
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,  MANUSCRIPT ID 1 

 

Response Time based Optimal Web Service 
Selection 

W. Ahmed, Yongwei Wu, Member, IEEE, Weimin Zheng, Member, IEEE

Abstract— Selecting an optimal web service (OWS) among a list of functionally equivalent web services still remains to pose a 
challenging issue. For Internet services, the presence of low performance servers, high latency or overall poor service quality 
can translate into lost sales, user frustration and customers lost. In this paper, we propose a novel method for QoS metrification 
based on Hidden Markov Models (HMM), which further suggests an optimal path for the execution of user requests. The 
technique we show can be used to measure and predict the behavior of Web Services in terms of response time, and can thus 
be used to rank services quantitatively rather than just qualitatively. We demonstrate the feasibility and usefulness of our 
methodology by drawing experiments on real world data. The results have shown how our proposed method can help the user 
to automatically select the most reliable Web Service taking into account several metrics, among them, system predictability 
and response time variability. Later ROC curve shows a 12% improvement in prediction accuracy using HMM. 

Index Terms— Hidden States, Modeling and Prediction, Optimal Path, Web Service Composition 
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1 INTRODUCTION
HE Internet made the world a smaller place. Compa-
nies from all around the world may now compete over 

different service offerings not only with their local adversa-
ries, but do now under a global scale. Escalating the com-
petition and lead in industry segment can often be a matter 
of offering and, perhaps even most importantly, assuring 
the good quality of the services offered. In the Web this 
should be no different; controlling quality for Web Services 
(WS) is done by enforcing Quality of Service (QoS) policies 
and assuring needed quality conditions are always met. 

On the user's side, the increased number of services 
means more and more offerings to choose from. Unfortu-
nately, due to the explosive growth in the number of WSs 
available in the world, selecting the best WS to solve a 
given task has become a quite challenging task. Current-
ly, users cast their choice based on the reviews and expe-
riences of other users. User-created ranks are often the 
first resource for finding reliability information regarding 
a particular service, often given in terms of response time, 
throughput, availability, security and reliability.  

Dynamically composing web services requires the ser-
vice consumer to discover services that satisfy functional 
and non-functional requirements [4]. In a dynamic envi-
ronment, non-functional requirement such as WS’s relia-
bility in terms of response time is unlikely to be con-
gruous with that provided by venders in the service level 
agreement [SLA][5]. [1], [2], [3] have considered the relia-
bility parameters of WSs either as constant or suggested 
venders to provide probabilistic details of the WS flow. 
Similarly, QoS attributes modeled as probability distribu-

tion if considered as constant or user defined function 
values is also not sufficient [5]. Analyzing QoS parame-
ters of WSs considering constant probabilistic values as 
baseline does not reflect precise results. Similarly, user 
defined function values are also not sufficient to predict 
future behavior of component web services. 

There is no standard way, however, for the users to 
weigh their options directly and individually, for the-
selves. This paper aims to fill this gap providing a stan-
dard way to measure and predict WS behavior in terms of 
response time using HMM. Reliability of service oriented 
architecture (SOA) based systems heavily depend on var-
ious underlying technologies for instance web services, 
computing environment (CPU, Disk, and Network) and 
unpredictable internet [21]. In this paper we have specifi-
cally focused on predicting web service’s behavior in 
terms of response time (RT). For other factors such as 
CPU, disk or network one can find solutions in [1], [2], 
[3]. In HMM, the number of hidden states to be used is 
unknown. Usually, based on domain knowledge there is 
only some guess about it. For example, in case of web 
servers, network load balancing distributes incoming us-
ers’ requests among multiple web servers to handle more 
traffic and faster response. In this case multiple web serv-
ers can be different hidden states responding to users’ re-
quests randomly. Generally, remote web service is com-
posed of various hidden states as shown in Table-1. These 
states are hidden from the users’ and respond to their 
requests randomly based on their execution. However, 
there are two things to consider: 

1. Web services are owned and hosted by other or-
ganizations. So users have no way to analyze them 
directly. 

2. These hidden states can neither be discovered or 
guaranteed with traditional exhaustive testing [3] 
nor can be relied on service providers’ exposed 
parameters defined in SLA. 
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TABLE 1 
POSSIBLE HIDDEN STATES

# Hidden States
1. Database 
2. Bad node in server clustering 
3. Mutated coding 
4. Calling another WS 

a. This list can have more hidden states based on the architecture of the application

Therefore, it is more challenging to analyze or predict 
behavior of hidden states with respect to response time. 
To tackle this challenge, in this paper we present a novel 
approach. It first computes the behavior of internal struc-
ture of WS using the HMM. Later it combines the status 
of underlying hidden states to compute the overall beha-
vior of each component web service. Approach defined 
here can also be utilized to find an optimal path to ac-
complish users’ requests. This can be achieved by build-
ing a directed graph among various hidden states. In 
comparison to existing strategies, our contribution in this 
paper can be summarized as follows: 
 

1. Predicted web service’s behavior by predicting the 
status of underlying hidden states in terms of Re-
sponse Time (RT). 

2. Selected optimal WSs and an optimal path at run-
time for executing user request by identifying the 
status of underlying hidden states.  
 

The remainder of the paper is organized as follows: 
section-II introduces related work, section-III describes in 
depth details of our proposed model, section-IV presents 
our experiments and results and finally section-V con-
cludes the paper. 

2 RELATED WORK
Analyzing QoS parameters of web services in dynamic 

and unpredictable environment is an important and chal-
lenging research area. Many researchers have analyzed 
these attributes and proposed different frameworks. In 
this section we have presented a review of existing me-
thods or frameworks proposed by different researchers. 

Grassi V. [1], Baresi, L.[2] Zibin, Z. [6], Perrone, R. [7], 
and Cristescu, M. [8] have produced certain methods to 
tackle this challenge. They have focused on predicting 
reliability of various factors involved in building enter-
prise application, nonetheless, considered reliability of 
remote web service as constants. Grassi V. [1] analyzed 
both ways to predict reliability i.e. by considering services 
offered by software component and services offered by 
hardware devices. However, for remote web services, he 
assumed that the vender will provide probabilistic details 
about the flow of executing user requests. To achieve this 
he also suggested modifications in WSDL. In our ap-
proach, however we compute probabilistic details with 
the help of HMM. Zibin Z. and Michael R. [6], have em-
ployed past failure data of real web services to find relia-
bility for current web services. To achieve desired goals, 
they have calculated similarity parameters among real 
web services and service users with those of current web 

services and current users respectively. At first this ap-
proach did not consider the effect of environment and 
secondly it did not give any information about internal 
structure failure probability of remote web services. 

Huiyuan Zheng [5] suggested a probabilistic model to 
analyze QoS attributes of component services with dy-
namic probabilities. Their main contribution was to com-
pare the efficiency and accuracy of their algorithm with 
simulation models. However, they did not consider com-
bining various hidden patterns with integrations patterns 
to compute overall behavior of WS integration.  

D. Zhong [9], has suggested a CSPN model to predict re-
liability and the degree of trustworthiness of WSC. His main 
contribution was to define a model for transforming BPEL 
process into CSPN model. Yet this model deals more with 
design time problems and does not reflect the impact of prob-
lems that occur at runtime. Joyce EI and Maude [10], Sami  
[11], Li [12] have considered the transactional properties of 
web services to define a strategy for reliable web service 
composition. They have studied in detail transactional de-
pendency among different type of web services. Later, they 
have suggested web service selection algorithms based on 
users’ preferences. These models also tried to solve design 
time issues during service composition. Kaouthar and Zahi 
[13] have proposed a flexible architecture for dynamic web 
service composition related to user requirements. Their main 
contribution was to ensure availability of appropriate web 
service at runtime. However, they did not define any QoS 
metrification to find the appropriate web services among 
functionally equivalent web services. Tao [14] has suggested 
an efficient algorithm for selecting appropriate web services 
based on user’s provided weights. They have mapped web 
service composition with the Knapsack problem and then 
calculated the optimal path for executing user’s requests. 
However, in an unpredictable environment user defined pa-
rameters for calculating WSs behavior are not sufficient. Yi-
lei Zhang and Zibin Zheng [15] have proposed a model-
based QoS prediction framework called WSPred. It was a 
time-aware personalized QoS prediction approach that ana-
lyzes latent features of users, service and time by performing 
tensor factorization. Similarly, S. Maheswari and G.R. Kar-
pagam [16] have proposed a framework that considered sev-
en QoS attributes i.e. response time, execution Time, 
throughput, scalability, reputation, accessibility, and availa-
bility for better web service selection. Overall these models 
consider probability as constant value or base it on the user’s
defined function values except Huiyuan Zheng [5]. However, 
Huiyuan Zheng [5] did not consider predicting WS’s beha-
vior during the nth time interval in the future. 

The HMM has already been used in different papers 
for analyzing quality factors of distributed computing 
systems. Nonetheless, they have their own issues, con-
straints and shortcomings. For instance, Leilei Chen [17] 
has designed a framework to evaluate survivability of a 
SOA based application(s) using the HMM. The main idea 
of their framework evolves around monitoring activities 
based on service logs or run time statistics provided by 
the service provider. However, their approach is contin-
gent on the service provider; in addition the author did 
not discuss the various hidden states or probabilistic in-
sight of remote web services. Rahnavard G. [18] has used 
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HMM to detect anomalies in web services i.e. the author 
has designed a framework to detect intrusion in WS. 
However this strategy cannot be used to gauge QoS 
attributes of overall WS. Flex Selfner [19] has proposed 
the use of HMMs to categorize and distinguish error pat-
terns leading to failures. This author also suggested a me-
chanism for predicting the future occurrence of failures or 
errors. WS assessment model [20] has used this model to 
assess failures during certain time in the future. In short 
HMM has already been successfully used to analyze vari-
ous aspects in distributed computing systems.  

QoS parameters of any web service sometimes de-
pend on its internal complexity i.e. apart from unpredict-
able internet. Such as, how the programmer has written 
his algorithm to accomplish users’ requests or how the 
architect has defined the architecture to entertain users’ 
requests. Therefore, estimating behavior of individual 
component service with respect to response time (RT) in 
turn requires ensuring behavior of all possible hidden 
states within component service [21]. Therefore, this pa-
per provides comprehensive information for selecting an 
optimal WS and predicting it’s behavior in terms of RT.

3 SYSTEM MODEL AND PARAMETERS
HMM is a powerful statistical tool for modeling ge-

nerative sequences that can be characterized by an under-
lying process generating observable sequences [23]. Word 
hidden specifies that internal structure of the underlying 
system is hidden from the observer. Observer does not 
know in which state system may be in, but has only prob-
abilistic insight where it should be. In HMM, one does not 
know how many hidden states to use. Usually, based on 
domain knowledge there is only some guess about hid-
den states. We have discussed in detail about WS hidden 
states below in sections 3.2.1 and 3.2.2. Later training al-
gorithm find out how to connect these hidden states. 
HMM can solve three fundamental issues i.e. Evaluation, 
Decoding, Training. More details can be found in [23].  

Using HMM to measure and predict WS behavior 
with respect to response time, our model consists of a two 
step process. First step will require us to train the model 
to find optimal HMM parameters i.e. A, B & , such that 
model best fits the training sequence. Training sequence 
in our model can be exploited by recording and labeling 
response time of a web service at regular intervals of 
time. Baum-Welch algorithm a particular case of expecta-
tion-maximization (EM) can be used to train the model. It 
iteratively improves the basic model which provides con-
vergence to local optima, whereas second step, first re-
quires us to compute current state of the system. Then 
based on current state, future behavior of the system is 
predicted. This can be computed using VITERBI algo-
rithm.Based on above two steps, for selecting an optimal 
WS and an optimal path for executing user requests our 
strategy can be further divided into following steps: 

1. Building a directed graph among hidden states of 
component web services used in composition. 

2. Analyzing the current status of each vertex of di-
rected graph i.e. underlying hidden states.  

3. Predicting hidden states’ behavior in terms of re-
sponse time during nth time interval t. 

4. Finally, selecting optimal web services used in 
composition based on hidden states’ behavior. 

3.1 Exemplary Scenario 
To analyze the behavioral pattern of hidden states, we 
have selected a weather forecast WS with best rank. More 
than 500 threads are used in parallel in a distributed envi-
ronment. As in HMM, one does not know how many 
hidden state to use, so we have supposed that target WS 
is running on a clustser of webserver, containing 2 web-
servers. We found that 9% of the overall result was with 
observation symbol “C” as shown in Fig.1.  Later, when 
we further scrutinized the result by training the model, 
we have found that 8.2% from 9% failures were caused by 
web server1 whereas only 0.8% failures were originated 
by web server2. This shows that probability of receiving 
failure when web server1 executes the results is more 
than web server2. The analysis shows that at runtime be-
havioral patterns of the hidden states can be utilized for 
selecting optimal web services among the list of function-
ally equivalent web services.  Hidden states with observa-
tion symbol A (as shown in Table-3) of different WSs can 
be connected at runtime to process user’s request. 
In the next step we will explain the process of building a 
directed graph among the hidden states of different web 
services used in composition. 
3.2 Directed Graph Among Hidden States 
The key idea to select optimal WS for completing user re-
quests is to exploit behavioral patterns of underlying hid-
den states. This can be done by recognizing hidden states’ 
emission probabilities and combining them with integra-
tion patterns. As per our knowledge, previously different 
hidden states have never been considered with the inte-
gration patterns of WSC to estimate its behavior in terms 
of RT. The basic structure of hidden states and corres-
ponding observations in terms of RT is necessary to un-
derstand before building a directed graph. 

 
TABLE 2 

RESPONSE TIME PATTERN

Label Response Time (sec) Remarks
A Response time < = 5 Normal 
B Response Time  >   5 Delay 
C Not replied so long or Crashed Error 

a. Defined by architect and can be re-defined based on the nature of application

 
Fig.1 Hidden states’ observation patterns in terms of number of 
requests 
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3.2.1 Hidden States Analysis 
Generally atomic web service is composed of different 
hidden states that are invisible to consumers as shown in 
Table-1. Each state is responsible to output certain results 
during time t. The probability of the response to certain 
requests depends on execution of these hidden states. 
When a consumer of a web service accesses a remote web 
service, sometimes he receives an unprecedented delay 
even under best operational conditions. We believe that 
this exceptional delay is because of unreliable hidden 
states responding to users’ request at that particular time. 
Delay represents the state where system receives the re-
sults after long time, however, crash / error represents 
the state where WS crashes or user receives no response 
from WS. 

Predicting WS behavior in our model is about evaluat-
ing hidden states’ replies in terms of response time during 
the nth time interval. Generally, to build a highly available 
system, venders normally use different processing units to 
implement WS. In our model these processing units are 
termed as hidden states. For example, in case of web serv-
ers, network load balancing distributes incoming users’ 
requests among multiple web servers to handle more traf-
fic and faster response. Depending on a consumer’s re-
quirement and nature of application, response time pat-
terns (shown in Table-2) for different observable units 
(shown in Table-3) can be redefined. 

3.2.2 Response Time Analysis with HMM 
Hidden states can entertain user’s requests randomly and 
produce results anytime. As these hidden states can also 
be accessed from other hidden states while service invo-
cation, hence the model is of ergodic type. There may 
be/exist certain hidden states that may produce results in 
similar patterns of time intervals of having different con-
figurations. For instance, hidden state 2 and 4 (defined in 
Table-1) can have similar response time patterns. Thus for 
a given time interval we can define feature vectors includ-
ing values defined in Table-1. Because of differences in 
implementation of hidden states (e.g. for hidden state 4 in 
Table-1, communication delay or latency for calling another 
service inside target web service will also be involved in over all 
response time) clear identification among feature values is 
required which in machine learning is referred to as Fea-
ture Normalization [18]. These features may be catego-
rized in terms of memory requirements, network re-
quirements, software service requirements etc. This will 
help to define the initial values of the probability of suc-
cess or failure of hidden states.  
Fig.2 shows general implementation of a WS used in ex-
amplory scenario. User receives different observation 
symbols A, B, and C while he invokes a web service dur-
ing a certain time interval t. Here observation symbols 
represent response time (as defined in Table-2) of output 
values. Depending on hidden states i.e. Web Server 1 and 
Web Server 2, the application users receive the results 
from a web service with either A, B or C. In our approach 
when a user receives an unprecedented delay or error i.e  

 
TABLE 3 

OBSERVATION UNITS

# Observation Symbols Labels
1. Normal Execution A 
2. Delay in Response B 
3. Error / Crash C 

 
with response time pattern C, underlying hidden state is 
considered as an unreliable state urelS  as shown in Fig.2. 
By initializing HMM parameters it can be ensured that 
the model transits to an unreliable state once the user 
receives exceptional delay or error. We have further ex-
plained this concept in the “Training the model” section 
below. For now we can define some basic parameters of 
HMM in terms of component web service as:  

1. States: Number of hidden states S within a com-
ponent web service.  

2. Observations: Distinct output observations i.e V= 
(Normal (A), Delay (B), and Error/Crash (C)) such 
that output observation at time t is tO where se-
quence of observation is n21 O,...,O,OO Here 
sequence of observation represents various re-
sponse times generated by remote web service de-
pending upon execution of relevant hidden state. 

3. ji,A represents the transitional probability from 
hidden state iS following jS .  

4. sjB represents the probability of hidden state gene-
rating output being produced from an hidden 
state jS . 

5. represents the initial probability distribution 
values of underling hidden states.  

As per definition of HMM we have: 
λ = (A, B, )          (1) 

With the help of training algorithm of the HMM we can 
identify model parameters λ in the light of the analysis 
above. To train the model, observations must represent 
the actual execution time of the hidden states. Below we 
have outlined the mechanism for extracting execution 
time of the hidden states. 

3.2.3 Web Service Execution Time 
Execution time of any hidden state at time t must be re-
quired to compute λ in “(1)”. This will further help to fig-
ure out unreliable hidden states. Generally, response time 
of a web service observed on the client side during any 
specific time t is composed of two things. 

Application 
user

VPN

b1(A)
A

B

Cb3(C)

b2(A)

b1(C)

a(i,j)

Cluster of Computers

Web Server 1

Web Server 2

Unreliable Web 
Server
S_urel

a(i,j)

a(i,j)

 
Fig. 2. Hidden States and corresponding observation symbol
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Response time rt = Latency + Execution Time of WS  (2) 
 
Based on the instability of the internet, users receive dif-
ferent quality of service in terms of response time. There-
fore, it is necessary to subtract latency from round-trip 
time to obtain the exact execution time of corresponding 
hidden states. Latency can be calculated by using any 
NMS (network management system) tool. A common me-
thod to calculate latency is to “send an echo request at the 
same time when web service was being invoked by the 
application i.e. PING to the destination IP and record the time 
it takes to receive answer. Later this time can be subtracted 
from round-trip time to obtain actual execution time”. 

3.2.4 Basic Concept of Directed Graph 
Fig.2 indicates that A, B and C are the discrete emissions 
representing Normal, Delay and Crash respectively. 
These emissions are based on the execution of different 
hidden states as per the defined range (mentioned in Ta-
ble-2). Nonetheless, in reality emissions (A, B and C) for 
different web services having similar functionalities con-
sist of vector of probabilities during time interval t as 
shown in Fig.3a), e.g. For hidden state1, HS1P1 represents 
hidden state1 with probability-1 and HSnPn represents 
hidden staten with probability-n.  To build a directed 
graph among hidden states, following is the basic defini-
tion used in our model. 
Definition1: Directed Graph: Let HS be the set of hidden 

states for each WS and U be the set of observations produced by 
different hidden states, P be the set of probabilities for each ob-
servation, Then we can define the parameters for a directed 
graph G= (V, E) as: 

V=HS, set of the hidden states of each candidate web 
services registered for composition are considered as ver-
tices. 

iji P,HSHS E , edge represents the link from a 
hidden state iHS of iS with observation symbol iU hav-
ing probability iP to hidden state jHS of jS , iS , jS   S
and  iHS iS jHS jS . 

In the next section we will discuss how the hidden 
states of atomic web services can be combined in a process 
of composition with a directed graph to select optimal 
path during any time interval t 

3.2.5 Composition Model 
Selecting the optimal path in a composed web service in 

turns requires examining QoS (response time) attributes 
of the each component WS. This can be examined by ana-
lyzing probabilistic behavior of their hidden states. In our 
approach estimating probabilistic behavior of hidden 
states (vertices) of component web services can be com-
bined together to select an optimal path. Fig.4 shows the 
detailed process of web service composition in terms of 
hidden states. Let us consider a simple case with two web 
services “a” and “b” consisting of hidden states 3 and 2 
respectively. Then they can be connected with each other 
in the form of a directed graph as shown in Fig.4.  Any 
hidden state i.e. 1HS , 2HS or 3HS of the component web 
service “a” can execute users’ requests during certain 
time interval t and give response to the end user as de-
fined above in the “Response Time Analysis with HMM” 
section. The response of hidden states is categorized by 
observation symbols U as defined above. The dotted line 
in Fig.4 shows that probabilistic value of service “a” i.e. 
its hidden state 3HS  has produced results with observa-
tion symbol A which was used as input of service “b”. In 
service b hidden state 2HS has produced results with ob-
servation symbol A, and finally user receives reply with a 
minimum time. So our main objective can be achieved 
using this model. Therefore, at first current state of the 
system is estimated using training sequence as discussed 
in section D. Later, future behavior of each hidden state of 
the WS is predicted. 
 
3.3 Analyzing Current Status 
The current status of underlying hidden states (men-
tioned in Table-1) is analyzed using HMM. Each hidden 
state is analyzed in terms of QoS attribute i.e response 
time. State of WS during time interval t can be considered 
as vector of probabilities that WS is in hidden state execut-
ing a certain request R during time interval t having pat-
tern of response time n21 O,...,O,OO . The current state 

Start
Sa

HS1

HS2

HSm

Sb
End

Service a, Hidden
Scenarios

Service b, Hidden
Scenarios

HS1P1

HSnPn
HS2P1

HS2nPn

HSmP1

HSmPn

HS1

HS2

HSm

HS1P1
HSnPn

HS2P1
HS2nPn

HSmP1

HSmPn
 

SbSa
Start End

sa1

sa2

sb1

sb2

Optimal Composition

sb2Sa
Start End

 

a.) Basic composition (Simple case) b.) Optimal composition of web services 

Fig. 3. Example of a simple case in composite web service (CWS) with various hidden scenarios

Start

Service a, Hidden
Scenarios

HS1

HS2

HS3

G

N

D

HS1

HS3

G

N

D

End

Service b, Hidden
Scenarios

Fig. 4. Directed graph of composition in terms of hidden 
states  
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of WS can lead us to predict state of WS during the nth 
time interval under various operational conditions. State 
of WS during time interval t can be computed with the 
help of HMM i.e: 

 
λ)n,...,1i,n,1-n,...,11-n,...,1 OOHSHSP(HSHSHS(i)tδ /

Max
 (3) 

 
Here (i)tδ represents the state of WS i.e. it represent 

maximum probability (computing maximum over all 
possible hidden states sequences) that the model went 
through hidden states -1n,...,1 HSHS and the system is in 
state i at hidden state n. i.e. nHS = i while observing

n,...,1 OOO . Equation “(3)” in HMM is known as VI-
TERBI algorithm, which can help users to build relations 
among hidden states iS and response time pattern gener-
ated by each hidden state iS during time interval it . VI-
TERBI algorithm can further be used to calculate the 
probability of a current status of any specific hidden state

iHS .Let k
j

Q  be the probability of observations from k+1 
to n such that kHS = j, Then recursively we can write: 

 1j
k

Qi)P1kHS1kQP(j
k

Q ij,|
 

(4) 
 
Here ij,P  represents the marginal probability distribution 
of hidden states described by the homogenous Markov 
Chain process such that ij,P = P ( kHS = i , 1kHS = j). If 

jkHS

ikOP is the probability of the observations (
k21 O,...,O,OO ) such that kHS = j, then the probabil-

ity of the current status of any specific hidden state can be 
calculated as: 

P(O)QPHSP /j
k

j
kj)k(  (5) 

Where P (O) is the probability of observations and can be 
recursively calculated as 

jH
P(O)

n

jn

n

H
iOP

                
(6) 

3.4 Predicting Future Behavior of Component 
Service 

To find the probabilistic behavior of each hidden state of 
a WS for defined response time pattern (as shown in Ta-
ble-2) against different user requests, we can calculate urP
(n). That is, probability of hidden state kHS  in the kth 
time interval is unreliable or hidden state kHS producing 
results with delay during kth time interval. This probabili-
ty is calculated by “First Passage Time Distribution”. Let 

kT be the time in the kth time interval, also known as 
“First Passage Time”, when hidden state kHS  produced 
delayed results, then 

 
kT = min (n=>k>=0: kHS = urHS ) 

 
Here kHS represents the hidden state at time k during 
the nth time interval. Probability distribution among hid-
den states can be computed as below: 

n

0i
)P( )nP(   | iHSiHST jjk                         (7) 

    s.t j=0 
Where )P( iHS j is the probability of response time pat-
terns that WS is in hidden state j at current time as com-
puted in “(3)”. )nP(   | iHST jk is the probability of 
going through hidden state during the nth time interval 
starting from j=0 which can be computed recursively. 
Equation (7) represents probability distribution that hid-
den state urHS produces unreliable results during time 
interval k which can be further scrutinized using dynamic 
programming to efficiently compute for various time in-
tervals. 
 
3.4.1 Training the Model 
In prediction models, training is generally done through 
historical data. To obtain actual execution time of a web 
services as a training sequence we have randomly se-
lected a web service with best rank. Then, we developed 
an interface in .Net to access this WS in a distributed en-
vironment. Response time of more than 500 threads is 
then recorded during parallel execution in a distributed 
environment. Equation (2) was then used to extract actual 
execution time of the target web service. 
To train the model a training sequence as described above 
is used. This sequence is first labeled as an observation 
symbol as shown in Fig.5 i.e. A, B and C (as defined in 
Table-3) based on the criteria as defined in Table-2. When 
an error is produced during service invocation observed 
by any thread in distributed environment, we represent it 
as observation symbol C. In our framework such res-
ponses are modeled and represented by hidden state 

urelS as shown in Fig.2.For example, when data with un-
certain result is obtained i.e. with observation symbol C, 
the underlying state is considered as an unreliable state. 
Each column in Fig.5 represents the execution time of 
each WS invocation, received by different users, when a 
web service with higher rank was invoked in parallel. 
Then by initializing HMM parameters in “(1)” i.e. initial, 
transition and emission probabilities, such that states 
representing as unreliable, are the only states that pro-
duce results with “C”, it can be ensured that the model 
transits to the unreliable state when uncertainty appears 
in the training sequence. Baum-Welch algorithm a partic-
ular case of expectation-maximization (EM) is used to 
train the model. It iteratively improves the basic model 
which provides convergence to local optima. After train-
ing the model, current and future state is predicted using 
VITERBI algorithm as discussed above. 
 
3.5 Optimal WS Selection 
Selecting an optimal WS among list of functionally equiv-
alent WSs we refer to defination1.  
Alogrithm1 

# of users / Service 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 …

WS responses A A A A B A B B B A B A A A A C B A A B B C …

Fig. 5. Example of a simple case in composite web service (CWS) with various hidden scenarios
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Input:   DIRECTED_GRAPH(V,E)   
// V = Set of hidden states    group by web services and E 
represents edges from each Hidden State group by obser-
vation symbol i.e. (Good /Normal /Bad) 
Output: OPTIMAL_PATH  

1. for each sv  in V 
2. for each hsv in sV  
3.  for each e (start, hsv ) in E 
4.           CALCULATE_MIN 
5.           CREATE_PATH iP  
 
6.   If e ( hsv , End) true 
7                        FIND_MIN_PATH iP  
8           ADD MIN_PATH iP  to Graph G 
 
9  else 
10   Initialize_Parameter 
11 For each iP  in Graph G 
12  For each iP in iGroup  
13  SUM_QoS 
14  FIND_MIN_PATH 
15  OP=Build_OPTIMAL_PATH 
16 IF ( iP in Graph G ends) true; 
17 Return OP; 
In our model we exploited pool of WSs having similar 
functionalities and selected a better WS at runtime to per-
form certain task. As per definition1 in section 3.4.2 each 
component web service iS consists of n number of hidden 

states iHS that correspond to user requests on invoca-
tions. This can help to build a directed graph G= (V, E) 
among the hidden states of different component web ser-
vices as shown in Fig.4.  Each hidden state has an edge 
from hidden state of web service iS to hidden states of 
web service kS with the observation symbol U having 
probability iP .Therefore it can be observed that during 
anytime interval t the edge from hidden state iHS can be 
categorized into various feasible solutions when invoked 
by service users as shown in Fig.3b). The process of select-
ing the best feasible solution produced by underlying 
hidden state among several feasible solutions is shown in 
Algorithm1. 
Algorithm1 indicates that application at client side ex-
ploits HMM parameters for each WS to build a directed 
graph among hidden states. Later, it returns the optimal 
path by calculating MIN of QoS values i.e. response time.  
Finally, system uses this optimal path to execute user’s 
requests efficiently and reliably. 

4 EXPERIMENTS AND RESULTS
Selecting web services for composition at runtime with 
better QoS (i.e response time), it is necessary to have a 
pool of web services having similar functionalities. In our 
experiment we have randomly selected two groups of 
services to integrate, each group consists of 5 web services 
having similar functionalities. Response time observa-
tions against all these WSs have special patterns (as 

   

a). Respose time patterns of Flight booking WSs 
(Percentage % wise) 

b). Comparisons of minimum results received in 
terms of response time of each flight booking WS 

c). Response time pattern of flight booking WSs 

 
  

d). Response time pattern of each flight booking 
web service. 

e). Response time patterns of hotel booking web 
service 

f). Comparison of minimum results received in 
terms of response time for each hotel booking 
web service 

 
 

g). Response time pattern for 5 different hotel booking web services (S1,S2,S3,S4,S5) h). Response time pattern of each hotel booking web service 

Fig. 6. Status of various flight and hotel booking web services 
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shown in Table-2) linked with the execution of each hid-
den state as discussed in Section A-2. Our case study is 
based on a real scenario where an application facilitates 
end users for flight and hotel reservation simultaneously 
as shown in Fig.6. Response time observations are catego-
rized using Table-2 as shown in Fig.6. It is apparent from 
Fig.6a-d) that more than 80% of user’s requests responded 
with label A by all flight web services. Nonetheless, all 
these web services encountered failure during different 
time intervals as shown in Fig.6a) and 6c). Fig.6d) shows 
that the WS3 and WS5 have produced best results with 
respect to response time, during simultaneous invocation. 
However when data was compared in terms of minimum 
of QoS attribute (response time), we noticed WS4 gener-
ated results in less time among selected WSs as shown in 
Fig.6b). Percentage of results with observation symbol A 
is a lot better than having some exceptions as shown in 
Fig. 6e). However, there still exist a small percentage of 
exceptions for each flight WS. Consequently, selecting 
any WS for composition can make the composition unre-
liable. 
As discussed in Section-3.2.1 and exemplary scenario sec-
tion, these exists some hidden states. We believe that these 
exceptions are because of those unreliable hidden states res-
ponding to users’ request at that particular time. To further 
scrutinize results of WSs shown in Fig.6 for optimal WS se-
lection, we analyzed internal structure of these WSs using 
HMM. Fig.6 e-h) shows the QoS details of hotel booking 
web services. To deal with exceptions discussed above, we
have exploited more than 300 simultaneous requests to: 

1. Adjust the model parameters to analyze current 
state of the internal structure of web services. 

2. Build a directed graph using concept of hidden 
states to select optimal path for executing the user 
request. 

3. Predict the future behavior of these web services 
during nth time interval to select better web ser-
vice for optimal composition. 

4.1 Adjusting the Model Parameters 
Before predicting behavior of the hidden states, it is ne-

cessary to train the model to get estimated transition and 
emission probabilities. Detailed process of adjusting 
HMM parameters is discussed in section 3.4.1. These es-
timated values are then used in “(3)” to compute most 
probable hidden states sequences. Purpose of training the 
model is to find optimal HMM parameters i.e. A, B and

, such that model best fits the training sequence. Baum-
Welch algorithm that iteratively improves the basic mod-
el is used. Trained HMM is then used to analyze the cur-
rent status of hidden states in terms of response time. Fi-
nally, response time is predicted during anytime interval 

t. 

4.2  Analyzing Current State 
The state of component web service during time interval t 
is a vector of probabilities that system is in the hidden 
state iHS when observation symbol U is observed. VI-
TERBI algorithm is used to calculate the most probable 
hidden state sequence (as discussed in section III-B) that 
has generated the training sequence as shown in Fig.7. 
Fig.7 a-e) shows the current value of various hidden states 
(as defined in Table-1) of Flight web services. It is appar-
ent from Fig. 7 a-j) and Fig.6d) and 6h) that most of the 
results were produced by State1. However, each web ser-
vice encountered errors which resulted when the internal 
system transited to the other hidden states. Predicting 
these transitions among hidden states for any WS can 
help to gauge the behavior of that WS. This will further 
help to select optimal WS at runtime when there is a 
chance of transition among hidden states of one WS. 

4.3 Predicting Future Behavior and Selecting    

Optimal Path 
As HMM is normally used to recognize patterns, there-
fore to predict behavior of the hidden states, idea is to 
classify suspicious response time patterns i.e. patterns 
with observation symbols C. This classification will indi-
cate upcoming suspicious patterns. As per proposed 
technique, response time in a training sequence is divided 
into equal lengths slots. These time slots having observa-
tions symbol “C” are termed as “unreliable”. 

     

a).Hidden States pattern for 
Flight WS1 

b).Hidden States pattern for 
Flight WS2 

c).Hidden States pattern 
for Flight WS3 

d).Hidden States pattern 
for Flight WS4 

e).Hidden States pattern for 
Flight WS5 

     

f).Hidden States pattern for 
Hotel Booking WS1 

g).Hidden States pattern for 
Hotel Booking WS2 

h).Hidden States pattern 
for Hotel Booking WS3 

i).Hidden States pattern for 
Hotel Booking WS4 

j).Hidden States pattern for 
Hotel Booking WS5 

Fig. 7. Current State of Hidden States of various Flight and Hotel web services  
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First the model is trained using training sequences (as 
shown in Fig.5). Then based on trained HMM current 
status of the hidden state’s behavior is analyzed using 
VITERBI algorithm. Later, based on current state, future 
behavior of hidden states is predicted by calculating “first 
passage time distribution” into unreliable state. Based on 
minimum QoS attribute analysis users can select WS4 
considering it as best among all in group1 and WS2 from 
group2 to integrate in one application. Nonetheless, over-
all behavior of the CWS cannot be ensured. Because there 
still exist some hidden states in WS4 and WS2 of group1 
and group2 respectively (as shown in Fig.7d and 7g), that 
can cause slow response or sometime failure making 
overall composition as unreliable. For instance in Fig8 
user’s request between 120-130 and 180-190 in WS4 of 
group1 and 115-130 in WS2 of group2 transited from hid-
den state1 to other hidden states causing slow response or 
failure. Eventually, selecting web services at runtime 
from each group based only on minimum of QoS 
attribute still not sufficient. Therefore, behavior of hidden 
states along with minimum of QoS attribute can ensure 
reliable composition in terms of response time. Fig.8a-j) 
represents the predicted behavior of underlying hidden 
states for both types of web services i.e flight and hotel 
reservations. It can be observed in prediction results that 
the probability of transiting from hidden state1 to other 
hidden states of a web service have increased significant-
ly that may cause response from web services as either B 

or C (as defined in Table-2). 
However, probability of time of transition among hid-

den states of the web services having similar functionali-
ties is different from each other. This can be useful in 
building a directed graph among hidden states of web 
service in group1 to the hidden states of web service in 
group2 at time t. As per results in Fig.8, a directed graph 
is developed among 12 hidden states of 3 web services 
WS3, WS4 and WS5 from group1 and 16 hidden states of 
4 web services WS1, WS2, WS3 and WS4 of group2 
(shown in Fig.9). For simpilicity we have shown only two 
web services with their corresponding hidden states. 
When user connects with the system, then based on pre-
diction results system finds the WS, probabilistic behave-
or of whose hidden states are at their best level during 
that interval and then connect with it. Later algorithm1 is 
exploited to select an optimal path with minimum proba-
bilistic value for executing user requests in the most effi-
cient and reliable way. 

4.4 Comparison of Prediction Accuracy 
For comparing the accuracy of our results and also com-
paring the model with existing methodologies we have 
used receiver operating characteristic (ROC) graph. ROC 
technique is basically used for visualizing, organizing and 
selecting classifiers based on their performance. For proof 
of concept, we have selected the best WS among the pool 
of services to compare prediction accuracy results of our 
model with existing methodologies such as user collabor-
ative approach [6], execution time probabilistic approach 
[22] . Table-4 shows the sensitivity & specificity of differ-
ent prediction approaches employing certain cut of values 
to response time of WS4 of group1. We defined maximum 
tolerable response value and then sliced the results on 
different points of possible response values. In Fig.10 
ROC graph shows that our prediction methodology ob-
tains better predictions accuracy. 

5 CONCULSION
In this paper, we at first propose a probabilistic model for 
predicting response time of web service and then selected 

     

a).Predicted hidden states 
pattern for flight WS1 

b).Predicted hidden states 
pattern for flight WS2 

c).Predicted hidden states 
pattern for flight WS3 

d).Predicted hidden states 
pattern for flight WS4 

e).Predicted hidden states 
pattern for flight WS5 

     

f).Predicted hidden states 
pattern for hotel WS1 

g).Predicted hidden states 
pattern for hotel WS2 

h).Predicted hidden states 
pattern for hotel WS3 

i).Predicted hidden states 
pattern for hotel WS4 

j).Predicted hidden states 
pattern for hotel WS5 

Fig. 8. Predicted values of Hidden States of various Flight and Hotel Web services 
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Fig.9. Directed graph among hidden states of different WSs in 
an online flight and hotel reservation system 
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an optimal web service at runtime from the list of func-
tionally equivalent web services. To know the probabilis-
tic insight of WSs we have used HMM. In our model we 
have assumed that WS is deployed on a cluster of web 
servers and sometime the delay or crash during WS invo-
cation is because the bad node in sever clustering re-
sponds to users’ requests.  

With the help of HMM we have predicted the proba-
bilistic behavior of these web servers and then selected 
the WS based on their probabilistic value. Experiment 
shows that the proposed model is more general and de-
tailed in comparison to existing models. This not only 
predicts the overall behavior of composite web service 
but it further provides the solution to complete user re-
quests in the most efficient and reliable way. 
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