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ABSTRACT

As many real-world applications are streaming and attached with
time instances, a few works have been proposed to learn streaming
graph neural networks (GNNs). Unfortunately, current streaming
GNNs are observed to have a large training overhead and suffer
from bad parallel scalability on multiple GPUs. These drawbacks
pose severe challenges to online learning of streaming GNNs and
their application to real-time scenarios. To improve training ef-
ficiency, one promising solution is to use sampling, a technique
widely used in static GNNs. However, to the best of our knowledge,
sampling has not been investigated in learning streaming GNNs.
Based on these observations, in this paper, we propose T-GCN,
the first sampling-based streaming GNN system, which targets
temporal-aware streaming graphs and takes advantage of a hybrid
CPU-GPU co-processing architecture to achieve high throughput
and low latency. T-GCN proposes an efficient sampling method,
namely Segment Its Search, to offer high sampling speed with re-
spect to three typical types of general graph sampling methods
(i.e., node-wise, layer-wise, and subgraph sampling). We propose a
locality-aware data partitioning method to reduce CPU-GPU com-
munication latency and data transfer overhead, and an NVLink-
specific task schedule to fully exploit NVLink’s fast speed and
improve GPU-GPU communication efficiency. Besides, we further
pipeline the computation and the communication by introducing an
efficient memory management mechanism, to improve scalability
while hiding data communication. Overall, with respect to end-to-
end performance, for single-GPU training, T-GCN achieves up to
7.9× speedup than state-of-the-art works. In terms of scalability,
T-GCN runs 5.2× faster on average with 8 GPUs than one GPU.
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Additionally, in terms of sampling, T-GCN also yields a maximum
of 38.8× speedup with our Segment Its Search sampling method.
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1 INTRODUCTION

Graph is an efficient information carrier and is widely used in
different real-world applications. Graph embedding has been used
in many applications such as graph classification [1, 6] and node
classification [8, 15], which are categorized into two types: Skip-
Gram models [30] and graph neural networks (GNNs) [8, 15, 34].
Compared with SkipGram, GNNs can efficiently capture nodes’
features and structures of graphs by machine learning techniques
and thus can get better prediction performance.

However, current works mostly focus on static graph learning
methods rather than streaming graph learning. Mostly real-world
graphs are evolving over time and are represented as streaming
edges. In these cases, edges in graphs will be attached with time
instances to show temporal information in real-world applications.
Furthermore, edges are in streaming formats and need to train the
model online with regard to new edges. For example, citation net-
works [11] are attached with time instance and grow with time. In
this case, there is a necessity to retrain the dynamic parts for some
models such as EHNA [11]. In addition, many other domains such
as e-commerce [47], education [16], and social networks [26] also
evolve with dynamic information. Some streaming graph learning
methods are proposed to solve updating problems of dynamic mod-
els by means of incremental training with no need of re-training
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but still suffer from large latency and low throughput problems.
Therefore, there are several challenges in training streaming GNNs.

The first challenge is sampling performance. Applying sam-
pling methods to GNN is important for performance accelera-
tion [2, 3, 8, 12, 13, 44, 45]. However, conventional sampling al-
gorithms have large sampling complexity. For example, Bipartite
Region Search (BRS) [27], which is proposed for accelerating sub-
graph sampling, has to spend 1.5 hours on sampling the Twitter
dataset (with 1.46B edges). Therefore, it is an important issue to
identify a good sampling method that has a small overhead but
does not lower the final accuracy of models.

The second challenge is training speed. A few streaming graph
learning methods have been proposed for high accuracy but incur
high training overhead. For example, DynamicTriad [49], HTNE [52],
and EvolveGCN [28] capture temporal information along with local
structure by means of training different snapshots. But in process-
ing the arrival of new edges, these works don’t have good scalability
for training new models and also have high training complexity
for new patterns. This performance problem also exists in random
walk-based models such as CTDNE [26] and EHNA [11]. This is
because random walk sets must be updated for all walkers affected
by new edges, thus causing much updating overhead. Along with
the updates of random walk sets, the Skip-Gram models have to
be fine-tuned with the new sets accordingly and therefore incur
extra training overhead. Recently, some recurrent neural networks
(RNNs)-based models, e.g., JODIE [16] and DyGNN [23], have been
proposed to deal with streaming graphs, as these models can be
updated incrementally with modest additional overhead. However,
these models have been designed regardless of the overhead of
iterative training, which is typically much larger than the infer-
ence overhead and should be optimized carefully. In addition, low
throughput and high latency are important performance problems
faced by RNNs.

The third challenge is scalability for multi-GPU training. Many
streaming graph learning models intend to achieve good accuracy
but seldom pay attention to multi-GPU scalability. We have ob-
served that relatively large real-world datasets consume a lot of
memory, caused by a large number of nodes and edges as well as
the huge amount of node/edge hidden embeddings (or activations).
Especially for node/edge embeddings, they take so large an amount
of memory that they cannot be entirely stored on a single GPU.
Not only this, a single GPU training will take too much training
time. In this case, users have to resort to multiple GPUs to train the
model. To achieve high-efficiency multi-GPU training, we need to
address two challenges. One is how to partition both node embed-
ding and datasets to multiple GPUs. It is known that inter-device
communication (GPU to GPU and CPU to GPU) plays an important
role in training, because of the huge size of node features or em-
beddings. Current GPU-GPU communication via NVLink usually
has a much faster speed than the CPU-GPU communication via
PCIe. Therefore, partitioning is an important stage to ensure low
communication overhead by jointly optimizing PCIe-based CPU-
GPU and NVLink-based GPU-GPU communications. The other is
how to schedule tasks (keeping edges’ training order) without af-
fecting accuracy. Naïve distributed training will affect the temporal
information embedded in datasets and thereby reduce the accuracy.

In the literature, some works have been conducted to use multi-
GPUs to train GNNs but expose different drawbacks. For instance,
NeuGraph [22] has much communication overhead caused by the
inefficient data partition method. Other works like DGL-KE [48]
and PyTorch-BigGraph (PBG) [20] suffer from low GPU utility in
distributed training. Overall, the aforementioned three challenges
are important issues that need to be addressed by streaming GNN
learning.

In this paper, we propose T-GCN, the first streaming GNN sys-
tem with hybrid architecture for accelerating GNN learning on
temporal-aware streaming graphs, while keeping prediction ac-
curacy well. To deal with the sampling performance challenge, T-
GCN provides a novel sampling method, namely Segment Its Search,
which can achieve high performance on three typical types of gen-
eral graph sampling methods, including node-wise, layer-wise, and
subgraph sampling. The evaluation shows that T-GCN can get up to
38.8× speedup in terms of sampling speed over the state-of-the-art
sampling algorithms. To cope with the training speed and scalabil-
ity challenges, T-GCN employs a hybrid CPU-GPU co-processing
architecture and puts forward a locality-aware data partitioning
method to reduce CPU-GPU data transfer overhead, lower CPU-
GPU communication latency, and improve the training throughput.
To further reduce GPU-GPU communication, T-GCN proposes an
efficient task schedule to maximize the exploitation of NVLink’s fast
speed. To get better scalability, T-GCN introduces efficient memory
management to pipeline the computation and communication. For
single V100 GPU training, relying on these optimizations, T-GCN
runs up to 7.9× faster than the current works concerning end-to-
end performance. When running on an NVIDIA DGX server with
eight V100 GPUs, the training speed of T-GCN on 8 GPUs is 5.2×
faster than the training speed of T-GCN on one GPU, demonstrating
good scalability.

2 BACKGROUND

2.1 Notations of Streaming Graphs

As mentioned in Section 1, T-GCN targets temporal-aware stream-
ing graphs and therefore chooses to use a temporal graph format
to represent the underlying graphs for streaming GNN learning.
In the following, we will briefly describe the data format of a tem-
poral graph. The main difference between temporal graphs and
static graphs is that edges in temporal graphs are attached with
time instances. For graph 𝐺 = (𝑉 , 𝐸), 𝑉 is the vertex set and 𝐸 is
the edge set. For each edge 𝑒 = (𝑢, 𝑣, 𝑡) in 𝐸, 𝑢 ∈ 𝑉 is the source
node, 𝑣 ∈ 𝑉 is the destination, and 𝑡 ∈ R refers to the time in-
stance. The time instances of edges between the same vertices can
be different. Therefore, each edge has a certain time instance but
each vertex is agnostic to time because each vertex may connect
multiple edges with different timestamps. An important problem
faced by temporal graphs is that each path must satisfy the time
constraints. In other words, for a temporal path 𝑃 = {𝑒1, 𝑒2, . . . , 𝑒𝑛}
with 𝑒𝑖 = (𝑢𝑖 , 𝑢𝑖+1, 𝑡𝑖 ) and 𝑒 𝑗 = (𝑢 𝑗 , 𝑢 𝑗+1, 𝑡 𝑗 ), if 𝑗 ≤ 𝑖 , it satisfies that
𝑡 𝑗 ≤ 𝑡𝑖 . Constructing paths in chronological order is a widely-used
criterion in existing temporal graph models [39, 40]. The time con-
straints on temporal paths will bring extra computation and space
overhead.
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In real-world applications, temporal graphs will be created by
order of time instance, and this representation of temporal graphs
is usually called the edge stream. This means that edges in the edge
stream are sorted by increasing order of time. For example, the trade
logs of e-commerce are recorded with time increasing. The edge
stream is a widely used data model of temporal graphs [10, 16, 26].

2.2 Streaming Graph Neural Network

In general, GNNs work by aggregating embeddings from neigh-
bors on each iteration round. Typical example GNNs includeGCN [15],
GraphSAGE [8], GAT [34], and GIN [41]. As shown in Equation 1,
in each iteration 𝑘+1, the𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 function will aggregate embed-
ding of neighbors for each vertex in the previous iteration. Assume
that 𝑁 (𝑢) is the neighbor set of 𝑢, ℎ𝑘𝑢 is the embedding of 𝑢 at
iteration 𝑘 , and 𝑎𝑘+1𝑢 is the aggregation result of iteration 𝑘 + 1.
After aggregation, neural network functions such as multi-layer
perceptrons (MLPs) will be used to combine ℎ𝑘𝑢 with 𝑎𝑘+1𝑢 . As seen
in Equation 2, 𝐶𝑜𝑚𝑏𝑖𝑛𝑒 function will use neural networks to trans-
form the aggregation result into embedding of 𝑢 at the iteration
𝑘 + 1 as ℎ𝑘+1𝑢 . We take the node classification and link prediction as
examples to introduce GNNs. Both of them aggregate embedding
from neighbors. The 𝐶𝑜𝑚𝑏𝑖𝑛𝑒 can be expressed by 𝑤 · 𝑎𝑘+1𝑣 with
MLP operations.

𝑎𝑘+1𝑢 = 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (ℎ𝑘𝑣 |𝑣 ∈ 𝑁 (𝑢)) (1)

ℎ𝑘+1𝑢 = 𝐶𝑜𝑚𝑏𝑖𝑛𝑒 (ℎ𝑘𝑢 , 𝑎𝑘+1𝑢 ) (2)

Different from static versions, streaming GNNs incorporate time
instances into machine learning models and capture temporal in-
formation along with local structure (e.g., learn embeddings from a
sequence of graph snapshots) so as to improve the expressive ability
of the models. Some streaming GNNs [16, 23] have been proposed
with RNNs or its variants (LSTMs [9] and GRUs [5]) at the core to
support time instances. These RNN-based models are inherently
capable of processing time instances, dealing with new additions
of dynamic edges, and enabling incremental training along with
the coming of new edges. DyGNN is a state-of-the-art RNN-based
streaming GNN, which has no constraint on the types of streaming
graphs and also has good prediction performance. DyGNN uses
LSTMs as the core to train streaming graphs. In each round, it
passes through the entire graph and uses all edges. For the update
of a newly added edge, the computation consists of three units,
namely Interact Unit, Update Unit, andMerge Unit. In this paper, we
will use DyGNN as a typical use case to demonstrate the power of
our framework.

Interact Unit: For an interaction 𝑒 = {𝑣𝑠 , 𝑣𝑔, 𝑡}, it generates in-
teraction information for 𝑒 from node information, denoted as 𝑒 (𝑡)
(refer to Equation 3). 𝐸𝑣𝑠 (𝑡−) and 𝐸𝑣𝑔 (𝑡−) is the feature/embedding
of the source node 𝑣𝑠 and the destination node 𝑣𝑔 at time 𝑡−, which
is right before time 𝑡 (in other words, 𝑡− is infinitely close to 𝑡 but
prior to 𝑡 ), respectively.𝑊1,𝑊2, and 𝑏𝑒 are the parameters of neural
networks. 𝑎𝑐𝑡 (·) is an activation function that can be sigmoid or
tanh. The resulting interaction information 𝑒 (𝑡) is computed as

𝑒 (𝑡) = 𝑎𝑐𝑡 (𝑊1 · 𝐸𝑣𝑠 (𝑡−) +𝑊2 · 𝐸𝑣𝑔 (𝑡−) + 𝑏𝑒 ) (3)

L layer

L+1 layer

L+2 layer

Batch

L layer

L+1 layer

L+2 layer

Figure 1: Node-Wise.

L layer
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Batch

L layer
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L+2 layer

Figure 2: Layer-Wise.

Update Unit: The update unit applies the interaction informa-
tion 𝑒 (𝑡) generated from the interacting unit to the nodes partic-
ipating in the interaction. This unit uses two variants of LSTM,
which additionally incorporate time interval information to control
the magnitude of forgetting, to update 𝑣𝑠 and 𝑣𝑔 , respectively. One
variant, namely 𝑆-𝑈𝑝𝑑𝑎𝑡𝑒 , only updates the source information of
a node 𝑣 , i.e., the cell and hidden states of 𝑣 , when 𝑣 is the source
node of an iteration 𝑒 (𝑡). The other variant, namely𝐺-𝑈𝑝𝑑𝑎𝑡𝑒 , only
updates the destination information of the same node 𝑣 when 𝑣

is the destination node of 𝑒 (𝑡). 𝑆-𝑈𝑝𝑑𝑎𝑡𝑒 and 𝐺-𝑈𝑝𝑑𝑎𝑡𝑒 have the
same network structure, but with different parameters. Equations 4
and 5 show the update logic of 𝑆-𝑈𝑝𝑑𝑎𝑡𝑒 and 𝐺-𝑈𝑝𝑑𝑎𝑡𝑒 , respec-
tively. 𝐶𝑠

𝑣𝑠
(𝑡−) is the cell state of the source node 𝑣𝑠 and ℎ𝑠𝑣𝑠 (𝑡−) is

the hidden state of 𝑣𝑠 , at time 𝑡−. Δ𝑡 is the time interval equal to
𝑡 − (𝑡−), and𝑈𝑝𝑑𝑎𝑡𝑒 (·) represents the neural network computation.

𝐶𝑠
𝑣𝑠
(𝑡), ℎ𝑠𝑣𝑠 (𝑡) = 𝑈𝑝𝑑𝑎𝑡𝑒 (𝐶𝑠

𝑣𝑠
(𝑡−), ℎ𝑠𝑣𝑠 (𝑡−), Δ𝑡 , 𝑒 (𝑡)) (4)

𝐶
𝑔
𝑣𝑔 (𝑡), ℎ

𝑔
𝑣𝑔 (𝑡) = 𝑈𝑝𝑑𝑎𝑡𝑒 (𝐶𝑔

𝑣𝑔 (𝑡−), ℎ
𝑔
𝑣𝑔 (𝑡−), Δ𝑡 , 𝑒 (𝑡)) (5)

MergeUnit: For 𝑣𝑠 , we have two hidden statesℎ𝑠𝑣𝑠 (𝑡) andℎ
𝑔
𝑣𝑠 (𝑡−)

from the output of 𝑆-𝑈𝑝𝑑𝑎𝑡𝑒 . Similarly, for 𝑣𝑔 , we have ℎ𝑠𝑣𝑔 (𝑡−) and
ℎ
𝑔
𝑣𝑔 (𝑡) from the output of 𝐺-𝑈𝑝𝑑𝑎𝑡𝑒 . In this case, the merge unit

takes the hidden states from 𝑆-𝑈𝑝𝑑𝑎𝑡𝑒 to generate the new em-
bedding 𝐸𝑣𝑠 (𝑡) for 𝑣𝑠 , and the hidden states from 𝐺-𝑈𝑝𝑑𝑎𝑡𝑒 to
generate 𝐸𝑣𝑔 (𝑡). Equations 6 and 7 show the merge logic for 𝑣𝑠 and
𝑣𝑔 , respectively, where𝑊𝑠 ,𝑊𝑔 and 𝐵 are trainable parameters.

𝐸𝑣𝑠 (𝑡) = 𝑊𝑠 · ℎ𝑠𝑣𝑠 (𝑡) +𝑊𝑔 · ℎ𝑔𝑣𝑠 (𝑡−) + 𝐵 (6)

𝐸𝑣𝑔 (𝑡) = 𝑊𝑠 · ℎ𝑠𝑣𝑔 (𝑡−) +𝑊𝑔 · ℎ𝑔𝑣𝑔 (𝑡) + 𝐵 (7)

2.3 Graph Sampling

Graph sampling is an important technology for large graphs train-
ing to solve the problem that both the graph and the intermediate
embeddings (or activations) cannot be entirely stored in GPU mem-
ory. This technology can accelerate training on GPUs to some
degree but has the major drawbacks of accuracy loss [14, 33] and
prediction instability [7]. Popular graph sampling methods include
node-wise sampling [8], layer-wise sampling [2] and subgraph
sampling [4].

Node-Wise Sampling: GraphSAGE [8] introduces a node-wise
random sampling approach to obtaining 𝑘-hop neighbors. As seen
in Figure 1, for multi-layer GNNs, this method samples a specified
number of neighbors of each vertex at each layer. The sampled
neighbors for each vertex are independent of each other. The num-
ber of sampled nodes grows exponentially with the number of
layers. For 𝑘 layers, the number of sampled nodes in the input layer
can explosively increase up to𝑂 (�̄�𝑘 ) with �̄� as the average degree
per layer.
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Algorithm 1 Random walk based subgraph sampling.
1: Input: Original graph G(V,E); Frontier size m; Subgraph size

n.
2: Output: Induced subgraph 𝐺𝑠𝑢𝑏 (𝑉𝑠𝑢𝑏 , 𝐸𝑠𝑢𝑏 ).
3: 𝐹𝑆 ← Uniformly select𝑚 vertices at random from 𝑉

4: for 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 [1, 𝑛] do
5: Select 𝑢 ∈ 𝐹𝑆 with probability 𝑑𝑒𝑔 (𝑢)∑

𝑣∈𝐹𝑆 𝑑𝑒𝑔 (𝑣)
6: 𝑉𝑠𝑢𝑏 ← 𝑉𝑠𝑢𝑏 ∪ {𝑢}
7: Select (𝑢,𝑢 ′) ∈ 𝐸 randomly in neighbors of 𝑢
8: 𝐹𝑆 ← (𝐹𝑆 \ 𝑢) ∪ {𝑢 ′}
9: end for

10: 𝐺𝑠𝑢𝑏 ← Subgraph of 𝐺 induced by 𝑉𝑠𝑢𝑏 return 𝐺𝑠𝑢𝑏

Layer-Wise Sampling: FastGCN [2] proposes a layer-wise sam-
pling approach, which samples neighbors for each vertex but shares
the sampled neighbors among all nodes of the current layer (see
Figure 2). The sharing property fits the message passing strategy
of GNNs and makes the number of sampled nodes linearly propor-
tional to the number of layers.

Subgraph Sampling: To achieve better performance on large
graphs, some works put forward to construct mini-batches from
subgraphs. ClusterGCN [4] is proposed to partition the graphs into
a set of clusters before training and construct a mini-batch by ran-
domly choosing and merging several clusters. GraphSAINT [45]
employs random walk based samplers and achieves better accu-
racy than ClusterGCN. Algorithm 1 shows the random walk-based
sampler. To sample a subgraph 𝐺𝑠𝑢𝑏 (𝑉𝑠𝑢𝑏 , 𝐸𝑠𝑢𝑏 ) of 𝑛 vertices, it
first provides a frontier 𝐹𝑆 with𝑚 seeding vertices that are ran-
domly selected. We will repeat the following operations until the
construction of𝐺𝑠𝑢𝑏 is completed. Firstly, a vertex𝑢 is selected from
𝐹𝑆 with a probability of 𝑑𝑒𝑔 (𝑢)∑

𝑣∈𝐹𝑆 𝑑𝑒𝑔 (𝑣)
where 𝑑𝑒𝑔(𝑢) is the degree

number of vertex 𝑢, and 𝑢 is added to 𝑉𝑠𝑢𝑏 . Secondly, a neighbor
vertex 𝑢 ′ of 𝑢 is randomly chosen to replace 𝑢 in 𝐹𝑆 . Finally, after
𝑛 times repetitive execution of the above operations, we have got
𝐺𝑠𝑢𝑏 constructed. This sampling method is more complex and time-
consuming. C-SAW [27] proposes a Bipartite Region Search to
implement random walk based samplers. As shown in Algorithm 2,
Bipartite Region Search re-calculates the edge selection probabil-
ity on the changed 𝐹𝑆 . One drawback of this method is that it is
designed for individual sampling only. For multiple sampling (i.e.,
multiple vertex replacements in 𝐹𝑆), it needs many efforts. In spe-
cific, there will need 𝑂 (𝑛) time complexity on average for each
sampling with 𝑛 as the size of 𝐹𝑆 .

2.4 Challenges

In the following, we will elaborate on the three challenges men-
tioned in Section 1, namely sampling performance challenge, train-
ing speed challenge, and scalability challenge on multi-GPUs.

Sampling performance challenge: The goal is to accelerate
GNN training without loss of accuracy. For node-wise and layer-
wise sampling, to sample a neighbor of each vertex, current works
firstly generate a random number and then use the current sam-
pling algorithms such as the alias method [21] and ITS [24] to
sample a neighbor of this vertex. If the sampled vertex is already
selected, it needs to repeat the selection procedure until getting

Algorithm 2 Bipartite Region Search.
1: Generate a random number 𝑟
2: Use 𝑟 to select a vertex in FS. If the vertex has not been selected,

done. Otherwise, the region that 𝑟 falls into corresponds to a
pre-selected vertex. Assume the boundary of this region in FS
is (𝑙, ℎ).

3: Let _ ← 1/(1 − (ℎ − 𝑙)), 𝛿 ← ℎ − 𝑙
4: 𝑟 ← 𝑟/_
5: if 𝑟 < 𝑙 then

6: Search 𝑟 in (0, 𝑙)
7: else
8: 𝑟 ← 𝑟 + 𝛿 and search 𝑟 in (ℎ, 1)
9: end if

an unselected neighbor. Apparently, this repetitive sampling be-
havior will cause heavy sampling overhead for a large number
of sample vertices, i.e., each sampling process takes up to 𝑂 (𝑛)
time complexity with 𝑛 denoting the sampling space. For subgraph
sampling, C-SAW [27] uses the Bipartite Region Search (BRS) to
optimize. However, BRS still needs up to 𝑂 (𝑛) time complexity for
each sampling process.

Training speed challenge: Someworks like DynamicTriad [49],
HTNE [52], and EvolveGCN [28], train the snapshots of the stream-
ing graph will suffer from the high overhead of incremental neural
network updating and high overhead of models training. Some
RNN-based works such as DyGNN [23] and JODIE [16] reduce the
the former overhead but still do not regard the latter. All these
works do not support multi-GPU training, resulting in low through-
put of training, e.g., their throughput (calculated by dividing the
number of labeled edges by the time per epoch) is as low as only
34K edges/s while the throughput of T-GCN is up to 815.7K edges/s.

Scalability challenge: Current streaming GNN models focus
on accuracy other than on speed and scalability of multi-GPU train-
ing. More importantly, current multi-GPU training frameworks
do not demonstrate good scalability. For instance, NeuGraph [22]
proposes to partition graph with a graph schedule strategy, but still
has much communication overhead due to the data locality prob-
lem and can not make full use of fast GPU-GPU communication.
DGL-KE [48] stores parameters in the CPU memory and uses syn-
chronous training on GPUs by mini-batches. However, DGL-KE has
low GPU utilization (nearly 10%), caused by the large data transfer
between GPU and CPU. PyTorch-BigGraph (PBG) [20] partitions
nodes into a set of disjoint parts, and stores them in the disk. During
training, it directly loads one or more partitions entirely into GPU
to avoid frequent data movement from disk to GPU. Nonetheless,
this also results in low GPU utility, only 30%, caused by data swap
between disk and GPU. Marius [25] introduces a buffer-aware edge
traversal algorithm to reduce disk I/O and improve GPU utilization.
However, this additional disk I/O and data movement will lead to
longer training time, i.e., 3.5 hours per epoch for the Twitter graph
training with 1.46 billion edges (throughput is only 115.9K edges/s).

Our objective: T-GCN proposes a novel sampling algorithm
Segment Its Search to address the sampling performance challenge.
We use the hybrid architecture to train the streaming graph neural
network models on multi-GPUs and propose a novel locality-aware
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Figure 3: Sampling algorithm example.

data partition, task schedule, and GPU memory management strat-
egy to solve the training speed and scalability challenges.

3 STREAMING GRAPH SAMPLING

To solve the sampling performance challenge, we propose a general
sampling method that efficiently deals with node-wise, layer-wise,
and subgraph sampling for general graphs. The core idea of our
sampling method is to leverage an efficient data structure Segment
Its Search, which is similar to the segment tree and binary tree,
to facilitate fast sampling. Figure 3 describes an example work-
flow of our Segment Its Search sampling. Each 𝑒𝑘 represents the
weight of the vertex or edge. For example, 𝑒𝑘 can represent the
degree of each vertex for subgraph sampling. For node-wise and
layer-wise sampling, 𝑒𝑘 can be 1 for unbiased sampling. Users can
customize 𝑒𝑘 for their self-defined sampling methods. Specifically,
for a fixed array (say the neighbor sets of node-wise sampling,
the neighbor sets of layer-wise sampling, or the frontier in sub-
graph sampling), we process a divide-and-conquer method by first
dividing the sum of edge sets {𝑒0, . . . , 𝑒7} into the sum of two sub-
sets: one is from the subset {𝑒0, . . . , 𝑒3} and the other from the
subset {𝑒4, . . . , 𝑒7}. Subsequently, these two sets can be further par-
titioned into four parts: {{𝑒0, 𝑒1}, . . . , {𝑒6, 𝑒7}}. Having got the sum
array determined, replacing edge 𝑒4 will change the sum values
of {{𝑒4}, {𝑒4, 𝑒5}, {𝑒4, 𝑒5, 𝑒6, 𝑒7}, {𝑒0, . . . , 𝑒7}}. On query, the process
will be (1) firstly generating a random number 𝑟 , and (2) then check-
ing which edge sets it falls into from top to bottom. For example, if 𝑟
lies in the edges set {{𝑒𝑖 , . . . , 𝑒 𝑗 }}, we can figure out that 𝑟 falls into
{𝑒𝑖 , . . . , 𝑒 (𝑖+𝑗)/2} or {𝑒 (𝑖+𝑗)/2+1, . . . , 𝑒 𝑗 }. If 𝑟 is in the second edge
set, we set 𝑟 to 𝑟 − (∑𝑘≤(𝑖+𝑗)/2

𝑘=𝑖
𝑒𝑘 ) and then search into the set,

which will be further split into halves. The search continues until
meeting the final edge set that contains only one edge 𝑒𝑤 . The data
structure Segment Its Search needs to maintain the influenced edge
sets accordingly. Specifically, the weight of all edge sets contain-
ing the sampled edge 𝑒𝑤 needs to be updated. For node-wise and
layer-wise sampling, we subtract the weight by𝑊𝑒𝑖𝑔ℎ𝑡 (𝑒𝑤). For
subgraph sampling, we set 𝑑𝑒𝑔(𝑣𝑤) to the corresponding vertices
in the frontier, where 𝑑𝑒𝑔(𝑣𝑤) is the degree number of vertice 𝑣𝑤 .

Algorithm 3 shows the workflow of the sampling process. The
Build function is to build a binary tree by calculating the range
sum array of the candidate vertices set V. For each range [𝐿, 𝑅], it
will create a node with the sum of vertices’ weights in this range
which is represented as V[𝐿] .𝑤𝑒𝑖𝑔ℎ𝑡 and the node will connect to
its left node in the range [𝐿, 𝐿+𝑅

2 ] and to the right node in the range
[ 𝐿+𝑅2 + 1, 𝑅]. The Search function is to search the sampled vertex

Algorithm 3 Workflow of Segment Its Search sampling.
1: function Build(V, 𝐿, 𝑅)
2: if 𝐿 == 𝑅 then

3: 𝑇 = 𝑁𝑈𝐿𝐿

4: 𝑇 .𝑠𝑢𝑚 = V[𝐿] .𝑤𝑒𝑖𝑔ℎ𝑡
5: Return 𝑇

6: end if

7: 𝑇 = 𝑁𝑈𝐿𝐿

8: 𝑇 .𝑙𝑒 𝑓 𝑡 = 𝐵𝑢𝑖𝑙𝑑 (V, 𝐿, 𝐿+𝑅2 )
9: 𝑇 .𝑟𝑖𝑔ℎ𝑡 = 𝐵𝑢𝑖𝑙𝑑 (V, 𝐿+𝑅2 + 1, 𝑅)
10: 𝑇 .𝑠𝑢𝑚 = 𝑇 .𝑙𝑒 𝑓 𝑡 .𝑠𝑢𝑚 +𝑇 .𝑟𝑖𝑔ℎ𝑡 .𝑠𝑢𝑚
11: end function

12: function Search(𝑟𝑜𝑜𝑡 , 𝐿, 𝑅, 𝑔)
13: if 𝐿 == 𝑅 then

14: Return 𝐿

15: end if

16: if 𝑔 > 𝑟𝑜𝑜𝑡 .𝑙𝑒 𝑓 𝑡 .𝑠𝑢𝑚 then

17: Return 𝑆𝑒𝑎𝑟𝑐ℎ(𝑟𝑜𝑜𝑡 .𝑟𝑖𝑔ℎ𝑡, 𝐿+𝑅
2 + 1, 𝑅, 𝑔 −

𝑟𝑜𝑜𝑡 .𝑙𝑒 𝑓 𝑡 .𝑠𝑢𝑚)
18: else

19: Return 𝑆𝑒𝑎𝑟𝑐ℎ(𝑟𝑜𝑜𝑡 .𝑙𝑒 𝑓 𝑡, 𝐿, 𝐿+𝑅
2 , 𝑔)

20: end if

21: end function

22: function Modify(𝑟𝑜𝑜𝑡 , 𝐿, 𝑅, 𝑝𝑜𝑠 , 𝑛𝑒𝑤_𝑠𝑢𝑚)
23: if 𝐿 == 𝑅 then

24: 𝑟𝑜𝑜𝑡 .𝑠𝑢𝑚 = 𝑛𝑒𝑤_𝑠𝑢𝑚
25: end if

26: if (𝐿 + 𝑅)/2 < 𝑝𝑜𝑠 then

27: 𝑀𝑜𝑑𝑖 𝑓 𝑦 (𝑟𝑜𝑜𝑡 .𝑟𝑖𝑔ℎ𝑡, 𝐿+𝑅
2 + 1, 𝑅, 𝑝𝑜𝑠, 𝑛𝑒𝑤_𝑠𝑢𝑚)

28: else

29: 𝑀𝑜𝑑𝑖 𝑓 𝑦 (𝑟𝑜𝑜𝑡 .𝑙𝑒 𝑓 𝑡, 𝐿, 𝐿+𝑅
2 , 𝑝𝑜𝑠, 𝑛𝑒𝑤_𝑠𝑢𝑚)

30: end if

31: 𝑟𝑜𝑜𝑡 .𝑠𝑢𝑚 = 𝑟𝑜𝑜𝑡 .𝑙𝑒 𝑓 𝑡 .𝑠𝑢𝑚 + 𝑟𝑜𝑜𝑡 .𝑟𝑖𝑔ℎ𝑡 .𝑠𝑢𝑚
32: end function

in the binary tree by binary search, i.e., if the sampled number 𝑔
is larger than the left node’s sum, 𝑔 will go to the right node and
then be replaced by 𝑔 − 𝑟𝑜𝑜𝑡 .𝑙𝑒 𝑓 𝑡 .𝑠𝑢𝑚. TheModify function is to
change the value of a certain position of the binary tree and then
update all nodes including this position. Actually, there will be up
to 𝑙𝑜𝑔(𝑉 ) nodes needed to be updated with 𝑉 is the vertex set.

On Sampling, the implementation of the sampling will be spe-
cialized for each type of sampling method. We take the node-wise
sampling as an example which is shown in Algorithm 4. For each
sampling on a certain vertex set V, it first creates the binary tree 𝑇
by Building function. For the next 𝑛 times sampling, it generates
a random number 𝑔 and searches the sampled edge in V by means
of binary searching 𝑔 in 𝑇 . The parameter 𝑛 decides the sampled
size which is user-customizable and is set to half of the neighbor
size in our evaluations. The sampled vertices are recorded in the
vertex set 𝑃 , same as ITS [24]. For the main sampling process which
samples batches for training, Sample_batch collects all batches
from the current dataset. It first generates a vertex set from a vertex
𝑣 as the root and samples neighbors of vertices in the previous
layers on each layer of GNNs. The network depth in Algorithm 4 is
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Algorithm 4 Node-wise sampling.
1: function Sample(V, 𝑛)
2: 𝑇 = 𝐵𝑢𝑖𝑙𝑑 (V, 1, ∥V∥)
3: 𝑃 = 𝑁𝑈𝐿𝐿

4: while 𝑛 > 0 do

5: generate a random number 𝑔
6: 𝐿 = 𝑆𝑒𝑎𝑟𝑐ℎ(𝑇, 1, ∥V∥, 𝑔)
7: 𝑀𝑜𝑑𝑖 𝑓 𝑦 (𝑇, 1, ∥V∥, 𝐿, 0)
8: 𝑃 = 𝑃 ∪ V[𝐿]
9: 𝑛 = 𝑛 − 1
10: end while

11: Return 𝑃

12: end function

13: function Sample_batch(𝑉 , 𝑛)
14: 𝐵𝑎𝑡𝑐ℎ_𝑠𝑒𝑡 = 𝐸𝑚𝑝𝑡𝑦

15: for 𝑒𝑎𝑐ℎ 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 𝑖𝑛 𝑉 do

16: 𝐵 = 𝐸𝑚𝑝𝑡𝑦

17: 𝑃 = 𝑣

18: for 1 𝑡𝑜 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑑𝑒𝑝𝑡ℎ do

19: V = 𝐸𝑚𝑝𝑡𝑦

20: for 𝑒𝑎𝑐ℎ 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 𝑖𝑛 𝑃 do

21: V = V ∪ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜 𝑓 𝑣
22: end for

23: 𝑛 = 𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑠𝑖𝑧𝑒 for the current depth
24: 𝑃 = Sample(V, 𝑛)
25: 𝐵 = 𝐵 ∪ 𝑃
26: end for

27: 𝐵𝑎𝑡𝑐ℎ_𝑠𝑒𝑡 = 𝐵𝑎𝑡𝑐ℎ_𝑠𝑒𝑡 ∪ 𝐵
28: end for

29: Return 𝐵𝑎𝑡𝑐ℎ_𝑠𝑒𝑡 ;
30: end function

the number of graph convolutional layers in GNNs. The sampled
vertices and edges will be viewed as a batch 𝐵 and all batches 𝐵
constitute the batch set 𝐵𝑎𝑡𝑐ℎ_𝑠𝑒𝑡 . Layer-wise sampling adopts the
same Sampling function with node-wise sampling.

Algorithm 5 gives the pseudocode of our subgraph sampling. The
Sampling function will sample a subgraph of 𝑛 vertices with𝑚 be-
ing the frontier array size in Section 2.3. Compared with node-wise
sampling in Algorithm 4, the main difference is the introduction of
the Modify function, which replaces the current sampled vertex
𝐹𝑆 [𝐿] in the frontier 𝐹𝑆 with the sampled neighbor 𝑣 ′ of 𝐹𝑆 [𝐿].
Finally, the 𝑆𝑎𝑚𝑝𝑙𝑒_𝐵𝑎𝑡𝑐ℎ function will generate 𝑆 subgraphs with
each inserted into 𝐵𝑎𝑡𝑐ℎ_𝑠𝑒𝑡 .

Sampling Complexity Analysis: The sampling overhead of
Segment Its Search includes the overhead from the query and mod-
ify operations. For a query operation, since the Search function
is similar to the binary search, the time complexity of the query
operation is𝑂 (𝑙𝑜𝑔(𝑛)), where 𝑛 is the size of the setV. For a modify
operation, Segment Its Search also needs 𝑂 (𝑙𝑜𝑔(𝑛)) time complex-
ity. Therefore, the total time complexity of Segment Its Search is
𝑂 (𝑙𝑜𝑔(𝑛)) too. In contrast, both ITS [24] and BRS [27] need nearly
𝑂 (𝑛) time complexity. Not only this, Segment Its Search will not
suffer from repetitive sampling problems because Segment Its Search
can change the probability distribution of sampling by the Modify

Algorithm 5 Subgraph sampling.
1: function Sample(𝑉 , 𝑛,𝑚)
2: 𝐹𝑆 = randomly select𝑚 vertices from 𝑉

3: 𝑉𝑠𝑢𝑏 = 𝑁𝑈𝐿𝐿

4: 𝑇 = 𝐵𝑢𝑖𝑙𝑑 (𝐹𝑆, 1, ∥𝐹𝑆 ∥)
5: while 𝑛 > 0 do

6: generate a random number 𝑔
7: 𝐿 = 𝑆𝑒𝑎𝑟𝑐ℎ(𝑇, 1, ∥𝐹𝑆 ∥, 𝑔)
8: 𝑉𝑠𝑢𝑏 = 𝑉𝑠𝑢𝑏 ∪ 𝐹𝑆 [𝐿]
9: 𝑣 ′ = sample a neighbor of 𝐹𝑆 [𝐿]
10: 𝑀𝑜𝑑𝑖 𝑓 𝑦 (𝑇, 1, ∥𝐹𝑆 ∥, 𝐿, 𝑑𝑒𝑔(𝑣 ′))
11: 𝐹𝑆 [𝐿] = 𝑣 ′

12: 𝑛 = 𝑛 − 1
13: end while

14: Return 𝑉𝑠𝑢𝑏
15: end function

16: function Sample_batch(𝑉 , 𝑆 , 𝑛,𝑚)
17: 𝐵𝑎𝑡𝑐ℎ_𝑠𝑒𝑡 = 𝐸𝑚𝑝𝑡𝑦

18: for 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 [1, 𝑆] do
19: 𝐵𝑎𝑡𝑐ℎ_𝑠𝑒𝑡 = 𝐵𝑎𝑡𝑐ℎ_𝑠𝑒𝑡 ∪ 𝑆𝑎𝑚𝑝𝑙𝑒 (𝑉 , 𝑛, 𝑚)
20: end for

21: Return 𝐵𝑎𝑡𝑐ℎ_𝑠𝑒𝑡 ;
22: end function

function. Thanks to the logarithmic time complexity, our Segment
Its Search has good scalability.

4 HYBRID ARCHITECTURE OF T-GCN

Some works provide computing frameworks for GNNs such as
DGL [36], AliGraph [50], and PyTorch-BigGraph [20]. These works
are designed for the distributed GNN environment with a large
communication effort. Some works are designed for single-machine
GNN systems such as HyGCN [42] which employs a hybrid ar-
chitecture (GPU HBM+CPU memory). However, HyGCN only im-
plements inference, excluding training, for GNNs, and therefore
lacks a foremost functionality of GNN learning systems. Meanwhile,
HyGCN merely uses a single GPU and does not provide an efficient
data loading strategy that can exploit NVLink, an important com-
munication technique for multi-GPU training. Hence, HyGCN does
not take full advantage of hardware benefits.

Similar to HyGCN, T-GCN also uses a hybrid CPU-GPU co-
processing architecture but provides support for both training and
inference of GNNs. This hybrid architecture combines GPU HBM
with CPU memory to address the problem that graph datasets
and intermediate embeddings (or activations) cannot be fully con-
tained in a single GPU HBM. The basic idea is to partition the data
into several parts and store them in different hardware memory
spaces. However, this incurs data transfer overhead, and how to
optimize the data locality to reduce the total data loading over-
head is a challenge for current researchers. In this paper, we put
forward a locality-aware data partitioning method to improve CPU-
GPU communication efficiency and introduce an NVLink-specific
task schedule to fully exploit the power of NVLink hardware and
thereby increase GPU-GPU communication speed. Furthermore,
we introduce an efficient memory management mechanism to facil-
itate pipelining execution of computation and communication, thus
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Figure 4: Data partition strategy.

improving scalability while hiding data communication. Figure 4
illustrates the architecture of T-GCN. Firstly, T-GCN samples the
graph in CPU and stores the sampled data in the memory, where the
sampled data is partitioned by three dimensions, and the specific
partitioning procedure will be discussed in the following. Subse-
quently, T-GCN loads each partitioned data into GPU for multi-GPU
training. On training, the node embedding is partitioned and stored
across multiple GPUs.

To deal with the training speed and scalability challenges dis-
cussed in Section 2.4, we propose the locality-aware data partition-
ing, task schedule, and pipeline to improve multi-GPU training
performance and achieve good scalability.

4.1 Locality-Aware Data Partition

In T-GCN, we provide an efficient locality-aware data partition-
ing method, which is based on three dimensions: the first is a time
dimension, the second is the source vertex dimension and the third
is the destination vertex dimension. In other words, after the time
dimension is partitioned, the left is the same as the 2D partition
strategy used in traditional graph processing systems [46, 51]. As
shown in Figure 4, for each time interval (range of time instance),
multiple GPUs are used for training with the edges in the current
time interval. The input node embeddings (𝐸𝑣𝑠 (𝑡−) and 𝐸𝑣𝑔 (𝑡−) in
Section 2.2) are the results from the training procedure correspond-
ing to the previous time interval. A training procedure is conducted
based on the edges of the current time interval to compute new
embeddings for the nodes affected by these edges and update neural
network parameters. With our partitioning method, we do not need
to pay attention to the interaction between different time intervals.
Instead, we only need to care about multi-GPU training within each
time interval. Because three dimensions of the partition strategy
will not be affected by degrees, the partition strategy will also not
be impacted by the vertex degree distribution of the graph dataset,
e.g, power-law degree distribution.

Data Storage: GNN learning stores more data than traditional
graph processing systems, including graph data, node embedding,
and neural network parameters. The partitioned dataset is stored
in CPU DRAM. Each GPU will load the grid, assigned to itself, into
its device memory. Some works such as NeuGraph [22] also use
the 2D partition but place the node embedding in the CPU memory.
In particular, NeuGraph focuses on full-batched training and thus
is not suitable for streaming GNNs. To reduce communication, we
store the node embedding in GPUHBM and allow each GPU to store
an interval of node embedding. In specific, a GPU will deal with
all grids with source vertices within the interval assigned to itself.

GPU1

GPU2

GPU0

GPU3

GPU4

GPU7

GPU5

GPU6

Figure 5: NVLink components.

For example, because the nodes {𝑢1, . . . , 𝑢𝑖 } are stored in GPU 0, all
edges (𝑢 𝑗 , 𝑣, 𝑡) with 1 ≤ 𝑗 ≤ 𝑖 will be trained in GPU 0. Each GPU
does not need to store the time instance for each node because the
time instances are stored in edges. As mentioned above, edges are
organized and trained in grids (refer to Figure 4). Hence, for each
GPU, it will access to destination vertices’ embedding by on-the-fly
transferring from corresponding GPUs via NVLink. As for neural
network parameters, they are stored in GPUs and updated in the
same way as the traditional synchronized multi-GPU training.

4.2 Task Schedule

We provide an NVLink-specific task schedule to reduce addi-
tional NVLink communication caused by data transfer between any
pair of GPUs in 8-GPU training. In our 8-GPU computer, the first
four GPUs are fully-connected and form a group, while the other
four GPUs are fully-connected and form another group. For any
pair of GPUs in the same group, the communication overhead is
only one NVLink hop. However, for any pair of GPUs from different
groups, this overhead will double. In this regard, it would be good
to avoid 2-hop inter-group communication during computation.
In addition, for eight V100 GPUs, there are two NVLink channels
between specific GPUs. This means that we can parallelize node
embedding transfer by means of two NVLink channels. In other
words, an embedding vector can be transferred by two NVLinks
in parallel, e.g., for a 128-length embedding vector, we allow one
NVLink channel to process the first 64 elements of the vector and
the other to process the remaining. Therefore, besides reducing
inter-group communication as mentioned above, it is also important
to maximize the use of two NVLinks between GPUs, where some
exist in inter-group GPUs and some in intra-group GPUs. Figure 5
illustrates the NVLink connections in our 8-GPU computer, which
forms the root cause of our NVLink-specific task schedule.

We can schedule the training task to optimize the communication
because each GPU theoretically needs to get all intervals of node
embedding for the training procedure corresponding to any time
interval. As mentioned above, each GPU has a fixed vertex interval
and this GPU will deal with all edges whose source vertices are in
this interval but with destination vertices distributed across GPUs.
This means, for example, if GPU 0 stores embedding of all nodes
in the range of [0, 𝑘], it will process all edges with source vertices
in [0, 𝑘] while the destination nodes are determined by grids. In
this regard, we can name a range of destination vertices as a task
and schedule the training by rearranging the order of tasks across
multiple GPUs. Specifically, we label all eight GPUs from 0 to 7
and allow the 𝑖-th GPU to store vertices in the 𝑖-th vertex interval.
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Algorithm 6 Task Schedule.
1: for 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 [0, 4) do
2: Swap node embedding of GPU0 and GPU1
3: Swap node embedding of GPU2 and GPU3
4: Swap node embedding of GPU4 and GPU5
5: Swap node embedding of GPU6 and GPU7
6: Training GPU 0-7
7: Swap node embedding of GPU0 and GPU4
8: Swap node embedding of GPU1 and GPU2
9: Swap node embedding of GPU3 and GPU7
10: Swap node embedding of GPU5 and GPU6
11: Training GPU 0-7
12: end for

If task 𝑗 is assigned to 𝑖-th GPU, it will deal with the destination
vertices in the 𝑗-th vertex interval and process the corresponding
grid, i.e., the grid with source vertices in the 𝑖-th vertex interval
and destination vertices in the 𝑗-th vertex interval. At initialization,
the task assignment vector for GPUs 0 ∼ 7 will be {0, . . . , 7}. Then,
we will change the task assignment to guide the node embedding
swapping between inter-group GPUs and intra-group GPUs. The
details will be explained below.

As shown inAlgorithm 6, firstly, our schedule swaps node embed-
ding (swapping destination vertices embedding, but keeping source
vertices embedding unmoved for all GPUs) between intra-group
GPUs (lines 3-5) and trains the model with the newly swapped data.
Secondly, our schedule swaps node embedding between inter-group
GPUs (GPU 0 and GPU 4, GPU 3 and GPU 7, lines 7-10) and then
trains the model likewise. After repeating this procedure four times,
each GPU has got all node embedding and has trained the model
with the corresponding edge data located in its device memory.
For eight V100 GPUs, our schedule can not only eliminate 2-hop
NVLink communication but also maximize the use of two NVLink
channels available between certain GPUs.

4.3 Pipeline and GPU Memory Management

Pipelining is a widely used technique to achieve better perfor-
mance. In our multi-GPU training, two types of communication are
involved, i.e., PCIe and NVLink, as mentioned above. As both types
of communication are realized by different hardware interfaces, it
is viable and feasible to directly pipeline them. Moreover, commu-
nication can also be overlapped with the computation of neural
networks. However, there exists data competition for GPU device
memory. For example, as mentioned above, neural network param-
eters are stored in GPU memory. In this regard, the data transferred
from CPU to GPU via PCIe will compete for device memory with
the neural network parameters. Additionally, node embeddings will
also compete with the graph dataset and the parameters. Therefore,
there is a necessity to develop a memory management mechanism
to properly manage data competition for efficient pipelining.

T-GCN divides the device memory of each GPU into three com-
ponents. The first component stores neural network parameters
and a certain interval of node embedding. The second component
stores the current training data, including edges of the current grid
and the corresponding destination vertices embedding. Note that

Algorithm 7 T-GCN’s Workflow.
1: function Main(𝐸)
2: 𝐸 ′=Sampling(𝐸)
3: 𝑔𝑟𝑖𝑑0, . . . , 𝑔𝑟𝑖𝑑𝑛 = 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝐸 ′)
4: 𝐺𝑖𝑟𝑑𝑠 = {𝑔𝑟𝑖𝑑0, . . . , 𝑔𝑟𝑖𝑑𝑛}
5: for each grid in 𝐺𝑟𝑖𝑑𝑠 do
6: 𝑇𝑟𝑎𝑖𝑛(𝑔𝑟𝑖𝑑,𝐺𝑃𝑈 _𝑛)
7: end for

8: end function

according to our data partitioning, a GPU will store a certain inter-
val of source vertices embedding as mentioned above. To train a
grid, it will need the embedding of both the source and destination
vertices, where the destination vertices embedding will be obtained
by data swapping via NVLink. The third component is used to store
the next training data, which has the same data format as the second
component and is determined by the task assignment vector in our
task schedule as described in Section 4.2. The second component is
exchangeable with the third one, working similarly to a ping-pong
buffer. In other words, after finishing the current step, the second
component will point to the storage of the third component and
proceed to store the data demanded by the next step, while the third
component will point to the storage of the second component and
serve as the new current training data. This way, training, and data
transfer can be pipelined without any data competition. Not only
this, the pipeline is a general approach designed for multi-GPUs
and is suitable for different GPU configurations.

5 PROGRAMMING INTERFACE

In this section, we will present the programming interface for
streaming GNN learning with T-GCN. Different from edge-centric
or vertex-centric, which is widely used in traditional graph process-
ing systems [19, 31, 51, 51], our LSTM-based training method can’t
be easily dealt with by the above programming models because the
node embedding is trained by neural networks other than aggre-
gated by edges or vertices as done in traditional graph processing
or static GNNs.

The programming interface includes the sampling process and
the training process, while sampling has not been investigated
by current temporal-aware streaming GNNs [23, 35]. As seen in
Algorithm 7, for each training step, it first samples edges from
the original dataset and then partitions the sampled dataset into
different parts (grids), as described in Section 4.1. Secondly, it trains
each partitioned dataset through different GPUs. The main APIs
are 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(), 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(), and 𝑇𝑟𝑎𝑖𝑛(). 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔() is used to
sample the original dataset to get a sampled dataset (i.e., edges sets
for node-wise/layer-wise sampling and subgraph sets for subgraph-
based sampling), and users are allowed to rewrite this interface with
certain application-specific sampling methods. 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛() is used
to partition the sampled dataset into different parts, represented as
𝐺𝑟𝑖𝑑𝑠 , to match the requirement of our multi-GPU training. Refer
to Section 4.1 for the detailed partitioning procedure. Finally, after
data partitioning, one grid will be loaded into one GPU to start
training the GNNmodel defined by users with𝑇𝑟𝑎𝑖𝑛(). The𝐺𝑃𝑈 _𝑛
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parameter in 𝑇𝑟𝑎𝑖𝑛() represents the setting of GPU numbers for
multi-GPU training.

6 EVALUATION

6.1 Experimental Setup

6.1.1 Evaluation Environment. We perform the experiments on
an NVIDIA DGX server with eight V100 GPUs. Each GPU has 80
Streaming Multiprocessors, 32GB global memory, and 768KB L2
cache. The system also consists of two 64-core Intel(R) Xeon(R)
CPU Platinum 8163 (2.5Hz), and 256GB DDR4 main memory, run-
ning with Ubuntu 16.04 (kernel 4.15.0) and CUDA 10.0. Each GPU
supports four NVLink link slots, in which two links are connected
via NVLink-V2 and the other two links are via NVLink-V1. T-GCN
implements sampling methods in C++ and GNNs in PyTorch [29].

Table 1: Real-world temporal graph datasets.

Graph Vertices (|𝑉 |) Edges (|𝐸 |) 𝐴𝑣𝑔(𝐷) Feature |𝐹 |
Lastfm 7K 1.3M 364.3 39
Reddit 10K 672K 67 150
Flickr 2.3M 33.1M 28.8 10
Twitter 41.6M 1.47B 74.6 1

6.1.2 Benchmark. We select four popular benchmarks fromKoblenz
Large Network Collection [17] for our evaluation. Different from
the static graph context, we assign each edge from the graph with
a random timestamp value from a chosen range of the time period.
Same with DyGNN and JODIE, edges with the assigned timestamp
value are further categorized into several constant range partitions.
The datasets are standard datasets that are used widely in temporal
graph engines [39, 40]. Specifically, a temporal graph is usually
created by continuously collecting incoming temporal edges, and
edges are streaming with the increase of their starting time.

The main attributes of these graphs are listed in Table 1, where
𝐴𝑣𝑔(𝐷) represents the average vertex degree. They are especially
important attributes for applications whose processing overhead
can be significantly affected by the vertex degrees such as the
sampling speedup. The degree distribution is power-law for each
graph. Since parameter𝑛 in Algorithm 4 is set to half of the neighbor
size, the sampling of T-GCN does not affect the degree distribution.

The graph data is stored in the CPU memory following the CSR
format which is widely used in graph processing engines [18, 32, 51].
The embedding of nodes is partitioned by the locality-aware data
partition strategy and stored in GPUs.

6.1.3 Evaluation Methodology. The evaluation uses node classifi-
cation and link prediction as applications. Both of them are very
popular applications for GNNs and other applications are simi-
lar to them since the core of them all is generating node or edge
embeddings by GNNs.

The learning parameters are set the same as DyGNN [23], e.g.,
80% of the edges are used for training, 10% of the edges for valida-
tion, and the rest for testing. The parameters of all deep models are
set consistently. The number of hidden layers is 2, where the size of
each layer is set to 64. The gradients of all trainable parameters are
managed by PyTorch and T-GCN stores the global gradient values

as additional caching buffers in GPU global memory. Different from
static GNN, each streaming update in T-GCN is only updating a
small part of the graph. Meanwhile, considering each streaming
update is only based on a sampled gradient, T-GCN reduces the
GPU memory requirement via utilizing mini-batched SGD, and
conducting several updates for each epoch.

Evaluation is conducted from five perspectives: end-to-end per-
formance, sampling performance, runtime piecewise breakdown,
GPU device memory overhead, and multi-GPU scalability. The
end-to-end performance is indicated by the total execution time
including graph sampling and GPU training time. For the runtime
piecewise breakdown, we show the corresponding efficiency of our
sampling method Segment Its Search, task schedule, and memory
management (described in Section 4). Note that data partitioning is
used to solve the out-of-memory problem encountered by a single
GPU and thus its efficiency cannot be evaluated as a single GPU
cannot entirely store graph data (including edges data) and node
embedding in device memory.

6.2 End-to-End Performance Comparison

Firstly, we conduct an end-to-end performance comparison be-
tween two state-of-the-art streaming GNNs, i.e., DyGNN [23] and
JODIE [16], and our proposed system T-GCN. Since DyGNN and
JODIE only support a single GPU, we benchmark T-GCN on one
and eight GPUs to show its good scalability. Experimental results
demonstrate that T-GCN significantly outperforms the two counter-
parts. As shown in Figure 6, on a single GPU supported, T-GCN runs
2.6 ∼ 5.1× faster than DyGNN and 2.8 ∼ 7.9× faster than JODIE.
The geometric average speedup of T-GCN than DyGNN and JODIE
are 3.3× and 4.6×, respectively. Note that GPU is not fully utilized
on the three relatively small datasets (i.e., Flickr, Lastfm, and Reddit).
However, on the largest Twitter dataset, T-GCN finishes training in
9237.4 seconds, whereas both DyGNN and JODIE failed because of
the out-of-GPU-memory error caused by their inefficient memory
allocation and lack of efficient sampling strategy. For the through-
put, DyGNN and JODIE have only 34K edges/s and 60.5K edges/s
respectively, while the throughput of T-GCN is 815.7K edges/s.
This is because T-GCN can support multi-GPU training with good
scalability while DyGNN and JODIE do not.

DyGNN and JODIE are both implemented upon PyTorch [29]
through converting irregular graphs to regular tensors, which has
to deal with massive padding space. Thus, the tensor conversion
operation makes them hard to scale to large temporal graphs, even
causing errors on small graphs using the same evaluation configura-
tion. Moreover, they still run multiple times slower than T-GCN as
mentioned above. The reasons for achieving efficient large stream-
ing graph training behind T-GCN mainly come from two folds. On
one hand, the efficient node-wise, layer-wise, and subgraph sam-
pling methodology for general graphs makes our sampler much
faster than others. By introducing Segment Its Search data structure,
T-GCN facilitates fast sampling and directly converts inputs into a
training module. On the other hand, via maximizing memory uti-
lization of GPUs, T-GCN achieves efficient locality-aware streaming
data allocation during our streaming GNN training.
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Figure 6: End-to-end performance comparison between

DyGNN (1GPU), JODIE (1GPU) and T-GCN (1GPU & 8GPU)
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(a) Node-wise sampling (2-layer).
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(b) Node-wise sampling (3-layer).
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(c) Layer-wise sampling.
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(d) Subgraph sampling.

Figure 7: Sampling evaluation on different sampling meth-

ods, i.e. node-wise sampling (2-layer and 3-layer), layer-wise

sampling, and subgraph sampling.

6.3 Sampling Method Optimization

Secondly, we provide an evaluation of the sampling process. As
shown in Section 3, for the node-wise and layer-wise sampling, we
compare Segment Its Search (SIS) to the ITS [24] that is a state-of-
the-art sampler. For the subgraph sampling, we compare the perfor-
mance of SIS with the Bipartite Region Search [27] (BRS) which is
designed for subgraph sampling. The evaluation is executed on the
four datasets in Table 1. Figure 7 shows the performance evaluation
of three sampling algorithms, i.e., node-wise sampling (2-layer and
3-layer), layer-wise sampling, and subgraph sampling.

For the node-wise and layer-wise sampling, we sample 50% edges
of the original dataset to form the train set, while current works
usually fix the sampling size per layer to a small value, thus not
suitable for large power-law graphs. For the subgraph sampling,
we set the frontier size as 104, the subgraph size as |𝐸 |100 , and the

SIS
ITS
BRS

Av
er

ag
e 

sa
m

pl
in

g 
tim

e 
(u

s)

0.1

1

10

Size of the sampling space (n).
n=1k n=10k n=100k n=1M

Figure 8: Scalability of different sampling algorithms.

number of subgraphs as 100 (described in Section 3), similar to the
usage in GraphSAINT [45]. For the node-wise sampling, when the
layer is two, SIS can achieve 5.4 ∼ 11.9× speedup and is observed to
yield higher speedups on the datasets with larger degree numbers.
The speedup comes from the sampling complexity improvement as
shown in Section 7. When the layer is three, the running time is
large because the total sampling overhead is exponential to the 2-
layer sampling. SIS can achieve 12.1 ∼ 26.7× speedup on the 3-layer
node-wise sampling. Layer-wise sampling has a small sampling
overhead because it only needs sampling neighbors of each vertex.
Although the total run time is small, SIS can still achieve 2 ∼ 4.5×
speedup. The subgraph sampling also takes a smaller sampling
overhead than the node-wise sampling but has a larger sampling
overhead than layer-wise. For subgraph sampling, SIS can achieve
up to 7.1 ∼ 38.8× speedup in the four datasets.

Figure 8 shows the scalability of SIS, ITS, and BRS under dif-
ferent sampling space sizes (n) which represents the size of V in
Algorithm 3. Figure 8 reports the average sampling time of a sin-
gle sampling operation. We can see that SIS has better scalability
than other sampling algorithms. When the sampling space becomes
larger, the average sampling time of SIS merely increases a little.
However, the average sampling time of ITS and BRS grows a lot
with the increase of the sampling space.

6.4 Accuracy Comparison

Thirdly, we further compare T-GCN and DyGNN [23] with respect
to node classification accuracy. Since DyGNN is more accurate
than JODIE [16], we exclude JODIE from this comparison. The
accuracy is computed by dividing the number of correct predictions
by the total number of predictions. The test datasets give the ground
truth and the best accuracy is obtained if the predicted class of
each node equals its true class. Given a dataset, the test dataset
is created by randomly sampling a fraction of nodes and splitting
them from it. For the configuration, we divide the entire timestamp
duration of datasets to a constant (default to 11) number of pieces
according to the timestamp distribution. Figure 9 illustrates the
accuracy comparison in the function of continuous-time duration
steps. From the results, T-GCNmaintains good accuracy results over
time duration on each dataset. Even with the sampling, T-GCN does
not lose any accuracy and even has better accuracy, because the
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used samplingmodels such as the node-wise sampling and the layer-
wise sampling are widely used in GNNs such as GraphSAGE [8] and
FastGCN [2] with good accuracy. Moreover, DyGNN cannot handle
the large Twitter dataset, whereas T-GCN can also achieve good
accuracy on it, thanks to our sampling method. We can conclude
that with the sampling algorithm and system-level optimizations,
T-GCN can handle large datasets without loss of accuracy.
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Figure 9: Accuracy evaluation.

6.5 Piecewise Breakdown Analysis of T-GCN

Table 2: Comparisons of IO and computation overhead.

Time(s) DyGNN T-GCN
Dataset IO Comp. Time IO Comp. Time
Lastfm 5.53 64.89 70.42 5.24 32.89 36.42
Reddit 24.30 143.93 168.23 25.80 83.53 99.84
Flickr 63.18 560.41 623.59 58.52 105.98 124.10
Twitter OOM OOM OOM 1603.90 9025.20 9273.05

Fourthly, T-GCN enables both sampling and training kernel opti-
mizations, which play important roles in achieving good end-to-end
performance as shown above, and it is of significance to analyze
how much each optimization contributes to the end-to-end time of
streaming GNN learning. For this ablation study, we first disable
SIS-based temporal graph sampling (Section 3), as well as Locality-
Aware Data Partition (Section 4.1) and pipeline task scheduling
described in Section 4.2. Then, we turn on these optimizations one
by one and measure the resulting speedups they brought. Mean-
while, we also profile the streaming GNN execution on GPUs with
nvprof to better understand the improvements.

Our ablation study shows that GNN training takes a large portion
of the total workload compared to host-device IO overhead. As
shown in Table 2, 83% ∼ 88% of the end-to-end time of streaming
GNN is spent on graph-structured training operations for DyGNN
and T-GCN (even with GPU accelerations). Compared to DyGNN,
the optimizations inT-GCN benefit from good task overlappingwith
better scheduling and reduce both I/O and computation overhead
significantly. Thus, the overall runtime of T-GCN is less than the I/O
time plus the computation time. Moreover, DyGNN’s incapability of
supporting relatively large graphs like Twitter highlights T-GCN’s

Table 3: Comparisons of memory usages.

Dataset DyGNN JODIE T-GCN
Lastfm 1529MB 1837MB 822MB
Reddit 1461MB 1201MB 826MB
Flickr 13562MB 17246MB 6580MB
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Figure 10: Scaling out streaming GNN with T-GCN.

better applicability to a wider range of real-world GNN applications.
Finally, the graph partition stage takes a very small part of the total
time, e.g., nearly 0.3% for Twitter.

6.6 Device Memory Overhead on a Single GPU

Fifthly, for training large-scale streaming GNNs, besides the perfor-
mance of training, the total memory usage is often necessary and
more important than the runtime, which will restrict the scale of
training graphs and also the system scalability. The memory usage
includes the memory needed for caching all the structural datasets
and the hidden units and values for many epochs. For the sake
of speedup training, T-GCN exploits data sampling for reducing
caching space and locality-aware data allocation to enhance the
GPU memory utilization. Table 3 compares the memory consump-
tion of the three systems: DyGNN, JODIE, and T-GCN. Considering
that both DyGNN and JODIE are unable to run on Twitter due to
OOM, we have excluded Twitter in this comparison. T-GCN is much
more memory efficient than the other two systems and achieves up
to 2.58× space-saving. In particular, on Lastfm DyGNN and JODIE
need 1529MB and 1837MB GPU device memory, respectively, but
T-GCN only utilizes 822MB memory.

6.7 Scalability on Multiple GPUs

Finally, we evaluate the scalability of T-GCN by varying the number
of GPUs in order to understand the performance of our scheduling
strategy. From our evaluation, T-GCN achieves efficient scalability
from one GPU to multiple GPUs by allowing each GPU to process a
streaming subgraph, fully considering NVLink-based peer-to-peer
(P2P) data communication and reducing the bandwidth contention
(detailed in Section 4.2). To evaluate the scale-up scalability over 8
GPUs, we conduct separate experiments by setting P2P disabled or
enabled, in order to understand the performance of our local-aware
data scheduling.

Figure 10 illustrates the evaluation results of T-GCN with P2P
enabled, where the speedup of T-GCN is 4.5 ∼ 5.8× in the function
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of 8 GPUs used compared to a single GPU. The average speedup is
5.2×. The benefit of P2P-based data movement is obvious. If P2P is
disabled, the speed even decreases when scaling from 1 GPU to 4
GPUs, and otherwise the average speedup improves to 2.8 ∼ 3.6×.
This is mainly because, when P2P is disabled, two GPUs within
the same PCIe switch need to load input edge/vertex data through
a shared link concurrently, which may easily cause bandwidth
contention and become the bottleneck. In contrast, enabling P2P
allows the second GPU to load vertex data directly from the first
one, alleviating the pressure on the shared PCIe link.

7 RELATEDWORK

Streaming graph embedding on large-scale graphs has become an
important research direction. However, most existing works have
not paid more attention to the performance issues. For the random
walks models such as CTDNE [26], EHNA [11], and CAW [38], they
have large overhead for processing new edges with incremental
updating especially on large graphs. For snapshot-based GNNs such
as DynamicTriad [49] and EvolveGCN [28], they have high training
complexity for training new edges with new time stamps. For LSTM-
based GNNs such as DyGNN and JODIE, they can train new edges
easier but still suffer from high training complexity. T-GCN not only
can provide new sampling methods with high efficiency to reduce
training overhead but also provide high-performance multi-GPU
training architecture with maximum use of inter-GPU networks.

There are some engines that have been proposed for static graph
embedding. For the random walk engines, KnightKing [43] intro-
duces a rejection sampling into high-order random walks, while
GraphWalker [37] proposes efficient random walks management
and graph loading strategy for out-of-core sampling. Unfortunately,
these random walk engines can not support streaming graph ran-
domwalks well because streaming graph randomwalks have higher
sampling dimensions and traditional sampling methods can not
provide efficient performance. For static GNN engines such as Neu-
Graph [22] and DGL-KE [48], they can deal with static graphs with
high performance but are not suitable to streaming graphs because
they do not support incremental learning and the new edges can
cause an overhead of re-training the model.

8 CONCLUSION

In this paper,T-GCN proposes an efficient samplingmethod Segment
Its Search together with a locality-aware data partitioning method,
and an NVLink-specific task schedule to accelerate streaming GNN
learning. Moreover, we further pipeline the computation and the
communication (i.e., both CPU-GPU and GPU-GPU communica-
tions) by introducing an efficient memory management mechanism,
to improve scalability while hiding data communication. In conclu-
sion, on the same hardware, T-GCN achieves up to 7.9× speedup
than state-of-the-art works as for end-to-end performance compar-
ison. In addition, T-GCN achieves a maximum of 38.8× speedup on
sampling through our Segment Its Search sampling method.
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