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Abstract—MapReduce is an important programming model for 
processing and generating large data sets in parallel. It is 
commonly applied in applications such as web indexing, data 
mining, machine learning, etc. As an open-source implementation 
of MapReduce, Hadoop is now widely used in industry. 
Virtualization, which is easy to configure and economical to use, 
shows great potential for cloud computing. With the increasing 
core number in a CPU and involving of virtualization technique, 
one physical machine can hosts more and more virtual machines, 
but I/O devices normally do not increase so rapidly. As 
MapReduce system is often used to running I/O intensive 
applications, decreasing of data redundancy and load unbalance, 
which increase I/O interference in virtual cloud, come to be 
serious problems. This paper builds a model and defines metrics 
to analyze the data allocation problem in virtual environment 
theoretically. And we design a location-aware file block allocation 
strategy that retains compatibility with the native Hadoop. Our 
model simulation and experiment in real system shows our new 
strategy can achieve better data redundancy and load balance to 
reduce I/O interference. Execution time of applications such as 
RandomWriter, TextSort and WordCount are reduced by up to 
33% and 10% on average. 

Keywords-MapReduce, Virtualization, Data allocation, I/O 
interference, Load balance 

I.  INTRODUCTION  
MapReduce is first proposed by Google, as a programming 

model for processing and generating large data sets. Hundreds 
of MapReduce programs on its clusters every day[1]. As one 
of the open-source implementation of MapReduce, Hadoop is 
now widely used in Yahoo, Facebook, IBM, etc.[2] 

Nowadays, virtualization is getting more and more popular 
in cloud computing, as it helps to utilize and deploy 
computing resources. One good example is Amazon Elastic 
MapReduce[3], which utilizes Hadoop technology to enable 
MapReduce computing and is based on virtual machines. A 
computer with a multi-core CPU supporting virtualization 
technology can run two or more virtual machines (VMs) 
simultaneously, which share the I/O resources and appear the 
same as physical machines to users.  

MapReduce is usually set up on a distributed file system. 
Goolge uses GFS and Hadoop uses HDFS. Normally, one file 
block has one or two copies in a distributed file system in case 

of data corruption. When MapReduce runs in a virtual 
environment, three major problems emerge. 

• Disk sharing results in unbalanced data distribution 
and therefore leads to unbalanced workload. Data 
distribution in virtual environment has two aspects in 
physical view. One is the number distribution of file 
blocks that physical machines hold. The other is the 
number of file block collisions that exists in the 
system. File block collision occurs when two replicas 
of a file block are in the same physical machine though 
in different virtual machines. When running MapTask 
in MapReduce, it prefers to choose the local machine 
containing the file block [1], or the file block must be 
transferred from other machine. So one physical 
machine contains more file blocks or more replicas of 
a file block, it is likely to be allocated more workload. 

• I/O interference caused by data unbalance and load 
unbalance is more serious in a virtual environment 
because of I/O virtualization implementation. I/O 
interference decreases the average I/O bandwidth and 
increases response time. I/O performance of virtual 
cloud like EC2 suffers from such interference [15]. 
Some researchers claim that I/O virtualization is the 
bottleneck in cloud computing [17]. 

• Disk sharing reduces the data redundancy. As 
distributed file system treats all virtual machines as 
physical machines, the replicas of a file block are 
allocated in different virtual disks, but actually they 
maybe are in the same physical disk. If the physical 
machine breaks down, file blocks whose replicas are 
all in that disk become unavailable. 

MapReduce is often used for I/O intensive applications, so 
it’s beneficial to design deliberate strategy to achieve more 
balanced data and workload in virtual environment. 
Optimization of MapReduce system is a hot issue. Most of 
existing work focused on resource provision and task 
scheduling by static application analysis or dynamic prediction 
in physical environment. We have the insight on the 
importance of data locality in virtual MapReduce system. Our 
method uses data locality to balance the workload and 
improve the data redundancy to reduce the degree of I/O 
interference natively. 
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In this paper, we abstract a model and define evaluation 
metrics to analyze the data pattern and task pattern of 
MapReduce in virtual cloud. Moreover, we propose a 
location-aware file block allocation strategy for Hadoop. In 
the new strategy, HDFS is aware of the locations of the virtual 
machines. Our strategy allocates file blocks across all physical 
machines evenly and the replicas of a block are located in 
different physical machines. In sampling simulation, metrics 
of our strategy is better. Our experiment in real system also 
verifies that the following three main benefits can be achieved 
by using our strategy. 

•  MapReduce’s workload is more balanced. MapTask 
workload is related to data distribution. Our strategy 
can balance data distribution so balance MapTask's 
workload as well  

• Our strategy reduces I/O interference and improves 
HDFS’s performance, especially the writing 
performance. When writing a file block to HDFS, all 
the replicas of the block have to be written. If these 
replicas exist in the same physical disk, the I/O 
interference is intensive. Our new strategy can 
eliminate this situation by allocating all file blocks 
locate across all physical disks on average. By doing 
so, the writing load is balanced and the total 
throughput increases. 

• Our strategy retains data’s redundancy as in physical 
environment. As replicas of each block are allocated in 
different physical machines, the data are still 
recoverable in case that one physical machine is down.  

The rest of the paper is organized as follows. Section II gives 
a background introduction of I/O interference and I/O 
virtualization. Section III describes virtualized Hadoop. In 
Section IV we build a model and evaluation metrics to analyze 
the Hadoop’s problem in virtual environment. Then we 
propose our new allocation strategy. Section V describes the 
implementation of our strategy in Hadoop. We evaluate our 
implementation both in a sampling simulation and real 
experiments in Section VI. Section VII discusses detailed 
results of our evaluation and some related issues. 

II. BACK GROUND 

A. I/O interference 
There are two traditional kinds of I/O interference, disk 

interference and network interference.  
Disk interference occurs when multiple processes try to 

access the same disk simultaneously. Disk has limits on both 
accesses and the amount of data they can transfer per second. 
People often consider disk performance under two situations, 
sequence read/write (SR/SW) and random read/write 
(RR/RW). Traditional magnetic disk uses the 
mechanical heads for reading and writing. Its throughput of 
random read/write is much smaller than that of sequence 
read/write. The reason is that the heads have to frequently 
change positions in RR/RW while in SR/SW the heads are 
more stable.  Recent years Flash based solid state device has 
emerged as a good candidate for the next generation of storage. 

It provides low access latency, low energy consumption, 
shock resistance and lightweight. Detailed analysis on it 
performance shows that Flash are excellent sequential stores 
while problematic for random access. The Flash’s throughput 
of RW is even worse than that of mechanical disk [4]. So the 
gap between the sequence access and random access are still 
big. Parallel accessing with a high degree makes multiple 
sequential accessing patterns degenerate to random accessing 
patterns, which causes performance degeneration [4]. 

Network interference mainly considers the latency and 
throughput. All network resources are limited, including link 
bandwidth, switch and router  processing time, etc. 
Implementations of connection-based protocol, such as TCP, 
have congestion avoidance algorithms to watch for packet 
losses and latency to adjust the transfer speed of connections. 
Research on parallel TCP [5] shows, as the number of 
simultaneous TCP connections increases, the total throughput 
will increase until the network becomes congested. The packet 
loss rate begins to increase depending on the number of 
connections and the congestion degree. Then the congestion 
mechanism reduces the congestion window, which decrease the 
transfer rate. As the number of parallel TCP connections 
increases, the effects of higher packet loss rates decreases the 
impact of multiple sockets, the TCP throughput will stop 
increasing or begin to decrease. Another interesting work on 
parallel TCP [6] indicates 90% utilization would already be 
achieved by as few as 3 TCP sockets. 

B. I/O virtualization 
There are two basic kinds of virtualization: full 

virtualization (e.g.,KVM [7] and paravirtualization (e.g., 
Xen[8]). Full virtualization is a complete simulation of the 
underlying hardware while paravirtualization provides a 
software interface to virtual machines and the interface is 
similar but not identical to that of the underlying hardware. In 
either case, virtualization is enabled by a layer called virtual 
machine monitor (VMM) or hypervisor. Virtual machines 
share CPUs and memory well, but not I/O. 

When sending or receiving a network packet, the VMM 
domain and the virtual machine domain must be scheduled 
correctly before a network packet can be sent or 
received[10].The total overhead is much higher than that of  
CPU or memory virtualization. For example, Linux is only 
able to achieve only about 30% of the network throughput 
with Xen that it can achieve running natively [11]. Moreover, 
network I/O virtualization increases overheads in the 
utilization of device such as CPU. So it can cause loss of 
bandwidth utilization from a virtual machine because of 
CPU’s limitation [11]. 

Compared with network I/O, virtualization for disk is 
simpler. In network virtualization, the system must be 
prepared to receive and respond to request for its virtual 
machines at any time. Disk access occurs only when requested 
by the virtual machine. But the overhead of disk virtualization 
is not negligible. Xen shows about 15% degradation of disk 
performance and KVM shows about 7% degradation of write 
performance and almost no degradation of read performance 
[12]. 
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As one physical machine can host more and more virtual 
machines, the isolation must be considered. Different 
virtualization shows different characteristics. For example, 
Xen shows good isolation for disk I/O and poor isolation for 
network I/O, while KVM shows good isolation for network 
I/O and poor isolation for disk I/O [12]. 

III. HADOOP IN VIRTUAL CLOUD  

A. Virtualized Hadoop 
The basic MapReduce’s architecture [1] consists of one 

master and many workers. Hadoop is one of the most 
commonly-applied implementation of MapReduce. Figure 1 
shows virtualized Hadoop architecture. NameNode is the 
master of a collection of DataNodes and it is responsible for 
their management and file maintenance. JobTracker is the 
master of a collection of TaskTraker and in charge of their 
management and task maintenance. A DataNode process and a 
TaskTracker process run on the same machine to utilize data 
locality. The TaskTracker should copy the data that it’s 
needed from other machines through network if the data is not 
local. NameNode and JobTracker can be separated in different 
machines to achieve better performance. When the machine 
number is huge, this separation is necessary.  

In virtual environment, virtual machines in a physical 
machine share the hardware resources such as CPU, memory, 
disk and network. Due to the isolation of virtualization, virtual 
machines appear to each other like physical machines. 
NameNode and JobTracker can also run in virtual machines 
though less efficient. In Hadoop’s architecture view, there is no 
big difference between virtual environment and physical 
environment. But in Hadoop’s performance view, differences 
emerge. Virtualization introduces extra overhead and 
interference, especially on I/O. And lack of virtual machines’ 
locality brings other problems. When allocating three replicas 
of a file block, the three replicas are allocate in difference 
machines in Hadoop’s view. But if these machines are 
virtualized, actually two or three replicas of a file block may in 
the same physical machine. So it causes imbalanced workload. 
And if one physical machine fails, the data may not be 
recoverable. 

 
Figure 1 Virtualized Hadoop architecture 

B. Hadoop’s Allocation Strategy  
HDFS is used as Hadoop’s distributed file system, which 

commonly uses replica mechanism. Here we set 3 as the 
replica numbers, which is common in Hadoop cluster. A 
cluster may be consisted of many racks of computers. HDFS is 

rack-aware, which can support tree hierarchical network 
topology. “In most cases, network bandwidth between 
machines in the same rack is greater than network bandwidth 
between machines in different racks”[13]. If there is no rack, 
all the computers are in one rack called default-rack. 

In Hadoop’s allocation strategy, when a block is created, the 
first replica is placed on the local node that contains the source 
data. If the node containing the source data is not the 
DataNode of HDFS, HDFS will randomly choose a DataNode 
for the first replica. Next, if there are many racks, the second 
replica is placed on a DataNode in remote-rack compared to 
the first DataNode. Then HDFS chooses another different 
DataNode for the third replica in the same rack with the 
second DataNode. It ensures that no more than one replica is 
placed at one DataNode and no more than two replicas are 
placed in the same rack when the number of replicas is less 
than twice of its rack number. But if there is only one rack, the 
second and the third replicas are placed randomly in different 
DataNodes. 

IV. MODELING AND NEW STRATEGY 

A. Modeling  
We build a generation model of data and task pattern to 

analyze different allocation strategies. To simply the problem 
for analyzing, we make the following assumptions. 

• Each physical machine hosts the same number of 
virtual machines, which using the same I/O devices. 
Here we use a physical disk to present the I/O devices, 
as it determines the data’s locality and number of 
network devices is no more than that of disks in 
common case.  

• All the virtual machines are in local area network and 
the network topology is flat which can be easily 
achieved by running Hadoop by default without 
providing any rack information. We do not consider a 
physical machine as a rack because network bandwidth 
between virtual machines in the same physical 
machine is not greater than network bandwidth 
between virtual machines in different physical 
machines, which is measured in real cluster. 

• There is no limitation for workload to be randomly 
assigned to each virtual machine. There is no 
mechanism such as taking into account the average 
load or limitation of task slots when running 
MapReduce. 

• The total file size has linear relationship with total 
block number. One simple example is that all file 
blocks have the same size. 

Now suppose we have a cluster containing p physical 
machines, each has a hard disk and the replica number is 3. 
Then n file blocks are put into the cluster from another 
computer out of the cluster or generated randomly in the 
cluster. So the model is about the data pattern generation and 
task pattern generation with a certain data pattern. A block has 
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the same probability to be placed on physical machines that 
host the same number of virtual machine.  

Take p=8 (p0~p7), n=8(0~7) for example, a data pattern 
may occurs as Figure 2 using Hadoop’s strategy.  It can be 
seen that replicas of file 2 are all on p5 and the distribution is 
not well balanced.  

Next we consider the task pattern when reading these files. 
If all the file blocks are accessed by MapTasks, MapReduce 
tries to choose local node to run the MapTask. In the example 
above, physical machines’ MapTask task pattern may be 
assignedNum[8] =[1,2,1,1,0,2,0,1], means p0 has 1 task ,p1 
has 2 tasks ,etc. The ideal pattern is [1,1,1,1,1,1,1,1], but is 
less possible to happen. 

6

6

3

7 2

1 6 7 5 2

1 4 4 3 2 5

0 1 3 0 5 0 4 7

p0 p1 p2 p3 p4 p5 p6 p7

 
Figure 2 An example data pattern may be generated using 
Hadoop’s strategy, blockNum[] shows number of file blocks in 
each disk. fileNum[] shows number of different file blocks in each 
disk, it is smaller than blockNum[] if two replicas of a file block 
are in the  same physical disk . 

B. Evaluation Metrics  
How to evaluate the data pattern and task pattern? Here we 

consider three metrics as follows for data pattern: 
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actualReplicaNum (a) is the average number of unique file 
blocks in a physical machine. The ideal value is 3 when the 
replica number is 3. If the file number is much larger than the 
disk number, the difference between actualReplicaNum and 
the ideal value becomes significant. Take n=1000, p=8 for 
example, the actualReplicaNum is small, but considering n* 
actualReplicaNum, there are many file blocks that having two 
or three replicas in the same disk. It is very possible that each 
disk contains all replicas of the same file block. If one disk is 
down, the data on the disk will not be recoverable.  

maxBlockNum (b) shows the maximum number of blocks 
in a physical machine, which is the bottleneck in parallel 
writing. The disk with maxBlockNum generally takes the 
longest time to finish the write operations in a distributed file 
system. 

blockNumSigma (c) shows the variation of the pattern. The 
idea value is 0, which means that all blocks are evenly 
allocated. This parameter reveals the load balance of the 
distribution when writing files. 

In the example of Figure 2, actualReplicaNum=2.5 
maxBlockNum=7 blockNumSigma=1.343 

We also can use the similar method as above to evaluate the 
task pattern. Since only one replica of each file block are 
needed when reading file, the taskNumAvg is useless. There 
are two metrics as follows. 

maxAssignedNum (d) shows the max number of task that a 
physical machine is assigned. Similar with maxBlockNum, 
maxAssignedNum will be the longest tail in parallel executing.  

assignedNumSigma (e) reveals the load balance of the task 
pattern. Because of the locality, the load includes not only 
reading but also processing the data which may generate great 
load. 

For[1,2,1,1,0,2,0,1],maxAssignedNum=2,assignedNumSigm
a=0.707. The data pattern and task pattern above occurs with 
a probability. Considering the full permutation, there are 3np  
permutations for the data pattern and 3n  permutations for the 
task pattern. If n is small, we can enumerate the full 
permutation. If n is big, we can only use sampling simulation 
to evaluate the strategy. For the data pattern in Figure 2, the 
enumeration average results for task pattern are as follows: 
maxAssignedNumAvg=2.6452,assignedNumSigmaAvg=0.922
0. 

C. NEW STRATEGY 
We design a new allocation strategy to allocate replicas of a 

file block to different physical machines and keeps balance of 
the block number of each physical machine. There are many 
ways to achieve the new strategy. Here we present two 
intuitive ways. One is round-robin allocation and the other is 
“serpentine allocation” used in this paper. 

Take p=8 and n=8 for example, Figure 3 shows the round–
robin allocation which is easy to understand. Figure 4 shows 
the serpentine allocation. The third replica of file 2 is supposed 
to be placed in p7 but p7 has file 2, also p6 has file 2. So at last 
the third block of file 2 is placed on p5. 

The evaluation metrics for data pattern in Figure 3 and 
Figure 4 are the same and the best (actualReplicaNum=3, 
maxBlockNum=3, blockNumSigma=0) 

The enumeration average results for task patterns of Figure 
3 are as follows: 

maxAssignedNum=2.2724,assignedNumSigma=0.7943 
The enumeration average results for task patterns of Figure 

4 are as follows: 
maxAssignedNum=2.2705 assignedNumSigma=0.79323 
So the difference between round-robin and serpentine 

allocation is little. It should be pointed out that the 
enumeration average result of task patterns of the new strategy 
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is not always better than those of Hadoop’s strategy. See an 
extreme example showed in Figure 5, the average evaluation 
results are as follows:  

maxAssignedNum=1 assignedNumSigma=0.  
But the actualReplicaNum of this pattern is only 1. The reason 
is that all replicas of each file block are located in the same 
disk. So there is only one pattern that the task with this block 
can choose. So we must consider all the metrics of data pattern 
and task pattern and also the probability that a pattern occurs. 
Our model reveals basic characteristics of the allocation 
strategy though it has some limitations that are discussed in 
Section VII. 

5 5 6 6 6 7 7 7

2 3 3 3 4 4 4 5

0 0 0 1 1 1 2 2

p0 p1 p2 p3 p4 p5 p6 p7

 
Figure 3 An example of round-robin allocation 
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5 4 4 4 3 2 3 3

0 0 0 1 1 1 2 2

p0 p1 p2 p3 p4 p5 p6 p7

 
Figure 4 An example of serpentine allocation 
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Figure 5 A extreme data pattern that may occur with Hadoop’s 

strategy 

V. IMPLEMENTATION 
In the real implementation for Hadoop, we choose 

serpentine allocation because it can slightly reduce the cost of 
scheduling in our implementation. 

The location of virtual machine and the number of file 
blocks are needed for the new strategy. Since Hadoop 
supported tree hierarchical network topology, we add the 
location information of virtual node into the network topology. 
For example, if there is only one rack among the physical 
machines, the network location of a virtual node may be 

changed from /default-rack to /Phy0, means that the virtual 
node is on Physical machine 0; if there are some racks among 
the physical machines, the network location of a virtual node 
may be changed from /rack1 to /rack1/Phy0, means that it is 
on the Physical machine 0 of rack1.The main idea is to add a 
layer beneath the network location of the physical node. This 
mechanism makes it easy to keep compatibility with the native 
Hadoop. We can make special label starting with “Phy” to 
identify locations of virtual machines. Our strategy works only 
when locations of virtual machines are provided in 
configuration file. 

To maintain the block information for each virtual node, we 
add a sorted list by the number of blocks in NameNode of 
Hadoop. For each allocation for a replica, the list will be 
updated and the update is exclusive in case of concurrent 
access. When the block is removed or corrupted, the list will 
also be updated. In the update, we first update the block 
number of the virtual node, and then update its position in the 
sorted list. When adding blocks, round-robin allocation moves 
its position to where next position’s block number is bigger, 
while serpentine allocation moves its position to where next 
position’s block number is not smaller. 

Data structure like heap may be better for maintaining the 
information of block number. The block information scales 
just with the number of virtual machines, and the operation is 
done in NameNode’s memory. The real problem may be the 
synchronization cost when the system is busy with 
manipulating large number of files concurrently. But usually 
the I/O hit the peak first and NameNode’s scheduling time is 
much smaller than that of I/O transfer time. In our experiment, 
choosing of three replicas is finished in several milliseconds. 
The linear data structure is good enough though not the best. 

There are some special files like job configure file that have 
many replicas when the job is running. So we randomly place 
replicas exceeding the configured replica number among all 
virtual nodes. 

Now we can make sure that three replicas of a file block are 
allocated in three different physical machine and the blocks is 
almost well balanced across all virtual machines. If the 
number of virtual machine in each physical machine is the 
same, the blocks are also balanced across all physical 
machines. It is useful if some physical machine is less 
powerful and can host less number of virtual machines. We 
can adjust the load of a physical machine with the number of 
its virtual machine. Also our new strategy makes it possible to 
shut down nodes by the unit of a physical machine instead of a 
virtual machine, which achieves faster resource shrinking. 

VI. EVALUATION 

A. Simulation Evaluation 
When n or p is large, it is impossible to calculate the five 

metrics with the full permutation. So we use sampling 
simulation to compare our new strategy (serpentine allocation) 
with Hadoop’s original strategy. Each sampling unit consists 
of allocating a data pattern of 3n file blocks and generating a 
task pattern of reading 3n file blocks with such generated data 
pattern using corresponding strategy. 
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We have set the parameter n=256, and p = 
[8,16,32,64,128,256], the sampling number is set to 1,000,000. 
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Figure 6 maxBlockNum’s comparison of Hadoop’s original 
strategy and our new strategy using sampling 

8 16 32 64 128 256
0

0.5

1

1.5

2

2.5

3

3.5

4

p

va
lu

e

 

 

fileNumAvg of Original

fileNumAvg of New

 
Figure 7 actualReplicaNum’s comparison of Hadoop’s original 

strategy and our new strategy using sampling 
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Figure 8 blockNumSigma’s Comparison of Hadoop’s original 

strategy and our new strategy using sampling 
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Figure 9 maxAssignedNum’s comparison of Hadoop’s original 

strategy and our new strategy using sampling 
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Figure 10 assignedNumSigma’s comparison of Hadoop’s original 

strategy and our new strategy using sampling 

TABLE I.  COMPARISON OF HADOOP’S ORIGINAL STRATEGY AND OUR NEW 
STRATEGY WHEN (N=224 P=8 SAMPLING NUMBER=1,000,000) 

 Original New 
Average of actualReplicaNum 2.0657 3 

Average of maxBlockNum 90.5798 84 
Average of blockNumSigma 4.1722 0 

Average of maxAssignedNum 33.7660 34.5946 
Average of assignedNumSigma 3.6256 4.14939 

 
The average metrics’ results of data pattern are showed in 
Figure 6(maxBlockNum), Figure 7(actualReplicaNum) and  
Figure 8(blockNumSigma). In data pattern evaluation, three 
metrics of our new strategy are all better than those of 
Hadoop’s original one. And when p is getting smaller, 
actualReplicaNum drops dramatically. The average metrics’ 
results of task pattern are showed in Figure 
9(maxAssignedNum) and Figure 10 (assignedNumSigma), 
when p>=16 maxAssignedNum and assignedNumSigma of our 
strategy are better. 
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Here we also present the result of (n=224 p=8) in TABLE I, 
because it fits our experiments configuration in a real system. 
Notice that when (n=256 or 224, p=8), maxAssignedNum and 
assignedNumSigma of Hadoop’s strategies are better than 
those of ours. The reason is similar to Figure 5 as we 
mentioned above, imbalanced data pattern may achieve 
balanced task pattern. When n=8, actualReplicaNum is close 
to 2, it means that each task with a file block has only about 
two physical locations to choose.  

Now we get a clear understanding about the data allocation 
in virtual environment. However, how these metrics affect the 
real system’s performance is more complicated than the 
numerical values we see here. For example, task pattern of our 
strategy is still better when n=8 in real experiment, we explain 
this in Section VII. 

B. Experiment Evaluation 
1) Testbed Description 
We build our cluster with 8 HP x2600 Workstations. Each 

physical machine hosts 7 virtual machines, so we have 56 
virtual machines in the virtual cloud. TABLE II shows the 
hardware and software details in our experiment.  What’s 
more, Tashi [18] is used to manage the virtual machines. 
There is another machine with 4 CPU and 8G memory used as 
Hadoop’s NameNode, JobTracker and ganglia server, which 
makes it simple to analyze the workload with ganglia. The 
network bandwidth between these machines is 1Gbps. 

TABLE II.  EXPERIMENT SETUP  

SW 

Hadoop Hadoop 0.20.0 

Guest OS Ubuntu 8.04  1CPU  
1GB Memory 1Gbps Ethernet 

Host OS Ubuntu 8.04 
Virtualization KVM 1Gbps Ethernet 

HW 

CPU 2x4  2.83GHz 
Memory 16G  

Disk 250G 7200rmp 
Network 1Gbps Ethernet 

2) Applications 
The MapReduce applications we use for evaluation are 

RandomWriter TextSort and WordCount.  
RandomWriter randomly chooses words from a small 

vocabulary (100 words), forms them into lines in MapTask. 
The map outputs are directly committed to distributed file 
system, so there is no ReduceTask in RandomWriter. TextSort 
sorts each line in existing text files by vocabulary order. The 
map and reduce functions in TextSort are both identity 
functions and the sort of the texts is realized by the inherent 
merge sort of MapReduce framework. WordCount counts the 
appearance frequency of words in the text. The input text of 
TextSort and WordCount are the RandomWriter’s outputs. 

3) Profiling with Ganglia 
Ganglia[19] is a scalable distributed monitoring system for 

high-performance computing systems. We have deployed 
Ganglia to the physical cluster, so we can get information 
about the usage of CPU, memory, disk I/O and network in 
real-time. We modified Ganglia to display all metrics in ten 

minutes. The collection interval is set to 3s. Before each 
experiment, the previous data of Ganglia was cleared. So the 
metric pictures became more readable. 

4) Experiment Design 
We have done two groups of experiments use Hadoop’s 

default configuration. The difference of the two groups is 
whether speculative execution of map and reduce turns on.  
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Figure 11 Experiment results of RandomWriter’s execution time 
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Figure 12 Experiment results of TextSort’s execution time 
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Figure 13 Experiment results of WordCount’s execution time 
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Speculative execution (SC) is like backup task which is 
used to reduce the long tail of parallel execution. First we turn 
off the speculative execution to get a better understanding how 
our new strategy affects the system. Then we turn on 
speculative execution (Hadoop’s default) which is often used 
in real systems to see whether our new strategy is better. 

The input data is 224*61.5MB, which is generated using 
RandomWriter. TextSort’s reducer number is set to 56 and 
WordCount’s reducer number is set to 1. 5 experiments have 
been done for each application in the group with speculative 
execution off and 3 experiments have been done for that with 
speculative execution on. Then we take the average execution 
time and standard deviation of each case. The results are 
showed in Figure 11, Figure 12 and Figure 13. We can see that 
our strategy is generally better in all three applications. With 
SC off, we reduce about 10% execution time of three 
applications with the new strategy. With SC turn on, 
RandomWriter reduces 33.5% execution time, TextSort 
reduces 8.3% execution time, but WordCount’s improvement 
is little. 

VII. DISCUSSION 

A. Model’s limitation 
Some of our model’s assumptions break down in real 

system, but still shows the general characteristics. 
Physical machines may host different number of virtual 

machines, but our strategy can still reduce block collisions and 
balance the workload according to the number of virtual 
machine in a physical machine. 

When choosing DataNode for a replica, HDFS calculates an 
average load based on number of active connections. If the 
chosen DataNode’s load is bigger than two times of average 
load, another selection will be performed. This can control the 
maximum load in a DataNode in real-time, but has limit effect 
on balancing the data pattern. Figure 14 shows a data pattern 
generated by RandomWriter with Hadoop’s strategy. The data 
pattern is not well balanced and is close to our sampling 
simulation results. 

Hadoop assigns MapTasks when the TaskTracker sends 
heartbeat to the JobTracker. We can take the procedure as a 
random selection. However, Each TaskTracker in Hadoop has 
task slots which can hold 2 tasks by default at the same time. 
New task will be accepted only when the TaskTracker has a 
free slot. This mechanism prevents too many tasks to be 
assigned to a node. And Hadoop schedules some MapTasks to 
run on DataNodes not containing the source file. However, 
this schedule balances MapTask load at the expense of extra 
network transfer .On Averagy about 85% of MapTasks are 
local and the rest 15% are non-local. So our model for task 
pattern is not fully consistent with the real system. But it tells 
us that the node that has more file blocks, are likely been 
assigned more workload. 

B. Evaluation  Analysis 
1) Our strategy is better in sampling and experiment 

evaluation. But how it works in real system and where is the 

improvement comes from? So the experiment design and result 
need to be discussed. 

The benefit of our new strategy with small workload size is 
not very impressive. We choose 224*61.5MB as the workload 
size, which stresses the whole cluster and leads to reasonable 
execution time. We also tried larger workload size, the 
improvement was a bit more obvious, but the experiment took 
much more time. 

2) Effect of speculative execution 
We can run exactly the number of MapTask and 

ReduceTask with SC off. It will eliminate unnecessary 
interference. With SC turning on, SC will run extra map and 
reduce tasks when it detects some slow tasks. 
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Figure 14 A data pattern generated by RandomWriter with 
Hadoop’s strategy. Its execution time is 132s. The evaluation 
results of this data pattern are maxBlockNum=91, 
blockNumSigma=5.099. And the sampling average results are: 
maxBlockNumAvg=90.58, blockNumSigmaAvg=4.172 

As showed in Figure 11, Figure 12 and Figure 13, SC 
generally reduces the variation not the execution time. But it 
increases the execution time of RandomWriter of original 
strategy and TextSort of both strategies. The reason is that 
RandomWriter and TextSort are I/O intensive while 
WordCount is CPU intensive. The CPU usage of the physical 
machine are up to 85% (7 of 8 CPUs are used for Virtual 
Machines) when WordCount running. SC runs extra map and 
reduce tasks consuming the resources. Considering I/O 
interference when the system is stressed, SC’s extra load takes 
more negative effects than the benefit of long-tail cutting. The 
interesting one is the RandomWriter of new Strategy, its 
execution time significant decreases with SC on. The possible 
reason is that our new strategy reduces the I/O interference so 
SC’s benefit overcomes its extra workload. 

3) Ganglia’s result 
RandomWriter is I/O intensive, Figure 15 shows network 

throughput of the cluster when RandomWriter runs. The 
pillar’s width shows the execution time. The pillar’ area shows 
the total amount of network transfer. The throughput of our 
new strategy can reach more than 700MB/s while that of 
original one is about 600MB/s. So the total network 
throughput of the system has been improved, which benefit 
the total execution time. The total amount of network transfer 
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increases with SC on. However, the throughput does not 
increase. It indicates that the system is stressed and the load is 
not well balance with original strategy. It’s clear that our new 
strategy balances the write load and reduces the I/O 
interference to get higher I/O throughput. 

TextSort is also I/O intensive. MapReduce framework has 
three stages: Map, Shuffle and Reduce. Figure 16 shows 
network throughput of the cluster when TextSort runs. It has 
two main pillars. The first pillar shows the network transfer of 
Map and Shuffle. In Map stage, most of the files are read from 
local, so shuffle contributes most in the first pillar. The second 
pillar shows the network transfer of reduce stage. In reduce 
stage, the result are committed to HDFS. The total amount of 
second pillar is much larger than that of the first pillar because 
threes replicas of a block have to be written to HDFS in 
reduce stage. Though the first replica is preferred to written in 
the node which generates the result block, the amount of 
network transferring of reduce stage is at least twice large that 
of the Shuffle. In first pillar, our new strategy’s improvement 
is not very obvious. Maybe the reason is that the I/O amount 
of shuffle doesn’t stress the system yet. But for the second 
pillar, the improvement is significant, which pushes the 
throughput from 400MB/s to more than 500MB/s.   

WordCount is CPU intensive. Here we don’t present the 
result of CPU utilization of four cases because it’s quite 
difficult to draw useful information by comparing those 
pictures at a glance. We still focus at the network throughput, 
which shows in Figure 17. Compared with RandomWriter and 
TextSort, both the throughput and amount of total network 
transfer is much smaller (not more than 70MB/s). It’s 
“surprising” that the original strategy has larger throughput 
and total amount. However, it doesn’t indicate our new 
strategy is worse but the opposite. WordCount’ mid-output 
and reduce output is quite small, so the MapTasks contribute 
most of network transfer. As we mentioned above, about 85% 
of MapTasks are local. This percent varies according to the 
data distribution and real-time execution. Smaller amount of 
network transfer indicates that our strategy achieves more 
local MapTasks. It proves that our new strategy has good 
effect on task assignment. The reason of the little 
improvement of execution time with SC may be that the CPU 
is not fully stressed and the benefit of SC overcomes that of 
balanced task assignment. 

C. Multi-user sharing 
MapReduce system is usually shared by multi-users, our 

strategy can easily be applied in such sharing environment.  
If the resources are strict partitioned, we can use our 

strategy in the partitioned resources. As a user occupies a 
certain amount of physical nodes, MapReduce can allocate its 
data in its nodes using our strategy. If the resources are relax 
partitioned, a little modification can be made to achieve better 
user response time and system utilization. MapReduce 
allocates the first two replicas of a user’s file blocks to his 
physical nodes using our strategy. The third replicas are 
placed in other physical nodes randomly or on average. The 
modification’s benefit is that a user has the possibility (about 
2/3) to run his job in his nodes while he can still use other 

nodes if they are idle. It also provides optimizing chances for 
detailed task scheduler. In both cases, our strategy makes sure 
that no file block collision exists and the data and task 
distribution is reasonably balanced. 

  
Figure 15 Network throughput of experiment cluster with 
Ganglia in RandomWriter.  

 
Figure 16 Network throughput of experiment cluster with 

Ganglia in TestSort. 

 
Figure 17 Network throughput of experiment cluster with 

Ganglia in WordCount. 

VIII. RELATED WORK 
MapReduce was first described architecturally and 

evaluated in [1]. [1] describes the locality of data in brief, 
giving the general principle that the MapReduce master 
attempts to schedule a MapTask on a machine that contains a 
replica of the corresponding input data to reduce network cost. 
This principle is also used in Hadoop.  

Much work has been done to improve the performance of 
MapReduce system. Most of it falls to two broad categories. 
The first focuses on applications characteristics. One way is to 
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analyze and compare resource consumption of the application 
at hand, and then use this information to set optimized 
configurations for different applications [20]. Another is to 
monitoring the usage of system’s resources to adjust resource 
allocations to fit the requirements of different job stages 
[21][22].  Virtual machine monitor can be modified to 
dynamic allocate resources to VMs according to resource 
usage of applications [23]. 

The second category focuses on MapReduce System itself. 
A new scheduling algorithm for speculative execution is 
designed for Hadoop in heterogeneous environments [24]. 
Cloudlet[25] is design is to overcome the overhead of VM by 
adding a local reducer for virtual machines in each physical 
machine. Differing from existing work, our work focuses on 
the data locality’s influence on MapReduce in virtual 
environment. Our work is also related with job scheduler 
considering data locality [26], though it doesn’t care about 
virtual environment. 

IX. CONCLUSION 
We address fundamental problems of data allocation and its 

impact on MapReduce system in a virtual environment.  We 
build a theory model and define evaluation metrics to evaluate 
the data pattern and task pattern. Based on it, we propose a 
new strategy for file block allocation in Hadoop. It uses the 
locality of virtual machines to achieve new data distribution, 
which balances the workload and reduces I/O interference. 
Our simulation and real experiments results prove the good 
characteristics of our new allocation strategy both in theory 
and in practice.  

As core number of CPU increases fast, our work indicates 
that it’s beneficial to be aware of the virtual machines’ 
locations when serving I/O intensive system like MapReduce   
in virtual cloud. 
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