
ActCap: Accelerating MapReduce on Heterogeneous
Clusters with Capability-Aware Data Placement

Bo Wang∗, Jinlei Jiang∗†‡, Guangwen Yang∗
∗Department of Computer Science and Technology, Tsinghua National Laboratory for Information Science and Technology

Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science

Tsinghua University, Beijing 100084, China
†Technology Innovation Center at Yinzhou

Yangtze Delta Region Institute of Tsinghua University, Ningbo 315000, China
‡Corresponding author: jjlei@tsinghua.edu.cn

bo-wang11@mails.tsinghua.edu.cn, ygw@tsinghua.edu.cn

Abstract—As a widely used programming model and im-
plementation for processing large data sets, MapReduce per-
forms poorly on heterogeneous clusters, which, unfortunately,
are common in current computing environments. To deal with
the problem, this paper: 1) analyzes the causes of performance
degradation and identifies the key one as the large volume of
inter-node data transfer resulted from even data distribution
among nodes of different computing capabilities, and 2) proposes
ActCap, a solution that uses a Markov chain based model to
do node-capability-aware data placement for the continuously
incoming data. ActCap has been incorporated into Hadoop and
evaluated on a 24-node heterogeneous cluster by 13 benchmarks.
The experimental results show that ActCap can reduce the
percentage of inter-node data transfer from 32.9% to 7.7% and
gain an average speedup of 49.8% when compared with Hadoop,
and achieve an average speedup of 9.8% when compared with
Tarazu, the latest related work.

Keywords—MapReduce, Heterogeneous Clusters, Data Place-
ment, Load Balancing, Big Data

I. INTRODUCTION

The human society has stepped into the big data era where
applications that process terabytes (TB) or petabytes (PB) of
data are common in science, industry and commerce. Usually,
such applications are termed data-intensive applications in
order to be distinguished from compute-intensive ones that
are compute bound or in other words, spend most of their
execution time on computation. The era of big data presents
many challenges and requires new ways to store, manage,
access and process the colossal amount of available data
(both structured and unstructured). Since parallel processing
is scalable and can gain performance improvement by several
orders of magnitude, it is generally accepted as a must for
data-intensive applications in the big data era.

MapReduce [9] is a programming model and an associated
implementation for parallel large data sets processing on clus-
ters with hundreds or thousands of nodes. Due to its scalability
and ease of programming, MapReduce has been adopted by
many companies, including Google, Yahoo, Microsoft, and
Facebook. Nowadays we can see MapReduce applications in
a wide range of areas such as distributed sort, web link-
graph reversal, finding term-vector per host, web log analysis,
inverted index construction, document clustering, collaborative

filtering, machine learning, and statistical machine translation,
to name but just a few.

In spite of the above facts, MapReduce is far from perfect.
It is a lasting effort to improve the performance of MapReduce
applications. From the perspective of data supply, the research
work can be roughly divided into two categories. The first
category tries to improve the performance by more efficient
data placement. Typical examples are RCFile [17], Xie [31],
MRA++ [7], and CoHadoop [12]. The philosophy behind
this category is that loading data is the most time-consuming
step of MapReduce especially for data-intensive applications
and faster data loading usually means improved performance.
The second category tries to improve the performance by
modifying the task scheduling strategy. Typical examples are
Delay Scheduling [33] and Tarazu [2]. The key idea behind
this category is to reduce the volume of data transferred
over the network—since bandwidth is a scarce resource in a
MapReduce environment, reduced data transfer usually means
improved performance.

While MapReduce applications perform well on homoge-
neous clusters as a result of the above work, they perform
poorly on heterogeneous clusters. As pointed out in [2], the
performance of Hadoop—an open-source implementation of
MapReduce—could decrease 20∼75% on a heterogeneous
cluster. Unfortunately, computing environments with hetero-
geneous clusters are common nowadays due to the tradeoff
between hardware cost, power efficiency and so on. Moreover,
this trend will continue [27]. Indeed, even if heterogeneity
is not introduced at the design time, the daily maintenance
or hardware upgrade would result in additional heterogeneity.
In addition, due to resource sharing, heterogeneity could also
arise from background load variation and other coexisting run-
ning jobs [35]. Therefore, it is of significance to do MapReduce
optimization on heterogeneous clusters.

In this paper, we argue that the fundamental cause of the
poor performance of MapReduce applications on heteroge-
neous clusters is the even distribution of data among nodes
with different processing capabilities, which is the default
policy of the distributed file systems (e.g., GFS and HDFS)
that back MapReduce applications up. For those nodes of
higher capability, they can finish local data processing soon
and become idle. After that, the scheduler of the MapReduce

2015 IEEE Conference on Computer Communications (INFOCOM)

978-1-4799-8381-0/15/$31.00 ©2015 IEEE 1328

framework will assign them new tasks whose data are located
on other nodes. For these tasks, data transfer over the network,
which is time-consuming as aforementioned, is inevitable. That
is the problem.

To deal with the problem, we suggest distributing data
among nodes according to their computing capabilities and
propose ActCap, a solution for predicting the computing
capabilities of nodes and doing data placement accordingly.
The contributions of our paper are as follows.

• We identify the key cause of the poor performance of
MapReduce applications on heterogeneous clusters as
large volume of inter-node data transfer resulted from
even data distribution among nodes of different com-
puting capabilities and suggest the idea of distributing
data according to the capabilities of computing nodes.

• We propose a Markov chain based approach to mea-
sure the computing capability of a node, which covers
not only the effect of hardware configuration but also
the background workloads.

• We devise ActCap, a solution that can determine the
nodes computing capabilities of a cluster on the fly
via a Markov chain based model and then do data
placement accordingly.

• Extensive experiments have been conducted to evalu-
ate ActCap. The experimental results show that Act-
Cap can reduce inter-node data transfer from 32.9%
to 7.7% on the given heterogeneous cluster.

The rest of this paper is organized as follows. Section
II gives a brief introduction to MapReduce and analyzes
the reasons why MapReduce applications perform poorly on
heterogeneous clusters. Section III describes the key ideas
and algorithms of ActCap. Section IV shows the experimental
results. Section V reviews the related work. Section VI dis-
cusses our work and the paper ends in Section VII with some
conclusions.

II. PROBLEM ANALYSIS

In this section, we first give a brief introduction to MapRe-
duce and then set out to find out the reasons why MapReduce
applications perform poorly on heterogeneous clusters.

A. Overview of MapReduce

The execution of a MapReduce program consists of three
phases, that is, the Map phase, the Shuffle phase, and the
Reduce phase. In the Map phase, the MapReduce framework
reads the input data from the source specified by the program,
partitions it into splits, and assigns them to Mappers, the
designated nodes of a MapReduce cluster where the Map tasks
will execute. After that, the user-providing Map function is
executed simultaneously on multiple Mappers and generates a
set of intermediate results. In the Shuffle phase, all the Map-
generated results are combined and sorted by key first, and
then transferred as needed to Reducers, the designated nodes
where the Reduce tasks will execute. In the Reduce phase,
multiple Reduce tasks are executed in parallel on the Reducers
to produce a final result.

In a MapReduce environment, the underlying distributed
file system shares the same cluster with the MapReduce
framework. By default, the distributed file system places data
evenly across all nodes of that cluster regardless of their
capabilities. In recognition of network as a scarce resource, the
MapReduce framework bears in mind the idea that ”moving
data is more expensive than moving computation” and exploits
data locality (i.e., co-locating computation with data) as much
as possible to guarantee the performance of applications. For
example, in the Map phase, the framework (or more precisely,
the Master program) will try to run map tasks on the same
machine, or at least the same rack where input data locates.

There are many MapReduce frameworks available and in
this paper, we base our prototype on YARN [32], the latest
version of Apache Hadoop, which is probably the most popular
open-source implementation of the MapReduce model.

B. Reasons for Poor Performance on Heterogeneous Cluster

There are many reasons that can lead to performance degra-
dation of MapReduce applications. Data skew and skewed
popularity are the inherent attributes of applications and have
received extensive studies [21] [20] [15]. Since data skew
usually appears in the Reduce phase and can be relatively well
handled by YARN, we pay no attention to it in this paper.
Similarly, we pay no attention to skewed content popularity
since the solution to it can be easily duplicated. Anyway, these
studies provide a good basis for us to improve MapReduce
performance further even in a heterogenous environment.

Zaharia et al. [35] first examined the reasons why MapRe-
duce suffers from performance degradation in heterogeneous
environments. They owed the reasons to the breaking down
of (implicit) assumptions made during MapReduce design and
proposed LATE [35], a new scheduling algorithm for better
identifying and managing straggler tasks. Ahmad et al. [2]
thought the poor performance is due to two key factors, namely
the heavy network communication caused by the built-in load
balancing mechanism during the Map phase and the amplified
load imbalance of Reduce computation. They proposed Tarazu
[2] to solve the problem from the perspective of scheduling.
While both LATE and Tarazu can improve MapReduce per-
formance on heterogeneous clusters, the issues they address
are fundamentally different. In this paper we try to address
the same issue as that of Tarazu, but from a data placement
perspective and with a focus on the Map phase.

To better illustrate the problem and make a good starting
point for ActCap, we conducted a comparison experiment with
the results shown in Table I, where the data is evenly dis-
tributed among all the nodes and the terms Big and Small are
used to indicate the computing capability of the corresponding
nodes. We can see from the table that almost all the blocks are
processed locally when the job runs on homogeneous clusters,
regardless of the computing capability of the nodes. However,
things are different for job execution on the heterogeneous
cluster, where about one third of the data stored on small
nodes is sent to other nodes for processing and about half of
the data processed by big nodes is fetched from other nodes.
The reasons are as follows.

For those nodes of higher capability (i.e., the big nodes in
Table I), they can finish local data processing soon and become

2015 IEEE Conference on Computer Communications (INFOCOM)

1329

TABLE I. DATA TRANSFER CHARACTERISTICS OF THE WORD-COUNT

PROGRAM ON HETEROGENEOUS AND HOMOGENEOUS CLUSTERS USING

THE SETTINGS IN SECTION IV-A

Heterogeneous Homogeneous

Small Big Small-Only Big-Only

Local 63.3% 50.5% 99.6% 97.3%

In 3.2% 46.7% 0.4% 2.7%

Out 33.5% 2.9% 0.4% 2.7%

idle. After that, in order to make full use of cluster resources,
the built-in load balancer of the MapReduce framework will
assign them new tasks with input data locating on other nodes.
The same thing will happen for small nodes when they are idle.
For these tasks, time-consuming data transfer is inevitable. Ob-
viously, this problem seldom exists for homogeneous clusters
whose nodes are of the same computing capability, for they
can finish the given tasks almost at the same time.

From the above analysis, we can conclude that one key
cause, if not the root one, of the poor performance of MapRe-
duce applications on heterogeneous clusters is the large volume
of inter-node data transfer resulted from the default policy of
the underlying distributed file system—distributing data evenly
among nodes regardless of their computing capabilities. To
solve the problem, we suggest data be distributed among nodes
according to their computing capabilities. As an endeavor in
this direction, we propose ActCap, a solution that dynamically
determines the node computing capability of a cluster and then
does data placement accordingly.

III. ACTCAP DESIGN

ActCap is designed with an assumption that data comes
into the system continuously. Such an assumption is made be-
cause applications in the real world usually undergo a process
to load data from some external sources to the MapReduce
cluster. To achieve the purpose of ActCap, three key problems
involved are how to define the computing capability of a node,
how to determine the computing capability of a node on the
fly, and how to distribute the incoming data to nodes according
to their capabilities.

A. Computing Capability Definition

Determining the computing capability of a node is a
prerequisite step to do capability-aware data placement. At the
core of this step is how to define the computing capability.
Roughly speaking, there are three main kinds of methods. The
first and simplest kind is to use hardware specifications (e.g.,
merely CPU frequency, number of CPUs/CPU cores, memory
capacity or a more complex combination of them) in a static
way. Methods of this kind suffer from the problem that the
same configuration might mean different processing capability
to different workloads. The second kind, with horse power
factor [19] as a typical example, dynamically calculates the
capability of a node using not only information about hardware
specifications but also the load on that node. Methods of this
kind have the same problem with that of the first kind. The
third and last kind, as shown in [31], uses an indirect sampling-
based way—the node capability is got via running a small
portion of the data set first on that node. Due to the presence
of data skew, the result got might not be accurate enough. In
addition, it is costly to do so.

In our opinion, both hardware specifications and work-
loads can impact the ”real” computing capability of a node.
Moreover, the interference of jobs running concurrently on the
same node makes things even more complex. So, a better way
to measure the computing capability of a node is to use the
number of data blocks processed by that node in a given period.
Taking all these factors into account, we utilize a two-state
Markov chain model, as illustrated in Fig. 1, to describe the
behavior of a node. A Markov chain model is selected because
it is a widely used and well proven method in performance
prediction [23] and workloads in data centers usually show
some similarity in a certain period [24]. In the model, the
state ON indicates the computing capability of the node is
insufficient, or in other words, too many blocks in the node
are sent out and processed remotely (by other nodes). The state
OFF indicates the node is of sufficient computing capability
and almost all the blocks in the node are processed locally.

B. Computing Capability Determination

With the concept of computing capability defined, we can
now calculate the computing capability of each node in a given
cluster. Since the workloads in a cluster usually vary with time
as aforementioned, computing capability determination is done
periodically in order to get the most accurate results. In each
period, we execute an algorithm to find out the number of
incapable (or overloaded) nodes and to rank the capabilities
of all nodes. With the number of incapable nodes found and
the capabilities of all nodes ranked, we can then exclude those
incapable nodes when doing data placement in that period.

To fulfill the task of node computing capability determi-
nation, we build the following Markov chain model on the
basis of the computing capability definition in Section III-A
to depict the dynamic behavior of a given cluster.

For a MapReduce cluster of m nodes, its behavior can be
modeled by a Markov chain of m + 1 states as illustrated in
Fig. 2. We say the cluster is in state i if there are i overloaded
nodes in it. Let α(t) be the number of incapable nodes at the
time t (t=0,1,2,. . .), β(t) be the number of nodes that switch
state from ON to OFF, and γ(t) be the number of nodes that
switch state from OFF to ON, then the Markov chain given in
Fig. 2 can be described by the following stochastic process:

α(t+ 1) = α(t) − β(t) + γ(t) (1)

Since each node in the cluster changes independently, β(t) and
γ(t) are mutually independent and both follow the binomial
distribution below:

{
β(t) ∼ B(α(t), poff)
γ(t) ∼ B(m− α(t), pon)

(2)

⇔ {
Pr{β(t) = x} =

(x
α(t)

)
pxoff (1 − poff)

α(t)−x

Pr{γ(t) = x} =
(x
m−α(t)

)
pxon(1 − pon)

m−α(t)−x (3)

Let pij be the transition probability from state i to state
j, P = [pij] be the matrix denoting one-step transition
probabilities of α(t), Π = (π0, π1, . . . , πm) be the probability

2015 IEEE Conference on Computer Communications (INFOCOM)

1330

1-pon

1-poff

poff

pon

Fig. 1. A two-state Markov chain. The state ON
indicates too many blocks are processed remotely
and the state OFF indicates almost all the blocks
are locally processed.

pm0

pm1

pm2

pmm

p2m

p22
p21

p20
p10

p1m

p12p11

p0m

p02

p01

p00

Fig. 2. The Markov chain used to describe the
load of a cluster with m nodes, where the number
associated with the state indicates how many nodes
are in ON state.

P’m0

P’m1

P’m2

P’mm

P’2m

P’22
P’21

P’20
P’10

P’1m

P’12P’11

P’0m

P’02

P’01

P’00 E0 E1 E2 EMax

Fig. 3. The Markov chain used to describe the
computing capability of one node, where Ei asso-
ciated with the state denotes the rank of computing
capability.

distribution of α(t) when t reaches infinity, and
(
i
j

)
= 0 for

i < 0 or i > j, then we have:

pij = Pr{α(t+ 1) = j|α(t) = i} (4)

=

i∑
r=0

Pr{β(t) = r, γ(t) = j − i+ r|α(t) = i} (5)

=

i∑
r=0

Pr{β(t) = r|α(t) = i}Pr{γ(t) = j − i+ r|α(t) = i} (6)

=

i∑
r=0

(r
i

)
p
r
off (1 − poff)

i−r(j − i+ r

m− i

)
p
j−i+r
on (1 − pon)

m−j−r
(7)

Π = lim
t→∞Π0P

t
(8)

α(t) =
m∑
i=0

πii (9)

where Π0 = (1, 0, 0, . . . , 0) is the initial value of Π, πi is the
limiting probability of α(t) in state i, and P t is the matrix of
t-step transition probabilities.

Let κ(t), λ(t), μ(t) denote the number of blocks processed
locally, sent out (to other nodes for processing) and read in
(from other nodes and processed locally) of each node. We

say the node is in ON state if the inequality
λ(t)− μ(t)

κ(t)
> ξ

is satisfied. Otherwise we say the node is in OFF state. To
calculate poff and pon, we divide each phase into n intervals,
in each of which we calculate whether the node is in ON or
OFF state, count the number of changing from ON to OFF
state and changing from OFF to ON state, and then get the
probabilities respectively. Actually, poff and pon should be d-
ifferent for different nodes. However, doing so would make the
model/algorithm unnecessarily complex without much benefit.
In addition, an absolute (accurate) value makes no sense in
our case. Therefore, we use the same value for all nodes.

To rank the computing capabilities of all nodes in the given
cluster, we introduce τ(t) to denote the total number of data
blocks consumed by all nodes of that cluster. Then we have
the following equations:

τ(t) =
m∑
i=1

(κi(t) + λi(t)) (10)

φi(t) = a
κi(t)

τi(t)
+ b

μi(t)

κi(t)
− c

λi(t)

κi(t)
(11)

εi(t) = map to rank(φi(t)) (12)

where the weights a, b, c in Equation 11 are initially set to
a=10, b=15, c=17 and then periodically optimized by Gradi-
ent Descent method [26] in our experiments. The computing

capability value derived from Equation 11 is continuous, so we
define Max + 1 ranks εi(t) ∈ E = {E0, E1, E2, . . . , EMax}
and use Equation 12 to map the continuous value to discrete
ranks. Since {ε(t), t = 0, 1, 2, . . .} is a stochastic process from
which we can also construct a Markov chain with Max + 1
states (as illustrated in Fig. 3). The stochastic process is in state
Ei when the computing capability φ(t) is mapped to rank Ei
at any phase t.

Let p′ij be the transition probability from state i to state
j, in other words, if ε(t) = Ei the probability that ε(t +
1) = Ej is p′ij . We divide each phase into n intervals, in
each of which we calculate computing capability of the node,
count the number of changing from Ei to Ej , and then get the
probability p′ij using statistics method. P ′ = [p′ij] denotes the
matrix of one-step transition probabilities. Let n-tuple Π′

0 =
(0, . . . , 0, 1, 0, . . . , 0) denote the initial state. Π′

0 indicates that
at phase t = 0 Pr{ε(0) = EMax/2} = 100%, then at phase t
the state variable is:

Π
′
= lim
t→∞Π

′
0P

′t
(13)

ψ =

Max∑
i=0

πi (14)

ε(t) = Eψ (15)

After we get the number of incapable nodes α(t) and the
capabilities of all nodes, we sort the nodes in descending order
of their capabilities and add the last α(t) nodes to Listincap
as the incapable ones.

C. Capability-Aware Data Placement

The complete node-capability-aware data placement solu-
tion is described in Algorithm 1, where data replication of
HDFS is also taken into account. The algorithm has three
inputs, where E = [εi]k is the node computing capabilities
predicted with the way stated in Section III-B, Listincap is the
list of incapable nodes, and id is the data block identifier. The
output of this algorithm is Nodes List, a list of nodes where
the replicas of the incoming data block should be seated. For
each replica, we do the node selection process once according
to the latest computing capabilities of all nodes.

We use consistent hashing in the ChooseFromCandidates
function to choose a right data node to store the given
data block. As illustrated in Fig. 4, we place all candidate
nodes (e.g., DN1,. . ., DNk) on a ring according to their
computing capabilities. The region between a data node and

2015 IEEE Conference on Computer Communications (INFOCOM)

1331

Algorithm 1 Capability-Aware Data Placement.

Input: E = [εi]k , Listincap, id;
Output: Nodes List;
1: if IsDataNode(writer) && writer /∈ Listincap then � choose node for the 1st

replica
2: add writer → Nodes List;
3: else
4: Nodescand={node|node∈GetRack(writer)}−Listincap;
5: CHOOSEFROMCANDIDATES(Nodescand,id,chosen node);
6: add chosen node → Nodes List;
7: end if
8: Nodescand={node|node/∈GetRack(1st replica)}−Listincap; � choose node

for the 2nd replica
9: CHOOSEFROMCANDIDATES(Nodescand,id,chosen node);

10: add chosen node → Nodes List;
11: Nodescand={node|node/∈GetRack(2nd replica)}−Listincap; � choose node

for the 3rd replica
12: CHOOSEFROMCANDIDATES(Nodescand,id,chosen node);
13: add chosen node → Nodes List;
14: if replica number > 3 then � choose node(s) for the rest replica(s)
15: Nodescand={node|node/∈Listincap};
16: CHOOSEFROMCANDIDATES(Nodescand,id,chosen node);
17: add chosen node → Nodes List;
18: end if
19: return Nodes List

Fig. 4. The candidate nodes form an ActCap ring, where the region between
a data node and its predecessor reflects the computing capability of the
corresponding node.

its predecessor on the ring represents the computing capability
of that data node. For each data block, a position on the ring
is calculated firstly by hashing its id. The data node with its
region containing that position is then selected to store the
corresponding data block.

IV. EVALUATION

We implement ActCap by modifying HDFS (version 2.2.0)
[16]. In each data node we run a daemon to collect information
about data blocks as described in III. In the name node, we
calculate capabilities of data nodes with the collected data and
run the capability-aware data placement algorithm. Capability
calculation is done every 5 minutes. We use YARN (version
2.2.0) to execute the benchmarks on a heterogenous cluster.

A. Platform and Settings

The cluster used for experiments has 24 nodes, 4 big ones
and 20 small ones, all running CentOS 6.4. The big node has
a Quad-Core Xeon X3220 CPU (6MB L2 Cache, 2.50GHz),
8GB DDR3 RAM, and a 1TB SATA hard disk. The small
node has a Xeon E5504 CPU (1MB L2 Cache, 2.00GHz, and
deliberately configured to use only one core during the exper-
iments), 4GB DDR3 RAM, and a 500GB SATA hard disk.

TABLE II. BENCHMARK CHARACTERISTICS

Benchmark
Input

size(GB)
Data

source
#Maps &
#Reduces

Shuffle
size(GB)

Execution
time on

Hadoop(s)

grep 32 wikipedia 514 & 40 5.1∗ 10−6 565

histogram-
ratings

30
netflix
data

480 & 40 6.3∗ 10−5 819

histogram-
movies

30
netflix
data

480 & 40 6.8∗ 10−5 621

classification 30
netflix
data

480 & 40 7.9∗ 10−3 4060

word-count 32 wikipedia 514 & 40 0.24 1152

inverted-index 32 wikipedia 514 & 40 0.27 1664

term-vector 32 wikipedia 514 & 40 0.29 1850

sequence-count 32 wikipedia 480 & 40 0.55 1597

k-means 30
netflix
data

480 & 4 26.48 5158

self-join 30 puma 480 & 40 26.89 1169

adjacency-list 30 puma 480 & 40 29.38 1727

ranked-
inverted-count

40 puma 640 & 40 42.45 1801

tera-sort 20 puma 320 & 40 21.31 1134

Each node is equipped with a Gigabit Ethernet NIC (Network
Interface Controller) that connects to a Gigabit Ethernet switch,
thus resulting in a per-node bisection bandwidth of 1Gbps or
so. Since this value is much higher than that available in typical
large-scale clusters with thousands of nodes, which is about
50Mbps as pointed out in [30], we divide the cluster into six
sub-clusters and configure the network environment to make
the bandwidth between sub-clusters be of 50 Mbps as did in
Tarazu [2]. For these six sub-clusters, two of them have two
big nodes each and the other four have five small nodes each.
We do nothing to the network within a sub-cluster.

B. Benchmarks

We use 13 benchmarks released in the PUMA suite [3],
covering all cases of shuffle-light, shuffle-medium, and shuffle-
heavy. Table II summarizes the characteristics of these bench-
marks in terms of input data size, data source, the number of
Map/Reduce tasks, shuffle size, and execution time on Hadoop.

Shuffle-light cases have very little data transfer in shuffle
phase, including grep, histogram-ratings, histogram-movies,
and classification. Shuffle-heavy cases, the shuffle data size
of which is very large (as shown in Table II, almost the
same volume as the input data size), include k-means, self-
join, adjacency-list, ranked-inverted-count, and tera-sort. The
shuffle data size of shuffle-medium cases is between shuffle-
light and shuffle-heavy, including word-count, inverted-index,
term-vector, and sequence-count.

C. Experimental Results

In our experiments, we deploy two clients to submit jobs to
the cluster using the FairScheduler scheme, which fairly shares
the cluster resources. Each client randomly submits jobs to the
cluster. Multiple jobs run together on the cluster in order to
better emulate the real-world situation (i.e., jobs are running
with different background workloads) and to avoid the case
that jobs are executed in special orders. Due to the interference
of jobs concurrently running on the cluster, the execution time
and the percentage of transferred blocks vary with time. For
example, Fig. 5 shows the experimental result of a Sequence-
Count job. We use the widely-used four quartile method [18]
to get the average value, with the result shown in Fig. 6.

2015 IEEE Conference on Computer Communications (INFOCOM)

1332

 0

 300

 600

 900

 1200

 1500

2013-10-10 00:00:00

2013-10-13 08:00:00

2013-10-16 16:00:00

2013-10-20 00:00:00

2013-10-23 08:00:00

2013-10-26 16:00:00

2013-10-30 00:00:00

2013-11-02 08:00:00

2013-11-05 16:00:00

2013-11-09 00:00:00

0

20

40

60

80

100

Jo
b
 E

x
ec

u
ti

o
n
 T

im
e(

s)

T
ra

n
sf

er
re

d
 D

at
a

B
lo

ck
s

P
er

ce
n
ta

g
e(

%
)

Execution Time
Transferred Blocks

Fig. 5. Job execution time and the percentage of
transferred blocks of a Sequence-Count job.

 0

 1000

 2000

 3000

 4000

 5000

grep
histogram

-ratings

histogram
-m

ovies

classification

w
ordcount

invert-index

term
-vector

sequence-count

k-m
eans

self-join

adjacency-list

ranked-inverted-index

tera-sort

Jo
b
 E

x
ec

u
ti

o
n
 T

im
e(

s)

Fig. 6. Average job execution time got with the
widely-used four quartile method.

0

10

20

30

40

grep
histogram

-ratings

histogram
-m

ovies

classification

w
ordcount

invert-index

term
-vector

sequence-count

k-m
eans

self-join

adjacency-list

ranked-inverted-index

tera-sort

m
ean

P
er

ce
n
ta

g
e

o
f

T
ra

n
sf

er
re

d
 B

lo
ck

s(
%

)

Hadoop
ActCap

Fig. 7. Percentage of transferred blocks compari-
son between Hadoop and ActCap.

TABLE III. PARAMETER SETTINGS FOR YARN AND HDFS

Parameter Description Value

yarn.nodemanager.resource.
memory-mb

The memory could be allocated
for YARN

4608 for Big,
1536 for Small

yarn.scheduler.minimum-
allocation-mb

The minimum memory allocated
for every task

512

yarn.scheduler.maximum-
allocation-mb

The maximum memory allocated
for every task

1024

yarn.app.mapreduce.am.
resource.mb

The memory allocated for the
MR AppMaster

512

yarn.scheduler.minimum-
allocation-vcores

The minimum vcore number for
every task

1

yarn.scheduler.maximum-
allocation-vcores

The maximum vcore number for
every task

1

yarn.resourcemanager.
scheduler.class

Task Scheduler schema FairScheduler

dfs.blocksize Block size of HDFS 67108864

dfs.replica HDFS replica number 3

1) Comparison with Hadoop: For a fair comparison with
Hadoop, we tune Hadoop for hardware heterogeneity by cus-
tomizing the number of processors and memory capacity per
node for each node type so as to account for the differences
in core numbers and memory capacity. Since YARN can
adapt the number of simultaneously running tasks according
to the available CPU and memory resources as well as the
configuration parameters and the big node in our cluster has
four CPU cores whereas the small node has one CPU core,
we configure the parameters to ensure a big node could run
four tasks simultaneously, and a small node could run one
task. In detail, we configure 1024*4+512=4608MB memory
for Hadoop on big node, and 1024*1+512=1536MB memory
for Hadoop on small node, where 1024MB memory is used for
each task and 512MB memory for the Application Master. The
key parameters are shown in Table III. For those parameters
not listed in the table, we use the default values.

As shown in Fig. 7, the percentage of transferred blocks
of Hadoop ranges from 27.18% to 35.96%, whereas that of
ActCap ranges from 6.04% to 9.63%. In a word, ActCap could
significantly reduce data transfer for all the jobs. The reduction
of transferred data implies less network consumption of and
competition (with Shuffle) for bisection network bandwidth and
thus decreases the job execution time significantly.

Fig. 8 shows the normalized execution time of the Map
and the Reduce phases. Since the execution time fluctuates
with time, we show the result of one specially selected case,
whose job execution time is closest to the average value.
For the shuffle-light jobs grep, histogram-movies, histogram-
ratings, and classification, although they have small shuffle

volume and short execution time, the inter-node block transfer
time occupies a very large part of the whole time. Thus, the
reduction of transferred data significantly reduces the Map
time as well as the whole execution time — the average
execution time of the four jobs on ActCap is 65.6% of that
on Hadoop. For the shuffle-medium jobs word-count, inverted-
index, term-vector, and sequence-count, reducing data transfer
also shortens job execution time. Their average execution time
on ActCap is about 67.3% of that on Hadoop. For the shuffle-
heavy jobs k-means, self-join, adjacency-list, ranked-inverted-
index, and tera-sort, the network consumption by data transfer
has a great influence on the Shuffle phase and thus, reducing
data transfer can shorten job execution time drastically —
the average time on ActCap is 68.6% of that on Hadoop.
Among the shuffle-heavy jobs, tera-sort and self-join get the
best optimization, and k-means gets the least performance
improvement because its Reduce phase takes as long as 62.9%
of the whole job execution time.

2) Comparison with Tarazu: We implement Tarazu and use
the same parameters as recommended. To ensure fairness, we
only run the 11 benchmarks mentioned in Tarazu, with the
results shown in Fig. 8. Except for k-means, job execution time
of ActCap is smaller than that of Tarazu for ten of the eleven
benchmarks, with speedups of ActCap over Tarazu ranging
from 3.8% to 33.7%, and an average speedup of 9.8%. For
the job k-means, the normalized execution time of ActCap is
0.873, while that of Tarazu is 0.546. The reasons for this are:
(i) the Reduce phase of k-means takes a large part (62.9% of
the whole job time), the optimization is not as good as that of
Reduce-light jobs; (ii) the k-means benchmark sets the number
of Reduce tasks to 4 in order to cluster the input data into 4
groups. When running on Hadoop and ActCap, Reduce tasks
are scheduled using a first-come-first-served scheme and have
a high chance to run on small nodes because there are more
small nodes. As a result, little performance gain is got. On the
contrary, Tarazu can reduce the Reduce time ratio from 62.9%
to 27.8% by deliberately scheduling all Reduce tasks to the
big nodes. Therefore, it can achieve better results in the term
of total job execution time.

3) Comparison with Other Data Placement Approaches:
Xie et al.[31] proposed a similar data placement approach but
using an indirect sampling-based way to measure node capa-
bility. Such an approach may work well on exclusively used
clusters. However, for clusters shared by many applications, the
node capability varies constantly due to background workloads
and other concurrent jobs. In other words, Xie’s approach is

2015 IEEE Conference on Computer Communications (INFOCOM)

1333

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

grep
histogram

-ratings

histogram
-m

ovies

classification

w
ord-count

inverted-index

term
-vector

sequence-count

k-m
eans

self-join

adjacency-list

ranked-inverted-index

tera-sort

N
o
rm

al
iz

ed
 J

o
b
 E

x
ec

u
ti

o
n
 T

im
e

Hadoop Map
Hadoop Reduce

Tarazu Map
Tarazu Reduce

ActCap Map
ActCap Reduce

Fig. 8. Job execution time comparison between
Hadoop, Tarazu and ActCap.

 0

 2

 4

 6

 8

 10

2013-10-10 00:00:00

2013-10-13 08:00:00

2013-10-16 16:00:00

2013-10-20 00:00:00

2013-10-23 08:00:00

2013-10-26 16:00:00

2013-10-30 00:00:00

2013-11-02 08:00:00

2013-11-05 16:00:00

2013-11-09 00:00:00

C
om

pu
tin

g
C

ap
ab

ili
ty

 R
at

io

Xie
ActCap
Actual

Fig. 9. Comparison of the predicting accuracy via
ActCap and Xie’s approach.

20

40

60

80

grep
histogram

-ratings

histogram
-m

ovies

classification

w
ordcount

invert-index

term
-vector

sequence-count

k-m
eans

self-join

adjacency-list

ranked-inverted-index

tera-sort

m
ean

N
o
rm

al
iz

ed
 S

p
ee

d
u
p
(%

)

1Gbps
600Mbps
200Mbps
100Mbps
50Mbps

Fig. 10. The impact of network bandwidth on the
usability of ActCap.

not accurate enough to reflect the change of node processing
capability and therefore, it can only get limited performance
gain. To illustrate this, we choose two nodes, one big and one
small, and get their computing capabilities during the whole
experiment process using ActCap and Xie’s approach. Fig. 9
shows the result. It is easy to see that the computing capability
ratio predicted by ActCap is much closer to the actual value
than that predicted by Xie’s approach.

We also compare ActCap with other approaches such as
CPU Ratio and One-ActCap. CPU Ratio sets the skew factor
on the basis of CPU power. For example, since a big node
has four CPU cores running at 2.5GHz and a small node has
one CPU core running at 2.0GHz, the skew factor is set to
4 ∗ 2.5/2.0 = 5. One-ActCap predicts computing capabilities
using ActCap only once. Fig. 11 shows the comparison results
in terms of the data transfer percentage and the speedup.
Obviously, ActCap gets the smallest data transfer percentage
and the highest speedup.

4) The impact of network bandwidth: We show the impact
of network bandwidth on ActCap by specifying various bisec-
tion bandwidths between sub-clusters. As shown in Fig. 10,
ActCap works well under all network settings and can get an
average speedup of 15%, 15.8%, 22.5%, 36.4%, and 49.8%
respectively.

5) The adaptability of ActCap to heterogeneity: We ex-
amine this by four cluster configurations, that is, 4 Big+20
Small, 2 Big+20 Small, 4 Big+10 Small, and 4 Big+2 Small.
As shown in Fig. 12, ActCap works well on all these four
clusters in the term of job speedup over standard Hadoop.

V. RELATED WORK

MapReduce Implementations. Due to its high impact,
MapReduce, after the original implementation by Google, has
been implemented by the Apache open-source community [16]
and ported to computing environments other than traditional
clusters, for example, graphics processors [13] and mobile
systems [11]. Besides, other MapReduce-like systems [8] and
high-level facilities [29] were proposed. Also, MapReduce has
expanded its application from batch processing to iterative
computation [28] [34] and stream processing [25].

MapReduce Optimization via Data Placement. Ap-
proaches in this category try to boost the speed of data loading.
HadoopDB [1] and Hadoop++ [10], aiming at database query,
achieve the purpose by co-grouping related input data. RCFile
[17] provides a new data placement structure which ensures

that data in the same row of conventional database systems is
located in the same node (and thus reduces data transfer over
the network). CoHadoop [12] deals with the problem from
a different way—it provides a mechanism for applications to
specify where to store the data. Xie et al. [31] suggested the
same idea as ours, that is, distributing data to nodes according
to their capabilities. However, they exploited a static method to
determine the computing capability of each node. As shown
in Section IV-C3, the performance gain of their approach is
lower than that of ours, for their approach does not taken into
account the change of node processing capability in a shared
environment. Besides the above work, in-memory structures
[28][34] and data caching method [6] were also suggested to
eliminate the bottleneck encountered during loading data from
hard disks. Due to space limitation and in consideration of the
scope of this paper, we will stop here without detailing them.

MapReduce Optimization via Task Scheduling. Typical
examples are Delay Scheduling [33], LATE [35], and Tarazu
[2], where LATE and Tarazu were specially designed for het-
erogeneous environments. Delay Scheduling tries to maintain
data locality by later decision—when a job to be scheduled
next according to fairness cannot launch a local task, the
scheduler will wait for a while and let other jobs launch
tasks instead. In this way, nearly optimal data locality can
be achieved and as a result, task throughput is increased.
LATE found that the poor performance of MapReduce on
heterogeneous clusters arose from the breaking down of un-
derlying assumptions with the built-in scheduling mechanisms.
To deal with the problem, it proposed better techniques for
identifying, prioritizing, and scheduling backup copies of s-
traggler tasks. Tarazu [2] identified the key reason for the poor
performance of MapReduce on heterogeneous clusters as the
competition for bisection network bandwidth between remote
tasks and shuffle phase. To deal with the problem, it introduced
such components as Communication-Aware Load Balancing
of Map Computation, Communication-Aware Scheduling of
Map computation, and Predictive Load Balancing of Reduce
Computation to respectively prevent shuffle-critical tasks steal-
ing, interleave remote tasks with local ones, and skew the
intermediate key distribution among the Reduce tasks. While
we believe these approaches can function, we also think the
performance improvement would be limited, for they do not
touch the essentials of the problem as we do.

VI. DISCUSSION

This section will clarify some concerns about ActCap.

2015 IEEE Conference on Computer Communications (INFOCOM)

1334

0

10

20

30

grep
histogram

-ratings

histogram
-m

ovies

classification

w
ordcount

invert-index

term
-vector

sequence-count

k-m
eans

self-join

adjacency-list

ranked-inverted-index

tera-sort

m
ean

P
er

ce
n
ta

g
e

o
f

T
ra

n
sf

er
re

d
 B

lo
ck

s(
%

)
One-ActCap
CPU Ratio
Xie
ActCap

(a) Block transfer percentage

 0

 0.5

 1

 1.5

 2

grep
histogram

-ratings

histogram
-m

ovies

classification

w
ordcount

invert-index

term
-vector

sequence-count

k-m
eans

self-join

adjacency-list

ranked-inverted-index

tera-sort

m
ean

S
p
ee

d
u
p
 o

v
er

 H
ad

o
o
p

Hadoop
One-ActCap

CPU Ratio
Xie

ActCap

(b) Speedup over Hadoop

Fig. 11. Block transfer percentage and speedup comparison between various data placement solutions.

20

40

60

80

grep
histogram

-ratings

histogram
-m

ovies

classification

w
ordcount

inverted-index

term
-vector

sequence-count

k-m
eans

self-join

adjacency-list

ranked-inverted-index

tera-sort

m
ean

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

(%
)

4 Big+20 Small
2 Big+20 Small
4 Big+10 Small
4 Big+2 Small

Fig. 12. The adaptability of ActCap to heterogeneity.

A. Usability of ActCap

1) Heterogeneity is pervasive: Heterogeneity comes from
many reasons. In a cluster, even for machines of the same
hardware specifications, they may show different processing
capabilities due to, for example, resources sharing and back-
ground workloads. As did in [2], we in this paper focus on
heterogeneity with general-purpose CPU architectures, which
is considered to be the key cause of performance degradation
despite better straggler management policies like LATE [35].
Indeed, architectural heterogeneity has drawn much attention
since the early 1990s [22] [4]. Today, it becomes even more
popular for many reasons. However, heterogeneity comes with
cost [14]. This lays a good basis for work like ActCap, Tarazu
[2], and LATE [35].

2) Network over-subscription will last: Network over-
subscription is an implicit assumption during MapReduce de-
sign. It is due to network over-subscription that the MapReduce
frameworks adopt the philosophy of ”moving computation to
data” and highlight data locality as much as possible. Though
data center networks change greatly, it is not an easy task
to make the bisection bandwidth scale up with the number
of nodes [30] and no evidence shows that network over-
subscription will disappear. In our opinion, network bandwidth
will remain a scarce global resource at least in the near
future because data processing at the scale of TB or PB gets
more common along with the exponential growth of data and
resources today are shared by more users due to the emergence
of new technology (e.g., virtualization) and application mode
(e.g., cloud computing). The lasting network over-subscription
makes our work about ActCap remain significant.

3) ActCap can also function to in-memory and iterative
MapReduce: With the price of memory getting cheaper and
cheaper comes into being the concept of in-memory comput-
ing. As a result, many information technology companies (e.g.,
GridGain1, ScaleOut Software2, and Hazelcast3) have released
in-memory MapReduce solutions. Also new ways (e.g., Spark
[34] and M3R [28]) are suggested to do iterative in-memory
MapReduce computation. Due to the advantages of memory
over hard disk as well as other optimizations, these systems can
achieve better, sometimes surprising, performance. Although
ActCap is designed for disk-based MapReduce computing,
here we argue that it can also benefit these systems in a
heterogeneous environment because data in these systems is

1http://www.gridgain.com/products/in-memory-hadoop-accelerator/
2http://www.scaleoutsoftware.com/
3http://www.hazelcast.com/

also evenly distributed among many nodes (but in memory
instead of on disk) at the beginning and inter-node data transfer
is inevitable when both big and small nodes present.

B. Limitation of ActCap

ActCap in its current version can still be improved. First of
all, we pay no attention to skewed data popularity. However,
as we have pointed out in Section II, the solution in [5] can
be easily incorporated into ActCap. Indeed, we have provided
support for larger number of replicas in Algorithm 1. Next, as
pointed out in Section II, ActCap does not consider data skew
in the Reduce phase as YARN can handle it relatively well. In
spite of the fact, we can get extra performance gain if we could
incorporate better skew-mitigating method into YARN. Finally,
ActCap assumes data comes into the system continuously.
As time passes, the effective computing capabilities of nodes
might change accordingly, making the once optimal placement
become sub-optimal. For this issue we argue it is true only for
some of existing data and we can eliminate the effect by re-
distributing that portion of data at a much longer time scale.

In the end, ActCap will not work on those clusters whose
disks always operate close to their capacities because there is
little room left for ActCap to do biased data distribution. In our
opinion, MapReduce clusters in the real world usually do not
operate that way. In addition, after the benefit of uneven data
distribution were generally accepted, faster servers with bigger
disks will appear, making this limitation no longer exist.

VII. CONCLUSION

We have described ActCap, a solution that tries to improve
MapReduce performance on ever-growing heterogeneous clus-
ters by node-capability-aware data placement. At the core of
ActCap are the Markov chain models for on-the-fly determina-
tion of the computing capabilities of nodes in a cluster and the
algorithm to do capability-aware data placement. Unlike the
default policy of Hadoop (or more precisely, HDFS) that data
is distributed (almost) evenly among nodes regardless of their
capabilities, node-capability-aware data placement essentially
leads to non-uniform data distribution—those nodes of higher
capabilities will have more data. ActCap has been implemented
in Hadoop and evaluated on a 24-node heterogeneous cluster
with 13 benchmarks. The experimental results show that, com-
pared with Hadoop, it can reduce the percentage of inter-node
data transfer from 32.9% to 7.7%, which means an average
speedup of 49.8% over Hadoop. In addition, it can achieve an
average speedup of 9.8% over Tarazu, the latest work about
MapReduce optimization on heterogeneous clusters.

2015 IEEE Conference on Computer Communications (INFOCOM)

1335

ACKNOWLEDGMENT

This work is co-supported by Natural Science Foundation
of China (61170210, 61433008, U1435216), National High-
Tech R&D (863) Program of China (2012AA012600), and
National Science and Technology Major Project of China
(2013zx01039-002-002). We would like to thank the anony-
mous reviewers for their comments and suggestions.

REFERENCES

[1] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and
A. Rasin, “Hadoopdb: an architectural hybrid of mapreduce and dbms
technologies for analytical workloads,” Proceedings of the VLDB En-
dowment, VLDB’09, vol. 2, no. 1, pp. 922–933, 2009.

[2] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar,
“Tarazu: optimizing mapreduce on heterogeneous clusters,” in In Pro-
ceedings of the seventeenth international conference on Architectural
Support for Programming Languages and Operating Systems, ASP-
LOS’12. ACM, 2012, pp. 61–74.

[3] F. Ahmad, S. Lee, M. Thottethodi, and T. Vijaykumar, “Puma: Purdue
mapreduce benchmarks suite,” 2012, http://web.ics.purdue.edu/ fah-
mad/benchmarks.htm.

[4] V. Almeida, I. Vasconcelos, J. N. C. Árabe, and D. A. Menascé, “Using
random task graphs to investigate the potential benefits of heterogeneity
in parallel systems,” in Proceedings of the 1992 ACM/IEEE conference
on Supercomputing, Supercomputing’92. IEEE Computer Society
Press, 1992, pp. 683–691.

[5] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica,
D. Harlan, and E. Harris, “Scarlett: coping with skewed content pop-
ularity in mapreduce clusters,” in Proceedings of the sixth conference
on Computer systems. ACM, 2011, pp. 287–300.

[6] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula,
S. Shenker, and I. Stoica, “Pacman: Coordinated memory caching
for parallel jobs,” in Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation, NSDI’12. USENIX,
2012, pp. 20–20.

[7] J. C. Anjos, I. Carrera, W. Kolberg, A. L. Tibola, L. B. Arantes, and
C. R. Geyer, “Mra++: Scheduling and data placement on mapreduce for
heterogeneous environments,” Future Generation Computer Systems,
vol. 42, pp. 22–35, 2015.

[8] P. Costa, A. Donnelly, A. Rowstron, and G. OShea, “Camdoop: Exploit-
ing in-network aggregation for big data applications,” in Proceedings
of the 9th USENIX conference on Networked Systems Design and
Implementation, NSDI’12. USENIX, 2012, pp. 3–3.

[9] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–
113, 2008.

[10] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and
J. Schad, “Hadoop++: Making a yellow elephant run like a cheetah
(without it even noticing),” Proceedings of the VLDB Endowment,
VLDB’10, vol. 3, no. 1-2, pp. 515–529, 2010.

[11] A. Dou, V. Kalogeraki, D. Gunopulos, T. Mielikainen, and V. H. Tuulos,
“Misco: a mapreduce framework for mobile systems,” in Proceedings
of the 3rd International Conference on PErvasive Technologies Related
to Assistive Environments. ACM, 2010, p. 32.

[12] M. Y. Eltabakh, Y. Tian, F. Özcan, R. Gemulla, A. Krettek, and
J. McPherson, “Cohadoop: flexible data placement and its exploitation
in hadoop,” Proceedings of the VLDB Endowment, VLDB’11, vol. 4,
no. 9, pp. 575–585, 2011.

[13] W. Fang, B. He, Q. Luo, and N. K. Govindaraju, “Mars: Accelerating
mapreduce with graphics processors,” IEEE Transactions on Parallel
and Distributed Systems, TPDS’11, vol. 22, pp. 608–620, 2011.

[14] P. B. Godfrey and R. M. Karp, “On the price of heterogeneity in parallel
systems,” Theory of Computing Systems, vol. 45, no. 2, pp. 280–301,
2009.

[15] B. Gufler, N. Augsten, A. Reiser, and A. Kemper, “Load balancing in
mapreduce based on scalable cardinality estimates,” in 2012 IEEE 28th
International Conference on Data Engineering, ICDE’12. IEEE, 2012,
pp. 522–533.

[16] A. Hadoop, “Hadoop,” 2013, http://hadoop.apache.org.

[17] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu, “Rcfile:
A fast and space-efficient data placement structure in mapreduce-based
warehouse systems,” in 2011 IEEE 27th International Conference on
Data Engineering, ICDE’11. IEEE, 2011, pp. 1199–1208.

[18] R. J. Hyndman and Y. Fan, “Sample quantiles in statistical packages,”
The American Statistician, vol. 50, no. 4, pp. 361–365, 1996.

[19] R. K. Joshi and D. J. Ram, “Anonymous remote computing: a paradigm
for parallel programming on interconnected workstations,” IEEE Trans-
actions on Software Engineering, TSE’99, vol. 25, no. 1, pp. 75–90,
1999.

[20] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skewtune: mitigating
skew in mapreduce applications,” in Proceedings of the 2012 ACM SIG-
MOD International Conference on Management of Data, SIGMOD’12.
ACM, 2012, pp. 25–36.

[21] Y. Le, J. Liu, E. Funda, and D. Wang, “Online load balancing for mapre-
duce with skewed data input,” in 2014 IEEE International Conference
on Computer Communications, INFOCOM’14. IEEE, 2014, pp. 2004–
2012.

[22] D. Menascé and V. Almeida, “Cost-performance analysis of hetero-
geneity in supercomputer architectures,” in Proceedings of the 1990
ACM/IEEE conference on Supercomputing, Supercomputing’90. IEEE
Computer Society Press, 1990, pp. 169–177.

[23] N. Mi, G. Casale, L. Cherkasova, and E. Smirni, “Injecting realistic
burstiness to a traditional client-server benchmark,” in Proceedings of
the 6th International Conference on Autonomic Computing, ICAC’09.
ACM, 2009, pp. 149–158.

[24] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das, “Towards
characterizing cloud backend workloads: insights from google compute
clusters,” ACM SIGMETRICS Performance Evaluation Review, SIG-
METRICS’10, vol. 37, no. 4, pp. 34–41, 2010.

[25] nathanmarz, “Storm,” https://github.com/nathanmarz/storm.

[26] S. M. Ross, Introduction to probability models, Tenth Edition. Access
Online via Elsevier, 2011.

[27] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R.
Das, “Modeling and synthesizing task placement constraints in google
compute clusters,” in Proceedings of the 2nd ACM Symposium on Cloud
Computing, SoCC’11. ACM, 2011, p. 3.

[28] A. Shinnar, D. Cunningham, V. Saraswat, and B. Herta, “M3r: increased
performance for in-memory hadoop jobs,” Proceedings of the VLDB
Endowment, VLDB’12, vol. 5, no. 12, pp. 1736–1747, 2012.

[29] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy, “Hive: a warehousing solution over a map-
reduce framework,” Proceedings of the VLDB Endowment, vol. 2, no. 2,
pp. 1626–1629, 2009.

[30] A. Vahdat, M. Al-Fares, N. Farrington, R. N. Mysore, G. Porter, and
S. Radhakrishnan, “Scale-out networking in the data center,” Micro,
IEEE, vol. 30, no. 4, pp. 29–41, 2010.

[31] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares, and
X. Qin, “Improving mapreduce performance through data placement in
heterogeneous hadoop clusters,” in 2010 IEEE International Symposium
on Parallel & Distributed Processing, Workshops and Phd Forum,
IPDPSW’10. IEEE, 2010, pp. 1–9.

[32] A. YARN, “Yarn,” http://hadoop.apache.org/docs/current/hadoop-
yarn/hadoop-yarn-site/YARN.html.

[33] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling,” in Proceedings of the 5th European
Conference on Computer Systems, EuroSys’10. ACM, 2010, pp. 265–
278.

[34] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: cluster computing with working sets,” in Proceedings of the 2nd
USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10.
USENIX, 2010, pp. 10–10.

[35] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environments.”
in Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, OSDI’08. USENIX, 2008, p. 7.

2015 IEEE Conference on Computer Communications (INFOCOM)

1336

