
Location-aware MapReduce in Virtual Cloud
Yifeng Geng1,2, Shimin Chen3, YongWei Wu1*, Ryan Wu3, Guangwen Yang1,2, Weimin Zheng1

1Department of Computer Science and Technology,
Tsinghua National Laboratory for Information Science and Technology (TNLIST)

Tsinghua University, Beijing 100084, China;
Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China

2 Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science,
Institute for Global Change Studies, Tsinghua University, Beijing, China

3 Intel Labs
*wuyw@tsinghua.edu.cn

Abstract—MapReduce is an important programming model for
processing and generating large data sets in parallel. It is
commonly applied in applications such as web indexing, data
mining, machine learning, etc. As an open-source implementation
of MapReduce, Hadoop is now widely used in industry.
Virtualization, which is easy to configure and economical to use,
shows great potential for cloud computing. With the increasing
core number in a CPU and involving of virtualization technique,
one physical machine can hosts more and more virtual machines,
but I/O devices normally do not increase so rapidly. As
MapReduce system is often used to running I/O intensive
applications, decreasing of data redundancy and load unbalance,
which increase I/O interference in virtual cloud, come to be
serious problems. This paper builds a model and defines metrics
to analyze the data allocation problem in virtual environment
theoretically. And we design a location-aware file block allocation
strategy that retains compatibility with the native Hadoop. Our
model simulation and experiment in real system shows our new
strategy can achieve better data redundancy and load balance to
reduce I/O interference. Execution time of applications such as
RandomWriter, TextSort and WordCount are reduced by up to
33% and 10% on average.

Keywords-MapReduce, Virtualization, Data allocation, I/O
interference, Load balance

I. INTRODUCTION
MapReduce is first proposed by Google, as a programming

model for processing and generating large data sets. Hundreds
of MapReduce programs on its clusters every day[1]. As one
of the open-source implementation of MapReduce, Hadoop is
now widely used in Yahoo, Facebook, IBM, etc.[2]

Nowadays, virtualization is getting more and more popular
in cloud computing, as it helps to utilize and deploy
computing resources. One good example is Amazon Elastic
MapReduce[3], which utilizes Hadoop technology to enable
MapReduce computing and is based on virtual machines. A
computer with a multi-core CPU supporting virtualization
technology can run two or more virtual machines (VMs)
simultaneously, which share the I/O resources and appear the
same as physical machines to users.

MapReduce is usually set up on a distributed file system.
Goolge uses GFS and Hadoop uses HDFS. Normally, one file
block has one or two copies in a distributed file system in case

of data corruption. When MapReduce runs in a virtual
environment, three major problems emerge.

• Disk sharing results in unbalanced data distribution
and therefore leads to unbalanced workload. Data
distribution in virtual environment has two aspects in
physical view. One is the number distribution of file
blocks that physical machines hold. The other is the
number of file block collisions that exists in the
system. File block collision occurs when two replicas
of a file block are in the same physical machine though
in different virtual machines. When running MapTask
in MapReduce, it prefers to choose the local machine
containing the file block [1], or the file block must be
transferred from other machine. So one physical
machine contains more file blocks or more replicas of
a file block, it is likely to be allocated more workload.

• I/O interference caused by data unbalance and load
unbalance is more serious in a virtual environment
because of I/O virtualization implementation. I/O
interference decreases the average I/O bandwidth and
increases response time. I/O performance of virtual
cloud like EC2 suffers from such interference [15].
Some researchers claim that I/O virtualization is the
bottleneck in cloud computing [17].

• Disk sharing reduces the data redundancy. As
distributed file system treats all virtual machines as
physical machines, the replicas of a file block are
allocated in different virtual disks, but actually they
maybe are in the same physical disk. If the physical
machine breaks down, file blocks whose replicas are
all in that disk become unavailable.

MapReduce is often used for I/O intensive applications, so
it’s beneficial to design deliberate strategy to achieve more
balanced data and workload in virtual environment.
Optimization of MapReduce system is a hot issue. Most of
existing work focused on resource provision and task
scheduling by static application analysis or dynamic prediction
in physical environment. We have the insight on the
importance of data locality in virtual MapReduce system. Our
method uses data locality to balance the workload and
improve the data redundancy to reduce the degree of I/O
interference natively.

2011 International Conference on Parallel Processing

0190-3918/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPP.2011.40

275

In this paper, we abstract a model and define evaluation
metrics to analyze the data pattern and task pattern of
MapReduce in virtual cloud. Moreover, we propose a
location-aware file block allocation strategy for Hadoop. In
the new strategy, HDFS is aware of the locations of the virtual
machines. Our strategy allocates file blocks across all physical
machines evenly and the replicas of a block are located in
different physical machines. In sampling simulation, metrics
of our strategy is better. Our experiment in real system also
verifies that the following three main benefits can be achieved
by using our strategy.

• MapReduce’s workload is more balanced. MapTask
workload is related to data distribution. Our strategy
can balance data distribution so balance MapTask's
workload as well

• Our strategy reduces I/O interference and improves
HDFS’s performance, especially the writing
performance. When writing a file block to HDFS, all
the replicas of the block have to be written. If these
replicas exist in the same physical disk, the I/O
interference is intensive. Our new strategy can
eliminate this situation by allocating all file blocks
locate across all physical disks on average. By doing
so, the writing load is balanced and the total
throughput increases.

• Our strategy retains data’s redundancy as in physical
environment. As replicas of each block are allocated in
different physical machines, the data are still
recoverable in case that one physical machine is down.

The rest of the paper is organized as follows. Section II gives
a background introduction of I/O interference and I/O
virtualization. Section III describes virtualized Hadoop. In
Section IV we build a model and evaluation metrics to analyze
the Hadoop’s problem in virtual environment. Then we
propose our new allocation strategy. Section V describes the
implementation of our strategy in Hadoop. We evaluate our
implementation both in a sampling simulation and real
experiments in Section VI. Section VII discusses detailed
results of our evaluation and some related issues.

II. BACK GROUND

A. I/O interference
There are two traditional kinds of I/O interference, disk

interference and network interference.
Disk interference occurs when multiple processes try to

access the same disk simultaneously. Disk has limits on both
accesses and the amount of data they can transfer per second.
People often consider disk performance under two situations,
sequence read/write (SR/SW) and random read/write
(RR/RW). Traditional magnetic disk uses the
mechanical heads for reading and writing. Its throughput of
random read/write is much smaller than that of sequence
read/write. The reason is that the heads have to frequently
change positions in RR/RW while in SR/SW the heads are
more stable. Recent years Flash based solid state device has
emerged as a good candidate for the next generation of storage.

It provides low access latency, low energy consumption,
shock resistance and lightweight. Detailed analysis on it
performance shows that Flash are excellent sequential stores
while problematic for random access. The Flash’s throughput
of RW is even worse than that of mechanical disk [4]. So the
gap between the sequence access and random access are still
big. Parallel accessing with a high degree makes multiple
sequential accessing patterns degenerate to random accessing
patterns, which causes performance degeneration [4].

Network interference mainly considers the latency and
throughput. All network resources are limited, including link
bandwidth, switch and router processing time, etc.
Implementations of connection-based protocol, such as TCP,
have congestion avoidance algorithms to watch for packet
losses and latency to adjust the transfer speed of connections.
Research on parallel TCP [5] shows, as the number of
simultaneous TCP connections increases, the total throughput
will increase until the network becomes congested. The packet
loss rate begins to increase depending on the number of
connections and the congestion degree. Then the congestion
mechanism reduces the congestion window, which decrease the
transfer rate. As the number of parallel TCP connections
increases, the effects of higher packet loss rates decreases the
impact of multiple sockets, the TCP throughput will stop
increasing or begin to decrease. Another interesting work on
parallel TCP [6] indicates 90% utilization would already be
achieved by as few as 3 TCP sockets.

B. I/O virtualization
There are two basic kinds of virtualization: full

virtualization (e.g.,KVM [7] and paravirtualization (e.g.,
Xen[8]). Full virtualization is a complete simulation of the
underlying hardware while paravirtualization provides a
software interface to virtual machines and the interface is
similar but not identical to that of the underlying hardware. In
either case, virtualization is enabled by a layer called virtual
machine monitor (VMM) or hypervisor. Virtual machines
share CPUs and memory well, but not I/O.

When sending or receiving a network packet, the VMM
domain and the virtual machine domain must be scheduled
correctly before a network packet can be sent or
received[10].The total overhead is much higher than that of
CPU or memory virtualization. For example, Linux is only
able to achieve only about 30% of the network throughput
with Xen that it can achieve running natively [11]. Moreover,
network I/O virtualization increases overheads in the
utilization of device such as CPU. So it can cause loss of
bandwidth utilization from a virtual machine because of
CPU’s limitation [11].

Compared with network I/O, virtualization for disk is
simpler. In network virtualization, the system must be
prepared to receive and respond to request for its virtual
machines at any time. Disk access occurs only when requested
by the virtual machine. But the overhead of disk virtualization
is not negligible. Xen shows about 15% degradation of disk
performance and KVM shows about 7% degradation of write
performance and almost no degradation of read performance
[12].

276

As one physical machine can host more and more virtual
machines, the isolation must be considered. Different
virtualization shows different characteristics. For example,
Xen shows good isolation for disk I/O and poor isolation for
network I/O, while KVM shows good isolation for network
I/O and poor isolation for disk I/O [12].

III. HADOOP IN VIRTUAL CLOUD

A. Virtualized Hadoop
The basic MapReduce’s architecture [1] consists of one

master and many workers. Hadoop is one of the most
commonly-applied implementation of MapReduce. Figure 1
shows virtualized Hadoop architecture. NameNode is the
master of a collection of DataNodes and it is responsible for
their management and file maintenance. JobTracker is the
master of a collection of TaskTraker and in charge of their
management and task maintenance. A DataNode process and a
TaskTracker process run on the same machine to utilize data
locality. The TaskTracker should copy the data that it’s
needed from other machines through network if the data is not
local. NameNode and JobTracker can be separated in different
machines to achieve better performance. When the machine
number is huge, this separation is necessary.

In virtual environment, virtual machines in a physical
machine share the hardware resources such as CPU, memory,
disk and network. Due to the isolation of virtualization, virtual
machines appear to each other like physical machines.
NameNode and JobTracker can also run in virtual machines
though less efficient. In Hadoop’s architecture view, there is no
big difference between virtual environment and physical
environment. But in Hadoop’s performance view, differences
emerge. Virtualization introduces extra overhead and
interference, especially on I/O. And lack of virtual machines’
locality brings other problems. When allocating three replicas
of a file block, the three replicas are allocate in difference
machines in Hadoop’s view. But if these machines are
virtualized, actually two or three replicas of a file block may in
the same physical machine. So it causes imbalanced workload.
And if one physical machine fails, the data may not be
recoverable.

Figure 1 Virtualized Hadoop architecture

B. Hadoop’s Allocation Strategy
HDFS is used as Hadoop’s distributed file system, which

commonly uses replica mechanism. Here we set 3 as the
replica numbers, which is common in Hadoop cluster. A
cluster may be consisted of many racks of computers. HDFS is

rack-aware, which can support tree hierarchical network
topology. “In most cases, network bandwidth between
machines in the same rack is greater than network bandwidth
between machines in different racks”[13]. If there is no rack,
all the computers are in one rack called default-rack.

In Hadoop’s allocation strategy, when a block is created, the
first replica is placed on the local node that contains the source
data. If the node containing the source data is not the
DataNode of HDFS, HDFS will randomly choose a DataNode
for the first replica. Next, if there are many racks, the second
replica is placed on a DataNode in remote-rack compared to
the first DataNode. Then HDFS chooses another different
DataNode for the third replica in the same rack with the
second DataNode. It ensures that no more than one replica is
placed at one DataNode and no more than two replicas are
placed in the same rack when the number of replicas is less
than twice of its rack number. But if there is only one rack, the
second and the third replicas are placed randomly in different
DataNodes.

IV. MODELING AND NEW STRATEGY

A. Modeling
We build a generation model of data and task pattern to

analyze different allocation strategies. To simply the problem
for analyzing, we make the following assumptions.

• Each physical machine hosts the same number of
virtual machines, which using the same I/O devices.
Here we use a physical disk to present the I/O devices,
as it determines the data’s locality and number of
network devices is no more than that of disks in
common case.

• All the virtual machines are in local area network and
the network topology is flat which can be easily
achieved by running Hadoop by default without
providing any rack information. We do not consider a
physical machine as a rack because network bandwidth
between virtual machines in the same physical
machine is not greater than network bandwidth
between virtual machines in different physical
machines, which is measured in real cluster.

• There is no limitation for workload to be randomly
assigned to each virtual machine. There is no
mechanism such as taking into account the average
load or limitation of task slots when running
MapReduce.

• The total file size has linear relationship with total
block number. One simple example is that all file
blocks have the same size.

Now suppose we have a cluster containing p physical
machines, each has a hard disk and the replica number is 3.
Then n file blocks are put into the cluster from another
computer out of the cluster or generated randomly in the
cluster. So the model is about the data pattern generation and
task pattern generation with a certain data pattern. A block has

277

the same probability to be placed on physical machines that
host the same number of virtual machine.

Take p=8 (p0~p7), n=8(0~7) for example, a data pattern
may occurs as Figure 2 using Hadoop’s strategy. It can be
seen that replicas of file 2 are all on p5 and the distribution is
not well balanced.

Next we consider the task pattern when reading these files.
If all the file blocks are accessed by MapTasks, MapReduce
tries to choose local node to run the MapTask. In the example
above, physical machines’ MapTask task pattern may be
assignedNum[8] =[1,2,1,1,0,2,0,1], means p0 has 1 task ,p1
has 2 tasks ,etc. The ideal pattern is [1,1,1,1,1,1,1,1], but is
less possible to happen.

6

6

3

7 2

1 6 7 5 2

1 4 4 3 2 5

0 1 3 0 5 0 4 7

p0 p1 p2 p3 p4 p5 p6 p7

Figure 2 An example data pattern may be generated using
Hadoop’s strategy, blockNum[] shows number of file blocks in
each disk. fileNum[] shows number of different file blocks in each
disk, it is smaller than blockNum[] if two replicas of a file block
are in the same physical disk .

B. Evaluation Metrics
How to evaluate the data pattern and task pattern? Here we

consider three metrics as follows for data pattern:
1

0

1 []
p

i
actualReplicaNum fileNum i

n

−

=

= � (a)

max([0], , [p-1])maxBlockNum blockNum blockNum= ⋅⋅ ⋅ (b)
1

2

0

1 *([])
p

i

replicaNum nblockNumSigma blockNum i
p p

−

=

= −� (c)

max([0], , [p-1])maxAssignedNum assignedNum assignedNum= ⋅⋅⋅ (d)
1

2

0

1 ([])
p

i

nassignedNumSigma assignedNum i
p p

−

=

= −� (e)

actualReplicaNum (a) is the average number of unique file
blocks in a physical machine. The ideal value is 3 when the
replica number is 3. If the file number is much larger than the
disk number, the difference between actualReplicaNum and
the ideal value becomes significant. Take n=1000, p=8 for
example, the actualReplicaNum is small, but considering n*
actualReplicaNum, there are many file blocks that having two
or three replicas in the same disk. It is very possible that each
disk contains all replicas of the same file block. If one disk is
down, the data on the disk will not be recoverable.

maxBlockNum (b) shows the maximum number of blocks
in a physical machine, which is the bottleneck in parallel
writing. The disk with maxBlockNum generally takes the
longest time to finish the write operations in a distributed file
system.

blockNumSigma (c) shows the variation of the pattern. The
idea value is 0, which means that all blocks are evenly
allocated. This parameter reveals the load balance of the
distribution when writing files.

In the example of Figure 2, actualReplicaNum=2.5
maxBlockNum=7 blockNumSigma=1.343

We also can use the similar method as above to evaluate the
task pattern. Since only one replica of each file block are
needed when reading file, the taskNumAvg is useless. There
are two metrics as follows.

maxAssignedNum (d) shows the max number of task that a
physical machine is assigned. Similar with maxBlockNum,
maxAssignedNum will be the longest tail in parallel executing.

assignedNumSigma (e) reveals the load balance of the task
pattern. Because of the locality, the load includes not only
reading but also processing the data which may generate great
load.

For[1,2,1,1,0,2,0,1],maxAssignedNum=2,assignedNumSigm
a=0.707. The data pattern and task pattern above occurs with
a probability. Considering the full permutation, there are 3np
permutations for the data pattern and 3n permutations for the
task pattern. If n is small, we can enumerate the full
permutation. If n is big, we can only use sampling simulation
to evaluate the strategy. For the data pattern in Figure 2, the
enumeration average results for task pattern are as follows:
maxAssignedNumAvg=2.6452,assignedNumSigmaAvg=0.922
0.

C. NEW STRATEGY
We design a new allocation strategy to allocate replicas of a

file block to different physical machines and keeps balance of
the block number of each physical machine. There are many
ways to achieve the new strategy. Here we present two
intuitive ways. One is round-robin allocation and the other is
“serpentine allocation” used in this paper.

Take p=8 and n=8 for example, Figure 3 shows the round–
robin allocation which is easy to understand. Figure 4 shows
the serpentine allocation. The third replica of file 2 is supposed
to be placed in p7 but p7 has file 2, also p6 has file 2. So at last
the third block of file 2 is placed on p5.

The evaluation metrics for data pattern in Figure 3 and
Figure 4 are the same and the best (actualReplicaNum=3,
maxBlockNum=3, blockNumSigma=0)

The enumeration average results for task patterns of Figure
3 are as follows:

maxAssignedNum=2.2724,assignedNumSigma=0.7943
The enumeration average results for task patterns of Figure

4 are as follows:
maxAssignedNum=2.2705 assignedNumSigma=0.79323
So the difference between round-robin and serpentine

allocation is little. It should be pointed out that the
enumeration average result of task patterns of the new strategy

278

is not always better than those of Hadoop’s strategy. See an
extreme example showed in Figure 5, the average evaluation
results are as follows:

maxAssignedNum=1 assignedNumSigma=0.
But the actualReplicaNum of this pattern is only 1. The reason
is that all replicas of each file block are located in the same
disk. So there is only one pattern that the task with this block
can choose. So we must consider all the metrics of data pattern
and task pattern and also the probability that a pattern occurs.
Our model reveals basic characteristics of the allocation
strategy though it has some limitations that are discussed in
Section VII.

5 5 6 6 6 7 7 7

2 3 3 3 4 4 4 5

0 0 0 1 1 1 2 2

p0 p1 p2 p3 p4 p5 p6 p7

Figure 3 An example of round-robin allocation

6 5 5 6 6 7 7 7

5 4 4 4 3 2 3 3

0 0 0 1 1 1 2 2

p0 p1 p2 p3 p4 p5 p6 p7

Figure 4 An example of serpentine allocation

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

p0 p1 p2 p3 p4 p5 p6 p7

Figure 5 A extreme data pattern that may occur with Hadoop’s

strategy

V. IMPLEMENTATION
In the real implementation for Hadoop, we choose

serpentine allocation because it can slightly reduce the cost of
scheduling in our implementation.

The location of virtual machine and the number of file
blocks are needed for the new strategy. Since Hadoop
supported tree hierarchical network topology, we add the
location information of virtual node into the network topology.
For example, if there is only one rack among the physical
machines, the network location of a virtual node may be

changed from /default-rack to /Phy0, means that the virtual
node is on Physical machine 0; if there are some racks among
the physical machines, the network location of a virtual node
may be changed from /rack1 to /rack1/Phy0, means that it is
on the Physical machine 0 of rack1.The main idea is to add a
layer beneath the network location of the physical node. This
mechanism makes it easy to keep compatibility with the native
Hadoop. We can make special label starting with “Phy” to
identify locations of virtual machines. Our strategy works only
when locations of virtual machines are provided in
configuration file.

To maintain the block information for each virtual node, we
add a sorted list by the number of blocks in NameNode of
Hadoop. For each allocation for a replica, the list will be
updated and the update is exclusive in case of concurrent
access. When the block is removed or corrupted, the list will
also be updated. In the update, we first update the block
number of the virtual node, and then update its position in the
sorted list. When adding blocks, round-robin allocation moves
its position to where next position’s block number is bigger,
while serpentine allocation moves its position to where next
position’s block number is not smaller.

Data structure like heap may be better for maintaining the
information of block number. The block information scales
just with the number of virtual machines, and the operation is
done in NameNode’s memory. The real problem may be the
synchronization cost when the system is busy with
manipulating large number of files concurrently. But usually
the I/O hit the peak first and NameNode’s scheduling time is
much smaller than that of I/O transfer time. In our experiment,
choosing of three replicas is finished in several milliseconds.
The linear data structure is good enough though not the best.

There are some special files like job configure file that have
many replicas when the job is running. So we randomly place
replicas exceeding the configured replica number among all
virtual nodes.

Now we can make sure that three replicas of a file block are
allocated in three different physical machine and the blocks is
almost well balanced across all virtual machines. If the
number of virtual machine in each physical machine is the
same, the blocks are also balanced across all physical
machines. It is useful if some physical machine is less
powerful and can host less number of virtual machines. We
can adjust the load of a physical machine with the number of
its virtual machine. Also our new strategy makes it possible to
shut down nodes by the unit of a physical machine instead of a
virtual machine, which achieves faster resource shrinking.

VI. EVALUATION

A. Simulation Evaluation
When n or p is large, it is impossible to calculate the five

metrics with the full permutation. So we use sampling
simulation to compare our new strategy (serpentine allocation)
with Hadoop’s original strategy. Each sampling unit consists
of allocating a data pattern of 3n file blocks and generating a
task pattern of reading 3n file blocks with such generated data
pattern using corresponding strategy.

279

We have set the parameter n=256, and p =
[8,16,32,64,128,256], the sampling number is set to 1,000,000.

8 16 32 64 128 256
0

20

40

60

80

100

120

p

va
lu

e

maxBlockNum of Original

maxBlockNum of New

Figure 6 maxBlockNum’s comparison of Hadoop’s original
strategy and our new strategy using sampling

8 16 32 64 128 256
0

0.5

1

1.5

2

2.5

3

3.5

4

p

va
lu

e

fileNumAvg of Original

fileNumAvg of New

Figure 7 actualReplicaNum’s comparison of Hadoop’s original

strategy and our new strategy using sampling

8 16 32 64 128 256
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

p

va
lu

e

blockNumSigma of Original

blockNumSigma of New

0

Figure 8 blockNumSigma’s Comparison of Hadoop’s original

strategy and our new strategy using sampling

8 16 32 64 128 256
0

5

10

15

20

25

30

35

40

p

va
lu

e

maxAssignedNum of Original

maxAssignedNum of New

Figure 9 maxAssignedNum’s comparison of Hadoop’s original

strategy and our new strategy using sampling

8 16 32 64 128 256
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

p

va
lu

e

assignedNumSigma of Original

assignedNumSigma of New

Figure 10 assignedNumSigma’s comparison of Hadoop’s original

strategy and our new strategy using sampling

TABLE I. COMPARISON OF HADOOP’S ORIGINAL STRATEGY AND OUR NEW
STRATEGY WHEN (N=224 P=8 SAMPLING NUMBER=1,000,000)

 Original New
Average of actualReplicaNum 2.0657 3

Average of maxBlockNum 90.5798 84
Average of blockNumSigma 4.1722 0

Average of maxAssignedNum 33.7660 34.5946
Average of assignedNumSigma 3.6256 4.14939

The average metrics’ results of data pattern are showed in
Figure 6(maxBlockNum), Figure 7(actualReplicaNum) and
Figure 8(blockNumSigma). In data pattern evaluation, three
metrics of our new strategy are all better than those of
Hadoop’s original one. And when p is getting smaller,
actualReplicaNum drops dramatically. The average metrics’
results of task pattern are showed in Figure
9(maxAssignedNum) and Figure 10 (assignedNumSigma),
when p>=16 maxAssignedNum and assignedNumSigma of our
strategy are better.

280

Here we also present the result of (n=224 p=8) in TABLE I,
because it fits our experiments configuration in a real system.
Notice that when (n=256 or 224, p=8), maxAssignedNum and
assignedNumSigma of Hadoop’s strategies are better than
those of ours. The reason is similar to Figure 5 as we
mentioned above, imbalanced data pattern may achieve
balanced task pattern. When n=8, actualReplicaNum is close
to 2, it means that each task with a file block has only about
two physical locations to choose.

Now we get a clear understanding about the data allocation
in virtual environment. However, how these metrics affect the
real system’s performance is more complicated than the
numerical values we see here. For example, task pattern of our
strategy is still better when n=8 in real experiment, we explain
this in Section VII.

B. Experiment Evaluation
1) Testbed Description
We build our cluster with 8 HP x2600 Workstations. Each

physical machine hosts 7 virtual machines, so we have 56
virtual machines in the virtual cloud. TABLE II shows the
hardware and software details in our experiment. What’s
more, Tashi [18] is used to manage the virtual machines.
There is another machine with 4 CPU and 8G memory used as
Hadoop’s NameNode, JobTracker and ganglia server, which
makes it simple to analyze the workload with ganglia. The
network bandwidth between these machines is 1Gbps.

TABLE II. EXPERIMENT SETUP

SW

Hadoop Hadoop 0.20.0

Guest OS Ubuntu 8.04 1CPU
1GB Memory 1Gbps Ethernet

Host OS Ubuntu 8.04
Virtualization KVM 1Gbps Ethernet

HW

CPU 2x4 2.83GHz
Memory 16G

Disk 250G 7200rmp
Network 1Gbps Ethernet

2) Applications
The MapReduce applications we use for evaluation are

RandomWriter TextSort and WordCount.
RandomWriter randomly chooses words from a small

vocabulary (100 words), forms them into lines in MapTask.
The map outputs are directly committed to distributed file
system, so there is no ReduceTask in RandomWriter. TextSort
sorts each line in existing text files by vocabulary order. The
map and reduce functions in TextSort are both identity
functions and the sort of the texts is realized by the inherent
merge sort of MapReduce framework. WordCount counts the
appearance frequency of words in the text. The input text of
TextSort and WordCount are the RandomWriter’s outputs.

3) Profiling with Ganglia
Ganglia[19] is a scalable distributed monitoring system for

high-performance computing systems. We have deployed
Ganglia to the physical cluster, so we can get information
about the usage of CPU, memory, disk I/O and network in
real-time. We modified Ganglia to display all metrics in ten

minutes. The collection interval is set to 3s. Before each
experiment, the previous data of Ganglia was cleared. So the
metric pictures became more readable.

4) Experiment Design
We have done two groups of experiments use Hadoop’s

default configuration. The difference of the two groups is
whether speculative execution of map and reduce turns on.

Original New Original with SC New with SC
0

20

40

60

80

100

120

140

160
Results of RandomWriter

R
un

nn
in

g
T

im
e

(s
)

11.1%

33.5%

Figure 11 Experiment results of RandomWriter’s execution time

Original New Original with SC New with SC
0

50

100

150

200

250

300

350
Results of TextSort

R
un

nn
in

g
T

im
e

(s
)

10.6%
8.3%

Figure 12 Experiment results of TextSort’s execution time

Original New Original with SC New with SC
0

20

40

60

80

100

120

140

160

180

200
Results of WordCount

R
un

nn
in

g
T

im
e

(s
)

10.6%

0.2%

Figure 13 Experiment results of WordCount’s execution time

281

Speculative execution (SC) is like backup task which is
used to reduce the long tail of parallel execution. First we turn
off the speculative execution to get a better understanding how
our new strategy affects the system. Then we turn on
speculative execution (Hadoop’s default) which is often used
in real systems to see whether our new strategy is better.

The input data is 224*61.5MB, which is generated using
RandomWriter. TextSort’s reducer number is set to 56 and
WordCount’s reducer number is set to 1. 5 experiments have
been done for each application in the group with speculative
execution off and 3 experiments have been done for that with
speculative execution on. Then we take the average execution
time and standard deviation of each case. The results are
showed in Figure 11, Figure 12 and Figure 13. We can see that
our strategy is generally better in all three applications. With
SC off, we reduce about 10% execution time of three
applications with the new strategy. With SC turn on,
RandomWriter reduces 33.5% execution time, TextSort
reduces 8.3% execution time, but WordCount’s improvement
is little.

VII. DISCUSSION

A. Model’s limitation
Some of our model’s assumptions break down in real

system, but still shows the general characteristics.
Physical machines may host different number of virtual

machines, but our strategy can still reduce block collisions and
balance the workload according to the number of virtual
machine in a physical machine.

When choosing DataNode for a replica, HDFS calculates an
average load based on number of active connections. If the
chosen DataNode’s load is bigger than two times of average
load, another selection will be performed. This can control the
maximum load in a DataNode in real-time, but has limit effect
on balancing the data pattern. Figure 14 shows a data pattern
generated by RandomWriter with Hadoop’s strategy. The data
pattern is not well balanced and is close to our sampling
simulation results.

Hadoop assigns MapTasks when the TaskTracker sends
heartbeat to the JobTracker. We can take the procedure as a
random selection. However, Each TaskTracker in Hadoop has
task slots which can hold 2 tasks by default at the same time.
New task will be accepted only when the TaskTracker has a
free slot. This mechanism prevents too many tasks to be
assigned to a node. And Hadoop schedules some MapTasks to
run on DataNodes not containing the source file. However,
this schedule balances MapTask load at the expense of extra
network transfer .On Averagy about 85% of MapTasks are
local and the rest 15% are non-local. So our model for task
pattern is not fully consistent with the real system. But it tells
us that the node that has more file blocks, are likely been
assigned more workload.

B. Evaluation Analysis
1) Our strategy is better in sampling and experiment

evaluation. But how it works in real system and where is the

improvement comes from? So the experiment design and result
need to be discussed.

The benefit of our new strategy with small workload size is
not very impressive. We choose 224*61.5MB as the workload
size, which stresses the whole cluster and leads to reasonable
execution time. We also tried larger workload size, the
improvement was a bit more obvious, but the experiment took
much more time.

2) Effect of speculative execution
We can run exactly the number of MapTask and

ReduceTask with SC off. It will eliminate unnecessary
interference. With SC turning on, SC will run extra map and
reduce tasks when it detects some slow tasks.

p0 p1 p2 p3 p4 p5 p6 p7
0

10

20

30

40

50

60

70

80

90

100
A data pattern generated by RandomWriter

nu
m

be
r

of
 b

lo
ck

s

ideal value(84)

Figure 14 A data pattern generated by RandomWriter with
Hadoop’s strategy. Its execution time is 132s. The evaluation
results of this data pattern are maxBlockNum=91,
blockNumSigma=5.099. And the sampling average results are:
maxBlockNumAvg=90.58, blockNumSigmaAvg=4.172

As showed in Figure 11, Figure 12 and Figure 13, SC
generally reduces the variation not the execution time. But it
increases the execution time of RandomWriter of original
strategy and TextSort of both strategies. The reason is that
RandomWriter and TextSort are I/O intensive while
WordCount is CPU intensive. The CPU usage of the physical
machine are up to 85% (7 of 8 CPUs are used for Virtual
Machines) when WordCount running. SC runs extra map and
reduce tasks consuming the resources. Considering I/O
interference when the system is stressed, SC’s extra load takes
more negative effects than the benefit of long-tail cutting. The
interesting one is the RandomWriter of new Strategy, its
execution time significant decreases with SC on. The possible
reason is that our new strategy reduces the I/O interference so
SC’s benefit overcomes its extra workload.

3) Ganglia’s result
RandomWriter is I/O intensive, Figure 15 shows network

throughput of the cluster when RandomWriter runs. The
pillar’s width shows the execution time. The pillar’ area shows
the total amount of network transfer. The throughput of our
new strategy can reach more than 700MB/s while that of
original one is about 600MB/s. So the total network
throughput of the system has been improved, which benefit
the total execution time. The total amount of network transfer

282

increases with SC on. However, the throughput does not
increase. It indicates that the system is stressed and the load is
not well balance with original strategy. It’s clear that our new
strategy balances the write load and reduces the I/O
interference to get higher I/O throughput.

TextSort is also I/O intensive. MapReduce framework has
three stages: Map, Shuffle and Reduce. Figure 16 shows
network throughput of the cluster when TextSort runs. It has
two main pillars. The first pillar shows the network transfer of
Map and Shuffle. In Map stage, most of the files are read from
local, so shuffle contributes most in the first pillar. The second
pillar shows the network transfer of reduce stage. In reduce
stage, the result are committed to HDFS. The total amount of
second pillar is much larger than that of the first pillar because
threes replicas of a block have to be written to HDFS in
reduce stage. Though the first replica is preferred to written in
the node which generates the result block, the amount of
network transferring of reduce stage is at least twice large that
of the Shuffle. In first pillar, our new strategy’s improvement
is not very obvious. Maybe the reason is that the I/O amount
of shuffle doesn’t stress the system yet. But for the second
pillar, the improvement is significant, which pushes the
throughput from 400MB/s to more than 500MB/s.

WordCount is CPU intensive. Here we don’t present the
result of CPU utilization of four cases because it’s quite
difficult to draw useful information by comparing those
pictures at a glance. We still focus at the network throughput,
which shows in Figure 17. Compared with RandomWriter and
TextSort, both the throughput and amount of total network
transfer is much smaller (not more than 70MB/s). It’s
“surprising” that the original strategy has larger throughput
and total amount. However, it doesn’t indicate our new
strategy is worse but the opposite. WordCount’ mid-output
and reduce output is quite small, so the MapTasks contribute
most of network transfer. As we mentioned above, about 85%
of MapTasks are local. This percent varies according to the
data distribution and real-time execution. Smaller amount of
network transfer indicates that our strategy achieves more
local MapTasks. It proves that our new strategy has good
effect on task assignment. The reason of the little
improvement of execution time with SC may be that the CPU
is not fully stressed and the benefit of SC overcomes that of
balanced task assignment.

C. Multi-user sharing
MapReduce system is usually shared by multi-users, our

strategy can easily be applied in such sharing environment.
If the resources are strict partitioned, we can use our

strategy in the partitioned resources. As a user occupies a
certain amount of physical nodes, MapReduce can allocate its
data in its nodes using our strategy. If the resources are relax
partitioned, a little modification can be made to achieve better
user response time and system utilization. MapReduce
allocates the first two replicas of a user’s file blocks to his
physical nodes using our strategy. The third replicas are
placed in other physical nodes randomly or on average. The
modification’s benefit is that a user has the possibility (about
2/3) to run his job in his nodes while he can still use other

nodes if they are idle. It also provides optimizing chances for
detailed task scheduler. In both cases, our strategy makes sure
that no file block collision exists and the data and task
distribution is reasonably balanced.

Figure 15 Network throughput of experiment cluster with
Ganglia in RandomWriter.

Figure 16 Network throughput of experiment cluster with

Ganglia in TestSort.

Figure 17 Network throughput of experiment cluster with

Ganglia in WordCount.

VIII. RELATED WORK
MapReduce was first described architecturally and

evaluated in [1]. [1] describes the locality of data in brief,
giving the general principle that the MapReduce master
attempts to schedule a MapTask on a machine that contains a
replica of the corresponding input data to reduce network cost.
This principle is also used in Hadoop.

Much work has been done to improve the performance of
MapReduce system. Most of it falls to two broad categories.
The first focuses on applications characteristics. One way is to

283

analyze and compare resource consumption of the application
at hand, and then use this information to set optimized
configurations for different applications [20]. Another is to
monitoring the usage of system’s resources to adjust resource
allocations to fit the requirements of different job stages
[21][22]. Virtual machine monitor can be modified to
dynamic allocate resources to VMs according to resource
usage of applications [23].

The second category focuses on MapReduce System itself.
A new scheduling algorithm for speculative execution is
designed for Hadoop in heterogeneous environments [24].
Cloudlet[25] is design is to overcome the overhead of VM by
adding a local reducer for virtual machines in each physical
machine. Differing from existing work, our work focuses on
the data locality’s influence on MapReduce in virtual
environment. Our work is also related with job scheduler
considering data locality [26], though it doesn’t care about
virtual environment.

IX. CONCLUSION
We address fundamental problems of data allocation and its

impact on MapReduce system in a virtual environment. We
build a theory model and define evaluation metrics to evaluate
the data pattern and task pattern. Based on it, we propose a
new strategy for file block allocation in Hadoop. It uses the
locality of virtual machines to achieve new data distribution,
which balances the workload and reduces I/O interference.
Our simulation and real experiments results prove the good
characteristics of our new allocation strategy both in theory
and in practice.

As core number of CPU increases fast, our work indicates
that it’s beneficial to be aware of the virtual machines’
locations when serving I/O intensive system like MapReduce
in virtual cloud.

ACKNOWLEDGMENT
Wenlong Li, Sirui Yang in Intel lab gives useful advice

about paper’s organization. Zhiming Shen has done great work
on tashi, which helps us to build the experiment environment
quickly and easily. This Work is supported by National Basic
Research (973) Program of China (2011CB302505
2007CB310900), Natural Science Foundation of China
(61073165, 61040048, 60803121, 60911130371, 90812001,
60963005), National High-Tech R&D (863) Program of China
(2010AA012302, 2010AA012401, 2009AA01A132).

REFERENCES
[1] J. Dean and S. Ghemawat. MapReduce: Simplified dataprocessing on

large clusters. In Symposium on OperatingSystem Design and
Implementation, 2004.

[2] http://wiki.apache.org/hadoop/PoweredBy
[3] http://aws.amazon.com/elasticmapreduce/
[4] T. Härder, K.S. 0002, Y. Ou, and S. Bächle, “Towards Flash Disk Use in

Databases - Keeping Performance While Saving Energy?,” BTW, J.C.
Freytag, T. Ruf, W. Lehner, and G. Vossen, eds., GI, 2009, pp. 167-186.

[5] L. Bouganim, B. Jónsson, and P. Bonnet, “uFLIP: Understanding flash
IO patterns,” Proceedings of the 4th Biennial Conference on Innovative
Data Systems Research (CIDR’09), 2009.

[6] T. Hacker, B. Athey, and B. Noble, “The end-to-end performance effects
of parallel TCP sockets on a lossy wide-area network,” Proceedings of
the 16th IEEE-CS/ACM International Parallel and Distributed
Processing Symposium (IPDPS), 2002, pp. 434–443.

[7] E. Altman, D. Barman, B. Tuffin, and M. Vojnovic, “Parallel tcp
sockets: Simple model, throughput and validation,” Proceedings of the
IEEE INFOCOM, 2006.

[8] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the
Linux virtual machine monitor,” Linux Symposium, 2007.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” Proceedings of the nineteenth ACM symposium on
Operating systems principles, Bolton Landing, NY, USA: ACM, 2003,
pp. 164-177.

[10] S. Rixner, “Network Virtualization: Breaking the Performance Barrier,”
Queue, vol. 6, 2008, pp. 36-ff.

[11] J. Lakshmi and S.K. Nandy, “I/O Device Virtualization in the Multi-core
era, a QoS Perspective,” Grid and Pervasive Computing Conference,
Workshops at the, Los Alamitos, CA, USA: IEEE Computer Society,
2009, pp. 128-135.

[12] P. Willmann, J. Shafer, D. Carr, A. Menon, S. Rixner, A.L. Cox, and W.
Zwaenepoel, “Concurrent direct network access for virtual machine
monitors,” Proceedings of the 2007 IEEE 13th International Symposium
on High Performance Computer Architecture, 2007, pp. 306–317.

[13] T. Deshane, Z. Shepherd, J.N. Matthews, M. Ben-Yehuda, A. Shah, and
B. Rao, “Quantitative comparison of Xen and KVM,” Xen Summit,
Boston, MA, USA, 2008, pp. 1–2.

[14] http://hadoop.apache.org/common/docs/current/hdfs_design.html
[15] J.N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos, G.

Hamilton, M. McCabe, and J. Owens, “Quantifying the performance
isolation properties of virtualization systems,” Proceedings of the 2007
workshop on Experimental computer science, San Diego, California:
ACM, 2007, p. 6.

[16] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G.
Lee, D. Patterson, A. Rabkin, I. Stoica, M. Zaharia. Above the Clouds: A
Berkeley View of Cloudcomputing. Technical Report No. UCB/EECS-
2009-28, University of California at Berkley, USA, Feb. 10, 2009.

[17] J. Shafer, “I/O virtualization bottlenecks in cloud computing today,” in
Proceedings of the 2nd conference on I/O virtualization, p. 5, 2010.

[18] http://incubator.apache.org/tashi/
[19] http://ganglia.sourceforge.net/
[20] K.Kambatla, A.Pathak, H.Pucha, Towards Optimizing Hadoop

Provisioning in the Cloud. HotCloud, San Diego, CA, Jun 2009

[21] L. T. Phan, Z. Zhang, B. T. Loo, and I. Lee, ‘‘Real-time MapReduce
Scheduling,’’ Technical Reports (CIS), p. 942, 2010.

[22] Sandholm, T. & Lai, K. (2009), MapReduce optimization using
regulated dynamic prioritization., in John R. Douceur; Albert G.
Greenberg; Thomas Bonald & Jason Nieh, ed.,
'SIGMETRICS/Performance' , ACM, , pp. 299-310

[23] J. Fang, S. Yang, W. Zhou, and H. Song, “Evaluating I/O Scheduler in
Virtual Machines for Mapreduce Application,” in 2010 Ninth
International Conference on Grid and Cloud Computing, pp. 64–69,
2010.

[24] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica.
Improving MapReduce performance in heterogeneous environments. In
OSDI’08: 8th USENIX Symposium on Operating Systems Design and
Implementation , 2008.

[25] Ibrahim, Shadi; Jin, Hai; Cheng, Bin; Cao, Haijun; Wu, Song & Qi,
Li: CLOUDLET: towards mapreduce implementation on virtual
machines. ACM (2009) , S. 65-66 .

[26] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I.
Stoica. Job scheduling for multi-user mapreduce clusters. Technical
Report UCB/EECS-2009-55, UC Berkeley.

284

