
T-GCN: A Sampling Based Streaming Graph Neural Network
SystemWith Hybrid Architecture

Chengying Huan
Tsinghua University
Baihai Technology Inc.

hcy@baihai.ai

Shuaiwen Leon Song
University of Sydney

leonangel991@gmail.com

Yongchao Liu
Ant Group

yongchao.ly@antgroup.com

Heng Zhang
Chinese Academy of Sciences
zhangheng17@iscas.ac.cn

Hang Liu
Stevens Institute of Technology

hliu77@stevens.edu

Charles He
Ant Group

changhua.hch@antgroup.com

Kang Chen
Tsinghua University

chenkang@tsinghua.edu.cn

Jinlei Jiang
Tsinghua University
jjlei@tsinghua.edu.cn

Yongwei Wu
Tsinghua University

wuyw@tsinghua.edu.cn

ABSTRACT

As many real-world applications are streaming and attached with
time instances, a few works have been proposed to learn streaming
graph neural networks (GNNs). Unfortunately, current streaming
GNNs are observed to have a large training overhead and suffer
from bad parallel scalability on multiple GPUs. These drawbacks
pose severe challenges to online learning of streaming GNNs and
their application to real-time scenarios. To improve training ef-
ficiency, one promising solution is to use sampling, a technique
widely used in static GNNs. However, to the best of our knowledge,
sampling has not been investigated in learning streaming GNNs.
Based on these observations, in this paper, we propose T-GCN,
the first sampling-based streaming GNN system, which targets
temporal-aware streaming graphs and takes advantage of a hybrid
CPU-GPU co-processing architecture to achieve high throughput
and low latency. T-GCN proposes an efficient sampling method,
namely Segment Its Search, to offer high sampling speed with re-
spect to three typical types of general graph sampling methods
(i.e., node-wise, layer-wise, and subgraph sampling). We propose a
locality-aware data partitioning method to reduce CPU-GPU com-
munication latency and data transfer overhead, and an NVLink-
specific task schedule to fully exploit NVLink’s fast speed and
improve GPU-GPU communication efficiency. Besides, we further
pipeline the computation and the communication by introducing an
efficient memory management mechanism, to improve scalability
while hiding data communication. Overall, with respect to end-to-
end performance, for single-GPU training, T-GCN achieves up to
7.9× speedup than state-of-the-art works. In terms of scalability,
T-GCN runs 5.2× faster on average with 8 GPUs than one GPU.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PACT ’22, October 10–12, 2022, Chicago, IL, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9868-8/22/10. . . $15.00
https://doi.org/10.1145/3559009.3569648

Additionally, in terms of sampling, T-GCN also yields a maximum
of 38.8× speedup with our Segment Its Search sampling method.

CCS CONCEPTS

• Computing methodologies→ Parallel algorithms.

KEYWORDS

Graph neural networks, GPU, Sampling
ACM Reference Format:

Chengying Huan, Shuaiwen Leon Song, Yongchao Liu, Heng Zhang, Hang
Liu, Charles He, Kang Chen, Jinlei Jiang, and Yongwei Wu. 2022. T-GCN:
A Sampling Based Streaming Graph Neural Network System With Hybrid
Architecture. In International Conference on Parallel Architectures and Com-
pilation Techniques (PACT ’22), October 10–12, 2022, Chicago, IL, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3559009.3569648

1 INTRODUCTION

Graph is an efficient information carrier and is widely used in
different real-world applications. Graph embedding has been used
in many applications such as graph classification [1, 6] and node
classification [8, 15], which are categorized into two types: Skip-
Gram models [30] and graph neural networks (GNNs) [8, 15, 34].
Compared with SkipGram, GNNs can efficiently capture nodes’
features and structures of graphs by machine learning techniques
and thus can get better prediction performance.

However, current works mostly focus on static graph learning
methods rather than streaming graph learning. Mostly real-world
graphs are evolving over time and are represented as streaming
edges. In these cases, edges in graphs will be attached with time
instances to show temporal information in real-world applications.
Furthermore, edges are in streaming formats and need to train the
model online with regard to new edges. For example, citation net-
works [11] are attached with time instance and grow with time. In
this case, there is a necessity to retrain the dynamic parts for some
models such as EHNA [11]. In addition, many other domains such
as e-commerce [47], education [16], and social networks [26] also
evolve with dynamic information. Some streaming graph learning
methods are proposed to solve updating problems of dynamic mod-
els by means of incremental training with no need of re-training

69

https://doi.org/10.1145/3559009.3569648
https://doi.org/10.1145/3559009.3569648
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3559009.3569648&domain=pdf&date_stamp=2023-01-27

PACT ’22, October 10–12, 2022, Chicago, IL, USA Chengying Huan et al.

but still suffer from large latency and low throughput problems.
Therefore, there are several challenges in training streaming GNNs.

The first challenge is sampling performance. Applying sam-
pling methods to GNN is important for performance accelera-
tion [2, 3, 8, 12, 13, 44, 45]. However, conventional sampling al-
gorithms have large sampling complexity. For example, Bipartite
Region Search (BRS) [27], which is proposed for accelerating sub-
graph sampling, has to spend 1.5 hours on sampling the Twitter
dataset (with 1.46B edges). Therefore, it is an important issue to
identify a good sampling method that has a small overhead but
does not lower the final accuracy of models.

The second challenge is training speed. A few streaming graph
learning methods have been proposed for high accuracy but incur
high training overhead. For example, DynamicTriad [49], HTNE [52],
and EvolveGCN [28] capture temporal information along with local
structure by means of training different snapshots. But in process-
ing the arrival of new edges, these works don’t have good scalability
for training new models and also have high training complexity
for new patterns. This performance problem also exists in random
walk-based models such as CTDNE [26] and EHNA [11]. This is
because random walk sets must be updated for all walkers affected
by new edges, thus causing much updating overhead. Along with
the updates of random walk sets, the Skip-Gram models have to
be fine-tuned with the new sets accordingly and therefore incur
extra training overhead. Recently, some recurrent neural networks
(RNNs)-based models, e.g., JODIE [16] and DyGNN [23], have been
proposed to deal with streaming graphs, as these models can be
updated incrementally with modest additional overhead. However,
these models have been designed regardless of the overhead of
iterative training, which is typically much larger than the infer-
ence overhead and should be optimized carefully. In addition, low
throughput and high latency are important performance problems
faced by RNNs.

The third challenge is scalability for multi-GPU training. Many
streaming graph learning models intend to achieve good accuracy
but seldom pay attention to multi-GPU scalability. We have ob-
served that relatively large real-world datasets consume a lot of
memory, caused by a large number of nodes and edges as well as
the huge amount of node/edge hidden embeddings (or activations).
Especially for node/edge embeddings, they take so large an amount
of memory that they cannot be entirely stored on a single GPU.
Not only this, a single GPU training will take too much training
time. In this case, users have to resort to multiple GPUs to train the
model. To achieve high-efficiency multi-GPU training, we need to
address two challenges. One is how to partition both node embed-
ding and datasets to multiple GPUs. It is known that inter-device
communication (GPU to GPU and CPU to GPU) plays an important
role in training, because of the huge size of node features or em-
beddings. Current GPU-GPU communication via NVLink usually
has a much faster speed than the CPU-GPU communication via
PCIe. Therefore, partitioning is an important stage to ensure low
communication overhead by jointly optimizing PCIe-based CPU-
GPU and NVLink-based GPU-GPU communications. The other is
how to schedule tasks (keeping edges’ training order) without af-
fecting accuracy. Naïve distributed training will affect the temporal
information embedded in datasets and thereby reduce the accuracy.

In the literature, some works have been conducted to use multi-
GPUs to train GNNs but expose different drawbacks. For instance,
NeuGraph [22] has much communication overhead caused by the
inefficient data partition method. Other works like DGL-KE [48]
and PyTorch-BigGraph (PBG) [20] suffer from low GPU utility in
distributed training. Overall, the aforementioned three challenges
are important issues that need to be addressed by streaming GNN
learning.

In this paper, we propose T-GCN, the first streaming GNN sys-
tem with hybrid architecture for accelerating GNN learning on
temporal-aware streaming graphs, while keeping prediction ac-
curacy well. To deal with the sampling performance challenge, T-
GCN provides a novel sampling method, namely Segment Its Search,
which can achieve high performance on three typical types of gen-
eral graph sampling methods, including node-wise, layer-wise, and
subgraph sampling. The evaluation shows that T-GCN can get up to
38.8× speedup in terms of sampling speed over the state-of-the-art
sampling algorithms. To cope with the training speed and scalabil-
ity challenges, T-GCN employs a hybrid CPU-GPU co-processing
architecture and puts forward a locality-aware data partitioning
method to reduce CPU-GPU data transfer overhead, lower CPU-
GPU communication latency, and improve the training throughput.
To further reduce GPU-GPU communication, T-GCN proposes an
efficient task schedule to maximize the exploitation of NVLink’s fast
speed. To get better scalability, T-GCN introduces efficient memory
management to pipeline the computation and communication. For
single V100 GPU training, relying on these optimizations, T-GCN
runs up to 7.9× faster than the current works concerning end-to-
end performance. When running on an NVIDIA DGX server with
eight V100 GPUs, the training speed of T-GCN on 8 GPUs is 5.2×
faster than the training speed of T-GCN on one GPU, demonstrating
good scalability.

2 BACKGROUND

2.1 Notations of Streaming Graphs

As mentioned in Section 1, T-GCN targets temporal-aware stream-
ing graphs and therefore chooses to use a temporal graph format
to represent the underlying graphs for streaming GNN learning.
In the following, we will briefly describe the data format of a tem-
poral graph. The main difference between temporal graphs and
static graphs is that edges in temporal graphs are attached with
time instances. For graph 𝐺 = (𝑉 , 𝐸), 𝑉 is the vertex set and 𝐸 is
the edge set. For each edge 𝑒 = (𝑢, 𝑣, 𝑡) in 𝐸, 𝑢 ∈ 𝑉 is the source
node, 𝑣 ∈ 𝑉 is the destination, and 𝑡 ∈ R refers to the time in-
stance. The time instances of edges between the same vertices can
be different. Therefore, each edge has a certain time instance but
each vertex is agnostic to time because each vertex may connect
multiple edges with different timestamps. An important problem
faced by temporal graphs is that each path must satisfy the time
constraints. In other words, for a temporal path 𝑃 = {𝑒1, 𝑒2, . . . , 𝑒𝑛}
with 𝑒𝑖 = (𝑢𝑖 , 𝑢𝑖+1, 𝑡𝑖) and 𝑒 𝑗 = (𝑢 𝑗 , 𝑢 𝑗+1, 𝑡 𝑗), if 𝑗 ≤ 𝑖 , it satisfies that
𝑡 𝑗 ≤ 𝑡𝑖 . Constructing paths in chronological order is a widely-used
criterion in existing temporal graph models [39, 40]. The time con-
straints on temporal paths will bring extra computation and space
overhead.

70

T-GCN: A Sampling Based Streaming Graph Neural Network System With Hybrid Architecture PACT ’22, October 10–12, 2022, Chicago, IL, USA

In real-world applications, temporal graphs will be created by
order of time instance, and this representation of temporal graphs
is usually called the edge stream. This means that edges in the edge
stream are sorted by increasing order of time. For example, the trade
logs of e-commerce are recorded with time increasing. The edge
stream is a widely used data model of temporal graphs [10, 16, 26].

2.2 Streaming Graph Neural Network

In general, GNNs work by aggregating embeddings from neigh-
bors on each iteration round. Typical example GNNs includeGCN [15],
GraphSAGE [8], GAT [34], and GIN [41]. As shown in Equation 1,
in each iteration 𝑘+1, the𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 function will aggregate embed-
ding of neighbors for each vertex in the previous iteration. Assume
that 𝑁 (𝑢) is the neighbor set of 𝑢, ℎ𝑘𝑢 is the embedding of 𝑢 at
iteration 𝑘 , and 𝑎𝑘+1𝑢 is the aggregation result of iteration 𝑘 + 1.
After aggregation, neural network functions such as multi-layer
perceptrons (MLPs) will be used to combine ℎ𝑘𝑢 with 𝑎𝑘+1𝑢 . As seen
in Equation 2, 𝐶𝑜𝑚𝑏𝑖𝑛𝑒 function will use neural networks to trans-
form the aggregation result into embedding of 𝑢 at the iteration
𝑘 + 1 as ℎ𝑘+1𝑢 . We take the node classification and link prediction as
examples to introduce GNNs. Both of them aggregate embedding
from neighbors. The 𝐶𝑜𝑚𝑏𝑖𝑛𝑒 can be expressed by 𝑤 · 𝑎𝑘+1𝑣 with
MLP operations.

𝑎𝑘+1𝑢 = 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (ℎ𝑘𝑣 |𝑣 ∈ 𝑁 (𝑢)) (1)

ℎ𝑘+1𝑢 = 𝐶𝑜𝑚𝑏𝑖𝑛𝑒 (ℎ𝑘𝑢 , 𝑎𝑘+1𝑢) (2)

Different from static versions, streaming GNNs incorporate time
instances into machine learning models and capture temporal in-
formation along with local structure (e.g., learn embeddings from a
sequence of graph snapshots) so as to improve the expressive ability
of the models. Some streaming GNNs [16, 23] have been proposed
with RNNs or its variants (LSTMs [9] and GRUs [5]) at the core to
support time instances. These RNN-based models are inherently
capable of processing time instances, dealing with new additions
of dynamic edges, and enabling incremental training along with
the coming of new edges. DyGNN is a state-of-the-art RNN-based
streaming GNN, which has no constraint on the types of streaming
graphs and also has good prediction performance. DyGNN uses
LSTMs as the core to train streaming graphs. In each round, it
passes through the entire graph and uses all edges. For the update
of a newly added edge, the computation consists of three units,
namely Interact Unit, Update Unit, andMerge Unit. In this paper, we
will use DyGNN as a typical use case to demonstrate the power of
our framework.

Interact Unit: For an interaction 𝑒 = {𝑣𝑠 , 𝑣𝑔, 𝑡}, it generates in-
teraction information for 𝑒 from node information, denoted as 𝑒 (𝑡)
(refer to Equation 3). 𝐸𝑣𝑠 (𝑡−) and 𝐸𝑣𝑔 (𝑡−) is the feature/embedding
of the source node 𝑣𝑠 and the destination node 𝑣𝑔 at time 𝑡−, which
is right before time 𝑡 (in other words, 𝑡− is infinitely close to 𝑡 but
prior to 𝑡), respectively.𝑊1,𝑊2, and 𝑏𝑒 are the parameters of neural
networks. 𝑎𝑐𝑡 (·) is an activation function that can be sigmoid or
tanh. The resulting interaction information 𝑒 (𝑡) is computed as

𝑒 (𝑡) = 𝑎𝑐𝑡 (𝑊1 · 𝐸𝑣𝑠 (𝑡−) +𝑊2 · 𝐸𝑣𝑔 (𝑡−) + 𝑏𝑒) (3)

L layer

L+1 layer

L+2 layer

Batch

L layer

L+1 layer

L+2 layer

Figure 1: Node-Wise.

L layer

L+1 layer

L+2 layer

Batch

L layer

L+1 layer

L+2 layer

Figure 2: Layer-Wise.

Update Unit: The update unit applies the interaction informa-
tion 𝑒 (𝑡) generated from the interacting unit to the nodes partic-
ipating in the interaction. This unit uses two variants of LSTM,
which additionally incorporate time interval information to control
the magnitude of forgetting, to update 𝑣𝑠 and 𝑣𝑔 , respectively. One
variant, namely 𝑆-𝑈𝑝𝑑𝑎𝑡𝑒 , only updates the source information of
a node 𝑣 , i.e., the cell and hidden states of 𝑣 , when 𝑣 is the source
node of an iteration 𝑒 (𝑡). The other variant, namely𝐺-𝑈𝑝𝑑𝑎𝑡𝑒 , only
updates the destination information of the same node 𝑣 when 𝑣

is the destination node of 𝑒 (𝑡). 𝑆-𝑈𝑝𝑑𝑎𝑡𝑒 and 𝐺-𝑈𝑝𝑑𝑎𝑡𝑒 have the
same network structure, but with different parameters. Equations 4
and 5 show the update logic of 𝑆-𝑈𝑝𝑑𝑎𝑡𝑒 and 𝐺-𝑈𝑝𝑑𝑎𝑡𝑒 , respec-
tively. 𝐶𝑠

𝑣𝑠
(𝑡−) is the cell state of the source node 𝑣𝑠 and ℎ𝑠𝑣𝑠 (𝑡−) is

the hidden state of 𝑣𝑠 , at time 𝑡−. Δ𝑡 is the time interval equal to
𝑡 − (𝑡−), and𝑈𝑝𝑑𝑎𝑡𝑒 (·) represents the neural network computation.

𝐶𝑠
𝑣𝑠
(𝑡), ℎ𝑠𝑣𝑠 (𝑡) = 𝑈𝑝𝑑𝑎𝑡𝑒 (𝐶𝑠

𝑣𝑠
(𝑡−), ℎ𝑠𝑣𝑠 (𝑡−), Δ𝑡 , 𝑒 (𝑡)) (4)

𝐶
𝑔
𝑣𝑔 (𝑡), ℎ

𝑔
𝑣𝑔 (𝑡) = 𝑈𝑝𝑑𝑎𝑡𝑒 (𝐶𝑔

𝑣𝑔 (𝑡−), ℎ
𝑔
𝑣𝑔 (𝑡−), Δ𝑡 , 𝑒 (𝑡)) (5)

MergeUnit: For 𝑣𝑠 , we have two hidden statesℎ𝑠𝑣𝑠 (𝑡) andℎ
𝑔
𝑣𝑠 (𝑡−)

from the output of 𝑆-𝑈𝑝𝑑𝑎𝑡𝑒 . Similarly, for 𝑣𝑔 , we have ℎ𝑠𝑣𝑔 (𝑡−) and
ℎ
𝑔
𝑣𝑔 (𝑡) from the output of 𝐺-𝑈𝑝𝑑𝑎𝑡𝑒 . In this case, the merge unit

takes the hidden states from 𝑆-𝑈𝑝𝑑𝑎𝑡𝑒 to generate the new em-
bedding 𝐸𝑣𝑠 (𝑡) for 𝑣𝑠 , and the hidden states from 𝐺-𝑈𝑝𝑑𝑎𝑡𝑒 to
generate 𝐸𝑣𝑔 (𝑡). Equations 6 and 7 show the merge logic for 𝑣𝑠 and
𝑣𝑔 , respectively, where𝑊𝑠 ,𝑊𝑔 and 𝐵 are trainable parameters.

𝐸𝑣𝑠 (𝑡) = 𝑊𝑠 · ℎ𝑠𝑣𝑠 (𝑡) +𝑊𝑔 · ℎ𝑔𝑣𝑠 (𝑡−) + 𝐵 (6)

𝐸𝑣𝑔 (𝑡) = 𝑊𝑠 · ℎ𝑠𝑣𝑔 (𝑡−) +𝑊𝑔 · ℎ𝑔𝑣𝑔 (𝑡) + 𝐵 (7)

2.3 Graph Sampling

Graph sampling is an important technology for large graphs train-
ing to solve the problem that both the graph and the intermediate
embeddings (or activations) cannot be entirely stored in GPU mem-
ory. This technology can accelerate training on GPUs to some
degree but has the major drawbacks of accuracy loss [14, 33] and
prediction instability [7]. Popular graph sampling methods include
node-wise sampling [8], layer-wise sampling [2] and subgraph
sampling [4].

Node-Wise Sampling: GraphSAGE [8] introduces a node-wise
random sampling approach to obtaining 𝑘-hop neighbors. As seen
in Figure 1, for multi-layer GNNs, this method samples a specified
number of neighbors of each vertex at each layer. The sampled
neighbors for each vertex are independent of each other. The num-
ber of sampled nodes grows exponentially with the number of
layers. For 𝑘 layers, the number of sampled nodes in the input layer
can explosively increase up to𝑂 (�̄�𝑘) with �̄� as the average degree
per layer.

71

PACT ’22, October 10–12, 2022, Chicago, IL, USA Chengying Huan et al.

Algorithm 1 Random walk based subgraph sampling.
1: Input: Original graph G(V,E); Frontier size m; Subgraph size

n.
2: Output: Induced subgraph 𝐺𝑠𝑢𝑏 (𝑉𝑠𝑢𝑏 , 𝐸𝑠𝑢𝑏).
3: 𝐹𝑆 ← Uniformly select𝑚 vertices at random from 𝑉

4: for 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 [1, 𝑛] do
5: Select 𝑢 ∈ 𝐹𝑆 with probability 𝑑𝑒𝑔 (𝑢)∑

𝑣∈𝐹𝑆 𝑑𝑒𝑔 (𝑣)
6: 𝑉𝑠𝑢𝑏 ← 𝑉𝑠𝑢𝑏 ∪ {𝑢}
7: Select (𝑢,𝑢 ′) ∈ 𝐸 randomly in neighbors of 𝑢
8: 𝐹𝑆 ← (𝐹𝑆 \ 𝑢) ∪ {𝑢 ′}
9: end for

10: 𝐺𝑠𝑢𝑏 ← Subgraph of 𝐺 induced by 𝑉𝑠𝑢𝑏 return 𝐺𝑠𝑢𝑏

Layer-Wise Sampling: FastGCN [2] proposes a layer-wise sam-
pling approach, which samples neighbors for each vertex but shares
the sampled neighbors among all nodes of the current layer (see
Figure 2). The sharing property fits the message passing strategy
of GNNs and makes the number of sampled nodes linearly propor-
tional to the number of layers.

Subgraph Sampling: To achieve better performance on large
graphs, some works put forward to construct mini-batches from
subgraphs. ClusterGCN [4] is proposed to partition the graphs into
a set of clusters before training and construct a mini-batch by ran-
domly choosing and merging several clusters. GraphSAINT [45]
employs random walk based samplers and achieves better accu-
racy than ClusterGCN. Algorithm 1 shows the random walk-based
sampler. To sample a subgraph 𝐺𝑠𝑢𝑏 (𝑉𝑠𝑢𝑏 , 𝐸𝑠𝑢𝑏) of 𝑛 vertices, it
first provides a frontier 𝐹𝑆 with𝑚 seeding vertices that are ran-
domly selected. We will repeat the following operations until the
construction of𝐺𝑠𝑢𝑏 is completed. Firstly, a vertex𝑢 is selected from
𝐹𝑆 with a probability of 𝑑𝑒𝑔 (𝑢)∑

𝑣∈𝐹𝑆 𝑑𝑒𝑔 (𝑣)
where 𝑑𝑒𝑔(𝑢) is the degree

number of vertex 𝑢, and 𝑢 is added to 𝑉𝑠𝑢𝑏 . Secondly, a neighbor
vertex 𝑢 ′ of 𝑢 is randomly chosen to replace 𝑢 in 𝐹𝑆 . Finally, after
𝑛 times repetitive execution of the above operations, we have got
𝐺𝑠𝑢𝑏 constructed. This sampling method is more complex and time-
consuming. C-SAW [27] proposes a Bipartite Region Search to
implement random walk based samplers. As shown in Algorithm 2,
Bipartite Region Search re-calculates the edge selection probabil-
ity on the changed 𝐹𝑆 . One drawback of this method is that it is
designed for individual sampling only. For multiple sampling (i.e.,
multiple vertex replacements in 𝐹𝑆), it needs many efforts. In spe-
cific, there will need 𝑂 (𝑛) time complexity on average for each
sampling with 𝑛 as the size of 𝐹𝑆 .

2.4 Challenges

In the following, we will elaborate on the three challenges men-
tioned in Section 1, namely sampling performance challenge, train-
ing speed challenge, and scalability challenge on multi-GPUs.

Sampling performance challenge: The goal is to accelerate
GNN training without loss of accuracy. For node-wise and layer-
wise sampling, to sample a neighbor of each vertex, current works
firstly generate a random number and then use the current sam-
pling algorithms such as the alias method [21] and ITS [24] to
sample a neighbor of this vertex. If the sampled vertex is already
selected, it needs to repeat the selection procedure until getting

Algorithm 2 Bipartite Region Search.
1: Generate a random number 𝑟
2: Use 𝑟 to select a vertex in FS. If the vertex has not been selected,

done. Otherwise, the region that 𝑟 falls into corresponds to a
pre-selected vertex. Assume the boundary of this region in FS
is (𝑙, ℎ).

3: Let _ ← 1/(1 − (ℎ − 𝑙)), 𝛿 ← ℎ − 𝑙
4: 𝑟 ← 𝑟/_
5: if 𝑟 < 𝑙 then

6: Search 𝑟 in (0, 𝑙)
7: else
8: 𝑟 ← 𝑟 + 𝛿 and search 𝑟 in (ℎ, 1)
9: end if

an unselected neighbor. Apparently, this repetitive sampling be-
havior will cause heavy sampling overhead for a large number
of sample vertices, i.e., each sampling process takes up to 𝑂 (𝑛)
time complexity with 𝑛 denoting the sampling space. For subgraph
sampling, C-SAW [27] uses the Bipartite Region Search (BRS) to
optimize. However, BRS still needs up to 𝑂 (𝑛) time complexity for
each sampling process.

Training speed challenge: Someworks like DynamicTriad [49],
HTNE [52], and EvolveGCN [28], train the snapshots of the stream-
ing graph will suffer from the high overhead of incremental neural
network updating and high overhead of models training. Some
RNN-based works such as DyGNN [23] and JODIE [16] reduce the
the former overhead but still do not regard the latter. All these
works do not support multi-GPU training, resulting in low through-
put of training, e.g., their throughput (calculated by dividing the
number of labeled edges by the time per epoch) is as low as only
34K edges/s while the throughput of T-GCN is up to 815.7K edges/s.

Scalability challenge: Current streaming GNN models focus
on accuracy other than on speed and scalability of multi-GPU train-
ing. More importantly, current multi-GPU training frameworks
do not demonstrate good scalability. For instance, NeuGraph [22]
proposes to partition graph with a graph schedule strategy, but still
has much communication overhead due to the data locality prob-
lem and can not make full use of fast GPU-GPU communication.
DGL-KE [48] stores parameters in the CPU memory and uses syn-
chronous training on GPUs by mini-batches. However, DGL-KE has
low GPU utilization (nearly 10%), caused by the large data transfer
between GPU and CPU. PyTorch-BigGraph (PBG) [20] partitions
nodes into a set of disjoint parts, and stores them in the disk. During
training, it directly loads one or more partitions entirely into GPU
to avoid frequent data movement from disk to GPU. Nonetheless,
this also results in low GPU utility, only 30%, caused by data swap
between disk and GPU. Marius [25] introduces a buffer-aware edge
traversal algorithm to reduce disk I/O and improve GPU utilization.
However, this additional disk I/O and data movement will lead to
longer training time, i.e., 3.5 hours per epoch for the Twitter graph
training with 1.46 billion edges (throughput is only 115.9K edges/s).

Our objective: T-GCN proposes a novel sampling algorithm
Segment Its Search to address the sampling performance challenge.
We use the hybrid architecture to train the streaming graph neural
network models on multi-GPUs and propose a novel locality-aware

72

T-GCN: A Sampling Based Streaming Graph Neural Network System With Hybrid Architecture PACT ’22, October 10–12, 2022, Chicago, IL, USA

）e1

）e1

e2

e2

e3 e4 e5 e6

e1 e2

） ）e5 e6e4e3

） e4e3

e7

e0 + e1 + e2 + e3 + e4 + e5 + e6 + e7

e0 + e1 + e2 + e3 e4 + e5 + e6 + e7

e0 + e1 e4 + e5e2 + e3 e6 + e7

e0 e4e2 e6e1 e3 e5 e7

Figure 3: Sampling algorithm example.

data partition, task schedule, and GPU memory management strat-
egy to solve the training speed and scalability challenges.

3 STREAMING GRAPH SAMPLING

To solve the sampling performance challenge, we propose a general
sampling method that efficiently deals with node-wise, layer-wise,
and subgraph sampling for general graphs. The core idea of our
sampling method is to leverage an efficient data structure Segment
Its Search, which is similar to the segment tree and binary tree,
to facilitate fast sampling. Figure 3 describes an example work-
flow of our Segment Its Search sampling. Each 𝑒𝑘 represents the
weight of the vertex or edge. For example, 𝑒𝑘 can represent the
degree of each vertex for subgraph sampling. For node-wise and
layer-wise sampling, 𝑒𝑘 can be 1 for unbiased sampling. Users can
customize 𝑒𝑘 for their self-defined sampling methods. Specifically,
for a fixed array (say the neighbor sets of node-wise sampling,
the neighbor sets of layer-wise sampling, or the frontier in sub-
graph sampling), we process a divide-and-conquer method by first
dividing the sum of edge sets {𝑒0, . . . , 𝑒7} into the sum of two sub-
sets: one is from the subset {𝑒0, . . . , 𝑒3} and the other from the
subset {𝑒4, . . . , 𝑒7}. Subsequently, these two sets can be further par-
titioned into four parts: {{𝑒0, 𝑒1}, . . . , {𝑒6, 𝑒7}}. Having got the sum
array determined, replacing edge 𝑒4 will change the sum values
of {{𝑒4}, {𝑒4, 𝑒5}, {𝑒4, 𝑒5, 𝑒6, 𝑒7}, {𝑒0, . . . , 𝑒7}}. On query, the process
will be (1) firstly generating a random number 𝑟 , and (2) then check-
ing which edge sets it falls into from top to bottom. For example, if 𝑟
lies in the edges set {{𝑒𝑖 , . . . , 𝑒 𝑗 }}, we can figure out that 𝑟 falls into
{𝑒𝑖 , . . . , 𝑒 (𝑖+𝑗)/2} or {𝑒 (𝑖+𝑗)/2+1, . . . , 𝑒 𝑗 }. If 𝑟 is in the second edge
set, we set 𝑟 to 𝑟 − (∑𝑘≤(𝑖+𝑗)/2

𝑘=𝑖
𝑒𝑘) and then search into the set,

which will be further split into halves. The search continues until
meeting the final edge set that contains only one edge 𝑒𝑤 . The data
structure Segment Its Search needs to maintain the influenced edge
sets accordingly. Specifically, the weight of all edge sets contain-
ing the sampled edge 𝑒𝑤 needs to be updated. For node-wise and
layer-wise sampling, we subtract the weight by𝑊𝑒𝑖𝑔ℎ𝑡 (𝑒𝑤). For
subgraph sampling, we set 𝑑𝑒𝑔(𝑣𝑤) to the corresponding vertices
in the frontier, where 𝑑𝑒𝑔(𝑣𝑤) is the degree number of vertice 𝑣𝑤 .

Algorithm 3 shows the workflow of the sampling process. The
Build function is to build a binary tree by calculating the range
sum array of the candidate vertices set V. For each range [𝐿, 𝑅], it
will create a node with the sum of vertices’ weights in this range
which is represented as V[𝐿] .𝑤𝑒𝑖𝑔ℎ𝑡 and the node will connect to
its left node in the range [𝐿, 𝐿+𝑅

2] and to the right node in the range
[𝐿+𝑅2 + 1, 𝑅]. The Search function is to search the sampled vertex

Algorithm 3 Workflow of Segment Its Search sampling.
1: function Build(V, 𝐿, 𝑅)
2: if 𝐿 == 𝑅 then

3: 𝑇 = 𝑁𝑈𝐿𝐿

4: 𝑇 .𝑠𝑢𝑚 = V[𝐿] .𝑤𝑒𝑖𝑔ℎ𝑡
5: Return 𝑇

6: end if

7: 𝑇 = 𝑁𝑈𝐿𝐿

8: 𝑇 .𝑙𝑒 𝑓 𝑡 = 𝐵𝑢𝑖𝑙𝑑 (V, 𝐿, 𝐿+𝑅2)
9: 𝑇 .𝑟𝑖𝑔ℎ𝑡 = 𝐵𝑢𝑖𝑙𝑑 (V, 𝐿+𝑅2 + 1, 𝑅)
10: 𝑇 .𝑠𝑢𝑚 = 𝑇 .𝑙𝑒 𝑓 𝑡 .𝑠𝑢𝑚 +𝑇 .𝑟𝑖𝑔ℎ𝑡 .𝑠𝑢𝑚
11: end function

12: function Search(𝑟𝑜𝑜𝑡 , 𝐿, 𝑅, 𝑔)
13: if 𝐿 == 𝑅 then

14: Return 𝐿

15: end if

16: if 𝑔 > 𝑟𝑜𝑜𝑡 .𝑙𝑒 𝑓 𝑡 .𝑠𝑢𝑚 then

17: Return 𝑆𝑒𝑎𝑟𝑐ℎ(𝑟𝑜𝑜𝑡 .𝑟𝑖𝑔ℎ𝑡, 𝐿+𝑅
2 + 1, 𝑅, 𝑔 −

𝑟𝑜𝑜𝑡 .𝑙𝑒 𝑓 𝑡 .𝑠𝑢𝑚)
18: else

19: Return 𝑆𝑒𝑎𝑟𝑐ℎ(𝑟𝑜𝑜𝑡 .𝑙𝑒 𝑓 𝑡, 𝐿, 𝐿+𝑅
2 , 𝑔)

20: end if

21: end function

22: function Modify(𝑟𝑜𝑜𝑡 , 𝐿, 𝑅, 𝑝𝑜𝑠 , 𝑛𝑒𝑤_𝑠𝑢𝑚)
23: if 𝐿 == 𝑅 then

24: 𝑟𝑜𝑜𝑡 .𝑠𝑢𝑚 = 𝑛𝑒𝑤_𝑠𝑢𝑚
25: end if

26: if (𝐿 + 𝑅)/2 < 𝑝𝑜𝑠 then

27: 𝑀𝑜𝑑𝑖 𝑓 𝑦 (𝑟𝑜𝑜𝑡 .𝑟𝑖𝑔ℎ𝑡, 𝐿+𝑅
2 + 1, 𝑅, 𝑝𝑜𝑠, 𝑛𝑒𝑤_𝑠𝑢𝑚)

28: else

29: 𝑀𝑜𝑑𝑖 𝑓 𝑦 (𝑟𝑜𝑜𝑡 .𝑙𝑒 𝑓 𝑡, 𝐿, 𝐿+𝑅
2 , 𝑝𝑜𝑠, 𝑛𝑒𝑤_𝑠𝑢𝑚)

30: end if

31: 𝑟𝑜𝑜𝑡 .𝑠𝑢𝑚 = 𝑟𝑜𝑜𝑡 .𝑙𝑒 𝑓 𝑡 .𝑠𝑢𝑚 + 𝑟𝑜𝑜𝑡 .𝑟𝑖𝑔ℎ𝑡 .𝑠𝑢𝑚
32: end function

in the binary tree by binary search, i.e., if the sampled number 𝑔
is larger than the left node’s sum, 𝑔 will go to the right node and
then be replaced by 𝑔 − 𝑟𝑜𝑜𝑡 .𝑙𝑒 𝑓 𝑡 .𝑠𝑢𝑚. TheModify function is to
change the value of a certain position of the binary tree and then
update all nodes including this position. Actually, there will be up
to 𝑙𝑜𝑔(𝑉) nodes needed to be updated with 𝑉 is the vertex set.

On Sampling, the implementation of the sampling will be spe-
cialized for each type of sampling method. We take the node-wise
sampling as an example which is shown in Algorithm 4. For each
sampling on a certain vertex set V, it first creates the binary tree 𝑇
by Building function. For the next 𝑛 times sampling, it generates
a random number 𝑔 and searches the sampled edge in V by means
of binary searching 𝑔 in 𝑇 . The parameter 𝑛 decides the sampled
size which is user-customizable and is set to half of the neighbor
size in our evaluations. The sampled vertices are recorded in the
vertex set 𝑃 , same as ITS [24]. For the main sampling process which
samples batches for training, Sample_batch collects all batches
from the current dataset. It first generates a vertex set from a vertex
𝑣 as the root and samples neighbors of vertices in the previous
layers on each layer of GNNs. The network depth in Algorithm 4 is

73

PACT ’22, October 10–12, 2022, Chicago, IL, USA Chengying Huan et al.

Algorithm 4 Node-wise sampling.
1: function Sample(V, 𝑛)
2: 𝑇 = 𝐵𝑢𝑖𝑙𝑑 (V, 1, ∥V∥)
3: 𝑃 = 𝑁𝑈𝐿𝐿

4: while 𝑛 > 0 do

5: generate a random number 𝑔
6: 𝐿 = 𝑆𝑒𝑎𝑟𝑐ℎ(𝑇, 1, ∥V∥, 𝑔)
7: 𝑀𝑜𝑑𝑖 𝑓 𝑦 (𝑇, 1, ∥V∥, 𝐿, 0)
8: 𝑃 = 𝑃 ∪ V[𝐿]
9: 𝑛 = 𝑛 − 1
10: end while

11: Return 𝑃

12: end function

13: function Sample_batch(𝑉 , 𝑛)
14: 𝐵𝑎𝑡𝑐ℎ_𝑠𝑒𝑡 = 𝐸𝑚𝑝𝑡𝑦

15: for 𝑒𝑎𝑐ℎ 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 𝑖𝑛 𝑉 do

16: 𝐵 = 𝐸𝑚𝑝𝑡𝑦

17: 𝑃 = 𝑣

18: for 1 𝑡𝑜 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑑𝑒𝑝𝑡ℎ do

19: V = 𝐸𝑚𝑝𝑡𝑦

20: for 𝑒𝑎𝑐ℎ 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 𝑖𝑛 𝑃 do

21: V = V ∪ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜 𝑓 𝑣
22: end for

23: 𝑛 = 𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑠𝑖𝑧𝑒 for the current depth
24: 𝑃 = Sample(V, 𝑛)
25: 𝐵 = 𝐵 ∪ 𝑃
26: end for

27: 𝐵𝑎𝑡𝑐ℎ_𝑠𝑒𝑡 = 𝐵𝑎𝑡𝑐ℎ_𝑠𝑒𝑡 ∪ 𝐵
28: end for

29: Return 𝐵𝑎𝑡𝑐ℎ_𝑠𝑒𝑡 ;
30: end function

the number of graph convolutional layers in GNNs. The sampled
vertices and edges will be viewed as a batch 𝐵 and all batches 𝐵
constitute the batch set 𝐵𝑎𝑡𝑐ℎ_𝑠𝑒𝑡 . Layer-wise sampling adopts the
same Sampling function with node-wise sampling.

Algorithm 5 gives the pseudocode of our subgraph sampling. The
Sampling function will sample a subgraph of 𝑛 vertices with𝑚 be-
ing the frontier array size in Section 2.3. Compared with node-wise
sampling in Algorithm 4, the main difference is the introduction of
the Modify function, which replaces the current sampled vertex
𝐹𝑆 [𝐿] in the frontier 𝐹𝑆 with the sampled neighbor 𝑣 ′ of 𝐹𝑆 [𝐿].
Finally, the 𝑆𝑎𝑚𝑝𝑙𝑒_𝐵𝑎𝑡𝑐ℎ function will generate 𝑆 subgraphs with
each inserted into 𝐵𝑎𝑡𝑐ℎ_𝑠𝑒𝑡 .

Sampling Complexity Analysis: The sampling overhead of
Segment Its Search includes the overhead from the query and mod-
ify operations. For a query operation, since the Search function
is similar to the binary search, the time complexity of the query
operation is𝑂 (𝑙𝑜𝑔(𝑛)), where 𝑛 is the size of the setV. For a modify
operation, Segment Its Search also needs 𝑂 (𝑙𝑜𝑔(𝑛)) time complex-
ity. Therefore, the total time complexity of Segment Its Search is
𝑂 (𝑙𝑜𝑔(𝑛)) too. In contrast, both ITS [24] and BRS [27] need nearly
𝑂 (𝑛) time complexity. Not only this, Segment Its Search will not
suffer from repetitive sampling problems because Segment Its Search
can change the probability distribution of sampling by the Modify

Algorithm 5 Subgraph sampling.
1: function Sample(𝑉 , 𝑛,𝑚)
2: 𝐹𝑆 = randomly select𝑚 vertices from 𝑉

3: 𝑉𝑠𝑢𝑏 = 𝑁𝑈𝐿𝐿

4: 𝑇 = 𝐵𝑢𝑖𝑙𝑑 (𝐹𝑆, 1, ∥𝐹𝑆 ∥)
5: while 𝑛 > 0 do

6: generate a random number 𝑔
7: 𝐿 = 𝑆𝑒𝑎𝑟𝑐ℎ(𝑇, 1, ∥𝐹𝑆 ∥, 𝑔)
8: 𝑉𝑠𝑢𝑏 = 𝑉𝑠𝑢𝑏 ∪ 𝐹𝑆 [𝐿]
9: 𝑣 ′ = sample a neighbor of 𝐹𝑆 [𝐿]
10: 𝑀𝑜𝑑𝑖 𝑓 𝑦 (𝑇, 1, ∥𝐹𝑆 ∥, 𝐿, 𝑑𝑒𝑔(𝑣 ′))
11: 𝐹𝑆 [𝐿] = 𝑣 ′

12: 𝑛 = 𝑛 − 1
13: end while

14: Return 𝑉𝑠𝑢𝑏
15: end function

16: function Sample_batch(𝑉 , 𝑆 , 𝑛,𝑚)
17: 𝐵𝑎𝑡𝑐ℎ_𝑠𝑒𝑡 = 𝐸𝑚𝑝𝑡𝑦

18: for 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 [1, 𝑆] do
19: 𝐵𝑎𝑡𝑐ℎ_𝑠𝑒𝑡 = 𝐵𝑎𝑡𝑐ℎ_𝑠𝑒𝑡 ∪ 𝑆𝑎𝑚𝑝𝑙𝑒 (𝑉 , 𝑛, 𝑚)
20: end for

21: Return 𝐵𝑎𝑡𝑐ℎ_𝑠𝑒𝑡 ;
22: end function

function. Thanks to the logarithmic time complexity, our Segment
Its Search has good scalability.

4 HYBRID ARCHITECTURE OF T-GCN

Some works provide computing frameworks for GNNs such as
DGL [36], AliGraph [50], and PyTorch-BigGraph [20]. These works
are designed for the distributed GNN environment with a large
communication effort. Some works are designed for single-machine
GNN systems such as HyGCN [42] which employs a hybrid ar-
chitecture (GPU HBM+CPU memory). However, HyGCN only im-
plements inference, excluding training, for GNNs, and therefore
lacks a foremost functionality of GNN learning systems. Meanwhile,
HyGCN merely uses a single GPU and does not provide an efficient
data loading strategy that can exploit NVLink, an important com-
munication technique for multi-GPU training. Hence, HyGCN does
not take full advantage of hardware benefits.

Similar to HyGCN, T-GCN also uses a hybrid CPU-GPU co-
processing architecture but provides support for both training and
inference of GNNs. This hybrid architecture combines GPU HBM
with CPU memory to address the problem that graph datasets
and intermediate embeddings (or activations) cannot be fully con-
tained in a single GPU HBM. The basic idea is to partition the data
into several parts and store them in different hardware memory
spaces. However, this incurs data transfer overhead, and how to
optimize the data locality to reduce the total data loading over-
head is a challenge for current researchers. In this paper, we put
forward a locality-aware data partitioning method to improve CPU-
GPU communication efficiency and introduce an NVLink-specific
task schedule to fully exploit the power of NVLink hardware and
thereby increase GPU-GPU communication speed. Furthermore,
we introduce an efficient memory management mechanism to facil-
itate pipelining execution of computation and communication, thus

74

T-GCN: A Sampling Based Streaming Graph Neural Network System With Hybrid Architecture PACT ’22, October 10–12, 2022, Chicago, IL, USA

destination vertex

Partitioned by time intervals
t0 t1 t2 tn

source vertex

2D partition

GPU0 GPU1

GPUi

GPU2

…

Graph partition

Multi-GPU training

Figure 4: Data partition strategy.

improving scalability while hiding data communication. Figure 4
illustrates the architecture of T-GCN. Firstly, T-GCN samples the
graph in CPU and stores the sampled data in the memory, where the
sampled data is partitioned by three dimensions, and the specific
partitioning procedure will be discussed in the following. Subse-
quently, T-GCN loads each partitioned data into GPU for multi-GPU
training. On training, the node embedding is partitioned and stored
across multiple GPUs.

To deal with the training speed and scalability challenges dis-
cussed in Section 2.4, we propose the locality-aware data partition-
ing, task schedule, and pipeline to improve multi-GPU training
performance and achieve good scalability.

4.1 Locality-Aware Data Partition

In T-GCN, we provide an efficient locality-aware data partition-
ing method, which is based on three dimensions: the first is a time
dimension, the second is the source vertex dimension and the third
is the destination vertex dimension. In other words, after the time
dimension is partitioned, the left is the same as the 2D partition
strategy used in traditional graph processing systems [46, 51]. As
shown in Figure 4, for each time interval (range of time instance),
multiple GPUs are used for training with the edges in the current
time interval. The input node embeddings (𝐸𝑣𝑠 (𝑡−) and 𝐸𝑣𝑔 (𝑡−) in
Section 2.2) are the results from the training procedure correspond-
ing to the previous time interval. A training procedure is conducted
based on the edges of the current time interval to compute new
embeddings for the nodes affected by these edges and update neural
network parameters. With our partitioning method, we do not need
to pay attention to the interaction between different time intervals.
Instead, we only need to care about multi-GPU training within each
time interval. Because three dimensions of the partition strategy
will not be affected by degrees, the partition strategy will also not
be impacted by the vertex degree distribution of the graph dataset,
e.g, power-law degree distribution.

Data Storage: GNN learning stores more data than traditional
graph processing systems, including graph data, node embedding,
and neural network parameters. The partitioned dataset is stored
in CPU DRAM. Each GPU will load the grid, assigned to itself, into
its device memory. Some works such as NeuGraph [22] also use
the 2D partition but place the node embedding in the CPU memory.
In particular, NeuGraph focuses on full-batched training and thus
is not suitable for streaming GNNs. To reduce communication, we
store the node embedding in GPUHBM and allow each GPU to store
an interval of node embedding. In specific, a GPU will deal with
all grids with source vertices within the interval assigned to itself.

GPU1

GPU2

GPU0

GPU3

GPU4

GPU7

GPU5

GPU6

Figure 5: NVLink components.

For example, because the nodes {𝑢1, . . . , 𝑢𝑖 } are stored in GPU 0, all
edges (𝑢 𝑗 , 𝑣, 𝑡) with 1 ≤ 𝑗 ≤ 𝑖 will be trained in GPU 0. Each GPU
does not need to store the time instance for each node because the
time instances are stored in edges. As mentioned above, edges are
organized and trained in grids (refer to Figure 4). Hence, for each
GPU, it will access to destination vertices’ embedding by on-the-fly
transferring from corresponding GPUs via NVLink. As for neural
network parameters, they are stored in GPUs and updated in the
same way as the traditional synchronized multi-GPU training.

4.2 Task Schedule

We provide an NVLink-specific task schedule to reduce addi-
tional NVLink communication caused by data transfer between any
pair of GPUs in 8-GPU training. In our 8-GPU computer, the first
four GPUs are fully-connected and form a group, while the other
four GPUs are fully-connected and form another group. For any
pair of GPUs in the same group, the communication overhead is
only one NVLink hop. However, for any pair of GPUs from different
groups, this overhead will double. In this regard, it would be good
to avoid 2-hop inter-group communication during computation.
In addition, for eight V100 GPUs, there are two NVLink channels
between specific GPUs. This means that we can parallelize node
embedding transfer by means of two NVLink channels. In other
words, an embedding vector can be transferred by two NVLinks
in parallel, e.g., for a 128-length embedding vector, we allow one
NVLink channel to process the first 64 elements of the vector and
the other to process the remaining. Therefore, besides reducing
inter-group communication as mentioned above, it is also important
to maximize the use of two NVLinks between GPUs, where some
exist in inter-group GPUs and some in intra-group GPUs. Figure 5
illustrates the NVLink connections in our 8-GPU computer, which
forms the root cause of our NVLink-specific task schedule.

We can schedule the training task to optimize the communication
because each GPU theoretically needs to get all intervals of node
embedding for the training procedure corresponding to any time
interval. As mentioned above, each GPU has a fixed vertex interval
and this GPU will deal with all edges whose source vertices are in
this interval but with destination vertices distributed across GPUs.
This means, for example, if GPU 0 stores embedding of all nodes
in the range of [0, 𝑘], it will process all edges with source vertices
in [0, 𝑘] while the destination nodes are determined by grids. In
this regard, we can name a range of destination vertices as a task
and schedule the training by rearranging the order of tasks across
multiple GPUs. Specifically, we label all eight GPUs from 0 to 7
and allow the 𝑖-th GPU to store vertices in the 𝑖-th vertex interval.

75

PACT ’22, October 10–12, 2022, Chicago, IL, USA Chengying Huan et al.

Algorithm 6 Task Schedule.
1: for 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 [0, 4) do
2: Swap node embedding of GPU0 and GPU1
3: Swap node embedding of GPU2 and GPU3
4: Swap node embedding of GPU4 and GPU5
5: Swap node embedding of GPU6 and GPU7
6: Training GPU 0-7
7: Swap node embedding of GPU0 and GPU4
8: Swap node embedding of GPU1 and GPU2
9: Swap node embedding of GPU3 and GPU7
10: Swap node embedding of GPU5 and GPU6
11: Training GPU 0-7
12: end for

If task 𝑗 is assigned to 𝑖-th GPU, it will deal with the destination
vertices in the 𝑗-th vertex interval and process the corresponding
grid, i.e., the grid with source vertices in the 𝑖-th vertex interval
and destination vertices in the 𝑗-th vertex interval. At initialization,
the task assignment vector for GPUs 0 ∼ 7 will be {0, . . . , 7}. Then,
we will change the task assignment to guide the node embedding
swapping between inter-group GPUs and intra-group GPUs. The
details will be explained below.

As shown inAlgorithm 6, firstly, our schedule swaps node embed-
ding (swapping destination vertices embedding, but keeping source
vertices embedding unmoved for all GPUs) between intra-group
GPUs (lines 3-5) and trains the model with the newly swapped data.
Secondly, our schedule swaps node embedding between inter-group
GPUs (GPU 0 and GPU 4, GPU 3 and GPU 7, lines 7-10) and then
trains the model likewise. After repeating this procedure four times,
each GPU has got all node embedding and has trained the model
with the corresponding edge data located in its device memory.
For eight V100 GPUs, our schedule can not only eliminate 2-hop
NVLink communication but also maximize the use of two NVLink
channels available between certain GPUs.

4.3 Pipeline and GPU Memory Management

Pipelining is a widely used technique to achieve better perfor-
mance. In our multi-GPU training, two types of communication are
involved, i.e., PCIe and NVLink, as mentioned above. As both types
of communication are realized by different hardware interfaces, it
is viable and feasible to directly pipeline them. Moreover, commu-
nication can also be overlapped with the computation of neural
networks. However, there exists data competition for GPU device
memory. For example, as mentioned above, neural network param-
eters are stored in GPU memory. In this regard, the data transferred
from CPU to GPU via PCIe will compete for device memory with
the neural network parameters. Additionally, node embeddings will
also compete with the graph dataset and the parameters. Therefore,
there is a necessity to develop a memory management mechanism
to properly manage data competition for efficient pipelining.

T-GCN divides the device memory of each GPU into three com-
ponents. The first component stores neural network parameters
and a certain interval of node embedding. The second component
stores the current training data, including edges of the current grid
and the corresponding destination vertices embedding. Note that

Algorithm 7 T-GCN’s Workflow.
1: function Main(𝐸)
2: 𝐸 ′=Sampling(𝐸)
3: 𝑔𝑟𝑖𝑑0, . . . , 𝑔𝑟𝑖𝑑𝑛 = 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝐸 ′)
4: 𝐺𝑖𝑟𝑑𝑠 = {𝑔𝑟𝑖𝑑0, . . . , 𝑔𝑟𝑖𝑑𝑛}
5: for each grid in 𝐺𝑟𝑖𝑑𝑠 do
6: 𝑇𝑟𝑎𝑖𝑛(𝑔𝑟𝑖𝑑,𝐺𝑃𝑈 _𝑛)
7: end for

8: end function

according to our data partitioning, a GPU will store a certain inter-
val of source vertices embedding as mentioned above. To train a
grid, it will need the embedding of both the source and destination
vertices, where the destination vertices embedding will be obtained
by data swapping via NVLink. The third component is used to store
the next training data, which has the same data format as the second
component and is determined by the task assignment vector in our
task schedule as described in Section 4.2. The second component is
exchangeable with the third one, working similarly to a ping-pong
buffer. In other words, after finishing the current step, the second
component will point to the storage of the third component and
proceed to store the data demanded by the next step, while the third
component will point to the storage of the second component and
serve as the new current training data. This way, training, and data
transfer can be pipelined without any data competition. Not only
this, the pipeline is a general approach designed for multi-GPUs
and is suitable for different GPU configurations.

5 PROGRAMMING INTERFACE

In this section, we will present the programming interface for
streaming GNN learning with T-GCN. Different from edge-centric
or vertex-centric, which is widely used in traditional graph process-
ing systems [19, 31, 51, 51], our LSTM-based training method can’t
be easily dealt with by the above programming models because the
node embedding is trained by neural networks other than aggre-
gated by edges or vertices as done in traditional graph processing
or static GNNs.

The programming interface includes the sampling process and
the training process, while sampling has not been investigated
by current temporal-aware streaming GNNs [23, 35]. As seen in
Algorithm 7, for each training step, it first samples edges from
the original dataset and then partitions the sampled dataset into
different parts (grids), as described in Section 4.1. Secondly, it trains
each partitioned dataset through different GPUs. The main APIs
are 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(), 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(), and 𝑇𝑟𝑎𝑖𝑛(). 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔() is used to
sample the original dataset to get a sampled dataset (i.e., edges sets
for node-wise/layer-wise sampling and subgraph sets for subgraph-
based sampling), and users are allowed to rewrite this interface with
certain application-specific sampling methods. 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛() is used
to partition the sampled dataset into different parts, represented as
𝐺𝑟𝑖𝑑𝑠 , to match the requirement of our multi-GPU training. Refer
to Section 4.1 for the detailed partitioning procedure. Finally, after
data partitioning, one grid will be loaded into one GPU to start
training the GNNmodel defined by users with𝑇𝑟𝑎𝑖𝑛(). The𝐺𝑃𝑈 _𝑛

76

T-GCN: A Sampling Based Streaming Graph Neural Network System With Hybrid Architecture PACT ’22, October 10–12, 2022, Chicago, IL, USA

parameter in 𝑇𝑟𝑎𝑖𝑛() represents the setting of GPU numbers for
multi-GPU training.

6 EVALUATION

6.1 Experimental Setup

6.1.1 Evaluation Environment. We perform the experiments on
an NVIDIA DGX server with eight V100 GPUs. Each GPU has 80
Streaming Multiprocessors, 32GB global memory, and 768KB L2
cache. The system also consists of two 64-core Intel(R) Xeon(R)
CPU Platinum 8163 (2.5Hz), and 256GB DDR4 main memory, run-
ning with Ubuntu 16.04 (kernel 4.15.0) and CUDA 10.0. Each GPU
supports four NVLink link slots, in which two links are connected
via NVLink-V2 and the other two links are via NVLink-V1. T-GCN
implements sampling methods in C++ and GNNs in PyTorch [29].

Table 1: Real-world temporal graph datasets.

Graph Vertices (|𝑉 |) Edges (|𝐸 |) 𝐴𝑣𝑔(𝐷) Feature |𝐹 |
Lastfm 7K 1.3M 364.3 39
Reddit 10K 672K 67 150
Flickr 2.3M 33.1M 28.8 10
Twitter 41.6M 1.47B 74.6 1

6.1.2 Benchmark. We select four popular benchmarks fromKoblenz
Large Network Collection [17] for our evaluation. Different from
the static graph context, we assign each edge from the graph with
a random timestamp value from a chosen range of the time period.
Same with DyGNN and JODIE, edges with the assigned timestamp
value are further categorized into several constant range partitions.
The datasets are standard datasets that are used widely in temporal
graph engines [39, 40]. Specifically, a temporal graph is usually
created by continuously collecting incoming temporal edges, and
edges are streaming with the increase of their starting time.

The main attributes of these graphs are listed in Table 1, where
𝐴𝑣𝑔(𝐷) represents the average vertex degree. They are especially
important attributes for applications whose processing overhead
can be significantly affected by the vertex degrees such as the
sampling speedup. The degree distribution is power-law for each
graph. Since parameter𝑛 in Algorithm 4 is set to half of the neighbor
size, the sampling of T-GCN does not affect the degree distribution.

The graph data is stored in the CPU memory following the CSR
format which is widely used in graph processing engines [18, 32, 51].
The embedding of nodes is partitioned by the locality-aware data
partition strategy and stored in GPUs.

6.1.3 Evaluation Methodology. The evaluation uses node classifi-
cation and link prediction as applications. Both of them are very
popular applications for GNNs and other applications are simi-
lar to them since the core of them all is generating node or edge
embeddings by GNNs.

The learning parameters are set the same as DyGNN [23], e.g.,
80% of the edges are used for training, 10% of the edges for valida-
tion, and the rest for testing. The parameters of all deep models are
set consistently. The number of hidden layers is 2, where the size of
each layer is set to 64. The gradients of all trainable parameters are
managed by PyTorch and T-GCN stores the global gradient values

as additional caching buffers in GPU global memory. Different from
static GNN, each streaming update in T-GCN is only updating a
small part of the graph. Meanwhile, considering each streaming
update is only based on a sampled gradient, T-GCN reduces the
GPU memory requirement via utilizing mini-batched SGD, and
conducting several updates for each epoch.

Evaluation is conducted from five perspectives: end-to-end per-
formance, sampling performance, runtime piecewise breakdown,
GPU device memory overhead, and multi-GPU scalability. The
end-to-end performance is indicated by the total execution time
including graph sampling and GPU training time. For the runtime
piecewise breakdown, we show the corresponding efficiency of our
sampling method Segment Its Search, task schedule, and memory
management (described in Section 4). Note that data partitioning is
used to solve the out-of-memory problem encountered by a single
GPU and thus its efficiency cannot be evaluated as a single GPU
cannot entirely store graph data (including edges data) and node
embedding in device memory.

6.2 End-to-End Performance Comparison

Firstly, we conduct an end-to-end performance comparison be-
tween two state-of-the-art streaming GNNs, i.e., DyGNN [23] and
JODIE [16], and our proposed system T-GCN. Since DyGNN and
JODIE only support a single GPU, we benchmark T-GCN on one
and eight GPUs to show its good scalability. Experimental results
demonstrate that T-GCN significantly outperforms the two counter-
parts. As shown in Figure 6, on a single GPU supported, T-GCN runs
2.6 ∼ 5.1× faster than DyGNN and 2.8 ∼ 7.9× faster than JODIE.
The geometric average speedup of T-GCN than DyGNN and JODIE
are 3.3× and 4.6×, respectively. Note that GPU is not fully utilized
on the three relatively small datasets (i.e., Flickr, Lastfm, and Reddit).
However, on the largest Twitter dataset, T-GCN finishes training in
9237.4 seconds, whereas both DyGNN and JODIE failed because of
the out-of-GPU-memory error caused by their inefficient memory
allocation and lack of efficient sampling strategy. For the through-
put, DyGNN and JODIE have only 34K edges/s and 60.5K edges/s
respectively, while the throughput of T-GCN is 815.7K edges/s.
This is because T-GCN can support multi-GPU training with good
scalability while DyGNN and JODIE do not.

DyGNN and JODIE are both implemented upon PyTorch [29]
through converting irregular graphs to regular tensors, which has
to deal with massive padding space. Thus, the tensor conversion
operation makes them hard to scale to large temporal graphs, even
causing errors on small graphs using the same evaluation configura-
tion. Moreover, they still run multiple times slower than T-GCN as
mentioned above. The reasons for achieving efficient large stream-
ing graph training behind T-GCN mainly come from two folds. On
one hand, the efficient node-wise, layer-wise, and subgraph sam-
pling methodology for general graphs makes our sampler much
faster than others. By introducing Segment Its Search data structure,
T-GCN facilitates fast sampling and directly converts inputs into a
training module. On the other hand, via maximizing memory uti-
lization of GPUs, T-GCN achieves efficient locality-aware streaming
data allocation during our streaming GNN training.

77

PACT ’22, October 10–12, 2022, Chicago, IL, USA Chengying Huan et al.

9237.4
DyGNN (1GPU)
JODIE (1GPU)
T-GCN (1GPU)
T-GCN (8GPU)

OOM

1802.0

Ti
m

e
(s

)

0

200

400

600

Dataset
Lastfm Reddit Flickr Twitter

Figure 6: End-to-end performance comparison between

DyGNN (1GPU), JODIE (1GPU) and T-GCN (1GPU & 8GPU)

on the four datasets. Both DyGNN and JODIE run out-of-

GPU-memory on Twitter (marked by red OOM).

SIS
ITS

R
un

 T
im

e
(s

)

1

10

100

1000

10000

Dataset
Lastfm Reddit Flickr Twitter

(a) Node-wise sampling (2-layer).

SIS
ITS

R
un

 T
im

e
(s

)

1

10

100

1000

10000

100000

Dataset
Lastfm Reddit Flickr Twitter

(b) Node-wise sampling (3-layer).

SIS
ITS

R
un

 T
im

e
(s

)

1

10

100

Dataset
Lastfm Reddit Flickr Twitter

(c) Layer-wise sampling.

SIS
BRS

R
un

 T
im

e
(s

)

1

10

100

1000

10000

Dataset
Reddit Lastfm Flickr Twitter

(d) Subgraph sampling.

Figure 7: Sampling evaluation on different sampling meth-

ods, i.e. node-wise sampling (2-layer and 3-layer), layer-wise

sampling, and subgraph sampling.

6.3 Sampling Method Optimization

Secondly, we provide an evaluation of the sampling process. As
shown in Section 3, for the node-wise and layer-wise sampling, we
compare Segment Its Search (SIS) to the ITS [24] that is a state-of-
the-art sampler. For the subgraph sampling, we compare the perfor-
mance of SIS with the Bipartite Region Search [27] (BRS) which is
designed for subgraph sampling. The evaluation is executed on the
four datasets in Table 1. Figure 7 shows the performance evaluation
of three sampling algorithms, i.e., node-wise sampling (2-layer and
3-layer), layer-wise sampling, and subgraph sampling.

For the node-wise and layer-wise sampling, we sample 50% edges
of the original dataset to form the train set, while current works
usually fix the sampling size per layer to a small value, thus not
suitable for large power-law graphs. For the subgraph sampling,
we set the frontier size as 104, the subgraph size as |𝐸 |100 , and the

SIS
ITS
BRS

Av
er

ag
e

sa
m

pl
in

g
tim

e
(u

s)

0.1

1

10

Size of the sampling space (n).
n=1k n=10k n=100k n=1M

Figure 8: Scalability of different sampling algorithms.

number of subgraphs as 100 (described in Section 3), similar to the
usage in GraphSAINT [45]. For the node-wise sampling, when the
layer is two, SIS can achieve 5.4 ∼ 11.9× speedup and is observed to
yield higher speedups on the datasets with larger degree numbers.
The speedup comes from the sampling complexity improvement as
shown in Section 7. When the layer is three, the running time is
large because the total sampling overhead is exponential to the 2-
layer sampling. SIS can achieve 12.1 ∼ 26.7× speedup on the 3-layer
node-wise sampling. Layer-wise sampling has a small sampling
overhead because it only needs sampling neighbors of each vertex.
Although the total run time is small, SIS can still achieve 2 ∼ 4.5×
speedup. The subgraph sampling also takes a smaller sampling
overhead than the node-wise sampling but has a larger sampling
overhead than layer-wise. For subgraph sampling, SIS can achieve
up to 7.1 ∼ 38.8× speedup in the four datasets.

Figure 8 shows the scalability of SIS, ITS, and BRS under dif-
ferent sampling space sizes (n) which represents the size of V in
Algorithm 3. Figure 8 reports the average sampling time of a sin-
gle sampling operation. We can see that SIS has better scalability
than other sampling algorithms. When the sampling space becomes
larger, the average sampling time of SIS merely increases a little.
However, the average sampling time of ITS and BRS grows a lot
with the increase of the sampling space.

6.4 Accuracy Comparison

Thirdly, we further compare T-GCN and DyGNN [23] with respect
to node classification accuracy. Since DyGNN is more accurate
than JODIE [16], we exclude JODIE from this comparison. The
accuracy is computed by dividing the number of correct predictions
by the total number of predictions. The test datasets give the ground
truth and the best accuracy is obtained if the predicted class of
each node equals its true class. Given a dataset, the test dataset
is created by randomly sampling a fraction of nodes and splitting
them from it. For the configuration, we divide the entire timestamp
duration of datasets to a constant (default to 11) number of pieces
according to the timestamp distribution. Figure 9 illustrates the
accuracy comparison in the function of continuous-time duration
steps. From the results, T-GCNmaintains good accuracy results over
time duration on each dataset. Even with the sampling, T-GCN does
not lose any accuracy and even has better accuracy, because the

78

T-GCN: A Sampling Based Streaming Graph Neural Network System With Hybrid Architecture PACT ’22, October 10–12, 2022, Chicago, IL, USA

used samplingmodels such as the node-wise sampling and the layer-
wise sampling are widely used in GNNs such as GraphSAGE [8] and
FastGCN [2] with good accuracy. Moreover, DyGNN cannot handle
the large Twitter dataset, whereas T-GCN can also achieve good
accuracy on it, thanks to our sampling method. We can conclude
that with the sampling algorithm and system-level optimizations,
T-GCN can handle large datasets without loss of accuracy.

Lastfm (DyGNN)
Lastfm (T-GCN)

A
cc

ur
ac

y

0.65

0.70

0.75

0.80

0.85

Time Step
1 2 3 4 5 6 7 8 9 10 11

Reddit (DyGNN)
Reddit (T-GCN)

A
cc

ur
ac

y

0.6

0.7

0.8

Time Step
1 2 3 4 5 6 7 8 9 10 11

Flickr (DyGNN)
Flickr (T-GCN)

A
cc

ur
ac

y

0.70

0.75

0.80

0.85

Time Step
1 2 3 4 5 6 7 8 9 10 11

Twitter (T-GCN)

A
cc

ur
ac

y

0.55

0.56

0.57

0.58

0.59

Time Step
1 2 3 4 5 6 7 8 9 10 11

Figure 9: Accuracy evaluation.

6.5 Piecewise Breakdown Analysis of T-GCN

Table 2: Comparisons of IO and computation overhead.

Time(s) DyGNN T-GCN
Dataset IO Comp. Time IO Comp. Time
Lastfm 5.53 64.89 70.42 5.24 32.89 36.42
Reddit 24.30 143.93 168.23 25.80 83.53 99.84
Flickr 63.18 560.41 623.59 58.52 105.98 124.10
Twitter OOM OOM OOM 1603.90 9025.20 9273.05

Fourthly, T-GCN enables both sampling and training kernel opti-
mizations, which play important roles in achieving good end-to-end
performance as shown above, and it is of significance to analyze
how much each optimization contributes to the end-to-end time of
streaming GNN learning. For this ablation study, we first disable
SIS-based temporal graph sampling (Section 3), as well as Locality-
Aware Data Partition (Section 4.1) and pipeline task scheduling
described in Section 4.2. Then, we turn on these optimizations one
by one and measure the resulting speedups they brought. Mean-
while, we also profile the streaming GNN execution on GPUs with
nvprof to better understand the improvements.

Our ablation study shows that GNN training takes a large portion
of the total workload compared to host-device IO overhead. As
shown in Table 2, 83% ∼ 88% of the end-to-end time of streaming
GNN is spent on graph-structured training operations for DyGNN
and T-GCN (even with GPU accelerations). Compared to DyGNN,
the optimizations inT-GCN benefit from good task overlappingwith
better scheduling and reduce both I/O and computation overhead
significantly. Thus, the overall runtime of T-GCN is less than the I/O
time plus the computation time. Moreover, DyGNN’s incapability of
supporting relatively large graphs like Twitter highlights T-GCN’s

Table 3: Comparisons of memory usages.

Dataset DyGNN JODIE T-GCN
Lastfm 1529MB 1837MB 822MB
Reddit 1461MB 1201MB 826MB
Flickr 13562MB 17246MB 6580MB

1.
0

1.
0

1.
0

1.
0

3.
2

2.
8 3.
2 3.
6

5.
8

4.
5

5.
4

5.
1

T-GCN (1GPU) T-GCN (4GPU) T-GCN (8GPU)

Sp
ee

du
p

0
1
2
3
4
5
6
7
8

Dataset
Lastfm Reddit Flickr Twitter

Figure 10: Scaling out streaming GNN with T-GCN.

better applicability to a wider range of real-world GNN applications.
Finally, the graph partition stage takes a very small part of the total
time, e.g., nearly 0.3% for Twitter.

6.6 Device Memory Overhead on a Single GPU

Fifthly, for training large-scale streaming GNNs, besides the perfor-
mance of training, the total memory usage is often necessary and
more important than the runtime, which will restrict the scale of
training graphs and also the system scalability. The memory usage
includes the memory needed for caching all the structural datasets
and the hidden units and values for many epochs. For the sake
of speedup training, T-GCN exploits data sampling for reducing
caching space and locality-aware data allocation to enhance the
GPU memory utilization. Table 3 compares the memory consump-
tion of the three systems: DyGNN, JODIE, and T-GCN. Considering
that both DyGNN and JODIE are unable to run on Twitter due to
OOM, we have excluded Twitter in this comparison. T-GCN is much
more memory efficient than the other two systems and achieves up
to 2.58× space-saving. In particular, on Lastfm DyGNN and JODIE
need 1529MB and 1837MB GPU device memory, respectively, but
T-GCN only utilizes 822MB memory.

6.7 Scalability on Multiple GPUs

Finally, we evaluate the scalability of T-GCN by varying the number
of GPUs in order to understand the performance of our scheduling
strategy. From our evaluation, T-GCN achieves efficient scalability
from one GPU to multiple GPUs by allowing each GPU to process a
streaming subgraph, fully considering NVLink-based peer-to-peer
(P2P) data communication and reducing the bandwidth contention
(detailed in Section 4.2). To evaluate the scale-up scalability over 8
GPUs, we conduct separate experiments by setting P2P disabled or
enabled, in order to understand the performance of our local-aware
data scheduling.

Figure 10 illustrates the evaluation results of T-GCN with P2P
enabled, where the speedup of T-GCN is 4.5 ∼ 5.8× in the function

79

PACT ’22, October 10–12, 2022, Chicago, IL, USA Chengying Huan et al.

of 8 GPUs used compared to a single GPU. The average speedup is
5.2×. The benefit of P2P-based data movement is obvious. If P2P is
disabled, the speed even decreases when scaling from 1 GPU to 4
GPUs, and otherwise the average speedup improves to 2.8 ∼ 3.6×.
This is mainly because, when P2P is disabled, two GPUs within
the same PCIe switch need to load input edge/vertex data through
a shared link concurrently, which may easily cause bandwidth
contention and become the bottleneck. In contrast, enabling P2P
allows the second GPU to load vertex data directly from the first
one, alleviating the pressure on the shared PCIe link.

7 RELATEDWORK

Streaming graph embedding on large-scale graphs has become an
important research direction. However, most existing works have
not paid more attention to the performance issues. For the random
walks models such as CTDNE [26], EHNA [11], and CAW [38], they
have large overhead for processing new edges with incremental
updating especially on large graphs. For snapshot-based GNNs such
as DynamicTriad [49] and EvolveGCN [28], they have high training
complexity for training new edges with new time stamps. For LSTM-
based GNNs such as DyGNN and JODIE, they can train new edges
easier but still suffer from high training complexity. T-GCN not only
can provide new sampling methods with high efficiency to reduce
training overhead but also provide high-performance multi-GPU
training architecture with maximum use of inter-GPU networks.

There are some engines that have been proposed for static graph
embedding. For the random walk engines, KnightKing [43] intro-
duces a rejection sampling into high-order random walks, while
GraphWalker [37] proposes efficient random walks management
and graph loading strategy for out-of-core sampling. Unfortunately,
these random walk engines can not support streaming graph ran-
domwalks well because streaming graph randomwalks have higher
sampling dimensions and traditional sampling methods can not
provide efficient performance. For static GNN engines such as Neu-
Graph [22] and DGL-KE [48], they can deal with static graphs with
high performance but are not suitable to streaming graphs because
they do not support incremental learning and the new edges can
cause an overhead of re-training the model.

8 CONCLUSION

In this paper,T-GCN proposes an efficient samplingmethod Segment
Its Search together with a locality-aware data partitioning method,
and an NVLink-specific task schedule to accelerate streaming GNN
learning. Moreover, we further pipeline the computation and the
communication (i.e., both CPU-GPU and GPU-GPU communica-
tions) by introducing an efficient memory management mechanism,
to improve scalability while hiding data communication. In conclu-
sion, on the same hardware, T-GCN achieves up to 7.9× speedup
than state-of-the-art works as for end-to-end performance compar-
ison. In addition, T-GCN achieves a maximum of 38.8× speedup on
sampling through our Segment Its Search sampling method.

9 ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable comments
and suggestions. The authors fromTsinghua University are all in the
Department of Computer Science and Technology, Beijing National

Research Center for Information Science and Technology (BNRist),
Tsinghua University, China. This work is supported by National
Key Research & Development Program of China (2020YFC1522702),
Natural Science Foundation of China (61877035, 62141216), National
Science Foundation CRII Award 2000722, CAREER Award 2046102,
SOAR fellowship, University of Sydney Faculty Startup funding,
Australia Research Council (ARC) Discovery Project DP210101984,
and Ant Group through Ant Research Intern Program. We specifi-
cally thank the excellent support we have received from Ant Group
and Beijing Baihai Technology Inc. Yongchao Liu and Yongwei Wu
are joint corresponding authors.

REFERENCES

[1] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral
Networks and Locally Connected Networks on Graphs. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-
16, 2014, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).
http://arxiv.org/abs/1312.6203

[2] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net. https://openreview.net/
forum?id=rytstxWAW

[3] Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic Training of Graph Convo-
lutional Networks with Variance Reduction. In Proceedings of the 35th Interna-
tional Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, Stockholmsmässan, Stock-
holm Sweden, 942–950.

[4] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph
Convolutional Networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK,
USA, August 4-8, 2019, Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales,
Evimaria Terzi, and George Karypis (Eds.). ACM, 257–266. https://doi.org/10.
1145/3292500.3330925

[5] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Ben-
gio. 2014. On the Properties of Neural Machine Translation: Encoder-Decoder
Approaches. In Proceedings of SSST@EMNLP 2014, Eighth Workshop on Syntax, Se-
mantics and Structure in Statistical Translation, Doha, Qatar, 25 October 2014, Dekai
Wu, Marine Carpuat, Xavier Carreras, and Eva Maria Vecchi (Eds.). Association
for Computational Linguistics, 103–111. https://doi.org/10.3115/v1/W14-4012

[6] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-
lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In
Advances in Neural Information Processing Systems 29: Annual Conference on Neu-
ral Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain,
Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Ro-
man Garnett (Eds.). 3837–3845. https://proceedings.neurips.cc/paper/2016/hash/
04df4d434d481c5bb723be1b6df1ee65-Abstract.html

[7] Chantat Eksombatchai, Pranav Jindal, Jerry Zitao Liu, Yuchen Liu, Rahul Sharma,
Charles Sugnet, Mark Ulrich, and Jure Leskovec. 2018. Pixie: A system for
recommending 3+ billion items to 200+ million users in real-time. In Proceedings
of the 2018 world wide web conference. 1775–1784.

[8] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Ro-
man Garnett (Eds.). 1024–1034. https://proceedings.neurips.cc/paper/2017/hash/
5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html

[9] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[10] Chengying Huan, Hang Liu, Mengxing Liu, Yongchao Liu, Changhua He, Kang
Chen, Jinlei Jiang, YongweiWu, and Shuaiwen Leon Song. 2022. TeGraph: ANovel
General-Purpose Temporal Graph Computing Engine. In 38th IEEE International
Conference on Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9-12,
2022. IEEE, 578–592. https://doi.org/10.1109/ICDE53745.2022.00048

[11] Shixun Huang, Zhifeng Bao, Guoliang Li, Yanghao Zhou, and J. Shane Culpepper.
2020. Temporal Network Representation Learning via Historical Neighborhoods
Aggregation. In 36th IEEE International Conference on Data Engineering, ICDE
2020, Dallas, TX, USA, April 20-24, 2020. IEEE, 1117–1128. https://doi.org/10.1109/
ICDE48307.2020.00101

[12] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adaptive
sampling towards fast graph representation learning. In Advances in neural

80

http://arxiv.org/abs/1312.6203
https://openreview.net/forum?id=rytstxWAW
https://openreview.net/forum?id=rytstxWAW
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.3115/v1/W14-4012
https://proceedings.neurips.cc/paper/2016/hash/04df4d434d481c5bb723be1b6df1ee65-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/04df4d434d481c5bb723be1b6df1ee65-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://doi.org/10.1109/ICDE53745.2022.00048
https://doi.org/10.1109/ICDE48307.2020.00101
https://doi.org/10.1109/ICDE48307.2020.00101

T-GCN: A Sampling Based Streaming Graph Neural Network System With Hybrid Architecture PACT ’22, October 10–12, 2022, Chicago, IL, USA

information processing systems. 4558–4567.
[13] Yugang Ji, Mingyang Yin, Hongxia Yang, Jingren Zhou, Vincent W Zheng, Chuan

Shi, and Yuan Fang. 2020. Accelerating Large-Scale Heterogeneous Interaction
Graph Embedding Learning via Importance Sampling. ACM Transactions on
Knowledge Discovery from Data (TKDD) 15, 1 (2020), 1–23.

[14] Zhihao Jia, Sina Lin, MingyuGao,Matei Zaharia, and Alex Aiken. 2020. Improving
the accuracy, scalability, and performance of graph neural networks with roc.
Proceedings of Machine Learning and Systems 2 (2020), 187–198.

[15] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net. https://openreview.net/forum?id=SJU4ayYgl

[16] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting Dynamic Em-
bedding Trajectory in Temporal Interaction Networks. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD 2019, Anchorage, AK, USA, August 4-8, 2019, Ankur Teredesai, Vipin Ku-
mar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis (Eds.). ACM,
1269–1278. https://doi.org/10.1145/3292500.3330895

[17] Jérôme Kunegis. 2013. KONECT: the Koblenz network collection. In 22nd Inter-
national World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17,
2013, Companion Volume, Leslie Carr, Alberto H. F. Laender, Bernadette Farias Lós-
cio, Irwin King, Marcus Fontoura, Denny Vrandecic, Lora Aroyo, José Palazzo M.
de Oliveira, Fernanda Lima, and Erik Wilde (Eds.). International World Wide Web
Conferences Steering Committee / ACM, 1343–1350. https://doi.org/10.1145/
2487788.2488173

[18] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: large-scale
graph computation on just a PC. In Presented as part of the 10th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 12). 31–46.

[19] Aapo Kyrola, Guy E. Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-Scale
Graph Computation on Just a PC. In 10th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2012, Hollywood, CA, USA, October
8-10, 2012, Chandu Thekkath and Amin Vahdat (Eds.). USENIX Association, 31–
46. https://www.usenix.org/conference/osdi12/technical-sessions/presentation/
kyrola

[20] Adam Lerer, Ledell Wu, Jiajun Shen, Timothée Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alex Peysakhovich. 2019. Pytorch-BigGraph: A Large Scale Graph
Embedding System. In Proceedings of Machine Learning and Systems 2019, MLSys
2019, Stanford, CA, USA, March 31 - April 2, 2019, Ameet Talwalkar, Virginia Smith,
and Matei Zaharia (Eds.). mlsys.org. https://proceedings.mlsys.org/book/282.pdf

[21] Aaron Q. Li, Amr Ahmed, Sujith Ravi, and Alexander J. Smola. 2014. Reducing
the sampling complexity of topic models. In The 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, New York, NY,
USA - August 24 - 27, 2014. 891–900. https://doi.org/10.1145/2623330.2623756

[22] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou, and
Yafei Dai. 2019. NeuGraph: Parallel Deep Neural Network Computation on
Large Graphs. In 2019 USENIX Annual Technical Conference, USENIX ATC 2019,
Renton, WA, USA, July 10-12, 2019, Dahlia Malkhi and Dan Tsafrir (Eds.). USENIX
Association, 443–458. https://www.usenix.org/conference/atc19/presentation/
ma

[23] Yao Ma, Ziyi Guo, Zhaochun Ren, Jiliang Tang, and Dawei Yin. 2020. Streaming
Graph Neural Networks. In Proceedings of the 43rd International ACM SIGIR
conference on research and development in Information Retrieval, SIGIR 2020, Virtual
Event, China, July 25-30, 2020, Jimmy Huang, Yi Chang, Xueqi Cheng, Jaap
Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu (Eds.). ACM, 719–728.
https://doi.org/10.1145/3397271.3401092

[24] Frederic P. Miller, Agnes F. Vandome, and John Mcbrewster. 2010. Inverse Trans-
form Sampling.

[25] Jason Mohoney, Roger Waleffe, Yiheng Xu, Theodoros Rekatsinas, and Shivaram
Venkataraman. 2021. Learning Massive Graph Embeddings on a Single Machine.
CoRR abs/2101.08358 (2021). arXiv:2101.08358 https://arxiv.org/abs/2101.08358

[26] Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee
Koh, and Sungchul Kim. 2018. Continuous-Time Dynamic Network Embeddings.
In Companion of the The Web Conference 2018 on The Web Conference 2018, WWW
2018, Lyon , France, April 23-27, 2018, Pierre-Antoine Champin, Fabien L. Gandon,
Mounia Lalmas, and Panagiotis G. Ipeirotis (Eds.). ACM, 969–976. https://doi.
org/10.1145/3184558.3191526

[27] Santosh Pandey, Lingda Li, Adolfy Hoisie, Xiaoye S. Li, and Hang Liu. 2020. C-
SAW: a framework for graph sampling and random walk on GPUs. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2020, Virtual Event / Atlanta, Georgia, USA, November 9-19,
2020, Christine Cuicchi, Irene Qualters, and William T. Kramer (Eds.). IEEE/ACM,
56. https://doi.org/10.1109/SC41405.2020.00060

[28] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. 2020.
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs. In
The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,

EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press, 5363–5370.
https://aaai.org/ojs/index.php/AAAI/article/view/5984

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[30] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning
of social representations. In The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA - August 24
- 27, 2014, Sofus A. Macskassy, Claudia Perlich, Jure Leskovec, Wei Wang, and
Rayid Ghani (Eds.). ACM, 701–710. https://doi.org/10.1145/2623330.2623732

[31] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-Stream: edge-
centric graph processing using streaming partitions. In ACM SIGOPS 24th Sym-
posium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA, No-
vember 3-6, 2013, Michael Kaminsky and Mike Dahlin (Eds.). ACM, 472–488.
https://doi.org/10.1145/2517349.2522740

[32] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-Stream: edge-
centric graph processing using streaming partitions. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. ACM, 472–488.

[33] Alok Tripathy, Katherine Yelick, and Aydın Buluç. 2020. Reducing communication
in graph neural network training. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 1–14.

[34] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2017. Graph Attention Networks. CoRR abs/1710.10903
(2017). arXiv:1710.10903 http://arxiv.org/abs/1710.10903

[35] Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. 2020. Streaming Graph
Neural Networks via Continual Learning. InCIKM ’20: The 29th ACM International
Conference on Information and Knowledge Management, Virtual Event, Ireland,
October 19-23, 2020, Mathieu d’Aquin, Stefan Dietze, Claudia Hauff, Edward Curry,
and Philippe Cudré-Mauroux (Eds.). ACM, 1515–1524. https://doi.org/10.1145/
3340531.3411963

[36] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li,
Jinjing Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin
Lin, Junbo Zhao, Jinyang Li, Alexander J. Smola, and Zheng Zhang. 2019. Deep
Graph Library: Towards Efficient and Scalable Deep Learning on Graphs. CoRR
abs/1909.01315 (2019). arXiv:1909.01315 http://arxiv.org/abs/1909.01315

[37] Rui Wang, Yongkun Li, Hong Xie, Yinlong Xu, and John C. S. Lui. 2020. Graph-
Walker: An I/O-Efficient and Resource-Friendly Graph Analytic System for Fast
and Scalable RandomWalks. In 2020 USENIXAnnual Technical Conference, USENIX
ATC 2020, July 15-17, 2020, Ada Gavrilovska and Erez Zadok (Eds.). USENIX Asso-
ciation, 559–571. https://www.usenix.org/conference/atc20/presentation/wang-
rui

[38] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. 2021.
Inductive Representation Learning in Temporal Networks via Causal Anonymous
Walks. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net. https://openreview.net/
forum?id=KYPz4YsCPj

[39] Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu. 2014.
Path Problems in Temporal Graphs. Proc. VLDB Endow. 7, 9 (2014), 721–732.
https://doi.org/10.14778/2732939.2732945

[40] Huanhuan Wu, Yuzhen Huang, James Cheng, Jinfeng Li, and Yiping Ke. 2016.
Reachability and time-based path queries in temporal graphs. In 32nd IEEE In-
ternational Conference on Data Engineering, ICDE 2016, Helsinki, Finland, May
16-20, 2016. IEEE Computer Society, 145–156. https://doi.org/10.1109/ICDE.2016.
7498236

[41] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In 7th International Conference on Learning Rep-
resentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.
https://openreview.net/forum?id=ryGs6iA5Km

[42] Mingyu Yan, Lei Deng, Xing Hu, Ling Liang, Yujing Feng, Xiaochun Ye, Zhimin
Zhang, Dongrui Fan, and Yuan Xie. 2020. HyGCN: A GCN Accelerator with
Hybrid Architecture. In IEEE International Symposium on High Performance Com-
puter Architecture, HPCA 2020, San Diego, CA, USA, February 22-26, 2020. IEEE,
15–29. https://doi.org/10.1109/HPCA47549.2020.00012

[43] Ke Yang, Mingxing Zhang, Kang Chen, Xiaosong Ma, Yang Bai, and Yong Jiang.
2019. KnightKing: a fast distributed graph random walk engine. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles, SOSP 2019, Huntsville,
ON, Canada, October 27-30, 2019. 524–537. https://doi.org/10.1145/3341301.
3359634

[44] Minji Yoon, Théophile Gervet, Baoxu Shi, Sufeng Niu, Qi He, and Jaewon Yang.
2021. Performance-Adaptive Sampling Strategy Towards Fast and Accurate
Graph Neural Networks. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining. 2046–2056.

[45] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and
Viktor K. Prasanna. 2020. GraphSAINT: Graph Sampling Based Inductive
Learning Method. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. https:
//openreview.net/forum?id=BJe8pkHFwS

81

https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1145/3292500.3330895
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/2487788.2488173
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/kyrola
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/kyrola
https://proceedings.mlsys.org/book/282.pdf
https://doi.org/10.1145/2623330.2623756
https://www.usenix.org/conference/atc19/presentation/ma
https://www.usenix.org/conference/atc19/presentation/ma
https://doi.org/10.1145/3397271.3401092
https://arxiv.org/abs/2101.08358
https://arxiv.org/abs/2101.08358
https://doi.org/10.1145/3184558.3191526
https://doi.org/10.1145/3184558.3191526
https://doi.org/10.1109/SC41405.2020.00060
https://aaai.org/ojs/index.php/AAAI/article/view/5984
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2517349.2522740
https://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1710.10903
https://doi.org/10.1145/3340531.3411963
https://doi.org/10.1145/3340531.3411963
https://arxiv.org/abs/1909.01315
http://arxiv.org/abs/1909.01315
https://www.usenix.org/conference/atc20/presentation/wang-rui
https://www.usenix.org/conference/atc20/presentation/wang-rui
https://openreview.net/forum?id=KYPz4YsCPj
https://openreview.net/forum?id=KYPz4YsCPj
https://doi.org/10.14778/2732939.2732945
https://doi.org/10.1109/ICDE.2016.7498236
https://doi.org/10.1109/ICDE.2016.7498236
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1109/HPCA47549.2020.00012
https://doi.org/10.1145/3341301.3359634
https://doi.org/10.1145/3341301.3359634
https://openreview.net/forum?id=BJe8pkHFwS
https://openreview.net/forum?id=BJe8pkHFwS

PACT ’22, October 10–12, 2022, Chicago, IL, USA Chengying Huan et al.

[46] Mingxing Zhang, YongweiWu, Youwei Zhuo, Xuehai Qian, Chengying Huan, and
Kang Chen. 2018. Wonderland: A Novel Abstraction-Based Out-Of-Core Graph
Processing System. In Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS 2018, Williamsburg, VA, USA, March 24-28, 2018, Xipeng Shen, James
Tuck, Ricardo Bianchini, and Vivek Sarkar (Eds.). ACM, 608–621. https://doi.
org/10.1145/3173162.3173208

[47] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep Learning Based
Recommender System: A Survey and New Perspectives. ACM Comput. Surv. 52,
1 (2019), 5:1–5:38. https://doi.org/10.1145/3285029

[48] Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong,
Zheng Zhang, and George Karypis. 2020. DGL-KE: Training Knowledge Graph
Embeddings at Scale. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval, SIGIR 2020, Virtual Event,
China, July 25-30, 2020, Jimmy Huang, Yi Chang, Xueqi Cheng, Jaap Kamps,
Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu (Eds.). ACM, 739–748. https:
//doi.org/10.1145/3397271.3401172

[49] Le-kui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. 2018. Dy-
namic Network Embedding by Modeling Triadic Closure Process. In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the

30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018, Sheila A. McIlraith and Kilian Q.
Weinberger (Eds.). AAAI Press, 571–578. https://www.aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/16572

[50] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li,
and Jingren Zhou. 2019. AliGraph: A Comprehensive Graph Neural Network
Platform. Proc. VLDB Endow. 12, 12 (2019), 2094–2105. https://doi.org/10.14778/
3352063.3352127

[51] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-Scale
Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning.
In 2015 USENIX Annual Technical Conference, USENIX ATC ’15, July 8-10, Santa
Clara, CA, USA, Shan Lu and Erik Riedel (Eds.). USENIX Association, 375–386.
https://www.usenix.org/conference/atc15/technical-session/presentation/zhu

[52] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. 2018.
Embedding Temporal Network via Neighborhood Formation. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 2018, London, UK, August 19-23, 2018, Yike Guo and Faisal Farooq
(Eds.). ACM, 2857–2866. https://doi.org/10.1145/3219819.3220054

82

https://doi.org/10.1145/3173162.3173208
https://doi.org/10.1145/3173162.3173208
https://doi.org/10.1145/3285029
https://doi.org/10.1145/3397271.3401172
https://doi.org/10.1145/3397271.3401172
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16572
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16572
https://doi.org/10.14778/3352063.3352127
https://doi.org/10.14778/3352063.3352127
https://www.usenix.org/conference/atc15/technical-session/presentation/zhu
https://doi.org/10.1145/3219819.3220054

	Abstract
	1 Introduction
	2 Background
	2.1 Notations of Streaming Graphs
	2.2 Streaming Graph Neural Network
	2.3 Graph Sampling
	2.4 Challenges

	3 Streaming Graph Sampling
	4 Hybrid Architecture of T-GCN
	4.1 Locality-Aware Data Partition
	4.2 Task Schedule
	4.3 Pipeline and GPU Memory Management

	5 Programming Interface
	6 Evaluation
	6.1 Experimental Setup
	6.2 End-to-End Performance Comparison
	6.3 Sampling Method Optimization
	6.4 Accuracy Comparison
	6.5 Piecewise Breakdown Analysis of T-GCN
	6.6 Device Memory Overhead on a Single GPU
	6.7 Scalability on Multiple GPUs

	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References

