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a b s t r a c t

Data integration system (DIS) is becoming paramount when Cloud/Grid applications need to integrate

and analyze data from geographically distributed data sources. DIS gathers data from multiple remote

sources, integrates and analyzes the data to obtain a query result. As Clouds/Grids are distributed over

wide-area networks, communication cost usually dominates overall query response time. Therefore we

can expect that query performance can be improved by minimizing communication cost.

In our method, DIS uses a data flow style query execution model. Each query plan is mapped to a

group of mEngines, each of which is a program corresponding to a particular operator. Thus, multiple

sub-queries from concurrent queries are able to share mEngines. We reconstruct these sub-queries to

exploit overlapping data among them. As a result, all the sub-queries can obtain their results, and

overall communication overhead can be reduced. Experimental results show that, when DIS runs a

group of parameterized queries, our reconstructing algorithm can reduce the average query completion

time by 32–48%; when DIS runs a group of non-parameterized queries, the average query completion

time of queries can be reduced by 25–35%.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

As cloud and grid computing is becoming more and more
popular, increasing number of applications needs to access and
process data from multiple distributed sources. For example, a
bioinformatics application needs to query autonomous databases
across the world to access different types of proteins and protein–
protein interaction information located at different storage
clouds.

Data integration in Clouds/Grids is a promising solution for
combining and analyzing data from different stores. Several
projects (e.g., OGSA-DQP Lynden et al., 2009; CoDIMS-G Fontes
et al., 2004; and GridDB-Lite Narayanan et al., 2003) have been
developed to study data integration in distributed environments.
For example, OGSA-DQP (Lynden et al., 2009) is a service-
oriented, distributed query processor, which provides effective
declarative support for service orchestration. It is based on an
infrastructure consisting of distributed services for efficient
evaluation of distributed queries over OGSA-DAI wrapped data
sources and analysis resources available as services.

Queries to data integration systems are generally formulated
in virtual schemas. Given a user query, a data integration system
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typically processes the query by translating it into a query plan
and evaluating the query plan accordingly. A query plan consists
of a set of sub-queries formulated over the data sources and
operators specifying how to combine results of the sub-queries to
answer the user query. As Clouds/Grids are generally built over
wide-area networks, high communication cost is the main reason
of leading to slow query response time. Therefore, query
performance can be improved by minimizing communication
cost. In this paper, our objective is to reduce communication
overhead and therefore improve query performance, through
optimizing sub-query processing.

We optimize sub-query processing by exploiting data sharing
opportunities among sub-queries. IGNITE is a method proposed in
Lee et al. (2007) to detect data sharing opportunities across
concurrent distributed queries. By combining multiple similar
data requests issued to the same data source, and further to a
common data request, IGNITE can reduce communication over-
head, thereby increase system throughput. However, IGNITE does
not utilize parallel data transmission so that it does not always
improve query performance. Our approach proposed here
enhances IGNITE by addressing its drawbacks so that query
performance in distributed systems can be further improved.

Our data integration system employs an operator-centric data
flow execution model, also proposed in Harizopoulos et al. (2005).
Each operator corresponds to a mEngine, which has local threads
for data processing and data dispatching. Queries are processed
by routing data through mEngines. All the mEngines work in
parallel, thus they can fully utilize intra-query parallelism. Based
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on such an operator-centric data flow execution model, all similar
query plans are allocated to the same group of m Engines.
Therefore sub-queries from different queries are grouped in a
common place for processing to enable data sharing across the
sub-queries.

In the mEngine for processing sub-queries, a query reconstruction
mechanism with a Merge-Partition (MP) reconstruction algorithm is
developed. The query reconstruction mechanism can construct a set
of new queries to eliminate data redundancy among the sub-queries
being processed by the mEngine. All the sub-query answers can be
obtained by evaluating the new queries and therefore the required
communication overhead can be reduced.

The rest of the paper is organized as follows. Section 2 presents
related work. Section 3 describes the execution model of our DIS.
Section 4 proposes the Merge-Partition (MP) query reconstruction
algorithm used in our DIS. Section 5 discusses the experiments
that we conducted to evaluate our solution. Section 6 concludes
the paper.
2. Related work

IGNITE system proposed in Lee et al. (2007) was developed
based on the PostgreSQL database, and is a work mostly related to
the work presented in this paper. IGNITE decouples the source
wrappers from the execution engine (adopted from the Post-
greSQL database), and enables the execution engine to send sub-
queries to same source, which therefore makes data sharing
across sub-queries possible. Meanwhile, IGNITE employs the
iterator model proposed in Graefe (1993) so that sub-queries
may have delay opportunities – a sub-query can wait for other
similar requests. Because of this, IGNITE develops a Start-Fetch
wrapper with Request Window mechanism. The wrapper com-
bines a group of similar sub-queries to a common sub-query and
only sends the common sub-query to the data source, so that
redundant answers among sub-queries can be eliminated.

There are two major differences between our method and
IGNITE. First, our method reconstructs original sub-queries to
alternative sub-queries, which may not eliminate all redundant
answers, but never introduce unnecessary data. IGNITE combines
a group of sub-queries into a single common sub-query to
eliminate redundant answers; however by doing so it may
introduce unnecessary data and in some cases may increase the
size of query answers. IGNITE increases communication traffic in
two ways: (1) it requires not only output attributes, but also
predicate attributes to identify sub-query answers; (2) all tuples
including common tuples must contain all required attributes for
all sub-queries. The second major difference between our method
and IGNITE is that if the source wrapper manages multiple work
threads, our method can take advantage of parallel sub-query
processing, whereas IGNITE cannot.

A significant amount of work on data integration (i.e. Ives,
2002; Halevy et al., 2006; Deshpande et al., 2007; Haas et al.,
1997) has been conducted. Several projects (e.g., OGSA-DQP
(Lynden et al., 2009); CoDIMS-G (Fontes et al., 2004); and GridDB-
Lite (Narayanan et al., 2003)) particularly focus on data integration
in Clouds/Grids. With a service-oriented architecture, OGSA-DQP
supports pipeline and partition parallelism for efficient evaluation
of distributed queries. Different from our method, OGSA-DQP uses
iterator model and relevant research on OGSA-DQP often focuses
on improving the performance of a single query. Similarly,
CoDIMS-G and GridDB-Lite also focus on improving the perfor-
mance of a single query.

Many efforts have been made on exploiting data sharing in
data integration area as well as database area (e.g., Dalvi et al.,
2001; Harizopoulos et al., 2005; Lee et al., 2007; Goldstein and
Larson 2001; Sacco and Schkolnick, 1986), including: (1) Multiple-
query optimization (MQO) techniques (e.g., Dalvi et al., 2001),
which exploit data sharing by identifying common sub-expres-
sions in query execution plans during optimization; (2) buffer
pool management (e.g., Sacco and Schkolnick, 1986), which
typically reuses disk pages in a buffer pool; (3) caching and view
materialization (e.g., Kossmann, 2000; Goldstein and Larson,
2001), which typically reuse pre-stored data in cache or
materialized view.

There are also techniques proposed in the distributed data
processing area, aiming to improve query efficiency (e.g. parallel
query processing techniques proposed in Gounaris (2005) and
adaptive query processing techniques proposed in Deshpande
et al. (2007) and Gounaris (2005)). The technique proposed in
Kossmann (2000) is one of them, which achieves the objective by
decreasing communication cost. For example, semi-joins are
proposed in Kossmann (2000) to reduce data transition while
processing joins between tables stored at different sites, and row
blocking is used to reduce the number of communication
occurrences by delivering tuples in batches.
3. Query engine

In this section, we discuss the execution engine of our DIS. The
engine employs a data flow style execution model (Section 3.1),
based on it, sub-queries can be gathered to a common place for
evaluation through source wrappers (Section 3.2). We also discuss
in Section 3.3, in detail, why is required to have a delay for each
request in order to better utilize data sharing.

3.1. Data flow execution model

As previously discussed, our DIS employs a data flow
style execution model, also referred to as operator-centric (one-
operator, many-queries) model in Qpipe (Harizopoulos et al.,
2005). In this model, each operator uses an independent mEngine.
mEngines serve requests from submitted queries. Each request
specifies input and output data buffers, and operator arguments.
By linking a mEngine’s output to another’s input, producer–
consumer relationships can be established among mEngines.
Queries can then be evaluated by pushing data through mEngines.

Fig. 1 describes the runtime model of our data flow execution.
In this model, there are four kinds of elements: Query Plans,
requests, dispatcher and mEngines.
�
 Query Plans: a Query Plan consists of a set of sub-queries
formulated over the data sources and operators specifying how
to combine results of the sub-queries to answer the user query.

�
 requests: are generated according to the Query Plans. They can

be considered a group of operations need to be performed by
mEngines.

�
 dispatcher: is a component which is responsible for sending the

requests to proper mEngines.

�
 mEngines: Each round box in Fig. 1 represents a mEngine and

the text in the box indicates its corresponding operator. In
Fig. 1, mEngines labeled with ‘‘wrapper’’ or ‘‘WSP’’ is used to
process sub-queries or invoke web services, respectively.
mEngines labeled with ‘‘Sort’’, ‘‘Selection’’ and ‘‘Hashjoin’’ are
used to process relational operators ‘‘Sort’’, ‘‘Selection’’ and
‘‘Hashjoin’’, respectively.

The process of evaluating a query plan is as follows. After the
arrival of the query plan, the dispatcher creates as many requests
as the nodes in the query plan and dispatches these requests to
their corresponding mEngines. Then, the mEngines work in parallel
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to process the requests, and the data tuples flow among the
buffers of different mEngines in push mode for evaluation.

The reasons why we choose the operator-centric data flow
model instead of the iterator model are as follows. First, in the
data flow model, all mEngines can work in parallel; therefore
intra-query parallelism can be achieved, and query processing can
be accelerated. This feature is particularly important to DIS for the
reason that queries of DIS (e.g., OGSA-DQP (Lynden et al., 2009)
and CoDIMS-G (Fontes et al., 2004)) always contain time-
consuming operators such as external web service calls and local
function calls. Second, the data flow model can group requests
with the same nature together, and can process each group of
similar requests using a dedicated mEngine. This feature enables
the execution engine to send all sub-queries to same source and
therefore enables data sharing across sub-queries.
Fig. 2. Architecture of mEngine-W.
3.2. Sub-query evaluation through source wrappers

Wrappers are used to evaluate sub-queries in data integration
systems, where wrappers hide the heterogeneity of accessing data
sources of different types. For example, OGSA-DAI acts as a grid-
enabled wrapper, providing service access interfaces for various
data sources.

Our DIS has one specific mEngine, referred to as mEngine-W, to
invoke wrapper procedures of evaluating sub-queries. As shown
in Fig. 2, the mEngine-W consists of the following elements.
�
 Sub-query requests: a Query Plan consists of a set of sub-query
requests.

�
 Query Reconstructor: the component which is responsible for

reconstructing the requests by using Query Reconstruction
Algorithm proposed in this paper (Section 4).

�
 Reconstructed sub-queries: the sub-queries generated by

Query Reconstructor.

�
 Coordinator: the component is responsible for reorganizing the

results of reconstructed sub-queries for the original sub-
queries.

�
 Wrapper Handler: the component is responsible for performing

the queries on Data Sources.

A data sharing mechanism is proposed in this paper (Section 4)
and applied in mEngine-W to optimize sub-query processing.

Fig. 2 shows the overview architecture of mEngine-W with a
query reconstruction mechanism. To process sub-query requests,
mEngine-W first reconstructs a set of sub-queries (say W)
contained in the sub-query requests into a substitute set of
sub-queries (say W’) using the Query Reconstructor. This step
identifies and eliminates redundant data among the sub-queries
in W. Then mEngine-W evaluates the reconstructed sub-queries
W0 to get required answers for the original queries W using the
Wrapper Handler.
3.3. Sub-query delay to better facilitate data sharing

This subsection discusses when is appropriate for mEngine-W
to trigger a reconstruction.

The target of the reconstruction algorithm is the sub-query
requests waiting in mEngine-W. Assume that mEngine-W sche-
dules an available work thread to remove and process a request
immediately after the request arrives. The only case in which
concurrent waiting requests occur is that the requests arrive at
the exact same time or mEngine-W has no idle work thread.
Therefore, the opportunity for reducing query cost through
exploiting data sharing in this case is very low and thus the
expected cost saving is quite limited.

In order to increase the cost saving, mEngine-W makes use of
the allowed delays of sub-query requests. As described in IGNITE
(Lee et al., 2007), when complex queries are executed, some sub-
queries sent to the data sources may have a delay opportunity so
that it is tolerable to wait for other similar sub-queries. Let’s take
the following query for example: select *from t1, t2 where

t1.id¼t2.id. Suppose we use a hash join to calculate the tuples
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satisfying t1.id¼t2.id. The left child node of the hash join is a sub-
query to fetch tuples from t1, and the right child node is a sub-
query to fetch tuples from t2. The processing of the hash join
consists of two phases: (1) building the hash table using tuples
from t1, and (2) probing the hash table using tuples from t2. We
can see that there is an interval between the arrival time of the
sub-query to t2 and the time that the hash join takes its result.
Though IGNITE discusses the delays in the context of the iterator
model, we can see that the same mechanism can be similarly
applied in our context: the operator-centric data flow model. By
setting a delay to each sub-query request, the opportunity of the
presence of concurrent requests can be increased and the cost
saving of the query reconstructing mechanism can be increased
accordingly.

After adding a delay to each sub-query request, mEngine-W
removes the requests from its queue, classifies them into groups
according to their target data sources, and then triggers a
reconstruction in the following two situations: (1) the waiting
time of a request has reached its tolerable delay and (2) the result
of a request is about to be consumed and mEngine-W is notified by
the consumer mEngine of the request to trigger a reconstruction to
its corresponding group.
4. Query reconstruction algorithm

In this section, we introduce the Merge-Partition (MP)
reconstruction algorithm applied in our DIS. First, we model the
problem of query reconstruction in Section 4.1. Then, in Section
4.2, we present the algorithm to see how it reconstructs a set of
queries and computes the answers of the queries.

4.1. Problem description

We assume every sub-query is a Select–Project–Join (SPJ)
query with duplicate-preserving semantics. Every query is in the
form of pLðsPðR1 � R2 � � � � � RaÞÞ, where L is the list of output
attributes, P is the selection predicate, and R1,R2,. . .,Ra are queried
relations.

For a given query qi:
Let Lo(qi)be the set of output attributes.
Let P(qi) be the selection predicate of qi.
Let Lc(qi) be the set of attributes that appear in P(qi).
Let SðqiÞ ¼ fR1,. . .,Ragbe the set of source relations.
Let R(qi) be the answer of qi.
For two queries qi and qj, let R(qi\qj)be their common answer.
The problem of query reconstruction can be described as

follows. Given a set of SPJ queries Q ¼ fq1,. . .,qng, we compute
another set of queries Q * ¼ fq*

1,. . .,q*
mg such that: (1) we can

produce the answers to the original queries Q ¼ fq1,. . .,qng from
the answers to Q*; (2) Size(RðQ *Þ)rSize(R(Q)), which means the
network overhead incurred by delivering RðQ *Þis smaller than that
of R(Q).

The query reconstruction mechanism consists of two
activities: (1) reconstructing the set of original queries before
dispatching them to the data sources, and (2) computing the
answers to the original queries based on the answers to the
reconstructed queries.

4.2. MP query reconstruction algorithm

In this section, we describe our Merge-Partition query recon-
struction algorithm, which reconstructs queries by two steps: query
merging and query partitioning, for both parameterized queries
(Section 4.2.1) and non-parameterized queries (Section 4.2.2).

4.2.1. Parameterized query

Parameterized queries are queries that have one or more
embedded parameters in a SQL statement. The main advantages
of a parameterized query are: (1) it makes a SQL statement less
prone to errors and (2) it saves query preparation time since you
can prepare the query one time, and execute the query as many
times as you wish.

There are two steps to reconstruct a group of parameterized
queries: merging all the queries using the method proposed in
IGNITE (Lee et al., 2007) and using a range-partition method to
partition the merged query into query fragments.

Let us take the following example to illustrate our method:
Q: select* from a_table where key4?
Q1: select* from a_table where key410
Q2: select* from a_table where key420
Q3: select* from a_table where key450
Suppose Q1–Q3 are three sub-queries, which are generated by
embedding values ‘‘10’’, ‘‘20’’ and ‘‘50’’ in the parameterized query
Q. To reconstruct the queries Q1–Q3, the first step is to merge
these three queries, which results the following merged query:

Q4: select* from a_table where key 410.
Then, the MP query reconstruction algorithm partitions the

merged query Q4. Assume that the domain of attribute ‘‘key’’ is
0–2000, and the number of the fragments is 4. An example of
query partitioning is Q5–Q8:

Q5: select* from a_table where key410 and (keyr500);
Q6: select* from a_table where key410 and (key4500 and
keyr1000);
Q7: select* from a_table where key410 and (key41000 and
keyr1500);
Q8: select* from a_table where key410 and (key41500 and
keyr2000);

To computer the answer of Q1, we should apply its predicate
(key410) to the answer of the merged query Q4. It is obvious that:

RðQ4Þ ¼ RðQ5Þ [ RðQ6Þ [ RðQ7Þ [ RðQ8Þ

The answers to Q2 and Q3 can be computed in a similar way.

4.2.2. Non-parameterized query

4.2.2.1. Merge queries. For any two queries qi and qj in
Q ¼ fq1,. . .,qng, they can be merged if all of the following three
conditions can all be satisfied:
(1)
 Lc(qi)DLo(qi);

(2)
 Lc(qj)DLo(qj);

(3)
 Lo(qi)¼Lo(qj).
Let qm be the merged query of qi and qj. The answers to qi and
qj can be computed from the answer to qm because of the
following reasons:
(1)
 the answer to qm get all the tuples required by qi and qj;

(2)
 the answer to qm get all the columns required by qi and qj;

(3)
 the answers to qi and qj can be computed since the attributes

required by their predicates are provided in the answer to qm.
Besides, from the third condition Lo(qi)¼Lo(qj) (see above), we
can see that no unnecessary data is introduced by evaluating the
merged query qm to get answers for qi and qj.
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We use the set Q1 ¼ fq1
1,. . .,q1

s g to represent the result after the
step of merging queries. In this step, we record all the pairs of
queries that can be merged. Let MP¼{/q11,q12S,y,/qp1,qp2S}be
these query pairs. The communication overhead can be saved by
this step issize(R(q11\q12))+?+size(R(qp1\qp2)). For each query
pair, say /qi, qjS, we also record the following information as
lineage expressions:
(1)
Fig.
over
/qm, funci, qiS

(2)
 /qm, funcj, qjS
Where funci is the function used to compute the answer to qi

from the answer to qm, andfuncj is the function used to compute
the answer to qj.

4.2.2.2. Partition queries. In this step, we further partition the
queries in Q1 ¼ fq1

1,. . .,q1
s g to eliminate overlapping data.

We use an example to explain the basic idea of the query
partition first. Fig. 3 shows two queries: q1 and q2. We use a two-
dimensional area to represent a query answer. As shown in
Fig. 3(a), if you process the two queries directly, the common data
represented by the yellow area is transmitted twice. Fig. 3(b)
shows the way after applying query partition. Queries q1 and
q2are partitioned into three fragments: (1) q*

2: to get the
overlapping tuples (i.e., a query with condition(P(q1)\P(q2))), (2)
q*

1: to get the remaining tuples of q1 (i.e., a query with
condition(P(q1)�P(q2))), and (3) q*

3: to get the remaining tuples
of q2 (i.e., a query with condition(P(q2)�P(q1))). After the answers
to q*

1, q*
2 and q*

3 are retrieved, the answer to q1 can be computed
directly from the answers to q*

1 and q*
2. The answer to q2can be

extracted directly from the answers to q*
2 and q*

3.
Given two queries, if the amount of their common data is

small, the method of query partition may lead to performance
degradation. The reason is that partition increases the number of
queries and each query brings an initial delay. Thus, we need to
estimate if a query partition can bring in performance improve-
ment before take any actions. Given two queries qi and qj, without
a query partition, the cost of sub-query processing is

Cij
before ¼

sizeðRðqiÞÞ

r
þ

sizeðRðqjÞÞ

r
þ2ID

where rdenotes the data rate over the link between the query
engine and the target data source, IDdenotes the initial delay of
processing a sub-query. With a query partition, the cost is

Cij
after ¼

sizeðRðq*
ij1ÞÞþsizeðRðq*

ij2ÞÞþsizeðRðq*
ij3ÞÞ

r
þ3ID

Cij
after which can also be expressed as

Cij
after ¼

sizeðRðqiÞÞþsizeðRðqjÞÞ�sizeðRðq*
ij2ÞÞ

r
þ3ID

To determine if the query partition can improve the query
performance, we need to compare Cij

before withCij
after . Generally, if

Cij
before�Cij

after Za is satisfied (the amount of improvement exceeds
a specified threshold a), a query partition can be considered. We
1q

2q

*
1q

*
2q

*
3q

3. Partition the queries q1 and q2 to the queries q*
1, q*

2 and q*
3, to eliminate

lapping data (each two-dimensional area represents a query answer).
useCij
imp to denote Cij

before�Cij
after , and the following equation can be

derived:

Cij
imp ¼

sizeðRðq*
ij2ÞÞ

r
�ID

To check if Cij
impZa is satisfied, an estimate of the amount of

the common data Rðq*
ij2Þ is required. We can use statistic

techniques in database area (e.g., Ahad et al., 1989; Getoor
et al., 2001) to perform the estimation. Due to space limitations,
we omit the discussion of the estimaiton from this paper.

After the basic idea of partition and the basic conditions to
consider a partition are clear, we now describe the process of
performing partitions over the queries in Q1 ¼ fq1

1,. . .,q1
s g.

Step 1 estimates the amount of common data between every
two queries, and build the following matrix Mpri to denote the
priorities of query partitions:

Mpri ¼

q1
1 q1

2 � � � q1
s

q1
1

q1
2

^

q1
s

p11 p12 � � � p1s

p21 p22 � � � p2s

^ ^ & ^

ps1 ps2 � � � pss

0
BBBB@

1
CCCCA

where, pij denotes the priority of the query partition between
q1

i and q1
j . If i¼ j, then pij¼0; otherwise, pij can be computed as

pij ¼ Cij
imp�a¼

sizeðRðq*
ij2ÞÞ

r
�ID�a

Step 2 selects the biggest and positive priority from the matrix
Mpri. Biggest one means the one with the highest priority, and
positive one means that the requirements of performing query
partition are satisfied. if pij is the biggest one, remove the ith and
jth rows, and the ith and jth columns from the matrix Mpri, perform
a partition to the queries q1

i and q1
j , and record the following

information as lineage expressions:
(1)
 /q*
ij1, null, q1

i S
(2)
 /q*
ij2,funci, q1

i S
(3)
 /q*
ij2,funcj, q1

j S
(4)
 /q*
ij3, null, q1

j S
where, /q*
ij1, null, q1

i S means the answer to q*
ij1 is a subset of the

answer to q1
i . ‘‘null’’ means no computation on R(q*

ij1) is needed
before returning it to q1

i . funci is the function used to compute the
answer to q1

i from the answer to q*
ij2, which is actually a projection

operation. Other symbols can be explained similarly.
Step 3 repeats step 2 until there is no positive number in the

matrix Mpri.
We use the set Q * ¼ fq*

1, � � � ,q*
mgto represent the result after the

step of partitioning queries. Then, we can begin to evaluate
queries in Q *.

When the data returned from the data source arrives, we can
first use the lineage expressions recorded in the step of
partitioning queries to compute the answers of the queries
Q1 ¼ fq1

1,. . .,q1
s g, and then use the lineage expressions recorded

in the step of merging queries to compute the answers to the
original sub-queries Q ¼ fq1,. . .,qng.
5. Evaluation

In this section, we present our evaluation method and results.
The overall experimental setup is discussed in Section 5.1,
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Fig. 5. (a) Parameterized query and query plan. (b) Query completion time.
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followed by the detailed discussion of each experiment and its
results in Section 5.2.

5.1. Experimental setup

The experimental setup consists of two parts: the server side
to deploy databases and the client side to run our data integration
system. The experimental environment is presented in Fig. 4,
including the location and configuration of each machine, and the
data distribution over the machines.

On the server side, we use a TPC-H database (http://
www.tpc.org/tpch/) (scale factor 1) as the dataset of our
experiments. The TPC-H database has eight relations: REGION,
NATION, CUSTOMER, SUPPLIER, PART, PARTSUPP, ORDERS, and
LINEITEM. To build a distributed environment, we created eight
PostgreSQL (version: 8.3) databases on four different machines, as
shown in Fig. 4. Each of the eight databases provides one of the
above relations. The dataset in the relations was generated by DBT
(http://osdldbt.sourceforge.net/). On the client side, our DIS was
deployed on a separate machine, as shown in Fig. 4.

The value of sub-query delay is set according to the cardinality
of tables and the structure of the whole query tree. This principle
is followed by Lee et al. (2007).

5.2. Experiment analysis and results

Three experiments have been designed and conducted to
evaluate (1) the effectiveness of the operator-centric data flow
query model by comparing it with the iterator model, (2) the
effectiveness of the Merge-Partition algorithm by comparing it
with IGNITE having the merge algorithm used in mEngine-W and
an original approach where mEngine-W processes sub-queries
without using any query reconstruction mechanism, when
processing a group of parameterized queries, and (3) the
effectiveness of the Merge-Partition algorithm when processing
a group of non-parameterized queries.

5.2.1. Experiment 1

Experiment 1 evaluates the effectiveness of the operator-
centric data flow query model while executing DIS queries. We
evaluated a group of queries that follow the parameterized query
described in Fig. 5(a). The parameterized query contains two web
services WS1 and WS2. The query plan described in Fig. 5(a) is used
to answer the queries.

In this experiment, the selectivities of WS1 and WS2 are 1, and
the average response time of WS1 and WS2 are 0.06 and 0.11 s,
respectively. During different runs, the parameter values of the
query were set as ‘‘1992–02–01’’, ‘‘1992–03–01’’, ‘‘1992–04–01’’,
y, and ‘‘1992–11–01’’, respectively.
Fig. 4. Experimenta
We ran the queries in both the iterator model and our data
flow model. The experiment result is shown in Fig. 5b), where the
x-axis and y-axis denote the parameter value the query and the
completion time of the query, respectively. From the figure, we
can see that the data flow model achieves 40% less query
completion time than the iterator model. This is a reasonable
result because the data flow model invokes web services WS1 and
WS2 in parallel to process data, which is the rationale why we
chose the data flow model rather than the iterator model
employed in IGNITE.
5.2.2. Experiment 2

This experiment evaluates the effectiveness of the Merge-
Partition algorithm by processing a group of parameterized
queries. In this experiment, we compare the average query
completion time and communication traffic of the following
three approaches. (1) MP: the MP algorithm is used in mEngine-
W; (2) IGNITE: the merge algorithm is used in mEngine-W;
l environment.
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(3) Original: mEngine-W processes sub-queries without using any
query reconstruction mechanism.

In this experiment, 50 queries (q1–q50) are generated comply-
ing with the query described in Fig. 6(a). 49 random numbers
(r1–r49) in the range of 0–60 are generated as query intervals.
Queries q1–q50 are submitted sequentially. The time interval
between submitting qi(1r ir49) and submitting qi +1 is ri

seconds.
Fig. 6(b) and (c) presents the results of the experiment. Fig. 6(b)

records the total communication traffic of the queries of each of the
three approaches. Compared with the Original approach, IGNITE and
Sub-query1: 

    select o_orderkey, o_orderdate 

    from orders where o_orderdate < ?

Sub-query2: 

    select l_orderkey, l_commitdate, 

    l_receiptdate, l_discount, l_comment

    from lineitem where l_discount< ?
Sub-query1 Sub-query2
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Fig. 6. Experimental results of parameterized queries: (a) parameterized query,

(b) total communication traffic of queries and (c) query completion time of each

query.
our MP approach can reduce the communication traffic by around
20% and 15%, respectively. Fig. 6(c) shows two plots of the query
completion time of the three approaches at each query interval. The
y-axis of each plot is the completion time of q1–q50, the x-axis is the
interval between the arrival time of a query and the arrival time of
the first query q1, and each point in each plot represents a query. The
average query completion time of the Original, IGNITE and MP is
64 6332.914, 490 724.16 and 333 633.88 in decreasing order,
respectively.

From Fig. 6(c), the following conclusions can be drawn. First,
compared with Original, our MP approach can reduce the average
completion time by 48%. This is obviously because MP can exploit
data sharing among sub-queries. This is due to one fact. Though
reconstructing small and large queries together may take shorter
time than reconstructing them separately, this may lead to
reconstructing small queries takes more time. Third, the average
completion time of MP is smaller than that of IGNITE by 32%. It is
because MP can get a higher degree of parallelism during the
phase of partition than IGNITE.

5.2.3. Experiment 3

This experiment evaluates the effectiveness of the Merge-
Partition algorithm by processing a group of non-parameterized
queries. Similarly to Experiment 2, in this experiment, 50 queries
(q1–q50) and 49 random numbers (r1–r49) in the range of 0–60 are
generated as query intervals. The generated queries are submitted
sequentially.

Fig. 7 shows the experimental results. Fig. 7(a) records the
total communication traffic of the queries of each approach.
Compared with Original, both IGNITE and MP can reduce the
communication traffic by about 15%. Fig. 7(b) shows a plot of the
average query completion time of every five queries of the three
approaches. Each point in the plot represents an average
completion time of each five queries. For example, the point
Original IGNITE MP
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corresponding to the number 1 of the x-axis represents
the average completion time of queries q1–q5. From Fig. 7(b),
we can observe the following facts. (1) Compared with Original,
MP can reduce the average completion time of queries by more
than 35%. (2) For most of the queries, MP takes less time to
complete the queries than IGNITE; MP can reduce the
average completion time of all the queries by 25%, to compare
with IGNITE.
6. Conclusion

Distributed data sources can be heterogeneous, and managing,
analyzing, and processing data from different sources in an
integrated way is becoming more and more important. Distrib-
uted data integration applications are always processed on
distributed infrastructures, and communication cost becomes
the main factor of determining query response time. Therefore we
can expect that query performance can be improved by minimiz-
ing communication cost. The objective of this paper is to propose
an approach to improve the query processing performance of data
integration systems by optimizing sub-query processing.

Our data integration system adopts a data flow style execution
model, which allows the system to exploit data and work sharing
opportunities across queries during the process of query evalua-
tion, at the same time, improves intra-query parallelism. An
experiment was conducted to demonstrate the effectiveness of
the data flow model of our choice by comparing it with the
iterator model employed in IGNITE. The experiment result
confirms our choice: the data flow model achieves 40% less query
completion time than the iterator model.

We also developed a Merge-Partition query reconstruction
algorithm in a mEngine (Harizopoulos et al., 2005) for processing
sub-queries. The proposed reconstruction algorithm is able to
exploit data sharing opportunities among the concurrent sub-
queries, which can reduce the average communication overhead
required by the sub-queries and can therefore improve the overall
query performance. Two experiments have been designed and
conducted to evaluate the effectiveness of our Merge-Partition
algorithm by comparing it with two approaches: IGNITE having
the merge algorithm used in mEngine-W and an original approach
where mEngine-W processes sub-queries without using any query
reconstruction mechanism, when processing a group of para-
meterized and non-parameterized queries, respectively. The
results show that, by applying query reconstruction mechanism
with our Merge-Partition algorithm, communication overhead of
executing sub-queries can be reduced, and performance of DIS
queries can be improved correspondingly. More detailedly,
compared with the original approach, our MP approach can
reduce the average completion time of queries by more than 48%
and 35% for parameterized and non-parameterized queries,
respectively. Compared with IGNITE, MP can reduce the average
completion time of all the queries by 32% and 25% for
parameterized and non-parameterized queries, respectively.
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