote the state space of sojourn time as T ,
where T = {τi, i = 1, · · · , |T |}. The stochastic kernel of the
semi-Markovian chain can be represented as

Q(i, j, k) = (qi,j,k; si, sj ∈ S, k ∈ T ) (6)

where

qi,j,k = Pr(Sn+1 = sj , Sn = si, τn = k) (7)

i.e., the probability that at current state i, a transition
will happen to state j after time k.

The detail statistical inference is in [31]. With this spot
price model, we can calculated the transition probability
of two spot prices in future, and then estimate the failure
probability of a spot instance under a specific bid.

3.2 Cost Minimization Problem
We apply a non-linear programming model to this bid-

ding problem. The objective is to minimize the cost of
spot instances when building a distributed service. The
constraint is that the availability of the distributed service
built with spot instances is not worse than the one built
with on-demand instances. We estimate the availability of



the distributed service based on the spot instances failure
probability estimation.

According to the spot pricing rules of Amazon EC2 men-
tioned in section 2.1, users need no payment for the partial
hour of a spot instance that is terminated by Amazon EC2.
If a user can precisely predict the price changing of a spot
instance, it is possible to exploit this feature to reduce the
cost or even free computation. However, it is difficult to
take advantage of out-of-bid failure as an accurate predic-
tion is required to notify when the price will change and
what price it will be. Here we are not going to harness such
Amazon EC2’s spot pricing rule so as to simplify the cost
minimization problem.

In Amazon EC2, not only varies of hardware or soft-
ware failures of instances are isolated by different availability
zones, but also the out-of-bid failure is isolated by pricing
isolation of different availability zones. To ensure the failure
independence of spot instances we bid, the distributed ser-
vice should use only 0 or 1 instance in each availability zone
as mentioned before. There are more than 20 availability
zones in Amazon EC2. This is large enough for choosing
moderate number of participants in a Paxos group in prac-
tical systems(usually 5 or 7).[13]. And performance require-
ments can be satisfied by launching multiple Paxos groups.

As Amazon EC2 charges for a spot instance hourly, the
bidding interval should be n (a positive integer) hours. In
each bidding interval, the cost minimization problem can be
formalized using a non-linear programming. The decision
variables in this model are the spot instance bids for differ-
ent availability zones. Bidding decisions can be denoted as
a variable vector b = (b1, b2, · · · , bn). The bid for a spot
instance in the i-th Availability Zone is bi, i = 1, 2, · · · , n.

Unfortunately the cost for a spot instance in the next
interval is still unknown when bidding. This is due to the
way Amazon EC2 charges. Amazon EC2 charges hourly for
a spot instance with the last price of a spot instance in the
hour rather than the bid. For a system consist of multiple
spot instances, the goal is to achieve minim the sum cost of
each instance. As the spot prices in a future time point are
random variables, we can minimize the expectation cost of
spot instances under the given bids instead of minimizing
the unknown cost. But the actual cost may be much higher
than the expectation in some bidding intervals. We choose
the sum of bids, an upper bound of the cost, instead of the
expectation cost as the objective function in the non-linear
programming.

The key constraint in the non-linear programming is to en-
sure that the availability of a distributed service with spot
instances is comparable to that with on-demand ones. The
availability of a distributed service can be represented as the
availability of its optimal availability acceptance set. Denote
the optimal availability acceptance set of a distributed ser-
vice S as Ao(S,FP), FP is the node failure probability vec-
tor. Denote a distributed service built with spot instances
as Ss, the spot price of availability zone i as pi, and the
failure probability vector of the spot instances under bids
b =(b1, b2, · · · , bn) in Ss as FP (b). Similarly, denote the
associate distributed service built with on-demand Instance
as So, the number of on-demand instances in So as m. We
finally can formalize the cost minimization problem as

min

n∑
i=1

bi (8)

Constraints BidsOnline

Bidding

Spot Instance

Failure Model

Distributed

System

Cloud

Provider

Figure 2: The bidding framework

s.t.
n∑

i=1

ε(bi − pi) ≥ m (9)

and

AAo(So,FP′) −AAo(Ss,FP (b)) < ε (10)

The inequality (9) is a basic constraint that keeps the
nodes are online at first to ensure that the distributed ser-
vice built with spot instances initializes correctly. In the
inequality (10), ε(u) equals 1 if u > 0 and 0 otherwise, and ε
represents as an infinitesimal. It can be set to an acceptable
availability variation in practice, e.g. 0.000001.

4. BIDDING FRAMEWORK
Solving the non-linear programming is NP-hard. All the

possible candidates of bids b need to be traversed and ver-
ified with the availability constraint. The size of traverse
space is mn, where m is the number of possible prices and n
is the number of availability zones. Using exhaustive search
is not practical.

Fortunately, we just aim to reduce the cost of spot in-
stances and do not have to get the optimal solution. As
solving this optimization problem in an acceptable short
time is impossible, we seek for a near-optimal solution rather
than the optimal one. We have built a cost and availability
aware bidding framework to make practical solutions. As
illustrated in Figure 2, bidding decisions are made by online
bidding module at the beginning of each bidding interval.
And then the spot bids are issued to the cloud provider i.e.
Amazon EC2. The spot instance failure estimation is used
to estimate the failure probability of a spot instance for the
next bidding interval under a specific bid. The estimated
failure probability of a spot instance is then used to verify
the availability requirement of the distributed system. With
more and more spot prices data collected, the spot instance
failure probability estimation can be improved.

In the bidding framework, the bidding decisions will change
between two bidding intervals if spot prices fluctuate drasti-
cally. Some spot instances should be replaced by some new
ones in different availability zone. To keep safety, i.e. the
service availability level, the new spot instances are launched
before the next bidding interval starts and added to the sys-
tem, then the old spot instances that should be replaced are
removed from the system at the beginning of the coming
bidding interval. Adding and removing a spot instance is
supported by the view change of Paxos. The startup time
of a spot instance is usually 200∼700 seconds and mainly
varies in regions [25]. The actual time of a bidding interval
is shortened by the startup time of spot instances. We give
a discussion about the different choices of bidding interval
in section 5.5.



4.1 Online Bidding
As we have illustrated, the failure probabilities of nodes

are fixed to a same small constant in a traditional distributed
system model. A quorum is a simple majority of the nodes
in the distributed system. For a distributed system with
nodes that have different failure probabilities, a calculated
weighted voting assignment has been proved to be the op-
timal configuration. The optimal availability vote assign-
ments for weighted voting mechanism are well studied in
[33, 32, 2]. Denote all the failure probabilities of n nodes as
pi, i = 1, 2, · · · , n, it has been proved that the optimal quo-
rum system is a monarchy with one of the least unreliable
processors as the king if pi ≥ 1

2
for all i, and any node i

with pi >
1
2

should be a dummy if only parts of nodes with

pi ≥ 1
2

in [2]. If 0 < pi <
1
2

all i, the optimal weights are
defined by the formula in [32, 33]

wi = log2(
1− pi
pi

) (11)

However, in a practical scenario, Formula (11) cannot be
used in the case where the differences of pi are significant.
For example, suppose that the failure probabilities of nodes
are respectively 0.01, 0.1, 0.1 in a distributed system with
three nodes. Depending on Formula (11), the node with fail-
ure probability of 0.01 has a dominated vote that is larger
than the sum of the other two nodes’ votes. Ideally, this is
reasonable because we should use a monachy system when
one node is much more reliable than the other nodes. But
in practical, the failure probability of a node is measured in
a finite time period, and has a deviation away from the ideal
value representing the steady state when the time period is
infinite. The out-of-bid failure in the spot instance failure
model just fits this case. Furthermore, some Paxos family
protocols are designed without considering weighted voting
assignment mechanism. To keep the bidding algorithm sim-
ple and compatible, we still use a simple majority of nodes
as a quorum.

As the spot instances are fixed to an equal weighted vote,
only same failure probabilities of spot instances meet the
definition of optimal configuration. In our online bidding
algorithm, we try to make failure probabilities be closed to
each other. And enumeration and greedy strategy are used
in the algorithm.

The pseudo code of the online bidding algorithm is shown
in Figure 3. The algorithm gets the configurations of a dis-
tributed system as input, including the system availability
requirement and instance type. The procedures of online
bidding are simple: 1) For all possible number of nodes n,
calculates the failure probability FP that satisfies the sys-
tem availability requirement when each node has the same
failure probability. 2) Under the configuration of n nodes,
for all availability zones, gets the minimal bid of which the
estimated failure probability is less than FP . The esti-
mated failure probability depends on the spot instance fail-
ure model of the availability zone, the bid, the spot price and
the sojourn time of the spot price. 3) Comparing the value
of the bids, selects the availability zones in a greedy way.
4) By accumulating the selected bids, calculates the upper
bound of the cost under each configuration of n nodes and
returns the bids that have the lowest upper bound of the
cost as the bidding decision. This algorithm does not al-
ways lead to an optimal bidding decision, but obtain a good
and near optimal solution in practise.

Algorithm:Bidding

Input: availability, type
Output: bids
1: zones← get availability zones()
2: n← 1
3: while n 6> zones.length do
4: FP ← node failure pr(n, availability)
5: for all zone ∈ zones do
6: spotprice← get spot price(zone, type)
7: bid← spotprice.price
8: while bid 6> get on demand price(zone, type)

do
9: if estimate FP (zone, bid, spotprice) 6> FP

then
10: break
11: else
12: bid← bid+ 1

13: bids[n][zone]← bid

14: sort(bids[n])
15: cost upper bound[n]← sum(bids[n][1 : n])
16: n← n+ 1

17: m← min key(cost upper bound)
18: return bids[m][1:m]

Figure 3: Bidding algorithm

4.2 Failure Probability Estimation
In the bidding framework, the spot instance failure model

is employed by the online bidding module. To estimate the
failure probability of a spot instance, a spot price model is
embedded in the spot instance failure model. We use the
semi-Markovian chain to model the spot price sequence as
mentioned in section 3.1. Thus, a key task of spot instance
failure probability estimation is to reconstruct the transition
distribution from the observed spot price history data.

Wee [34] shows that the spot price sample cumulative dis-
tribution functions have significant increase around every
hour in 2011. However, the spot prices data we collected in
2014 shows that the spot price change frequency has raised
to many times each hour. For simplicity, we set the time
unit of the semi-Markovian chain to 1 minute. The sojourn
time di in the sample data is discretized as

τi , τ(Si → Si+1) , bdic (12)

We use an empirical estimator, which resembles a Maxi-
mum Likelihood Estimator (MLE) essentially [9]. The
stochastic kernel Q is reconstructed by:

q̂i,j,k =
Nk

i,j

Ni
, ifNi 6= 0 (13)

otherwise, q̂i,j,k = 0.
Where Ni denotes the number of occurrences of price si ∈
S, Nk

i,j denotes the number of transitions from price si ∈ S
to sj ∈ S with sojourn time of k ∈ T .

Although we can make a bid for a spot instance as high
as four times the on-demand price, we should choose an on-
demand instance rather than a higher bid for a spot instance
to avoid the potential higher charge. Thus, we force the bid
of a spot instance lower than the corresponding on-demand



instance in our bidding framework. In a time unit, the failure
probability of a spot instance under a bid b as

FP (b) =


1 if 0 ≤ b ≤ p

1− (1− FP ′) ·
b∑

j=p

q̂p,j,k if p < b < o
(14)

where b denotes a bid, p denotes the spot price, k denotes
the sojourn time, o denotes the corresponding on-demand
price, FP ′ denotes the failure probability of the correspond-
ing on-demand instance, which is fixed to 0.01.

The failure probability of a spot instance in a bidding
interval is the failure probability expectation of each time
unit, which is a discretization of Formula (5).

5. EVALUATION
We have implemented a prototype of the bidding frame-

work in Python. The prototype interacts with Amazon EC2
via boto [11], which is a Python interface library to Amazon
Web Services. To evaluate our bidding framework, we ap-
ply it to a distributed lock service and a distributed storage
service on Amazon EC2. The experiments include a micro-
benchmark, a one-week-long running on Amazon EC2 for
feasibility verification and two 11-week-long trace replays
for cost and availability evaluation.

5.1 Experimental Systems

5.1.1 Distributed Lock Service
A distributed lock service is intended for large-scale loosely

coupled distributed systems. A representative distributed
lock service is Google Chubby [13], which can help thou-
sands of nodes to synchronize their activities and to agree
on basic information about their environment such as system
members.

Chubby provides an interface much like a file system with
advisory locks and uses the Paxos protocol for practical dis-
tributed consensus to achieve high availability. A Chubby
server is usually configured with 5 replicas. The Chubby
clients communicate with Chubby server using a client li-
brary via RPC. The quorum in such a 5-node distributed
system is a simple majority. Chubby follows the assumption
here that the replicas are replicated in different regions i.e.
similar to availability zones in Amazon EC2.

5.1.2 Erasure Code Based Distributed Storage Ser-
vice

Distributed storage services usually provide an object store
or key value store for clients while tolerating a portion of
machine restarts and even permanent machine or disk fail-
ures. Using a distributed storage service across availabil-
ity zones can provide better availability for tolerating data
center crash or un-reachable problem. Instead of primary-
backup techniques, Gaios [10] and Megastore [8] have em-
ployed Paxos based SMR for fault tolerance in the imple-
mentation of distributed storage service.

Erasure code [28] is a forward error correction (FEC) code
in information theory and originally used to recover mes-
sages from independent packets loss in network transmis-
sion. And it has been widely adopted in distributed storage
systems [21, 29] for reducing storage and network cost. In
a common form of erasure coding, the original data object
will be firstly divided into m equal-sized chunks and then k

parity chunks of the same size will be generated. The total
number of chunks is n = m+k. The erasure code algorithm
can reconstruct the original data from any m chunks out
of total n chunks. This erasure coding can be denoted as
θ(m,n).

Recently, Mu et al. [26] has proposed a Paxos based proto-
col, RS-Paxos, which can do erasure coding correctly in dis-
tributed services without the assumption of a “synchronous”
network model. RS-Paxos can be employed in a distributed
storage service for network transmission and disk writes re-
duction by sending coded data shards instead of full copy.
We call such a distributed service as an erasure code based
distributed storage service.

A standard configuration for RS-Paxos is also 5 nodes and
a θ(3, 5) erasure coding. Notice that RS-Paxos can only tol-
erate one-node failure instead of two-node failures, which is
very different from a distributed lock service. This is because
the write quorum of the service is different from the one us-
ing a replication mechanism. To guarantee reconstruction
of the original data, the intersection size of the acceptance
set should be 3 instead of 1.

5.2 Experimental Setup
These two distributed services built with on-demand in-

stances are set as the baseline in our experiments. Although
using reserved instances can reduce 30% ∼ 40% cost at most,
it is inflexible and difficult to adapt to the changing of ser-
vice load. The failure probability of an on-demand instance
is 0.01 as illustrated in [7]. The distributed lock service
used in the experiments is a simple implementation based on
Paxos, and the distributed storage service is an implemen-
tation of RS-Paxos [26]. We configure the two systems both
with 5 on-demand instances, which is the common configu-
ration in practical systems [13, 26]. In such a configuration,
the distributed lock service can tolerate any two-node fail-
ures. The distributed storage service can tolerant only any
one-node failures instead of two-node failure as illustrated
in section 5.1.2.

For comparison, we also pick a heuristic bidding strategy.
In this strategy, the availability zones with the lowest n+m
spot prices are chosen, assuming that there are n nodes in
the original distributed system configuration, m is the num-
ber of additional nodes. In these experiments, n is 5. For
each availability zone, a spot instance bid is set as the spot
price with an extra portion p, such as 10% or 20%. As there
are various of selections of m and p, we use some typical
configuration of m and p in the comparison experiments.
For simplicity, we denote such a strategy with m additional
nodes and p extra portion of bid as Extra(m, p), and denote
our bidding algorithm and framework as “Jupiter”.

The experiments are run over 17 availability zones of Ama-
zon EC2. The distributed lock service is built with the
“linux.m1.small”instances. Each“linux.m1.small”on-demand
instance is charged about $ 0.044 ∼ 0.061 for one hour. The
erasure code based distributed storage system is built on
the “m3.large” instances, which have more CPU and mem-
ory capacity than “m1.small” ones. Each “linux.m3.large”
on-demand instance is charged about $ 0.14 ∼ 0.201 for one
hour.

For each availability zone, the spot instance failure model
is first trained with about three months of spot prices data.
Such data training leads to convergence. In the experiments,
we run the bidding framework for one week on Amazon EC2
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Figure 4: Measured out-of-bid failure probability of
a spot instance under the estimation failure proba-
bility of 0.01

and replay two 11-week-long spot price trace according to
the Amazon EC2’s spot pricing rule. The startup time of a
spot instance is considered in the replay. It mainly varies in
regions and usually 200∼700 seconds according to [25].

5.3 Micro-Benchmark
For the spot instance failure model, our major concern is

the precision of spot instance failure probability estimation.
Accordingly, we compare the measured failure probability
of a spot instance and its expected failure probability in the
spot instance failure model.

In this test, we first make a bid for each availability zone to
keep the probability of out-of-bid failure no more than 0.01
in one month based on the spot instance failure model. Then
we examined the out-of-bid failure probability by comparing
the bids with the month’s spot prices data. Figure 4 shows
the measured failure probability of 5 availability zones.

For both “linux.m1.small” and “linux.m3.large” spot in-
stances, the measured out-of-bid failure probability is less
than 0.01 in most cases. There are two exceptions in all
the test cases. One is in availability zone ‘ap-southeast-
1a’, the out-of-bid failure probability is about 0.013553 for
a ‘linux.m1.small’ instance. The other one is in availabil-
ity zone ‘us-west-2b’, the out-of-bid failure probability of
‘linux.m3.large’ is about 0.017665. The test results show
the spot instance failure model can estimate failure prob-
ability with minor deviation. And the failure probability
estimation of spot instances can be more accurate with new
spot prices data.

5.4 Feasibility
In December 2014, we performed a one-week-long running

of the bidding framework on Amazon EC2. Our bidding
framework functioned correctly and kept the two distributed
services always available in the one-week experiment. The
heuristic strategy Extra(0, 0.1) is also tested in this experi-
ment. The interval of each bidding is set to one hour in both
strategies.

As shown in Figure 5, the cost of the distributed lock ser-
vice under our bidding framework is about $ 6.91, only one
sixth of the baseline and a little lower than the cost under
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Figure 5: Spot instance cost of a distribued service
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Extra(0, 0.1). Both are always available in the one-week-
long running. The cost of the distributed storage service un-
der our bidding framework is about $ 16.53, close to the cost
under Extra(0, 0.1). The distributed storage service encoun-
tered no failure for one week. However, the distributed stor-
age service under Extra(0, 0.1) failed in the running. Our
bidding framework outperformed the Extra(0, 0.1) strategy
on the whole. This experiment showed that our bidding
framework is practical for reducing cost while still keeping
the service highly available.

5.5 Cost and Availability
We evaluated our bidding framework in a long term by

replaying the spot prices trace. As cost and availability of a
spot instance are certained with the given spot prices data,
the result is the same as real running the bidding frame-
work on Amazon EC2. Two strategies, Extra(0, 0.2) and
Extra(2, 0.2), are introduced for comparison. There are 11
weeks of “linux.m1.small” spot prices data and 11 weeks
of “linux.m3.large” spot prices data from October 2014 to
December 2014 in the trace replays. The distributed lock
service is replayed with “linux.m1.small” trace and the dis-
tributed storage service is replayed with “linux.m3.large”
trace. We mainly focus on the cost and availability of the
two building cases. The bidding intervals of 3, 6, 9, and 12
hours are also tested besides 1 hour.

The cost of a distributed lock service for 11 weeks with 5
“linux.m1.small” on-demand instances in the cheapest avail-
ability zones is $406.56. For the erasure code based dis-
tributed storage service with 5 “linux.m3.large” on-demand
instances, the value is $1293.6. These are the baselines
in this experiment. The cost of distributed services under
heuristic bidding strategies and our bidding framework are
shown in Figure 6 and 8. The availability results are shown
in Figure 7 and 9.

As shown in Figure 6, our bidding framework only cost
about one-fifth of the baseline in the distributed lock service
for the best case. The cost of our bidding framework with
the bidding interval of 6 hours outperformed all the other
solutions. In this case, the cost is about $ 77.3. For the
bidding intervals of 1, 9, 12 hours, the cost of our bidding
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Figure 7: Availability of a distributed lock ser-
vice under different bidding strategies from October
2014 to December 2014

framework is a little higher than the strategy Extra(0, 0.2).
The cost of strategy Extra(2, 0.2) is obviously higher than
the other two bidding strategy.

There is no failure in the distributed lock service for our
bidding framework besides the bidding interval of 12 hours
(the availability is very close to 1.) as shown in Figure 7.
The other two strategies cannot keep the same availability
level at all. In the case of Extra(0, 0.2), there are about 8
hours failure time in 11 weeks. This is far from the require-
ments of high availability. The availability of the distributed
lock service under Extra(2, 0.2) is higher than those under
Extra(0, 0.2). But it cannot always satisfy the constraints
of service availability level in different bidding intervals.

For the Extra(0, 0.2) strategy, the number of spot in-
stances to bid is always 5. And Extra(2, 0.2) strategy always
bids 7 spot instances in each bidding interval. Extra(2, 0.2)
outperformed Extra(0, 0.2) in the term of service availability
level in all cases. This result demonstrates that system avail-
ability level is hard to keep without the failure probability
of spot instances although the availability of distributed ser-
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vices can be improved with additional spot instances. Fur-
thermore, Extra(2, 0.2) was charged about $ 31 ∼ $ 41 ex-
tra cost for the two additional spot instances. Our bidding
framework outperformed the Extra(2, 0.2) strategy in both
cost and availability.

For the distributed storage service, Figure 8 shows that
the cost of the distributed storage service under our bid-
ding framework varies in different bidding interval. The best
case is still the bidding interval of 6 hours. The cost of dis-
tributed storage service in this case is $ 189.93. The cost
of distributed storage service with on-demand instances is
reduced by more than $ 1000. The cost under the strategy
Extra(0, 0.2) is about $ 183.5 in average. It is a littler lower
than the cost under our bidding framework. This is mainly
due to the too much out-of-bid failures of spot instances
under Extra(0, 0.2).

Our bidding framework kept the service availability level
of the baseline except for the case of bidding interval of 9
hours. In this case, the failure time of the distributed stor-
age service is a little longer than the requirements of the



service availability level. Compared to our bidding frame-
work, Extra(0, 0.2) has a little lower cost but an unaccept-
able service availability level, and Extra(2, 0.2) has a closed
availability but much higher cost as shown in Figure 6 and
9.

In both Figure 6 and 8, the cost of our bidding frame-
work changes a lot with different bidding intervals. A short
bidding interval means launching new instances more fre-
quently, which costs a lot on startup time. However, a long
bidding interval loses some chance to change bidding with
the spot prices. Our bidding framework should make higher
bids for a longer bidding interval under availability consid-
eration. The 6 hours bidding interval seems to be the most
appropriate of all. An extension for our bidding framework is
to detect the frequency of spot prices fluctuating and change
the bidding interval correspondingly.

The “extra” strategies are simple and fixed. Without the
knowledge of spot prices history data in each availability
zone, making a same extra portion of bid is senseless. Fur-
thermore, these strategies cannot keep high availability level
as they have no spot instance failure probability estimation.
Additional nodes and extra portion of bids reduce the fail-
ures potentially, but increase the cost. The results show that
if using intuitive approaches, we cannot achieve both high
availability and cost efficiency at the same time.

6. RELATED WORK
The advent of Spot Instance Market [30] has bring a new

vision of cloud computing that computing instances can be
traded like in a market where the price changes dynami-
cally depending on the demand and supply. Research com-
munities have shown a great interest on utilizing the spot
instances for cost-efficient computing. Most of the current
works focus on using spot instances for batch processing jobs
such as MapReduce jobs. On the other hand, spot price
models are proposed as the fluctuation of spot prices is fun-
damentally faced in the design of scheduling algorithms and
fault tolerant mechanisms to be built over spot instance.

Chohan et al. [15] demonstrated that the execution of
MapReduce jobs could speed up significantly by using spot
instances as accelerators with an acceptable mount of mon-
etary cost. Their work focused on bidding for performance
using spot instances. There is no worry about the fault toler-
ance of computing jobs because the failures of spot instance
have no impact on the execution of MapReduce jobs. The
study of Chohan et al. revealed the possibility of using spot
instances to speed up batching processing jobs. Instead of
bidding for performance, our study mainly focuses on bid-
ding for availability which is significantly different.

For MapReduce jobs, the failure of a task will not hurt the
progress of the whole job. The tasks in such a job can be
divided and scheduled to any available spot instance. As the
bookkeeping task can run continuously by using normal on-
demand instance during the lifetime of a job, all the tasks in
the job will be scheduled and finished eventually. However,
many MapReduce implementations, such as Hadoop [20],
are not designed for the spot market environment. Even if
the bookkeeping task does not run on a spot instance, sev-
eral simultaneous spot instance terminations could cause all
replicas of a data item to be lost. For fully taking advantage
of spot instances, Spot Cloud MapReduce [24] was proposed
as a MapReduce implementation that can make computing
progress even if lots of nodes are in failure simultaneously.

By using the spot instance, the total cost of MapReduce job
can be reduced while the completion time might be a little
longer.

For compute-intensive, embarrassingly parallel jobs, adap-
tive checkpointing and work migration schemes were intro-
duced to eliminate the impact of unexpected job termina-
tions in [36, 35]. Checkpointing and work migration are
two commonly used fault tolerance techniques for parallel
computing jobs. These studies retrofitted these two fault
tolerance mechanisms for reducing the job completion time
with failure-prone spot instances. As the failures of such
computing jobs can be fixed by re-execution like schemes,
the fluctuation of spot prices do not need to be considered
in these studies.

However, all these studies are targeted on the divisible
computing jobs, which can shift the time of processing to
when the computing resources are available. This is impos-
sible for distributed services, which should be as available
as possible and cannot delay users’ request arbitrary. More-
over, as these works address the issue of frequent spot in-
stance failures under a fixed bid, efficient bidding strategies
based on statistical analysis of the spot price history are not
considered.

Andrzejak et al. used a probabilistic model to capture the
relations of continuous changing spot prices and job termi-
nation probabilities in [3], then a pre-computed and fixed
optimum bid for a computing task can be given under SLA
constraints. This simple approach is not suitable for the
case of frequent fluctuation of spot prices. From a cloud
service broker’s perspective, Song et al. proposed a profit
aware dynamic bidding algorithm based on Lyapunov op-
timization technique in [31]. These studies made statistical
analysis of the spot prices, but do not involve the availability
analysis of distributed services.

The design of bidding strategies and spot instance failure
model rely on the spot price model. Although Amazon EC2
does not disclose the details of its underlying pricing algo-
rithm, the spot price model has been studied from outside
Amazon EC2. A statistical analysis for all spot instances
in Amazon EC2 was provided in [22]. Ben-Yehuda et al.
conjectured that the spot prices were usually not market-
driven but determined by a pricing algorithm based on auto-
regressive model in Amazon EC2 before October 2011 in [1].
The Markovian property of the spot price sequences had
been verified in [15, 31], A discrete semi-Markovian chain
was further applied to model the spot price variations in
[31]. In our work, we embedded the semi-Markovian chain
into the spot instance failure model and discretized the so-
journ time of the semi-Markovian Chain into minutes as
suggested by the spot prices data nowadays.

7. CONCLUSIONS
This paper addressed the problem of bidding for availabil-

ity when building distributed service with the spot instances
offered by Amazon EC2. We have pointed out several chal-
lenges of keeping service avilability level of a distributed
system when using spot instances. The analysis is com-
plicated because of the spot instance failure model. The
out-of-bid failure is the main failure of spot instances. This
is different from the node failure in traditional distributed
systems. For estimating the failure probability of spot in-
stances, we employed a semi-Markovian chain to model the
fluctuation of spot prices. The availability of a distributed



service built with spot instances can thus be estimated from
the failure probabilities of instances instead of the num-
ber of simultaneous node failure that can be tolerant. The
problem of bidding for availability is formalized as a non-
linear programming model. The objective is to minimize
the cost of spot instances and the constraint represents the
availability requirements of the distributed service. How-
ever, solving this non-linear programming is NP-hard. Ex-
haustive search like methods is not practical at all. We
presented a bidding framework to make practical solutions
with a near-optimal bidding algorithm using enumerate and
greedy strategy. Two fundamental distributed services, dis-
tributed lock service and erasure code based distributed stor-
age service, are used to verify the effectiveness of the bidding
framework. Our bidding framework can reduce the costs by
81.23% and 85.32% for lock service and storage service re-
spectively while still keeping the availability level the same
as it is by using on-demand instances.
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