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Abstract
Non-volatile memory(NVM) has the properties of both byte
addressable and persistence, which provides new opportuni-
ties for building on-line transaction processing (OLTP) en-
gines. Recently, a new feature called eADR puts CPU cache
also in the persistence domain. Existing OLTP engines are
based on volatile cache and now have the opportunity to
improve performance further and reduce programming com-
plexity with persistent cache.

This paper studies the impact of persistent cache on OLTP
engines and revisits the existing designs. We have observed
that naively removing the flush instructions can trigger the
write amplification because of the granularity mismatch be-
tween the cache line and NVM access. We propose Falcon, a
new OLTP engine for eADR-enabled NVM. Falcon is based
on the in-place update architecture. The small log window
design in Falcon avoids the NVM writes while logging. The
selective data flush design reduces the data flush and the
write amplification while flushing data. Evaluations show
that under TPC-C workloads, Falcon achieves 1.21× ∼ 1.35×
improvement over the state-of-the-art OLTP engine.

CCS Concepts: • Hardware → Emerging architectures; •
Information systems→ Database transaction process-
ing; DBMS engine architectures.
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1 Introduction
NVM has the properties of both byte addressable and per-
sistence, which provide new opportunities for building on-
line transaction processing (OLTP) engines. FOEDUS[30],
WBL[15], and Zen[35] are typical existing OLTP engines
designed specifically for NVM. Other related works include
persistent indexes [27, 33, 39, 57], key-value stores[18, 24,
51, 52, 59], and performance tuning using NVM[41, 42, 46].

The CPU cache is not persistent in the first commercially
available generation NVM, e.g., Intel ADR[10]. ADR only
guarantees that data reaching the memory controller is per-
sistent. Data in the CPU cache is still volatile (volatile cache),
i.e., data in the CPU cache is lost after a power failure. Re-
cent developments have put the CPU cache also in the per-
sistent domain (persistent cache), such as Intel’s eADR[4].
Persistent cache can significantly reduce the programming
complexity. Programmers can safely remove all flush-related
instructions (e.g., clwb) but keep the implementation correct.
Notice that the memory fence instructions, such as sfence,
are still needed to maintain the memory order.
However, naively removing the flush instructions can be

detrimental to performance in persistent cache (§3.3). Al-
though the eADR makes the in-CPU cache persistent and
the flush instructions are no longer necessary, there is a write
amplification problem when a cache line is evicted. The rea-
son comes from the granularity mismatch between a cache
line (typically 64B [13]) and an NVM write (256B [26, 53]).
Suppose the evicted data is smaller than the size of an NVM
write. In this case, it introduces an additional NVM read to
get the data block, modifies it with the evicted data, and
writes the block back to NVM, resulting in write amplifica-
tion. To better use the performance provided by persistent
cache, we need to reduce this write amplification.
The distinctive feature of persistent cache also changes

the assumption behind the current NVM OLTP engine de-
signs. Current designs assume that "the logging for in-place
update introduces additional NVM writes". To achieve crash
consistency, OLTP engines with in-place update typically ①
record logs to make operations persistent before ② in-place
apply the changes to tuples. Under volatile cache, recording
the logs and updating the tuples are the two unavoidable
manual NVM writes. WBL [15] and Zen [35] use the out-
of-place update approach to reduce the NVM writes. A new
version for a tuple is created and appended to the tuple heap,
i.e., the log is directly used as data. However, under persis-
tent cache, logs generated in the cache are already persistent.
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There is no explicit manual flush needed. Thus, the previous
assumption does not hold under persistent cache.
To fully exploit the potential of persistent cache, we pro-

pose Falcon, a novel OLTP engine for NVM with persistent
cache. Falcon uses the in-place update design, which first
records logs and then in-place updates the tuples. One ad-
vantage of the in-place update is that it can be integrated
with persistent indexes. Since the in-place update does not
change the addresses of the tuples, there is no need to modify
indexes frequently. Thus, Falcon can integrate recent NVM
indexes [22, 38, 39, 57] to achieve fast recovery for the entire
OTLP engine. This is not the case for the out-of-place up-
date because the out-of-place update approach changes the
address of a tuple when the newly generated version is used
as the updated tuple. Indexes must be modified to point to
the newest version. Existing NVM OLTP engines have to put
indexes in DRAM to avoid frequent NVM writes that modify
indexes. As a result, it takes a long time to rebuild indexes
during recovery using the out-of-place update approach.

Falcon tries to reduce the amount of data written to NVM,
and reduce the overhead while flushing data using the fol-
lowing two designs for logs and tuple data, respectively.
D1: Small log window. Falcon tries to avoid evicting

logs to NVM during normal operation. Falcon maintains a
reusable small log window in each thread to record logs for
active transactions. Each small logwindow is a circular buffer
to hold redo logs for a small number (2∼3) of transactions.
The total size of all windows is small enough to fit inside the
CPU cache. This design has two critical properties: (1) The
logs are persistent even in the cache because of persistent
cache. This property guarantee crash consistency. (2) Since
no explicit flush is required, there is no NVM write overhead
as long as the small log window is carefully controlled and
not evicted to NVM.

D2: Selective data flush. Unlike logs, the data size is so
large that evicting data to NVM is inevitable during normal
operations. Falcon has two optimizations on data storage,
① reducing the overhead while data is written to NVM by
hinted flush and ② reducing the amount of data written to
NVM by hot tuple tracking. The hinted flush reduces the
write amplification caused by granularity mismatch (§3.2).
Because the CPU does not provide instructions to control
the cache line eviction order, counter-intuitively, we bring
back clwb instruction for performance. Hinted flush uses
the instruction sequence of <sfence + clwbs>. The multiple
clwb instructions flush multiple cache lines. If the data of
these cache lines are contiguous in memory, the underlying
memory module can merge multiple cache line writes into
one NVM write. The hot tuple tracking uses a small LRU
cache to track hot tuples which are never manually flushed,
reducing the amount of data written to NVM.
Notice that our two designs are general because similar

features can be found in other persistent cache implementa-
tions, such as BBB[14] and Global Persistent Flush (GPF) in

CXL 3.0[2]. Similar granularity mismatch and uncontrollable
cache line eviction problems can also be found in other NVM
implementations like Samsung’s CXL SSD[43].

Falcon support different concurrency control algorithms,
including 2PL, TO, and OCC. To support multi-version con-
currency control (MVCC), Falcon places old versions of tu-
ples in DRAM.

This paper has made the following contributions:
1. We analyze the impact of persistent cache on NVM

OLTP engines.
2. We propose two essential designs (Small log window

and Selective data flush) for persistent cache-enabled
NVM OLTP engines. We implement Falcon, a new
NVM OLTP engine based on these designs.

3. Evaluations show that under TPC-Cworkloads, Falcon
achieves 1.21× ∼ 1.35× improvement over the state-of-
the-art OLTP engine.

2 Background
This section provides a brief introduction to OLTP engines,
specifically in NVM. To simplify the discussion, we focus on
the architecture that separates data from indexes [7, 15, 35]. A
few engines (e.g., MYSQL[6]) store data and indexes together.
Our design applies to both types.

2.1 NVM OLTP Engine
The OLTP engine manages data storage and provides data
access for an OLTP database. Traditional disk-oriented[6, 7]
and memory-oriented[23, 34, 40] OLTP engines all use block
devices, such as HDDs or SSDs, for persistent storage. Logs
are widely used to ensure atomicity and crash consistency.
Because block devices are slow, these OLTP engines use the
in-DRAM buffer pool to cache tuples and group commits
to reduce log overhead. Block devices can only be accessed
at block granularity (512 bytes or more), so data marshal-
ing/unmarshaling and read/write amplification is inevitable.

OLTP engines in NVM avoid the data marshaling / unmar-
shaling overhead by directly exposing the tuple data based
on the byte addressability of NVM. Logs are still required to
guarantee atomicity and crash consistency because the CPU
can only guarantee the atomicity of a single cache line. A
transaction can often span multiple cache lines. After log-
ging, the transaction can either modify the original tuple
(in-place update) or use the logs as the updated version for
the tuple (out-of-place update).

2.1.1 In-place Update. The in-place update modifies the
tuples directly. To ensure crash consistency, updates are first
logged (using redo and/or undo logs) before the correspond-
ing tuples are modified (Figure 1(a)(b)). During recovery,
redo logs recover the committed transactions, and undo logs
roll back the uncommitted transactions. The in-place update
has to perform the NVM write twice, once for the log and
once for the in-place tuple modification.
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Figure 1. In-place update vs. out-of-place update.

2.1.2 Out-of-place Update. The out-of-place update (Fig-
ure1(c)) does not change the original tuple but generates
a new version. Unlike the in-place update, which modifies
the tuple data after logging, the out-of-place update uses
the new version as the latest version for a tuple. This out-
of-place approach is often referred to as log-as-data [24] or
log-free [35], as well as an extension to the LSM data struc-
ture[18, 51, 52, 59]. The out-of-place update reduces the NVM
write because it does not modify the original tuple.

2.2 Indexes for Volatile Cache
Indexes are important because they store tuple addresses
and are the entry point to find the desired tuples. Indexes can
be stored either in DRAM or in NVM. There are many recent
works [22, 38, 39, 57] on how to build NVM indexes. Because
of the byte-addressability, indexes in NVM can expose the
data structure directly for access. NVM indexes can recover
fast because indexes are not lost after a system crash.

The ways of updating tuples influence the index location.
The in-place update does not change the address of the tu-
ple. No index modification is needed for the update. NVM
indexes can be used because there is no frequent NVM write.
For the out-of-place update, new versions are generated dur-
ing transaction execution. The indexes must be modified to
point to the latest version because the tuple address has been
changed. Indexes need frequent modifications. Recent NVM
OLTP engines do not use NVM indexes because of the per-
formance considerations for normal operations. For example,
Zen uses DRAM indexes instead of NVM indexes because it
uses the out-of-place update approach to run transactions.
Though in-DRAM indexes can afford frequent index modi-
fications during normal operations, rebuilding the indexes
during recovery is time-consuming.

2.3 Multi-version Concurrency Control
Many NVM OLTP engines use multi-version concurrency
control to support non-blocking read-only transactions. As
discussed above, both the in-place and out-of-place updates
can create version chains (Figure 1) to support MVCC. The in-
place update approach uses the undo logs as the old versions
of a tuple. Each undo log also points to its predecessor. When
a transaction is committed, the tuple in the tuple heap points
to the latest old version in the version chain. Similarly, a
version chain can be created for the out-of-place update as
the new version points to its predecessor. Because NVM is
byte-addressable, creating version chains in NVM using the
memory addresses is not difficult.

3 Persistent Cache for NVM
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B2:[W2,W3,W4,W5]3D-XPoint Media

XPBuffer
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Figure 2. XPBuffer. XPBuffer is a write buffer inside the
Optane NVM module to address the granularity mismatch.
The 256B block needs to be loaded to XPBuffer from the 3D
XPoint storage media first if the size of data for writing is
smaller than the storage access granularity.

3.1 Persistent Domains in NVM
The first generation of non-volatile memory implementa-
tion has volatile cache, such as the Intel ADR mode [10].
Recent implementation has persistent cache, such as the Intel
eADRmode [4]. ADRmodemakes data persistent by flushing
them to the write pending queue (WPQ) in the memory con-
troller. Explicit cache line flush instructions (such as clwb or
clflush) or implicit cache line evictions can all persist data.
Because cache line eviction is not controllable, programmers
must use cache line flush instructions and memory fence
instructions (e.g., sfence) to flush data manually. The eADR
mode puts the CPU cache also in the persistent domain. Data
in the CPU cache is already persistent. Therefore, the cache
line flush instructions are not needed.

3.2 Granularity Mismatch
A granularity mismatch exists between the cache line size
(typically 64B) and the NVM storage media access size (265B
in Intel Optane NVM). To address this mismatch, a buffer
layer, XPBuffer, is integrated into Optane NVM modules
(Figure 2). When a single cache line is evicted (W1), the



XPController fetches one 256B block B1 containing this cache
line from the 3D XPoint storage media, modifies B1 with
W1, and writes the modified B1 back. This read-modify-
write process amplifies the original 64B write with an extra
read. If neighboring cache line evictions (W2, W3, W4, W5)
are within the same block (B2), the XPController merges
them into a single 256B block (B2), which can avoid the
write amplification. Previous research tried to reduce such
amplification by careful data structure design (such as 256
bytes for a node in B+tree or hash bucket)[38, 39, 57].

3.3 clwb for Persistent Cache
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Figure 3. Bandwidth for data stores w/wo clwbs.

In persistent cache (such as Intel eADR), clwb is not nec-
essary to ensure correctness because data in the CPU cache
is already persistent. As modern CPUs usually use set asso-
ciative cache, there is no correlation between different cache
lines in different sets. Thus, if a single cache line or a small
number of cache lines are evicted, the granularity mismatch
will undoubtedly lead to the write amplification[47, 53] (§3.2).
In practice, counterintuitively, we can use clwb to proac-
tively flush cache lines to reduce the possibility of write
amplification. If multiple cache lines of adjacent addresses
are flushed, the underlying memory module has the oppor-
tunity to merge cache lines.
Figure 3 shows the results of clwb effects for persistent

cache (using eADR). The experiment starts by generating
a random but aligned address, after which the correspond-
ing amount (X-axis) of data is written. This process repeats
one million times. One case only uses the store instructions,
while another case uses the combination of <store + clwbs>.
Because clwb can only flush one cache line, multiple clwbs
are used for flushing multiple cache lines. Results show that
clwb helps XPController to merge multiple cache lines to
achieve higher throughput. Thus, clwb is still valuable in
persistent cache (eADR) to reduce the write amplification.

4 Design
We revisit the logging mechanisms for NVM OLTP engines
with persistent cache and propose two new designs (small
log window and selective data flush).

4.1 Design Decisions
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Figure 4. Lifetime of transactions. Small log window
keeps logs in the CPU cache avoiding flushing to NVM.

Under volatile cache, programmers must manually use
flush instructions (e.g., clwb) to ensure correctness. However,
considering the persistent cache, logs for the in-place update
are already persistent, even if they are in the CPU cache. No
manual flushing is needed, which effectively reduces NVM
writes. Thus, the assumption of "the logging for in-place up-
date introduces additional NVM writes" does not hold. Now
the in-place update is a reasonable choice and can bring ad-
ditional benefits for indexes that can stay in NVM for fast
recovery because of no tuple address change. Our system,
Falcon, follows this analysis to build a high-performance
OLTP engine using the in-place update approach and (op-
tional) in-NVM indexes.

4.2 Lifetime of Logs for In-place Update
Figure 4 depicts the flow of committing transactions using
the in-place update. Before a transaction modifies the data in
NVM, the transaction logs persist. If the system crashes while
modifying data in NVM, logs can re-execute the committed
transactions or undo any changes made by the uncommitted
transactions. Once the transaction has been completed, logs
are no longer needed and can be discarded.

With persistent cache, logs generated in caches are already
persistent to ensure correctness. After the log lifetime ends,
the cache space can be reused for the next transaction. Thus,
it is desirable not to evict logs in the cache to NVM, which
is the purpose of the small log window design.

4.3 Small Log Window
Without any intervention, logs will eventually be evicted to
NVM. Because logs can be safely discarded after committing



or aborting a transaction, such eviction is unnecessary. Fal-
con uses a local small log window in each thread to keep
logs. Each small log window is a circular buffer to hold redo
logs for a small number (2∼3) of transactions. The total size
of all log windows is small enough to fit inside the CPU
cache. The window is reused for all transactions in a thread
and accessed frequently. Based on the modern CPU cache
replacement mechanisms (temporal and spacial locality), the
space will be kept inside the CPU cache. As a result, the
small log window design can effectively eliminate the NVM
writes during logging but still keep logs persistent to ensure
correctness. Without persistent cache (like in ADR), logs
have to be flushed to NVM manually. Therefore, such NVM
writing is unavoidable in volatile cache.

4.4 Selective Data Flush
Unlike the logs, the data size of a database is so large that
evicting data to NVM is inevitable during normal operations.
Falcon has two optimizations on data storage: ① reducing
the NVM write overhead by hinted flush, and ② reducing
the amount of data written to NVM by hot tuple tracking.

The hinted flush reduces the write amplification caused
by granularity mismatch (§3.2). Unfortunately, there is no
direct mechanism in modern CPUs to control the cache
line eviction order because it is based on the cache replace-
ment mechanism that is invisible to programmers. Counter-
intuitively, we bring back clwb instruction for performance.
Instead of using the <clwbs + sfence> instruction sequence,
Falcon uses the <sfence + clwbs> instruction sequence. The
performance is slightly better because we do not use sfence
to wait for the completion of clwb. Notice that we must still
use sfence instruction to ensure correctness. The multiple
clwb instructions flush multiple cache lines. If the data of
these cache lines are contiguous in memory, the underlying
memory module can merge multiple cache line writes into
one NVM write.

The hot tuple tracking uses a small LRU cache to track
hot tuples. Contrary to hinted flush, hot tuples are never
manually flushed to NVM, which effectively reducing the
amount of data written to NVM. The hot tuple tracking
does not apply to the out-of-place update because the tuple
addresses are changed.

5 Implementation
5.1 Overview
Falcon is implemented with 14000+ lines of Rust code, includ-
ing the out-of-place update for comparison 1. Falcon stores
all tuples and indexes in NVM (Figure 5), allowing instant
recovery. Indexes can also stay in DRAM for performance.
NVM Space Management. Similar to previous systems

[35], Falcon uses pages (2MB each) to manage the storage
space. To reduce memory contention, pages are dedicated to
1https://github.com/madsys-dev/Falcon

each thread. The page allocation is NUMA aware that each
thread only accesses the pages that belong to its own NUMA
node. Each thread manages the internal space inside pages.
Tuple Heap. The in-NVM tuple heap holds all tuples.

If multiple versions are used, the in-NVM tuple heap only
holds the latest version (§5.2.3).
Version Heap. Version heap is optional. It is required

when Falcon uses multi-version concurrency control algo-
rithms. To reduce NVM writes, Falcon stores old versions of
a tuple in the version heap in DRAM (§5.2.3).

Index. Falcon keep indexes separate from tuples. We use
Dash [38] (Dynamic and Scalable Hashing) and NBTree [57]
as our example indexes. Other indexes [22, 39] are also pos-
sible under Falcon’s architecture. We wrap the source code
of Dash and NBTree to call the C++ functions from Rust.
We implement the update operation for Dash to support the
out-of-place update . We also implement scan operations for
NBTree to support TPC-C and YCSB benchmark.

Like other database systems, Falcon uses the indexed field
of the tuple as the key and the address of the tuple in NVM
as the value. The indexes are used to find the corresponding
tuples. Because Falcon uses the in-place update approach,
the indexes are not modified during tuple updates. Indexes
can be stored in NVM. Indexes can also be configured to stay
in DRAM for performance.
Redo Logs. Falcon uses the in-place update design with

redo logs.
Read/Write Sets. During the transaction execution, the

read and write sets of the transaction are recorded, where
the write set also holds the redo logs. Thus, the write sets
are in the small log window. Because persistent cache writes
the contents to NVM when the system crashes, the write
sets are still accessible during recovery.

Catalog. Falcon stores the Catalog in NVM, which records
the database metadata, including the addresses of the index
roots, tuple heap, and redo logs, along with the table schema,
etc. The catalog will be accessed first during recovery.

The design of Falcon uses a very limited amount of DRAM,
allowing most DRAM space for tuple, plan, or index cache
to improve performance. How to use the DRAM efficiently
is orthogonal to the study of this paper.

5.2 Transaction Processing
5.2.1 Concurrency Control. Falcon’s design is neutral
to concurrency control algorithms. Thus, Falcon supports
a variety of concurrency control algorithms, including 2PL,
TO, OCC, and MVCC.

Two Phase Locking (2PL). To support 2PL, Falcon uses
8 bytes as a lock in the metadata field in the tuple. The
first bit acts as the write lock, and the other bits are the
read locks [50]. The lock is acquired using cas instructions.
During the lock-acquiring phase, we apply the no-wait policy
to avoid deadlocks [16, 35, 55].

https://github.com/madsys-dev/Falcon
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Figure 5. Falcon Architecture.

Timestamp Ordering (TO). In TO, a transaction ob-
tains a 64-bit unique transaction ID (TID) from the hardware
clock (clock_gettime in Linux) 2 at the beginning of the
transaction [29, 31]. The sequence numbers generated by
this counter also act as timestamps. Each tuple records the
write timestamp (write_ts) from the TID of the latest writer
and the read timestamp (write_ts) from the TID of the latest
reader [50]. The first bit of the write timestamp also acts as
a lock bit, indicating some transaction is updating the tuple.
Transaction execution has to guarantee the timestamp order.

Optimistic Concurrency Control (OCC). Falcon also
runs OCC in three phases [16, 32, 45, 56]. The write times-
tamp (write_ts), same as in TO, is used as the version number.
The first bit of the version number acts as a lock bit.

Multi-Version Concurrency Control (MVCC). MVCC
algorithms are often used to support the non-blocking read.
Each tuple keeps the write_ts as the version number. When a
transaction updates a tuple, it creates an old version. The old
version also points to its predecessor. Thus, all old versions
of a tuple form a version chain. Different from the tuple, we
use two timestamps for an old version of the tuple. The begin
timestamp (begin_ts) is the write_ts from the tuple before
the update. It is used for the non-blocking read. When a
transaction reads a tuple, it always selects the latest version
with the begin_ts smaller than the transaction’s TID or the
tuple. The end timestamp (end_ts) is the TID of the writer
transaction. It is used for garbage collection (§5.4). Falcon
stores version chains in DRAM (§5.2.3).

2We use {𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 << 8⋃︀𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑} as TID to avoid different transac-
tions getting the same timestamp. After system crash and recovery, Falcon
requires that clock_gettime gets a larger value. In rare cases, such as the
broken of RTC (real time clock) or NTP (network time protocol), this condi-
tion might not hold. Falcon recovers monotonic increasing timestamps by
scanning the logs, which takes negligible time.

Falcon combines MVCC with other concurrency control
algorithms to implement MV2PL, MVTO, and MVOCC. In
MV2PL, read-write transactions still lock tuples, while read-
only transactions can access old versions using the version
chain without being blocked by read-write transactions. In
MVTO, tuples still keep the read timestamps. A transaction
cannot modify tuples with read timestamps greater than its
TID. In MVOCC, read-only transactions can access old tuple
versions and do not require validation.

Algorithm 1: Transaction updates in Falcon
Thread-local Variables:
tid: generated at the beginning of a transaction.
write-set: all updates in the local small log window.
hot-tuple-set: a small LRU cache to track hot tuples.
Before Update:
write-set.state = UNCOMMITTED
write-set.timestamp = tid
write-set.operations = updates // redo logs.

1 Function Update(tuples, updates)
2 write-set.state = COMMITTED;
3 for (tuple, update) in (tuples, updates) do
4 tuple.do_update(update);
5 release_lock(tuple);
6 end
7 sfence;
8 for (tuple, update) in (tuples, updates) do
9 if tuple.id ∉ hot-tuple-set then
10 tuple.do_clwb(update);
11 hot-tuple-set.cache(tuple.id);
12 end

5.2.2 Logging and In-place Update. Algorithm 1 shows
the tuple update performed in the final stage of transaction



execution. Before the update, the modifications are buffered
in the write-set in the small log window. During the update,
the transaction is first committed (line 2). Later, the tuples
get updated in place (line 3 to line 5). The sfence in line 7
ensures the updated tuples are in persistent cache. Line 8 to
line 11 runs the selective flush (hinted flush in line 10 and
hot tuple tracking in line 9 and line 11).

Persistent cache ensures that the write-set inside the CPU
cache will flush to NVM at a system crash. During recovery,
Falcon checks write-set.state. If it is UNCOMMITTED, there
is no need to replay the updates because the tuples are not
touched. The logs (updates in write-set.operations) can be
safely discarded. If the state is COMMITTED, the logs will
be replayed to guarantee that the transaction updates the
corresponding tuples.
To ensure correct recovery, the updates in the write-set

must be idempotent. For non-idempotent operations (such as
read-modify-write operations, e.g., 𝑣𝑎𝑙𝑢𝑒 = 𝑣𝑎𝑙𝑢𝑒 + 1), they
must be converted to idempotent ones such as by recording
the updated values.

TupleA.V4
Begin-TS = 7
End-TS = 10

TupleA.V5
Write-TS = 10

TupleA.V3
Begin-TS = 5
End-TS = 7

TupleC.V2
Begin-TS = 12
End-TS = 15

TXN
TIMESTAMP = 6
Read TupleA

NVM DRAM

TupleC.V1
Begin-TS = 9
End-TS = 12

TupleC.V3
Write-TS = 15

TupleA.V2
Begin-TS = 2
End-TS = 5

Thread1

Thread2

Thread3

TupleB.V0
Write-TS = 11

Per-thread Version Queue

Version Chain

Figure 6. Version traversal. Old versions are stored in
a per-thread version queue. Transaction(TS=6) travels the
version chain to find out that TupleA.V3(TS=5) is the latest
version in its read snapshot.

5.2.3 In-DRAM MVCC. Old versions are not restored
after a system crash. Thus, Falcon does not keep old versions
in NVM. Instead, old versions are stored in DRAM to form
version chains. In-DRAM multiple versions can improve
the performance of creating new versions during normal
execution and simplify the recovery process during recovery.
As shown in Figure 6, a transaction uses its TID (timestamp)
to find the appropriate version to read. Figure 6 also shows
the per-thread version queue design, which is used tomanage
the memory space for the version heap to ease the garbage
collection (details in §5.4).

5.3 Recovery
Falcon’s recovery has two steps: log replay, and index recov-
ery.
Log Replay. The logging process is described in detail

in Section 5.2.2. During recovery, Falcon checks the write-
set.state. If the state is UNCOMMITTED, the transaction is
not committed, and the corresponding tuples are not touched.
There is no need to replay the logs in the write-set.operations.
The space for thewrite-set is then recycled. The transaction is
committed if the state is COMMITTED, but the correspond-
ing tuples might not be modified. Thus, during recovery, the
logs in write-set.operations are replayed.

Index Recovery. Index recovery has two steps if indexes
are stored in NVM. The first step is to recover the index based
on the current NVM index implementation. Many existing
NVM indexes try to achieve instant recovery [27, 33, 39,
57]. The second step is to update the indexes based on the
committed but possibly not completed transactions. Same as
log replay, these transactions have the state as COMMITTED.
After replaying the logs to modify the tuples, the indexes are
updated accordingly. Notice that the index modification is
idempotent.
For the performance consideration, Falcon only needs to

process the tuples in the redo log (write_set) during recovery.
The total size of all redo logs is very small (< 1𝑀𝐵). The
size is also independent of the whole tuple heap size. With
indexes in NVM, the recovery of indexes is also only related
to the redo logs. Thus, the data involved in the recovery
process is very small. Falcon can recover in milliseconds.

5.4 Garbage Collection
Falcon may generate garbage in two ways: ① one is from
the deleted tuples, ② the other is from the old versions of
tuples in MVCC. Falcon uses the worker threads that run
transactions to do the garbage collection, i.e., no dedicated
recycling threads are needed.
Deleted Tuples. Falcon does not immediately clean up

the deleted tuples as they might be in another transaction’s
read_set. Instead, a delete flag indicates that the tuple can
be recycled. The delete operation is translated to an update
operation to raise the delete flag. The timestamp of the tuple
is set to the TID of the transaction that deletes it.

Deleted tuples are organized by a thread in a local deleted
list. Thanks to persistent cache, this deleted list is persisted
in the tuple heap so it can still be found after a system crash.
A deleted tuple is appended to the end of the local deleted
list. Thus, the tuples in the list are naturally sorted by tu-
ple timestamps. When a new tuple needs to be allocated,
the transaction first finds a deleted tuple from the head of
the local deleted list and checks its timestamp. If it can be
reclaimed, the tuple space can be recycled for a new tuple.
Otherwise, the original allocation method is followed.



Old Versions of Tuples. Old versions will be recycled
in MVCC if they are not referenced by any transaction. Re-
cycling old versions uses a timestamp-based algorithm, i.e.,
versions with timestamps smaller than TIDs of all running
transactions can be recycled. The old versions in the version
chain are ordered by end_ts. When a thread generates a new
version for a tuple, the thread not only inserts the version
into the version chain but also inserts it to a thread-local
version queue to facilitate version recycling (Figure 6). Tu-
ples in the thread local version queue are also sorted by the
end_ts because the transaction sets the end_ts of the version
to its own TID before inserting it into the version queue.
When the length of the version queue is above a predefined
threshold, the worker thread checks the version queue to
recycle the versions which can be reclaimed, i.e., with end_ts
smaller than TIDs of all running transactions.
Old versions are stored in DRAM and are automatically

discarded if the system crashes. Hence, each thread only
needs to create a new empty version queue during recovery.

Compared to other in-place update databases, Falcon does
not need to clean up the logs due to the small log window
design. Compared to out-of-place databases[15, 35], Falcon
does not need to scan the tuple heap to clean up old versions
during recovery.

5.5 Limitations
Falcon’s design has limitations. ① The small log window de-
sign limits the redo log size of one transaction. Fortunately,
this design should work for most OLTP workloads with the
relatively large size of the cache in modern CPUs and the
relatively small amount of data touched by a single transac-
tion in an OLTP workload. ② As there is no explicit way to
control the order of cache eviction, the hinted flush design
hints at the underlying memory controller. But there is no
guarantee to flush the cache lines following the hinted order.
Hardware-assisted hints may help by providing more precise
control without proactive flush. Enlarging the XPBuffer size
can also alleviate this problem because the memory module
has more space to merge cache lines.

6 Evaluation
6.1 Setup
Configurations.We use a server with Intel Optane NVM for
testing. The server has two Intel Xeon Gold 5320 processors
with eADR mode enabled. Each socket has 6 interleaved
128GB persistent memory, 768GB in total. The cache size of
the server is 1280K for L2 cache (per core) and 39MB for L3
cache (per NUMA node). The persistent memory is set in
Direct Access (DAX) [3, 8] mode.

Benchmarks. Same as existing works, we use TPC-C [9]
and YCSB [20]. TPC-C simulates the activity of a wholesale
supplier. The benchmark contains 9 tables and 5 transaction

types. NewOrder transactions account for 45% of all trans-
actions, and Payment transactions account for 43%. These
two short read/write transactions account for 88% of the
total TPC-C workload. The remaining transactions, 4% each,
consist of long read/write Deliver transactions, and two read-
only transactions, OrderStatus and StockLevel. TPC-C is
widely used as the OLTP benchmark. TPC-C has a config-
urable number of warehouses. Same as Zen [35], our bench-
mark contains 2048 warehouses and 100,000 items. YCSB is
another widely used key-value store benchmark. It is also
used to evaluate transnational systems. Our YCSB workload
contains a single table with keys of 8 bytes and 10 columns
with 100 bytes for each. The tuple size is about 1KB bytes.
Before testing, we put 256 million tuples (∼ 256𝐺𝐵) during
table initialization. Each transaction reads and updates all
fields. YCSB consists of six core workloads. Workloads A and
F are read-write workloads. Workloads B, D and E are read-
heavy workloads (5% write) and workload C is a read-only
workload. YSCB-A describes a balanced read-write workload
(read:write = 1:1). Updates in this workload do not require
the original record to be read first. In YCSB-F, half of the
transactions do read-modify-write operations, so there are
more conflicts than in YCSB-A. In each workload, we use
both Uniform and Zipfian distributions (\ = 0.99).

6.2 Overall Performance
6.2.1 OLTP Engines to Compare. We compare Falcon
with the following systems. They all use the same Tuple
Heap design. Table 1 lists their features.

ZenS: Zen [35] is the state-of-the-art NVM OLTP engine.
We re-implement Zen’s storage engine, as ZenS, for testing.
ZenS uses the out-of-place update approach, an in-DRAM
index3 and a buffer pool for tuple cache. ZenS is flexible
and can be combined with different concurrency control
algorithms and whether to manually flush or not.

ZenS (No Flush): Same as ZenS but all flush instructions
are removed. It is used for observing the clwb instruction
effects for persistent cache.
Outp: Outp is a pure out-of-place update engine. clwb

instructions are used.
Inp: Inp is a pure in-place update engine. clwb instructions

are used.
Falcon (No Flush): Falcon (No Flush) is the same as

Falcon with clwb instructions removed.
Falcon (All Flush): Falcon (All Flush) is the same as Fal-

conwith hot tuple tracking removed, i.e., flushing all touched
tuples.

Falcon (DRAM Index): Falcon (DRAM Index) is the same
as Falcon but putting indexes in DRAM not in NVM.

3We use DashMap [12], an implementation of a concurrent hashmap in
Rust, as the DRAM index. For NBTree, we use malloc to allocate memory
instead of mmap NVM files.



Table 1. Comparison of NVM OLTP Engines.

OLTP Engine DRAM Data NVM Data Flush
Out-of-place Update

ZenS Index+Tuple Cache Tuple Heap (Multiple Version) All
ZenS (No Flush) Index+Tuple Cache Tuple Heap (Multiple Version) No

Outp / Index+Tuple Heap (Multiple Version) All
In-place Update

Inp / Index+Tuple Heap (Single Version)+Logs (Old Versions) All
Falcon (No Flush) Version Heap Index+Tuple Heap (Single Version)+Small Log Window No
Falcon (All Flush) Version Heap Index+Tuple Heap (Single Version)+Small Log Window All

Falcon Version Heap Index+Tuple Heap (Single Version)+Small Log Window Selective
Falcon (DRAM Index) Index+Version Heap Tuple Heap (Single Version)+Small Log Window Selective
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6.2.2 TPC-C. Figure 7 and Figure 8 show the throughput
and latency of all OLTP engines with the TPC-C workload
using different concurrency control algorithms.

In-place Update. For in-place update OLTP engines, Fal-
con reduces logging overhead with small log windows and re-
duces hot datawriteswith selective flush, improving through-
put by 12.5% ∼ 14.2% and decreasing latency by 13.1% ∼
18.6% over Inp. Falcon (All Flush) adds small log windows
to Inp, avoiding log writes to NVM, which achieved 10.1% ∼

11.5% improvement in throughput and 11.2% ∼ 17.8% decreas-
ing in latency. Falcon and Falcon (All Flush) work similarly
because only a small percentage of update operations are
performed on hot tuples in TPC-C.

Out-of-place Update. For out-of-place update OLTP en-
gines, ZenS accelerates hot data reads by caching them in
DRAM. In addition, ZenS uses DRAM indexes to speed up in-
dexing operations, improving throughput by 22.9% ∼ 38.9%
and decreasing latency by 25.7% ∼ 56.5% over Outp.

Flush Instructions. TPC-C only modifies one of a dozen
or so fields in a tuple. Hinted flush is useful for NewOrder
transactions that involve the insert operations. However, a
lot of time is taken by complex transactions (OrderStatus,
Deliver). The improvement from hinted flush is limited. As
a result, Falcon and Falcon (No Flush) work similarly.

For ZenS, throughput drops by 5.5% ∼ 9.2% and latency in-
creases by 9.7% ∼ 10.5% after removing the flush instructions.
Removing the flush instructions is not the optimal choice in
eADR-enabled NVM.

NVM Index vs. DRAM Index. The performance of NVM
index is lower than DRAM index due to the performance
gap between DRAM and NVM. Replacing NVM index with
DRAM index in TPC-C brings a 18.8% ∼ 21.8% throughput
improvement and 9.4% ∼ 40.1% latency decrease.
In-place Update vs. Out-of-place Update. Requests

in TPC-C typically access only a small number of columns
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(1 ∼ 2 columns) in tuples. Out-of-place update systems need
to copy the entire tuple after an update, which leads to write
amplification. Therefore, the in-place update has the advan-
tage over the out-of-place update in reducing NVM writes.
Concurrency Control Algorithms. The bottleneck of

OLTP engines is NVM reads and writes. Therefore, differ-
ent OLTP engines perform similarly under different con-
currency control algorithms. The performance of Falcon
with the multi-version algorithms is similar to that of the
single-version algorithms, with a small degradation (less
than 1%). This is because there are a small number of mod-
ifications, and each modification involves a small amount
of data in the TPC-C workload. The throughput of ZenS in
the multi-version algorithm is about 10.2% lower than in the
single-version algorithm. This is due to the maintenance of
extra multiple versions in the DRAM buffer pool.

6.2.3 YCSB. TPC-C modifies only one of a dozen or so
fields in a tuple, which is not friendly to engines with the
out-of-place update. Long read-only transactions in TPC-C
weaken the effects of small log window and selective data
flush design. Therefore, we chose a configuration in which
all ten fields get updated in YCSB. It is more friendly to the
engines with the out-of-place update because it avoids the
write amplification caused by partial modifications. Figure 9
shows the results. As all of the optimizations in Falcon are for
writes, we only report results for OCC and mainly focus on
YCSB-A and YCSB-F. Results for other concurrency control
algorithms are similar.
In-place Update. Inp has the same logging overhead as

the update overhead. Falcon and Falcon (All Flush) use small
log windows to avoid logging overhead, increasing through-
put by 1.71× ∼ 2.01× under YCSB-A and YCSB-F Uniform
workloads. For YCSB-A and YCSB-F Zipfian workloads with
hot tuples, Falcon also uses selective flush to avoid writing
hot tuples to NVM, achieving in a throughput improvement
of 3.14× over Inp and 1.75× over Falcon (All Flush).
Out-of-place Update. Under YCSB-A and YCSB-F Uni-

form workloads, like TPC-C, ZenS increases throughput by

up to 1.24× via in-memory caching over Outp. However, un-
der Zipfian workloads, especially in YCSB-F, the results for
ZenS throughput drop up to 41.6%. It is because Zen doesn’t
allow a thread to modify a tuple belonging to other threads
directly. A thread has to copy the tuple and invalidate the
original tuple before applying the changes, which leads to
high copying overhead in high contention workloads.

InP

InP (No Flush)

InP (Small Log Window) InP (Hot Tuple Tracking)

Falcon

+ Hinted Flush
+ Hot Tuple Tracking+ Small Log Window

Figure 10. Engine relationships for testing individual opti-
mization and scalability.

Flush Instructions. Under Uniform workloads, Falcon
and Falcon (All Flush) actively flush writes to the NVM us-
ing clwb, allowing neighboring modifications to be merged,
improving the throughput by 41.3% and 42.0% over Falcon
(No Flush), respectively. For the out-of-place update OLTP
engines, ZenS with clwb improves the throughput by 39.5%
over ZenS (No Flush). However, under the Zipfian work-
loads, actively using flush instructions causes the hot tuples
to be unnecessarily written to the NVM. The hot tuple track-
ing alleviates this problem. As a result, Falcon and Falcon
(No Flush) have 74.3% and 49.4% higher throughput than
Falcon (All Flush), respectively. The hot tuple tracking does
not apply to out-of-place update.
In-place Update vs. Out-of-place Update. Inp runs

slower than the out-of-place update engines because the out-
of-place update engines use the log-free design, but Inp needs
tuple modifications in addition to redo logs, which incurs
more NVM writes. Falcon and Falcon (No Flush) outperform
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out-of-place update engines by avoiding the NVM writes of
logs by using the small log window and reducing the NVM
writes of data by using the hot tuple tracking.

6.3 Individual Optimization and Scalability
This section investigates how the different optimizations in
Falcon can influence performance and scalability.
The engines for this test start with ① Inp (No Flush),

which is the pure in-place update implementation but with
all the clwb instructions removed. This engine is the base-
line because our Falcon’s basic design uses the in-place up-
date approach. Though all clwb instructions are removed,
Inp (No Flush) can still work correctly for persistent cache.
② Inp adds clwb instructions to Inp (No Flush), which can re-
duce the write amplification. Starting from Inp, we have two
independent optimizations leading to different engines. ③
Inp (Small Log Window) is the engine of Inp with the small
log window optimization to avoid log flushing. ④ Inp (Hot
Tuple Tracking) is the engine of Inp with the hot tuple track-
ing optimization to reduce the amount of tuple data written
to NVM. Finally, with all optimizations turned on, we have
⑤ Falcon. Their relationships are in Figure 10.
We evaluate the effects of these optimizations on TPC-

C, YCSB-A Uniform, and YCSB-A Zipfian workloads. The
results for YCSB-F are similar.

Figure 11 shows the experiment results. As expected, with
all optimizations turned on, Falcon performs the best for all
workloads in both overall performance and scalability.

TPC-C workload (Figure 11(a)). Inp works better than
the baseline (Inp (No Flush)) because sequential logs flushing
reduces write amplification. This is because each transaction
has to access one hot tuple in Warehouse Table. Inp (Hot
Tuple Tracking) reduces the flush for this hot tuple, so it’s
better than Inp. Inp (Small Log Window) reduces the NVM
write for the logs and performs better than Inp and Inp (Hot
Tuple Tracking), which means the improvement of Small
Log Window is more significant in TPC-C workloads.

YCSB A Uniform workload (Figure 11(b)). There are no
hot tuples. The hot tuple tracking has little impact. Therefore,
Inp and Inp (Hot Tuple Tracking) perform similarly, while
Inp (Small Log Window) and Falcon also perform similarly.

YCSBAZipfianworkload (Figure 11(c)).With 48 threads,
Falcon achieves 2.44× speed up compared to Inp (Hot Tuple
Tracking), due to the effect of the small log window opti-
mization. The small log window can cut half of the writes.
However, the performance gain here is over 2×. This is due
to the shorter duration for transactions to hold tuples, which
effectively reduces conflicts.

6.4 Impact of Different Tuple Sizes
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Figure 12. YCSB-A throughput with different tuple size. (16
threads and 48 threads, Uniform)

The small log window design limits the redo log size of
one transaction. We show Falcon’s performance with larger
log sizes by increasing the tuple size in the YCSB workload.
Figure 12 shows the performance of Falcon, Inp and Outp
under YCSB-A Uniform workload with different tuple sizes.
The small log window effect diminishes when the tuple size
reaches 512KB.Whenmore logs are evicted, the performance
gets closer to Inp. With larger tuple sizes, the out-of-place
update design is better.

Larger tuples result in an increase in NVM writes during
transactions. A higher number of concurrent transactions



increases the likelihood of encountering cache thrashing in
the underlying cache layer within the NVM module, such as
Optane XPBuffer. Consequently, when dealing with larger
tuple sizes, 16 threads deliver better performance compared
to 48 threads. Workload throttling can help here [60].

6.5 Recovery
We use about 256𝐺𝐵 of YCSB data to test the recovery per-
formance. Similar to previous studies [19, 22], we run Falcon
and inject crashes using SIGKILL. The test runs 100 times,
and we report the results for the longest recovery instance.
Falcon takes 3.276𝑚𝑠 in total for recovery. During recov-

ery, Falcon takes 1.272𝑚𝑠 to initialize in-DRAM data struc-
tures (e.g., catalog and table schemas) and 1.057𝑚𝑠 to recover
the NVM index by calling the Dash’s Recovery() function.
Falcon then replays the log and clears the lock bits in a sin-
gle thread, which takes about 0.97𝑚𝑠 . Other recovery work
takes negligible time.

On the contrary, ZenS takes 9.4𝑠 for recovery. Its recovery
time is proportional to the data size in the NVM tuple heap.
Most of the time is spent scanning tuples in NVM to rebuild
the in-DRAM index.

7 Related Work
Persistent Cache. Intel has discontinued the Optane busi-
ness[11], but other work besides eADR explores putting the
CPU cache into persistent domains. CXL 3.0[1] introduces
Global Persistent Flush (GPF)[2] to provide similar function-
ality to the eADR, i.e., flushing the cache to persistent storage
after a system crash. BBB[14] (Battery-Backed Buffer) uses
batteries to make the CPU cache persistent, achieving almost
identical results to eADR in terms of performance while us-
ing two orders of magnitude less power and time. These can
work as a replacement for eADR.

Reducing logging overhead. To reduce the write ampli-
fication of logs, many existing works modify hardware to
control the flushing of logs. Proteus [44] attempts to remove
the logs of completed transactions in the memory controller
so that they are not written to the NVM. Silo [58] provides
on-chip logs that do not rely on eADR. Silo stores logs in on-
chip space and writes the on-chip logs back to the NVM only
in the case of a system crash. LOAD [61] and Hercules [54]
achieve the same goal by leveraging hardware logging and
eADR. All these hardware approaches try to control the log
flushing precisely. Our software-based approach works very
well under persistent cache without precise control.

OLTP Engines for NVM: Previous works also optimize
the NVM OLTP engine by reducing NVM writes. WBL [15]
uses the byte-addressable feature of NVM to allow transac-
tions to create a new version of tuples before writing logs.
This method removes the data from the log, which reduces
the size of the logs. Zen[35] uses a Metadata Enhanced Tuple
Cache (Met-Cache) in DRAM to move the per-tuple meta-
data used by concurrency control algorithms from NVM

to DRAM, reducing the overhead of writing metadata in
NVM. NVCaracal [48] uses epoch-based transaction process-
ing, which writes at most one update per tuple per epoch
to NVM. Unlike other OLTP engines optimized for volatile
cache, Falcon’s optimization is specially designed to target
persistent cache.
Persistent Transactional Memory: Persistent transac-

tional memory (PTM) is another type of transaction process-
ing system in NVM. PTM supports all ACID attributes. The
underlying implementation is similar to the NVMOLTP stor-
age engine. PTM operates on objects instead of structured
tuples. PMDK [5], NV-heap [19], Atlas [17], JUSTDO [28],
iDO [37] use the in-place update and undo logs to back up all
modified objects during transaction execution. Pisces [25],
Romulus [21], and DudeTM [36] use the in-place update and
redo logs. All of them incur extra writing in NVM. Time-
Stone [31] and ArchTM [49] use out-of-place update storage
with an in-DRAM index to avoid frequent index updates in
NVM. In general, the storage of PTM is similar to that of
an OLTP engine. Similarly, existing PTMs are designed and
optimized for volatile cache. The optimizations in Falcon can
help improve PTMs for persistent cache.

8 Conclusion
Persistent cache provides a new opportunity to ease the pro-
gramming for NVM and improve the overall performance.
However, as shown in this paper, the improved hardware
architecture does not guarantee higher performance. Falcon
is a new OLTP engine specially designed for NVM with per-
sistent cache. Falcon tries to reduce the amount of data that
is written to the underlying storage media by two designs.
For logs, Falcon uses the small log window to reuse the log
space for multiple transactions. Logs are never manually
flushed to NVM. For data, Falcon uses the selective flush to
reduce the write amplification when tuples are flushed to
NVM (using the hinted flush) and avoid flushing hot tuples
(using the hot tuple tracking to identify hot tuples).
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