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Abstract—Distributed locks are used to guarantee the dis-
tributed client-cache coherence in parallel file systems. However,
they lead to poor performance in the case of parallel writes
under high-contention workloads. We analyze the distributed lock
manager and find out that lock conflict resolution is the root cause
of the poor performance, which involves frequent lock revocations
and slow data flushing from client caches to data servers. We
design a distributed lock manager named SeqDLM by exploiting
the sequencer mechanism. SeqDLM mitigates the lock conflict
resolution overhead using early grant and early revocation while
keeping the same semantics as traditional distributed locks. To
evaluate SeqDLM, we have implemented a parallel file system
called ccPFS using both SeqDLM and traditional distributed
locks. Evaluations on 96 nodes show SeqDLM outperforms the
traditional distributed locks by up to 10.3× for high-contention
parallel writes on a shared file with multiple stripes.

Index Terms—high performance computing, file systems, cache
coherence, distributed lock, sequencer

I. INTRODUCTION

Client-cache is widely used in parallel file systems (PFSes)
to bridge the gap between high-speed computation and slow
storage devices. However, it causes cache coherence problem
in the case of concurrent accesses. File systems, such as
BeeGFS [1], GlusterFS [2] and Ceph [3], adopt client-cache
without concurrency control. This limits their use in high
performance computing (HPC) systems, e.g., to support over-
lapping IO [4], [5] or concurrent producer-consumer work-
flows [6]. The widely used PFSes in HPC systems, Lustre [7]
and GPFS [8], use distributed lock managers (DLMs) [9], [10]
to guarantee the client-cache coherence.

In a PFS using DLM, locks granted by lock servers can be
cached in clients for future use. This is efficient for accesses
that are of spatial locality. For example, for file-per-process (N-
N) access pattern [11], data can be cached in clients under the
protection of the cached locks. The cached locks are reclaimed
by a lock conflict resolution when other clients request the
same locks. A general conflict resolution process of a write
lock is as follows. (1) The lock server sends a revocation
message to the client holding the lock (lock revocation). (2)
The client flushes the dirty data to data servers (data flushing),
and then (3) releases the lock by sending a release message to
the lock server (lock release). Only when conflicting locks are
totally reclaimed, can a new lock be granted. Thus, for shared

file (N-1) access pattern [11], high-contention workloads make
DLM almost serialize parallel writes [12].

Both of the N-N and N-1 IO patterns are widely used in
HPC. Yang et al. [13] reported that nearly half of applications
in Sunway TaihuLight use shared files. To optimize PFSes
for high N-1 performance, some works [14]–[16] eliminate
DLM and client-cache, but at the expense of degraded N-
N performance with small write sizes. In contrast, other
studies [12], [17] try to reduce lock conflicts. However, they
increase programming complexity and are hard to cope with
overlapping IO accesses [5], [18].

IO processing in scientific applications can be typically
divided into two phases, a read phase and a write phase,
which rarely mixes reads and writes [19]–[21]. Lock conflicts
are mainly in the parallel write phase. The heavy conflict
resolution of write locks limits the write performance. We
propose two methods to mitigate the overhead of lock conflict
resolution in the write phase. (1) Usually, the grant of a write
lock must wait until the previous lock holder releases the lock.
However, concurrent writes do not need to read data from
each other. We propose early grant to grant the lock before
the data flushing of the previous lock holder is completed
and use a sequencer mechanism to make the asynchronous
data flushing correct (§III-A1). (2) Usually, the revocation of
a cached lock is passive, which means that the cached lock
is not revoked until another client issues a new conflicting
lock request. However, under high contention, locks tend to
be transferred to the next holder quickly. We propose early
revocation (§III-A2), which piggybacks the lock revocation
request in the lock grant reply message to release the lock
immediately after use, to further eliminate the lock revocation
delays for high-contention workloads.

The above proposed methods help DLM to perform better
on N-1 writes without sacrificing performance on N-N writes.
However, they relax the blocking feature of the traditional
write lock, making the modified lock mechanism unable to
support atomic write across multiple resources (§III-B1) and
atomic read-update operations (§III-B2). The key challenge
here is to keep the same lock semantics while applying
the above two optimizations. Hence, we keep the read lock
and extend the traditional write lock to three modes to bridge
the semantics gap (§III-C). The rich lock modes provide
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opportunities to improve performance but bring the complexity
of use. We design deterministic lock mode selection rules to
ease lock mode selection for common operations in PFSes
(§III-C), and adopt an automatic lock conversion mechanism
to convert a lock to a proper one when the selected lock mode
is no longer optimal (§III-D).

Our major contributions are summarized as follows:
(1). We analyze typical IO patterns in scientific applications
and find out the bottleneck of the traditional DLMs. Mean-
while, we validate it with mathematical analysis and micro-
benchmarks.
(2). We propose a novel DLM named SeqDLM with early
grant and early revocation to eliminate the bottleneck of the
traditional DLMs under high contention. Besides, we extend
the lock modes to keep the traditional semantics and propose
lock mode selection rules and an automatic lock conversion
mechanism to ease the usage.
(3). We develop ccPFS to compare SeqDLM with the tra-
ditional DLMs on 96 machines. Evaluations show SeqDLM
achieves up to 18.1× speedup over the traditional DLMs for
high-contention parallel writes from 16 clients to a shared file
with 1 stripe, and up to 10.3× speedup for high-contention
parallel writes from 96 clients to a shared file consisting of 4
stripes, with some writes spanning two stripes.

II. BACKGROUND AND MOTIVATION

A. Distributed Lock in PFS

In a PFS using DLM, files or data objects are associated
with lock resources. To perform writes, a client first interacts
with lock servers to obtain lock grants from the lock resources.
After the writes are completed, the client can cache the data
together with the lock grants to reduce network traffic. PFSes
usually use a byte-range locking mechanism to allow multiple
clients to write concurrently to the interleaved parts of a shared
file. When a client initiates a lock request with a required
extent ([start, end]), the server expands the extent range to
form a largest compatible address (lock range expanding) for
reuse in the client. Because applications seldom perform IO
backward, only the end of a lock range is usually expanded, as
in the implementation of Lustre. We adhere to this convention
in this study.

Although DLMs have many variants in practical PFSes [8],
[10], the core processing logic of them is similar. We illustrates
the process with an example in Fig. 1. In the example, a lock
client C0 wants to acquire a write lock with the range [10,
30] while another lock client C1 caching a granted write lock
with the range [0, 20]. To begin with, C0 checks the lock
grant cache locally. Because no grant is cached, it sends a
lock request to the lock server (➀). Upon receiving the request,
the lock server checks whether the request is compatible with
locks that have been granted using a lock compatibility matrix
(LCM) (compatible locks can be granted simultaneously). It
finds that a conflicting write lock with the range [0, 20]
has been granted and cached in C1. The server then starts a
routine of lock conflict resolution. In the conflict resolution, a
revocation request is sent to C1. Correspondingly, C1 changes

Grant Conflict Check Conflict Resolution

Lock Cache
Lock Client C0

[0,20, W]
Lock Client C1

�
� �

�

compatible conflict

recheck

Lock Server

�
[10, EOF, W] [10, 30, W]

Fig. 1: General processing flow of DLM. W: write lock, ➀:
lock request. ➁ lock revocation, ➂: data flushing, ➃: lock
release, ➄ lock grant.
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Fig. 2: IO patterns in scientific applications [11].
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Fig. 3: DLM behaviors in the N-1 patterns. To resolve con-
flicts, lock server revokes old conflicting locks. To grant a
lock, the server expands the end of the lock range to form a
largest compatible range.

the lock state to CANCELING to prevent future IO from using
it and sends a revocation reply to the lock server (➁). After
that, C1 waits for the ongoing operations to be completed,
flushes dirty data to data servers (➂), and finally sends a
release message to the lock server (➃). Upon receiving the
release message from C1, the server expands the range of the
lock request to [10, EOF] (EOF: End Of File) and grants it to
C0 (➄).

B. Distributed Lock Overhead in Parallel IO

From the perspective of a PFS, scientific applications exhibit
two main parallel IO patterns, file-per-process (N-N) and
shared file (N-1) [11]. In the N-N pattern (Fig. 2(a)), each file
is accessed by one client. In the N-1 pattern, a file is concur-
rently accessed by multiple clients. The N-1 pattern is further
subdivided into N-1 segmented (Fig. 2(b)) and N-1 strided
(Fig. 2(c)). In the former, each client accesses a contiguous
segment. In the latter, each client accesses non-contiguous
segments, which is common in scientific applications [11],
[17].

For a PFS using DLM, the client-cache can reduce the write
time. In general, write operations return when data are written
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Fig. 5: Performance of reduc-
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to the cache. The data in the cache are asynchronously flushed
to data servers. If data in the cache are needed by other clients
(e.g., concurrent scientific workflows), the PFS uses DLM
to synchronize the data to data servers before these clients
can access them. In the N-N pattern, DLM incurs almost no
overhead to IO. In the N-1 segmented and N-1 strided patterns,
the overhead of DLM is different. Fig. 3 illustrates DLM
behaviors in the N-1 patterns. Here, two clients A and B write
to a shared file with the same order. In N-1 segmented, lock
conflicts only happen at the beginning of the IO (Fig. 3(a)).
While in N-1 strided, the lock range expanding mechanism
leads to continual lock conflicts (Fig. 3(b)). We quantify
the impact of write lock conflicts on write performance by
writing to files located in a 2 GB/s disk array using IOR
benchmark [22]. We make this experiment on Lustre (version:
2.10.8), configuring each file to have one stripe and each
client to cache at most 2 GB of dirty data. The tests use
16 clients. Each client writes 1 GB data with different write
sizes. If no lock conflicts happen, data can be totally cached
in clients. As shown in Fig. 4, the write bandwidth of N-
N and N-1 segmented is higher and gradually bounded by
the cache speed, while the write bandwidth of N-1 strided
is much slower. A similar phenomenon exists in other PFSes
using DLMs [8]. The gap shows that the traditional DLM is
inefficient under high contention.

C. Lock Conflict Resolution Overhead Analysis

We make an analysis to show how the lock conflict reso-
lution limits parallel write performance. We assume that N
parallel writes are performed on a shared file with a single
stripe. Each write has the size D. These writes are issued by
multiple clients and conflict with each other. A typical example
of this case is N-1 strided shown in Fig. 3(b). To simplify the
analysis, we ignore the overhead of memory operations and
assume the network has no software overhead. We take the
total data size N ×D divided by the total time spent on the
parallel writes as the bandwidth (Btotal). As shown in Fig. 1,
the overhead of acquiring a lock mainly comes from two parts:
p1 — sending a lock request to the lock server and receiving
a grant reply from it, and p2 — the lock conflict resolution,
including lock revocation, data flushing and lock release. For
multiple clients, p1 can run in parallel. So the overhead of p1
is bounded by OPS (RPC operations per second) of the lock
server, and the time of N writes spent on p1 can be estimated
by N

OPS . N conflicting writes lead to N − 1 serialized lock

TABLE I: Approximate performance of commonly-used In-
finiband and NVMe SSD.

OPS (op/sec.) RTT (sec.) Bnet (Byte/sec.) Bdisk (Byte/sec.)
1× 107 1× 10−6 12.5× 109 3× 109

conflict resolutions. Thus, the time spent on p2 for N writes
can be estimated by (N−1)×RTT + (N−1)×D

Bflush
, where RTT

is approximately equivalent to the time of lock revocation and
lock release (the time spent on revocation reply can be hidden
by the lock release RPC), and Bflush is the bandwidth of data
flushing. Hence, Btotal can be estimated by Equation (1). That
means, the total bandwidth of N conflicting writes is limited
by ➀ 1

OPS×D , ➁RTT
D and ➂ 1

Bflush
. Bflush is decided by Bnet

(bandwidth of network) and Bdisk (bandwidth of disk). It can
be estimated by Equation (2).

Btotal =
N ×D

N
OPS + (N − 1)×RTT + (N−1)×D

Bflush

≈ 1
1

OPS×D + RTT
D + 1

Bflush

(1)

Bflush ≈ D
D

Bnet
+ D

Bdisk

=
Bnet ×Bdisk

Bnet +Bdisk
(2)

For further explanation, we assume D = 106 bytes (≈ 1
MB) and use parameters in Table I to evaluate ➀, ➁ and ➂.
The result is that ➀ ≈ 1.0×10−13 sec/bytes, ➁ ≈ 1.0×10−12

sec/bytes and ➂ ≈ 4.1 × 10−10 sec/bytes. ➂ is much larger
than ➀ and ➁. From the above analysis, we conclude that ➂
is the bottleneck of DLM under high contention, and verify
it by gradually reducing data flushing overhead in Lustre
with the same configuration in §II-B. We achieve this by (1)
disabling disk write using fakeWrite [23] and (2) hacking
Lustre to only transfer the first page (4KB) if a flushing
RPC contains multiple pages. Fig. 5 shows that reducing data
flushing overhead can greatly improve performance. In this
test, we also find that many lock requests are queued on the
lock server due to contention, and many granted locks are
revoked immediately. From Equation (1), we can see that if we
can eliminate the overhead of data flushing (removing ➂), the
lock revocation (contributing to ➁) becomes a new bottleneck.

In order to increase IO parallelism and exploit the perfor-
mance of multiple devices, PFSes usually organize files into
multiple stripes and each stripe is associated with a dedicated
lock resource. For this case, if no single write spans multiple
stripes, the lock conflict resolution only affects conflicting
writes in a single stripe. Otherwise, writes across multiple
stripes need to obtain multiple locks from the lock resources
of the corresponding stripes, and the lock conflict resolution
will decrease the write parallelism of multiple stripes.

III. SeqDLM DESIGN

The basic idea of SeqDLM is to leverage the sequencer
mechanism to accelerate the write-write lock conflict resolu-
tion in DLM. In this section, we first present the basic idea
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Fig. 6: Normal grant vs. early grant. C0, C1: clients. LS: lock
server. Write lock LB from C1 conflicts with a granted write
lock LA that is cached in C0.

of early grant (§III-A1) and early revocation (§III-A2). We
then discuss the semantics gap (§III-B) between the basic
idea and the traditional DLM. Next, We outline lock modes
of SeqDLM to bridge the gap and lock selection rules to
ease the use (§III-C). Finally, we propose an automatic lock
conversion mechanism to convert a lock to a proper mode for
high performance when the selected lock mode is no longer
optimal (§III-D).

A. Basic Idea

1) Early Grant: In the traditional DLM, when conflicting
with a granted lock, a new grant should wait until the granted
lock is released (normal grant shown in Fig. 6). It is needed
to resolve the conflict between a read lock and a write lock
because data dependency may exist between them. However,
for parallel writes, which do not read data from each other,
waiting for conflicting writes to be fully flushed to data servers
is too heavy. Early grant is proposed to enable a write lock to
be granted earlier (early grant shown in Fig. 6): upon receiving
the revocation reply from C0, knowing that the old write lock
LA granted to C0 has been changed into the CANCELING
state and will not be reused, the lock server directly grants the
new write lock LB to C1.

Fig. 7 illustrates that three write operations (w1, w3 from
C0 and w2 from C1) are performed in turn on a shared file
with early grant. Each write has the range [0, 1GB]. Early
grant causes two data safety problems. ➀ w3 may start but
the data flushing of w1 has not been completed, resulting in
data corruption in the client-cache. ➁ Data flushing of w1 and
w2 may reach the data servers out of order, breaking write
serialization. We address these problems by leveraging the
sequencer mechanism. Each lock resource maintains a mono-
tonically increasing sequence number (SN). When granting
a lock, the lock server assigns the current SN of the lock
resource to the lock. If the lock to be granted is a write lock,
the lock server also increases the lock resource’s SN by one.
In this way, all granted write locks of a lock resource can be
ordered by their unique SNs. Data to be written are tagged with
the SNs from the corresponding granted locks. When adding
them to the client-cache, we use the SNs to distinguish which
data are the newest, thus addressing the problem ➀. Data that

data-safety problem

CG
w1 Data Flushing

G C
w2 Data Flushing

C0: L1 [0, EOF]

G
w3C0: L3 [0, EOF] 

C1: L2 [0, EOF]

Time

�

�

Fig. 7: Data safety problems of early grant without a se-
quencer. C0, C1: clients. w1, w2, w3: write operations. L1,
L2, L3: write locks. G: lock in the GRANTED stat. C: lock
in the CANCELING state. Lock grant order: L1 → L2 → L3.
The lock server expands the end of each granted lock to EOF
according to the lock range expanding strategy.

are flushed to data servers also carry their SNs. The data server
keeps an extent cache to track the SNs of data it has processed.
Leveraging the SN, the server can correctly write the data to
storage devices, thus addressing the problem ➁ (referring to
§IV-B for details).

Ordering in SeqDLM is different from other systems de-
pending on the same mechanism. For example, CORFU [24],
a distributed shared log abstraction, uses a global sequencer to
order concurrent writes. However, each write in CORFU needs
to get a SN, which makes the sequencer become a bottleneck.
In SeqDLM, if a lock grant is cached in a client, the SN
of it can be reused by subsequent writes. Thus, under low
contention, ordering in SeqDLM incurs low overhead to lock
servers.

2) Early Revocation: According to the analysis in §II-C,
after early grant removes the data flushing from the critical
path of the lock conflict resolution, the lock revocation over-
head cannot be ignored under high contention. For example,
conflicting lock requests (LA, LB) from two clients reach the
lock server simultaneously. After sending the grant reply to
LA, the server finds LB conflicts with LA and immediately
sends a revocation callback to LA. The grant of LB has to
wait for at least one RTT until the revocation reply of LA
has returned.

We propose early revocation to eliminate this delay. When
granting a lock, the lock server tags it with a state to tell
the client how to handle the lock after use. A GRANTED state
means the lock can be cached and reused by the client, while a
CANCELING state means the lock cannot be reused and should
be canceled after use. Under high contention, lock requests are
queued and the lock server can detect whether a lock to be
granted conflicts with future locks in the queue. If it does, we
piggyback the revocation request in the grant reply by tagging
the lock with the CANCELING state. After that, the lock server
can safely grant new locks without waiting for the revocation
replies to return. After eliminating the wait, combinded with
early grant, the lock server acts like a global sequencer in
high-contention write scenarios.

The lock server uses early revocation for a lock to be
granted when (1) it detects that a newer lock request conflicts
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Fig. 8: Anomaly of writes across two stripes due to early grant.
r: lock request, g: lock grant, v: lock revocation.

with the lock, and (2) it cannot expand the lock range. The
reason for (2) is as follows. The lock server always expands the
real range a client requires. Locks that cannot be expanded are
hardly reused because clients rarely write to the same file range
repeatedly. Caching these locks in clients incurs the overhead
of maintaining lock states [25].

B. Semantics Gap with Traditional DLM

1) Atomic Write across Multiple Resources: PFS usually
organizes a file into multiple stripes and each stripe has a lock
resource. When a write spans multiple stripes, the client should
first hold write locks of the stripes. In this case, early grant
cannot guarantee the write atomicity. We take an example to
explain the anomaly. A file has two stripes located in two
servers S0 and S1. The stripe size is 1MB. Two clients C0
and C1 want to write to the file with the range [0, 2MB],
which spans S0 and S1. To ensure write atomicity, each client
needs to acquire write locks (L0 and L1, respectively) from
S0 and S1. The L0 from C0 is first granted by S0. Using the
traditional write lock, L0 from C1 is blocked until C0 finishes
the write and releases L0. However, early grant relaxes the
blocking feature. As shown in Fig. 8, the grant of L0 to C1
cannot be blocked, which may cause L1 from C1 to be granted
before L1 from C0. As a result, the final content of [0, 1MB]
is from C1 and that of [1MB, 2MB] from C0, which breaks
the atomicity of a single write operation.

2) Atomic Read-update Operations: Some write operations
in a PFS are accompanied by read operations, called atomic
read-update operations. For example, the append operation
needs to read the global file size before it can perform the
write. Besides, PFSes usually use a 4KB page as the minimal
management unit. In the implementation of most PFSes, a
partial page write needs a synchronous page read and then an
update on the page. When adopting early grant, a client may
get a write lock grant but dirty data belonging to old conflicting
write locks have not been flushed to data servers. This makes
the client fail to obtain accurate file size or up-to-date data.

C. Lock Modes and Lock Mode Selection

In order to bridge the gap mentioned in §III-B, we keep the
traditional read lock and refine the traditional write lock into
three modes. These lock modes are described as follows.
PR (Protective Read). Holders of PR can read the shared
resource simultaneously, which has the same semantics as the
traditional read lock.

TABLE II: LCM of SeqDLM. ➀: lock mode of a new lock
request, ➁: lock mode of a granted lock. Y: compatible. N:
incompatible. N/Y means that the lock request is incompatible
with the granted lock in the GRANTED state while it is
compatible with the lock in the CANCELING state.

➀
➁ PR NBW BW PW

PR Y N N N
NBW N N/Y N N
BW N N/Y N N
PW N N N N

NBW (Non-blocking Write). The holder of NBW can only
write the shared resource but is not allowed to read it. Besides,
it does not maintain the blocking feature of the write lock.
NBW delivers high parallel write performance under high
contention.
BW (Blocking Write). BW is similar to NBW but keeps the
blocking feature of the write lock. BW is used to bridge the
gap in §III-B1.
PW (Protective Write). PW has the same semantics as the
traditional write lock. The holder of PW can read and write
the shared resource. PW is used to bridge the gap in §III-B2.

SeqDLM has a processing logic similar to the traditional
DLMs. The main difference is that we define a new LCM to
check conflicts between the new lock modes. In SeqDLM’s
LCM (shown in Table II), a granted lock has two states,
GRANTED and CANCELING, which are mentioned in §III-A2.
A granted lock is in the GRANTED state by default. It enters
into the CANCELING state when the revocation reply of it
has been processed by the lock server or the lock has been
granted with early revocation. If a new lock request with
the NBW or BW mode conflicts with granted NBW locks
in the GRANTED state, once the granted locks enter into the
CANCELING state, the conflicts are resolved, and then the new
lock request can be granted (early grant). For other cases, lock
conflicts are resolved only when the conflicting granted locks
are completely released (normal grant).

PW

BW

NBW PR

Upgrade                      Downgrade

Fig. 9: Lock mode severity and conversion in SeqDLM.

More write lock modes bring more opportunities for per-
formance improvement. However, selecting a proper lock
mode is essential. To simplify the selection, similar to prior
works [9], [26], we order the lock modes by the severity of
their restrictiveness, as shown in Fig. 9. Lock modes in the
upper layers are more restrictive than that in the lower layers.
A more restrictive lock can be used in more scenarios. For
example, PW, the most restrictive lock mode in SeqDLM, can
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Fig. 10: Lock mode selection rules for an IO operation.

be used to support writes across multiple resources and atomic
read-update operations, while the least restrictive write lock
NBW can only be used for writes in a single resource. On
the other hand, a more restrictive lock is less efficient under
lock contention. For example, PW and BW serialize the data
flushing of conflicting locks, while NBW can leverage early
grant and early revocation to get high IO performance under
high contention.

We give the rules, shown in Fig. 10, to select an optimal
lock mode for each operation. Here, the optimal lock mode
means the least restrictive lock mode that meets the need of
an IO operation. For a read operation, PR is selected. For a
write operation, if it may involve implicit reads (e.g., append),
PW is selected. Otherwise, if it needs to hold multiple locks
simultaneously (e.g., atomic write across multiple resources),
BW is selected. For other cases, NBW is selected. For common
data-related operations in the file system, such as read, write,
truncate and append, deterministic lock modes can be easily
selected according to the rules.

D. Automatic Lock Conversion

For an operation sequence, selecting an optimal lock mode
for each operation does not mean it is optimal for the whole
sequence. We propose an automatic lock conversion mecha-
nism (lock upgrading and downgrading) to convert a lock to
a proper mode for high performance when the selected lock
mode is no longer optimal. This mechanism is automatically
triggered by the lock service and transparent to users.

1) Lock Upgrading: Fig. 11(a) shows the lock behavior
of mixed reads/writes from the same client to a shared file
with one stripe. According to the lock mode selection rules
in Fig. 10, the write operation selects NBW and the read
operation selects PR. PR and NBW conflicts in SeqDLM
(Table II). This leads to frequent lock revocations in the same
client. We use lock upgrading to address the problem. Once
the lock server finds that a lock request conflicts with a granted
lock in the same client, it grants the lock with a more restrictive
lock mode. As shown in Fig. 11(b), the lock server upgrades
the mode of the lock request from PR to PW and grants it to
the client. When receiving the lock grant, the client merges
the old conflicting NBW lock in its local cache with the new
granted PW lock. In this way, we avoid reclaiming locks due
to lock conflicts in the same client. In addition, subsequent
reads/writes can also reuse the granted PW lock. The possible
lock upgrading routines are shown in Fig. 9. If a lock mode
needs to be upgraded to PW while multiple clients are caching
conflicting PR locks, the lock server first reclaims the PR locks
from the clients except the one that sends the lock request.
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Fig. 11: Comparison before and after using lock upgrading.
C: client, S: server, ➀: NBW request, ➁: NBW grant, ➂: PR
request, ➃: PR grant, ➄: PW grant.
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2) Lock Downgrading: As shown in Table II, a lock re-
quest, regardless of its mode, is incompatible with a granted
BW or PW lock in both GRANTED and CANCELING states.
It means that once a client has selected BW or PW, or a lock
has been upgraded to BW or PW, a new conflicting lock grant
needs to be delayed until the BW or PW locks are released. For
example, two clients C0 and C1 write to a file with two stripes
located in two servers S0 and S1. Each write spans the two
stripes. Fig. 12 shows the lock processing on S0. Each client
selects BW according to our lock selection rules. Due to the
blocking feature of BW, the lock grant to C1 should wait until
data flushing in C0 is completed (normal grant). However, this
delay is unnecessary because C0 and C1 do not perform read.
We use lock downgrading to address this problem. When a
client starts to cancel a lock, it first downgrades the lock to
the least restrictive one. As shown in Fig. 12, after the BW lock
is unlocked, finding the lock is in the CANCELING state, C0
downgrades it to a NBW one and sends a downgrading RPC
to S0 to notify the lock downgrading. After that, C0 continues
the lock canceling process. Upon receiving the downgrading
RPC, S0 changes the lock to a NBW one. Then the BW lock
request from C1 can be granted using early grant.

The possible downgrading routines are shown in Fig. 9. If
a PW lock in the CANCELING state is held by only readers,
the client flushes the dirty data and then downgrades it to a
PR lock. After that, PR lock requests conflicting with the PW
lock can be granted. For other cases, the client downgrades
the PW lock to a NBW one so that new NBW or BW lock
requests conflicting with it can be early granted.

IV. ccPFS: A SeqDLM-BASED PFS
We develop ccPFS to show the essentials of applying

SeqDLM in a PFS. ccPFS is used as a client-cache coherent
burst buffer system. The architecture is shown in Fig. 13. It
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uses an external distributed file system, such as Lustre or NFS,
to provide metadata service. It organizes a file into one or more
stripes. Each stripe is associated with a unique lock resource.
Each stripe and its corresponding lock resource have the same
identifier (ID). ccPFS distributes stripes to data servers by
hashing the IDs. Each data server runs an IO service to handle
IO requests to file stripes, and a DLM service to handle lock
requests to the corresponding stripes. ccPFS allows data to
be cached in clients and leverages SeqDLM to guarantee the
client-cache coherence.

ccPFS uses CaRT [27] as the RPC infrastructure for Se-
qDLM, and uses InfiniBand Verbs to transfer IO requests
between clients and servers. To avoid memory registration
overhead, each client allocates a certain number of pages as
a memory pool and registers all of these pages as RDMA-
enabled space in advance. All cached pages in a client are
picked up from this memory pool. When the number of cached
pages exceeds a threshold, the client reclaims some cached
pages to the pool. ccPFS provides a library called libccPFS
to provide POSIX-like APIs. It can be linked into applications
for direct use, or be implemented as the back-end of an IO
forwarding software. For the latter, applications do not need
to modify their codes to use ccPFS.

Similar to Lustre, the locking operations of SeqDLM are
implicitly included in IO operations and transparent to appli-
cation users. For example, when a write operation is called,
ccPFS automatically obtains a lock (lock()) with the file range
it will write to. When the write is done, it puts the lock
(unlock()). After that, the lock can be cached in the clients.
ccPFS uses the lock range expanding mechanism so that a
granted lock can be reused by a client as much as possible. The
lock modes are selected according to the lock selection rules
in Fig. 10. ccPFS asynchronously flushes conflicting writes
and uses the SN in SeqDLM to guarantee correctness. In this
section, we describe how to use SN in SeqDLM to resolve
client-cache conflict (§IV-A) and make data flushing correct
on data servers (§IV-B). We end this section with a discussion
of durability and handling failures (§IV-C).

A. Resolving Client-Cache Conflict

In the client, cached data is divided into pages (e.g. 4KB).
Each page maintains an extent list to keep SNs of valid data
blocks in it. Fig. 14 shows the path of two conflicting writes in
a client. A write with the extent [0, 4KB] has been performed
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Data	Server

Client	Lock	Cache

LockB [0,	8K,	9]

Client	Data	Cache

Data
Flushing D	[0,	2K,	7]

Fig. 14: Client-side write routine in ccPFS.

under lockA (lockA is in the CANCELING state) while another
write with the extent [2KB, 8KB] is performed under lockB.
Written data with a larger SN overwrites the smaller ones when
inserted into the client-cache. When revoking a lock, the client
flushes data with the same SN of the lock. For example, for
LockB, the client flushes D [2K, 4K, 9] (data with the range
[2KB, 4KB] and SN 9) and D [4K, 8K, 9]. Data flushing of
multiple locks can be batched in one RPC and the RPC carries
the SNs of involved data blocks.

B. Making Data Flushing Correct

Data flushing of conflicting locks may arrive at the data
server out of order. We use an extent cache to make the
conflicting data flushing correct. The extent cache records
the maximum SNs of data blocks that have been written
to devices. The entries in the extent cache for each stripe
are organized using an interval tree. Each entry consists of an
extent and its newest SN and has a size of 48 bytes. Continuous
extents of the same stripe with the same SN are merged to
reduce extent cache size. Fig. 15 illustrates the write routine
on the data server. A write request, carrying three data blocks
(D [0, 2K, 7], D [2K, 4K, 9] and D [4K, 8K, 9]), arrives.
First, we merge the SNs into the extent cache (➀). For the
overlapping part, we keep the extent with a larger SN. For
example, the SN of the extent [0, 2K] is not changed because
D [0, 2K, 7] is older than D [0, 4K, 8], while the SN of the
extent [2K, 4K] is updated because D [2K, 4K, 9] is newer
than D [0, 4K, 8]. During the merging, we record the changes
in an update set (➁). Next, we write the data in the update
set to devices and discard the parts that are not in the set (➂).
Optionally, we can maintain an extent log for each stripe and
record the entries in the update set into the log to enable the
extent cache to be reconstructed from the log in the case of
server recovery (§IV-C2) (➃). Finally, we send a reply to tell
the client that data flushing has been completed.

For contiguous writes, such as in the N-N and N-1 seg-
mented patterns, the extent entries can be merged, resulting
in a smaller extent cache size. However, when serving lots of
non-contiguous writes, such as in the N-1 strided pattern, the
extent cache may have a large size, which potentially degrades
write performance. We use the following methods to keep the
extent cache at a moderate size. (1) When the total number of
cached entries exceeds a threshold (256 K), the server starts
an asynchronous task to clean up invalid entries. For each
stripe in the cache, the task picks up some entries, queries
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the minimum SN (mSN) of unreleased write locks of the
corresponding stripes whose ranges overlap the entries, and
removes the entries whose SNs are no larger than the mSN.
For example, as shown in Fig. 15, if we find the mSN of the
extent [0, 8K] is 9, we know that no more data blocks with
smaller SNs than 9 need to be processed because SeqDLM
ensures data with SNs smaller than mSN have been written
to devices. Then we can safely remove S [0, 2K, 8] and S
[2K, 8K, 9]. The task runs periodically with a lower priority
than IO threads and only processes at most 1,024 entries each
time to prevent it from blocking normal IO. Most entries can
be cleaned in this case. (2) If the number of cached entries
that cannot be cleaned in (1) still exceeds the threshold, it
means new write locks have been early granted but many old
granted locks in the CANCELING state due to early grant have
not completed their data flushing. The server then forcefully
synchronizes data flushing of all clients by requiring a read
lock with the whole range of each stripe. If an extent log of
a stripe is maintained, it can be safely removed in this case.

C. Discussion

1) Durability: Client-cache causes data loss when a client
crashes while there are dirty data in it. This convention is
applicable to local file systems, such as ext4 and XFS, and
distributed file systems, such as BeeGFS [1] and Lustre [7].
Nonetheless, we try to reduce data loss using the following
best-effort strategy. We set the minimum and maximum thresh-
old for the total size of the client-cache. When the size of dirty
data reaches the minimum threshold (256 MB by default), the
client starts a daemon to voluntarily flush the dirty data. When
the size of dirty data reaches the maximum threshold (4 GB by
default), the client forcefully flushes the dirty data and blocks
new writes until there are available caches. Besides, ccPFS
also provides fsync() to allow users explicitly to flush dirty
data if needed.

2) Server Recovery: When failures happen, HPC appli-
cations are usually aborted and restarted. Thus, ccPFS does
not provide the server recovery mechanism, similar to other
ephemeral PFSes, such as BurstFS [15] and GekkoFS [14].
However, SeqDLM has the ability to handle server recovery
similar to the traditional DLMs when applied to other systems.
First, the server recoveries lock states by gathering them from

all clients. Second, it replays the extent log to reconstruct the
extent cache (the extent log should be maintained for server
recovery). Finally, the clients redo the data flushing RPCs that
were sent but the replies have not been received because of
failures.

V. EVALUATION

In this section, we aim to answer the following questions.
(1). How does SeqDLM perform under high contention?
(2). How does SeqDLM perform to support HPC workloads
using synthetic benchmarks and application benchmarks?

A. Experimental Setup

In order to easily track performance metrics, we use ccPFS
as the basic platform and implement traditional DLMs in
ccPFS. They include the general DLM (DLM-basic) shown in
§II-A, Lustre-special DLM (DLM-Lustre), and datatype lock-
ing (DLM-datatype) [17]. SeqDLM, DLM-basic and DLM-
Lustre use extents to manage lock ranges. The lock server of
them can expand the range of a granted lock. The difference
is that SeqDLM and DLM-basic greedily expand the end of
a granted lock to a largest compatible range while DLM-
Lustre expands the lock range to a maximum of 32 MB when
the server finds that more than 32 locks have been granted.
The special optimization of DLM-Lustre helps to reduce lock
conflicts under high contention. DLM-datatype is an optimized
implementation to support atomic non-contiguous IO. It uses
a datatype to describe lock ranges of non-contiguous IO to
reduce lock request size and the lock server of it does not
expand lock ranges to reduce lock conflicts.

We run our experiments on a 96-node cluster. Each node has
two 8-core intel Xeon Silver 4214 CPU 2.2 GHz, equipped
with 256 GB RAM, one 3200 GB NVMe SSD and a 100
Gbps HDR NIC connected to a HDR IB switch. The nodes
run CentOS 7.7 with Linux 3.10.0-862.14.4 kernel. We use
CaRT [27] from DAOS 1.1.2 [16] for RPCs in SeqDLM, which
is based on Mercury 2.0.1 [28]. CaRT runs on verbs; ofi rxm
NA plugin, achieving about 213 kOPS for a server. We use IB
verbs for IO between clients and data servers in ccPFS and
use MPICH to support distributed tests.

B. Micro Benchmark

1) Data Safety: For read-write conflicts, SeqDLM and the
traditional DLM have the same behaviors. However, for write-
write conflicts, early grant and the automatic lock conversion
mechanism may lead to conflicting data flushing. We use
some workloads to test data safety in the write-write conflict
scenarios. First, we use the IO500 [29] IOR hard workload to
verify the data safety of parallel non-overlapping writes. It first
writes to a shared file using N-1 strided pattern with the write
size 47,008 bytes, and then reads them back from different
clients to check whether the result is correct. We test ccPFS
with the stripe number 1, 2 and 4 on 16 clients. We run the test
for 10 times and observe that ccPFS always returns correct
results. Second, we build a workload, as shown in Fig. 7,
to show that ccPFS is data safe under parallel overlapping
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writes. We first run concurrent writes on 16 clients to a shared
file. Each client performs two writes with different data. Each
write has the range [0, 1GB]. When all writes are completed
(guaranteed by MPI Barrier()), each client performs a read
with the range [0, 1GB]. We compare the checksum of the
data to see whether they are the same. We repeat the test for 10
times for a file with 1 stripe (to test NBW) and with 2 stripes
(to test BW with lock conversion). We observe the results are
the same and from the second write of some client in the test.
This is consistent with the traditional lock semantics.

2) Early Grant and Early Revocation: We compare NBW
with PW in SeqDLM to show the impact of early grant and
early revocation on IO performance.

Overhead breakdown. We explain how early grant im-
proves IO performance by measuring the time of a totally
conflicting write sequence, in which 16 clients write to a
shared file alternately in a round-robin fashion (Fig. 16(a)).
MPI_Send()/MPI_Recv() are used to synchronize oper-
ations between clients. Each client performs 4,000 writes. We
break down the total time into three parts: ➀ lock revocation,
➁ lock cancel (including data flushing and lock release RPCs)
and ➂ others (including lock requests, grant replies and writing
data into the client-caches). We measure the time spent on
each part. The results are shown in Fig. 17. For writes using
PW, the lock conflict resolution (➀ + ➁) is the most time-
consuming part (67.9% to 69.3% of the total time for X from
16KB to 1,024KB). The time is mainly spent on ➁ (66.5%
to 95.7% of the locking time for X from 16KB to 1,024KB),
which is bounded by the data flushing. The time spent on the
data flushing increases as X increases. Because early grant
decouples the data flushing from the lock conflict resolution,
the total time using NBW is much less than that using PW.

Throughput. We use parallel writes from 16 clients to
evaluate the throughput of one lock resource under high
contention. Each client independently writes to a shared file
for 4,000 times (Fig. 16(b)). We divide the total number of
writes (64,000) by the time spent in the test as the throughput.
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Fig. 18: SeqDLM parallel test results. ER: early revocation.

In this test, multiple lock requests may arrive at the server
simultaneously. Therefore, the server has opportunities to use
early revocation. We also test the effect of early revocation on
NBW and PW. Fig. 18(a) shows the results. The throughput
of PW is not affected by early revocation. The throughput
of NBW (early grant) without early revocation outperforms
PW (normal grant) by 4.26× and 30.29× when the write size
is 64KB and 1,024KB, respectively. The throughput of NBW
with early revocation outperforms PW by 12.88× and 40.18×
when the write size is 64KB and 1,024KB, respectively. In
order to better understand the performance, we record the ratio
of the locking time and IO time (locking/IO ratio) on one client
(shown in Fig. 18(b)). Early grant decouples data flushing
from lock conflict resolution, which reduces the locking time.
Thus, as the write size increases, the locking/IO ratio decreases
for NBW. Early revocation avoiding unnecessary wait for lock
revocation replies further reduces the locking time.

3) Lock Conversion: Lock upgrading. We evaluate the
benefit of lock upgrading using 1,000 interleaved writes and
reads from a client on a file with 1 stripe. In the test, the read
operations use PR while the write operations can use PW or
NBW. Fig. 19(a) shows the throughput of the test. If the write
operations use PW, after the first write gets a PW lock, the
subsequent reads and writes can reuse the lock, thus having
a high throughput. If the write operations use NBW without
the lock conversion, the operation sequence causes continuous
lock conflicts. With lock conversion, NBW is upgraded to PW
when the server handles the first conflict. After that, reads
and writes can reuse the PW lock. Thus, it has the similar
performance to PW.

Lock downgrading. We evaluate the benefit of lock down-
grading using parallel writes to a file with two stripes from
16 clients. Each write spans the two stripes and should hold
write locks from both stripes, simultaneously. PW and BW can
support this scenario. Fig. 19(b) shows the results. Without the
lock conversion, BW and PW have similar performance. With
lock conversion, BW outperforms PW by 2.48× and 9.40×
with the write size of 64K and 1,024K, respectively. That
is because lock conversion automatically downgrades BW to
NBW during the lock conflict resolution. After that, a BW
lock request conflicting with the old BW can be granted using
early grant.
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C. IOR Benchmark

IOR benchmark reflects HPC IO requirements in broad
HPC workloads [30]. We use it to generate typical HPC
IO workloads to compare SeqDLM with traditional DLMs
in ccPFS. Each data server of ccPFS has a NVMe SSD
formatted with XFS as the back-end storage. Each client is
configured to cache at most 4GB dirty data and has a daemon
to asynchronously flush dirty data to servers using the best-
effort strategy presented in §IV-C1. During the test, each client
writes 2GB data. We record the time spent on the write (IOR
without fsync flag) as parallel IO (PIO) time and calculate the
bandwidth using the PIO time, which represents the write
performance that applications can see. At the end of each test,
we flush the dirty data to data servers and record the time
spent on it as the flushing (F) time.

1) Performance of a File with a Single Stripe: We use the
workload of IOR N-1 segmented with the write size 64 KB to
evaluate the performance of different DLMs on a single-striped
file under low contention. The test runs on 16 clients. Table III
shows the results. The bandwidth of the three DLMs is similar.
Besides, the total IO time (including the PIO time and F
time) is also similar. This indicates that SeqDLM maintains
the advantage of the traditional DLMs, and the ordering in
SeqDLM does not impose too much overhead on data flushing
under low contention.

TABLE III: Results of IOR N-1 segmented on a file with 1
stripe.

DLMs SeqDLM DLM-basic DLM-Lustre
Bandwidth (GB/s) 33.2 33.8 33.7
total IO time (sec.) 18.1 19.1 19.5

We use the workload of IOR N-1 strided to evaluate the
performance of different DLMs under high contention. The
test also runs on 16 clients. For comparison, we include the
performance of N-1 segmented using SeqDLM. Besides, we
also evaluate N-1 strided performance on Lustre (original
Lustre) with the same hardware configuration. The Lustre
version is 2.10.8 and each Lustre client is configured to cache
at most 2GB dirty data.

The results are shown in Fig. 20(a). DLM-Lustre in ccPFS
has better performance with smaller write size than that
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Fig. 20: IOR results on a file with 1 stripe.

in original Lustre because of the registered memory pool
presented in IV. The gap is becoming smaller as the write size
increases. With the write size 1,024KB, the bandwidth of the
traditional DLMs is bounded by the maximum performance
of the device. N-1 strided using SeqDLM achieves 81.7% to
96.9% performance of N-1 segmented when the write size is
from 64KB to 1,024KB, and gains up to 18.1× speedup than
DLM-basic and DLM-Lustre. That is because SeqDLM selects
NBW for writes on a single-striped file. Early grant and early
revocation greatly reduce the locking time.

Fig. 20(b) shows the total IO time of each test. The total
time is bounded by the performance of the storage device in
the data server. However, the PIO time using SeqDLM takes
about 5% of the total time because it decouples data flushing
from lock conflict resolution. The PIO time using DLM-basic
and DLM-Lustre takes up to 99% of the total time because a
new lock can be granted only when old conflicting locks have
been released and the data flushing of old locks accounts for a
large proportion of the locking time. This makes a significant
performance difference between SeqDLM and the traditional
DLMs. It also implies that SeqDLM can make the best of
client-cache even under high contention.

2) Performance of a File with Multiple Stripes: We use N-1
strided with the write sizes 47,008 bytes (IO500 IO-hard write
benchmark [29]), 188,032 (47,008 × 4) bytes and 752,128
(47,008 × 16) bytes on a shared file with 4 and 8 stripes to
show the SeqDLM efficiency. The stripe size is 1 MB. These
writes are not 4KB aligned. However, SeqDLM, DLM-basic
and DLM-Lustre align lock ranges with 4KB. Thus, adjacent
writes conflict with each other. Besides, some writes in the
test span two stripes.

As shown in Fig. 21, the IO bandwidth using DLM-basic
and DLM-Lustre increases as the write size increases because
a larger write size is favorable to devices. DLM-Lustre has
better performance than DLM-basic because it limits the
range expanding under high contention, resulting in fewer
lock conflicts. The performance using DLM-basic and DLM-
Lustre is gradually bounded by the performance of storage
devices because of data flushing overhead. In contrast, the
IO performance using SeqDLM increases as the write size
increases, which is not limited by the performance of storage
devices. The reason is that for writes inside one stripe, ccPFS
using SeqDLM selects NBW, which decouples lock revocation
and data flushing from the lock conflict resolution, while for
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Fig. 22: Total IO time of N-1 strided on a file with multiple
stripes.

writes across multiple stripes, although ccPFS selects BW,
the automatic lock conversion mechanism downgrades BW
to NBW during the lock conflict resolution. For a file with 4
stripes, SeqDLM outperforms DLM-Lustre by 3.6× and 10.3×
when the write size is 47,008 bytes and 47,008 × 16 bytes,
respectively. For a file with 8 stripes, the speedup is 2.0×
and 6.2×, respectively. The speedup of SeqDLM is not linear
because writes across stripes decrease the parallelism of lock
servers. Fig. 22 shows the total IO time of each test. Similar
to the test on a single-striped file, the high performance of
SeqDLM is derived from the relatively shorter PIO time.

D. Tile-IO Benchmark

Tile-IO is widely used to simulate workloads in visualiza-
tion and numerical applications [15], [17]. We use it to show
the efficiency of SeqDLM to support atomic non-contiguous
writes. In the test, we use 96 clients to write 8 × 12 tiles.
The tiles are stored in a shared file with different stripes. The
stripe size is 1 MB. Each tile contains 20,480 × 20,480 pixels
with 4 bytes size and there is a 100-pixel horizontal overlap
and a 100-pixel vertical overlap between tiles. In total, each
client writes 20,480 non-contiguous blocks with the total size
of 1.6 GB atomically and the writes among different clients
may overlap. We compare SeqDLM with DLM-datatype [17].
Using SeqDLM, each client requires a lock with a minimum
range covering all of the non-contiguous writes for each
stripe. For example, for two non-contiguous writes with the
ranges [4KB, 8KB] and [16KB, 20KB] in one stripe, we
require a lock with the range [4KB, 20KB]. SeqDLM incurs
more lock conflicts than DLM-datatype. However, because it
can decouple data flushing from the lock conflict resolution,
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Fig. 23: Tile-IO write bandwidth and total IO time.

SeqDLM outperforms DLM-datatype by 51.0× to 4.1× for the
stripe number from 1 to 16 (shown in Fig. 23).

E. VPIC-IO Workload

VPIC-IO [31] is an I/O kernel developed based on a particle
physics simulation’s I/O pattern, in which processes of the
application write a certain number of particles into a HDF5
file with several iterations. Each particle consists of 8 variables
and the size of each variable is 4 bytes. We use h5bench [32]
to generate the workload. The workload has three phases. (1)
It creates and initializes a shared HDF5 file. (2) It writes
a certain number of particles into the HDF5 file in parallel
with several iterations. In each iteration, each process of the
application writes 8 1-D variables and the data of each variable
in one iteration are contiguous in the file. When writes from
all processes have been done, the data may be still in the
caches of PFS. (3) At the end, it flushes the data to disk.
Usually, phase (2) is interleaved with computations, so higher
IO performance in phase (2) is desired. In the test, we record
the time spent on phase (2) as the PIO time and that on phase
(3) as the F (flushing) time, similar to evaluations in §V-C and
§V-D.

We compare SeqDLM with DLM-Lustre in ccPFS. We also
include the results evaluated on Lustre. The configuration of
ccPFS and Lustre is the same as that in §V-C. For ccPFS,
we leverage an IO forwarding software (IOF) that is used
in the Sunway Taihulight [33] to provide POSIX-syntax API
to transparently support multiple scientific IO libraries. It
intercepts system calls and forwards IO operations to its local
IO daemon. Each daemon has 8 threads to perform IO on
ccPFS using the libccPFS API. To make a fair comparison,
we also evaluate Lustre as the back-end of the IOF (Lustre-
IOF). We use 16 nodes as data servers and 80 nodes as clients.
In the test, 1,280 processes (each client runs 16 processes)
concurrently write 10.7× 109 particles (with the data size of
320 GB) to a shared HDF5 file with 1, 4 and 16 stripes. Each
process totally writes 256 MB data. We use the independent
IO to perform these writes. To evaluate the effect of write size
on write performance, we set the number of particles that each
process writes in one iteration to 65,536 (each write size is
256 KB) and 262,144 (each write size is 1 MB). The number
of the iterations for the two cases is 128 and 32, respectively.

The write performance in phase (2) is shown in Fig. 24.
The write bandwidth in all cases increases as the number of
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Fig. 25: VPIC-IO PIO time and F time. ccPFS-S: ccPFS using
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stripes increases because a file with more stripes not only helps
take advantage of the storage devices but also reduces lock
contention on each stripe. With 16 stripes and a smaller write
size, IOF slightly reduces Lustre performance because with the
IOF, IO requests from 16 processes are shipped to 8 threads
in the forwarding daemon, which decreases the parallelism.
From Fig. 24(a), we see that DLM-Lustre in both ccPFS and
Lustre gets higher performance with 16 stripes. That is because
a smaller write size with a larger number of stripes incurs
lower contention due to the optimization of DLM-Lustre for
lock contention. The performance of DLM-Lustre in ccPFS is
better than that in Lustre because the registered memory pool
in ccPFS is more efficient for IO with smaller write size. Even
in this case, SeqDLM outperforms DLM-Lustre. In total, in
ccPFS, SeqDLM outperforms DLM-Lustre by 6.2× and 1.5×
with the stripe number 1 and 16, respectively. With larger
write size, the performance gap in the IO path between ccPFS
and Lustre is small. Thus, DLM-Lustre in the two systems
achieves similar performance, as shown in Fig. 24(b). In this
case, SeqDLM outperforms DLM-Lustre by 34.8× and 8.8×
with the stripe number 1 and 16, respectively.

Fig. 25 shows the total time of phase (2) and phase (3). The
higher performance of SeqDLM is because it decouples data
flushing from lock conflict resolution, resulting in a relatively
shorter PIO time. Compared with DLM-Lustre, when using
SeqDLM, data servers of ccPFS need to update the extent

cache when handling write requests and execute the extent
cache cleaning task asynchronously. From Fig. 25, we see that
the total time of SeqDLM and DLM-Lustre is similar, which
means the extent cache and the cache cleaning mechanism
have little impact on the IO performance of data servers.

VI. RELATED WORK

Distributed lock. Lock services, such as Chubby [34], are
used as coarse-grained synchronization mechanisms among
servers. They are mainly designed for reliability and avail-
ability. While our work focuses on distributed locks in PFSes
which are designed to synchronize data accesses from multiple
clients while guaranteeing distributed client-cache coherence.
Several works [12], [17], [35] reduce lock conflicts by limiting
lock range expanding and client-cache. In contrast, SeqDLM
intends to reduce the overhead of lock conflict resolution.
Sequencer mechanism. Many systems decouple ordering
from data path to extract parallelism of conflicting writes [36],
[37]. A distributed shared log abstract [24], [38], [39] allows
parallel appends to run with the speed of a global sequencer.
Tran et al. [5] uses versioning to support overlapping MPI-IO.
Similarly, SeqDLM also uses ordering to allow conflicting data
flushing to be completed asynchronously. In contrast, SeqDLM
allows the sequence to be cached in clients for reuse (in the
form of a lock) and ensures all conflicting writes have been
flushed to disk before a read starts.
Caching in distributed file systems. GPFS [8], Lustre [7],
BeeGFS [1], Ceph [3], and NFS [40] support client data
cache. BurstFS [15] uses client-cache to batch bursty metadata
writes. Caching introduces the overhead of ensuring coher-
ence. Currently, developers have to make a trade-off between
performance and coherence. ccPFS leverages SeqDLM to
guarantee distributed client-cache coherence while achieving
high performance both under low contention and high con-
tention.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed SeqDLM to reduce the overhead
of the write-write lock conflict resolution while keeping the
same semantics as the traditional DLMs. We developed ccPFS
to evaluate SeqDLM. Evaluations show SeqDLM achieves
high write performance both under high contention and low
contention. In the future, we seek to apply SeqDLM in Lustre
PCC [41] to make it efficiently support parallel writes to
shared files. Besides, we also seek to optimize ccPFS to
be used as a general distributed coherent cache layer for
traditional PFSes so that they can efficiently support high
contention IO.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We run experiments to demonstrate the correctness and effective-
ness of the SeqDLM design using micro benchmarks and typical
scientific workloads. The scientific workloads are generated using
IOR benchmark, app-tile-IO benchmark and h5bench benchmark.
In the experiments, we use NFS to provide the namespace service
of ccPFS. When accessing a file, ccPFS first creates/opens a file on
NFS. After that, it takes the inode number of the file as the FID
(file identifier) and distributes the stripes and the lock resources
among servers using the FID. The experiments were performed on
a 96-node cluster. They can be run using the scripts in our artifact.
Refer to the file install/ccpfs/ad/README.md in the artifact for
details.

The hardware details of the cluster are described in the exper-
imental setup section in our paper. The software details are as
follows.

Operating systems and versions: CentOS version 7.7 running
Linux kernel 3.10.0-862.14.4.el7.

Software and versions: Most of the software needed by ccPFS
are installed from the standard repository of CentOS version 7.7.
We provide a script in our artifact to install them. Here, we list the
software that are not included in the standard repository. These
software are included in our artifact.

(1) CaRT from DAOS (https://github.com/daos-stack/daos) with
commit ID d4a7ae714f45da8828cd523b08039f656510a05d.

(2) Mercury (https://github.com/mercury-hpc/mercury) with
commit ID 932ad534d8e3f8106e85d0931c20ee13f0e42188.

(3) libfabric (https://github.com/ofiwg/libfabric) with commit ID
5b0a7b2b516d20a3896e26381b8951e64c4824a5.

(4) IOR (https://github.com/hpc/ior) with commit ID
657ff8ad8f136b14e57677dbe0175e8e875346d5.

(5) mpi-tile-IO (https://www.mcs.anl.gov/research/projects/pio-
benchmark/code/mpi-tile-io-01022003.tgz)

(6) h5bench (https://github.com/hpc-io/h5bench) with commit
ID 81bd930510453ebe28b324daa329414e44f88e21

We modify the code of IOR and mpi-tile-IO to use ccPFS API
to perform IO. We modify h5bench to record the time of different
phases. These patches are included in our artifact.

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1
Persistent ID: https://doi.org/10.5281/zenodo.6985090
Artifact name: ccPFS Prototype

Reproduction of the artifact without container: ccPFS uses IB verbs
to transfer data between clients and servers and stores data in
NVMe SSDs. We have no experience on deploying and testing
large scale of a docker cluster which supports both NVMe SSD and
Inifiniband network. Thus, we provide our artifact in a package
(ccpfs-bin.tar.gz) that is already built and tested on nodes using
CentOS 7.x. We provide a script to install the software dependencies

that exist in the standard repository of CentOS version 7.x For
others, we include them in the provided package.

Our artifact can be reproduced on nodes with CentOS version
7.x with the following steps.

1. Extract ccpfs-bin.tar.gz to some directory. In the following, we
take the directory "/opt" as an example. The command to extract
ccpfs-bin.tar.gz is "tar -zxvf ccpfs-bin.tar.gz -C /opt".

2. Export "/opt/ccpfs" as a writeable NFS shared directory by
adding "/opt/ccpfs *(rw,no_root_squash)" to file "/etc/exports" and
restarting the NFS service. If the NFS software are not installed,
install it using the command "yum install -y nfs-utils".

3. Create a directory "/home/ccpfs" on each node that will run
the evaluations, and mount the shared directory into "/home/ccpfs"
with the command "mount NFSSERVER_IP:/opt/ccpfs /home/ccpfs".
The mount point "/home/ccpfs" cannot be changed because
we include the software dependencies that have been built
in ccpfs-bin.tar.gz and use the absolute path with the prefix
"/home/ccpfs/install" to avoid software version conflicts.

4. Install the other necessary software dependencies that are
available in the standard CentOS repositories. This step should be
run on all of the nodes that run the evaluations. Users can install the
software dependencies with the command "sh /home/ccpfs/install-
deps.sh". Alternatively, users can also directly run the following
command: "yum install -y hwloc hwloc-devel libyaml gcc libatomic
mpich-3.2 mpich-3.2-autoload mpich-3.2-devel git gcc-c++ libtool
boost-devel cmake libuuid-devel openssl-devel libyaml-devel libib-
verbs".

5. In the evaluations, we use a shared directory
"/home/ccpfs/install/ccpfs/ccpfs" on NFS to provide names-
pace service for ccPFS. Users need to use the following command to
create the shared directory: "mkdir /home/ccpfs/install/ccpfs/ccpfs".

6. Assign a directory to store local data for each server. For
example, if we use /mnt/nvme1n1/data/data/ to store local data, we
execute the following command: "ln -s /mnt/nvme1n1/data/data
/home/ccpfs/install/ccpfs/data".

7. Enter the directory "/home/ccpfs/install/ccpfs/ad/" and record
hostnames or IPs of nodes that will run the evaluations in the
file "hosts", which is needed by mpirun. We need 96 nodes to per-
form all of the evaluations. We also provide two scripts that can
be run on a single node for functional test. Referring to the file
"/home/ccpfs/install/ccpfs/ad/README.md" for details.

8. Enter the directory "/home/ccpfs/install/ccpfs/ad/" and run
the scripts in the directory to perform the evaluations. Referring to
the file "README.md" in the directory for details.


