
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID 1

Response Time based Optimal Web Service
Selection

W. Ahmed, Yongwei Wu, Member, IEEE, Weimin Zheng, Member, IEEE

Abstract— Selecting an optimal web service (OWS) among a list of functionally equivalent web services still remains to pose a
challenging issue. For Internet services, the presence of low performance servers, high latency or overall poor service quality
can translate into lost sales, user frustration and customers lost. In this paper, we propose a novel method for QoS metrification
based on Hidden Markov Models (HMM), which further suggests an optimal path for the execution of user requests. The
technique we show can be used to measure and predict the behavior of Web Services in terms of response time, and can thus
be used to rank services quantitatively rather than just qualitatively. We demonstrate the feasibility and usefulness of our
methodology by drawing experiments on real world data. The results have shown how our proposed method can help the user
to automatically select the most reliable Web Service taking into account several metrics, among them, system predictability
and response time variability. Later ROC curve shows a 12% improvement in prediction accuracy using HMM.

Index Terms— Hidden States, Modeling and Prediction, Optimal Path, Web Service Composition

—————————— ——————————

1 INTRODUCTION
HE Internet made the world a smaller place. Compa-
nies from all around the world may now compete over

different service offerings not only with their local adversa-
ries, but do now under a global scale. Escalating the com-
petition and lead in industry segment can often be a matter
of offering and, perhaps even most importantly, assuring
the good quality of the services offered. In the Web this
should be no different; controlling quality for Web Services
(WS) is done by enforcing Quality of Service (QoS) policies
and assuring needed quality conditions are always met.

On the user's side, the increased number of services
means more and more offerings to choose from. Unfortu-
nately, due to the explosive growth in the number of WSs
available in the world, selecting the best WS to solve a
given task has become a quite challenging task. Current-
ly, users cast their choice based on the reviews and expe-
riences of other users. User-created ranks are often the
first resource for finding reliability information regarding
a particular service, often given in terms of response time,
throughput, availability, security and reliability.

Dynamically composing web services requires the ser-
vice consumer to discover services that satisfy functional
and non-functional requirements [4]. In a dynamic envi-
ronment, non-functional requirement such as WS’s relia-
bility in terms of response time is unlikely to be con-
gruous with that provided by venders in the service level
agreement [SLA][5]. [1], [2], [3] have considered the relia-
bility parameters of WSs either as constant or suggested
venders to provide probabilistic details of the WS flow.
Similarly, QoS attributes modeled as probability distribu-

tion if considered as constant or user defined function
values is also not sufficient [5]. Analyzing QoS parame-
ters of WSs considering constant probabilistic values as
baseline does not reflect precise results. Similarly, user
defined function values are also not sufficient to predict
future behavior of component web services.

There is no standard way, however, for the users to
weigh their options directly and individually, for the-
selves. This paper aims to fill this gap providing a stan-
dard way to measure and predict WS behavior in terms of
response time using HMM. Reliability of service oriented
architecture (SOA) based systems heavily depend on var-
ious underlying technologies for instance web services,
computing environment (CPU, Disk, and Network) and
unpredictable internet [21]. In this paper we have specifi-
cally focused on predicting web service’s behavior in
terms of response time (RT). For other factors such as
CPU, disk or network one can find solutions in [1], [2],
[3]. In HMM, the number of hidden states to be used is
unknown. Usually, based on domain knowledge there is
only some guess about it. For example, in case of web
servers, network load balancing distributes incoming us-
ers’ requests among multiple web servers to handle more
traffic and faster response. In this case multiple web serv-
ers can be different hidden states responding to users’ re-
quests randomly. Generally, remote web service is com-
posed of various hidden states as shown in Table-1. These
states are hidden from the users’ and respond to their
requests randomly based on their execution. However,
there are two things to consider:

1. Web services are owned and hosted by other or-
ganizations. So users have no way to analyze them
directly.

2. These hidden states can neither be discovered or
guaranteed with traditional exhaustive testing [3]
nor can be relied on service providers’ exposed
parameters defined in SLA.

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————
Authors are with the Department of Computer Science and Technology,
Tsinghua National Laboratory for Information Science and Technology
(TNLIST), Tsinghua University, Beijing 100084, China
Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057,
China
E-mail: wuyw@tsinghua.edu.cn

T

Digital Object Indentifier 10.1109/TPDS.2013.310 1045-9219/13/$31.00 © 2013 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

TABLE 1
POSSIBLE HIDDEN STATES

Hidden States
1. Database
2. Bad node in server clustering
3. Mutated coding
4. Calling another WS

a. This list can have more hidden states based on the architecture of the application

Therefore, it is more challenging to analyze or predict
behavior of hidden states with respect to response time.
To tackle this challenge, in this paper we present a novel
approach. It first computes the behavior of internal struc-
ture of WS using the HMM. Later it combines the status
of underlying hidden states to compute the overall beha-
vior of each component web service. Approach defined
here can also be utilized to find an optimal path to ac-
complish users’ requests. This can be achieved by build-
ing a directed graph among various hidden states. In
comparison to existing strategies, our contribution in this
paper can be summarized as follows:

1. Predicted web service’s behavior by predicting the
status of underlying hidden states in terms of Re-
sponse Time (RT).

2. Selected optimal WSs and an optimal path at run-
time for executing user request by identifying the
status of underlying hidden states.

The remainder of the paper is organized as follows:
section-II introduces related work, section-III describes in
depth details of our proposed model, section-IV presents
our experiments and results and finally section-V con-
cludes the paper.

2 RELATED WORK
Analyzing QoS parameters of web services in dynamic

and unpredictable environment is an important and chal-
lenging research area. Many researchers have analyzed
these attributes and proposed different frameworks. In
this section we have presented a review of existing me-
thods or frameworks proposed by different researchers.

Grassi V. [1], Baresi, L.[2] Zibin, Z. [6], Perrone, R. [7],
and Cristescu, M. [8] have produced certain methods to
tackle this challenge. They have focused on predicting
reliability of various factors involved in building enter-
prise application, nonetheless, considered reliability of
remote web service as constants. Grassi V. [1] analyzed
both ways to predict reliability i.e. by considering services
offered by software component and services offered by
hardware devices. However, for remote web services, he
assumed that the vender will provide probabilistic details
about the flow of executing user requests. To achieve this
he also suggested modifications in WSDL. In our ap-
proach, however we compute probabilistic details with
the help of HMM. Zibin Z. and Michael R. [6], have em-
ployed past failure data of real web services to find relia-
bility for current web services. To achieve desired goals,
they have calculated similarity parameters among real
web services and service users with those of current web

services and current users respectively. At first this ap-
proach did not consider the effect of environment and
secondly it did not give any information about internal
structure failure probability of remote web services.

Huiyuan Zheng [5] suggested a probabilistic model to
analyze QoS attributes of component services with dy-
namic probabilities. Their main contribution was to com-
pare the efficiency and accuracy of their algorithm with
simulation models. However, they did not consider com-
bining various hidden patterns with integrations patterns
to compute overall behavior of WS integration.

D. Zhong [9], has suggested a CSPN model to predict re-
liability and the degree of trustworthiness of WSC. His main
contribution was to define a model for transforming BPEL
process into CSPN model. Yet this model deals more with
design time problems and does not reflect the impact of prob-
lems that occur at runtime. Joyce EI and Maude [10], Sami
[11], Li [12] have considered the transactional properties of
web services to define a strategy for reliable web service
composition. They have studied in detail transactional de-
pendency among different type of web services. Later, they
have suggested web service selection algorithms based on
users’ preferences. These models also tried to solve design
time issues during service composition. Kaouthar and Zahi
[13] have proposed a flexible architecture for dynamic web
service composition related to user requirements. Their main
contribution was to ensure availability of appropriate web
service at runtime. However, they did not define any QoS
metrification to find the appropriate web services among
functionally equivalent web services. Tao [14] has suggested
an efficient algorithm for selecting appropriate web services
based on user’s provided weights. They have mapped web
service composition with the Knapsack problem and then
calculated the optimal path for executing user’s requests.
However, in an unpredictable environment user defined pa-
rameters for calculating WSs behavior are not sufficient. Yi-
lei Zhang and Zibin Zheng [15] have proposed a model-
based QoS prediction framework called WSPred. It was a
time-aware personalized QoS prediction approach that ana-
lyzes latent features of users, service and time by performing
tensor factorization. Similarly, S. Maheswari and G.R. Kar-
pagam [16] have proposed a framework that considered sev-
en QoS attributes i.e. response time, execution Time,
throughput, scalability, reputation, accessibility, and availa-
bility for better web service selection. Overall these models
consider probability as constant value or base it on the user’s
defined function values except Huiyuan Zheng [5]. However,
Huiyuan Zheng [5] did not consider predicting WS’s beha-
vior during the nth time interval in the future.

The HMM has already been used in different papers
for analyzing quality factors of distributed computing
systems. Nonetheless, they have their own issues, con-
straints and shortcomings. For instance, Leilei Chen [17]
has designed a framework to evaluate survivability of a
SOA based application(s) using the HMM. The main idea
of their framework evolves around monitoring activities
based on service logs or run time statistics provided by
the service provider. However, their approach is contin-
gent on the service provider; in addition the author did
not discuss the various hidden states or probabilistic in-
sight of remote web services. Rahnavard G. [18] has used

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

AUTHOR ET AL.: W. AHMED AND YONG W.W. 3

HMM to detect anomalies in web services i.e. the author
has designed a framework to detect intrusion in WS.
However this strategy cannot be used to gauge QoS
attributes of overall WS. Flex Selfner [19] has proposed
the use of HMMs to categorize and distinguish error pat-
terns leading to failures. This author also suggested a me-
chanism for predicting the future occurrence of failures or
errors. WS assessment model [20] has used this model to
assess failures during certain time in the future. In short
HMM has already been successfully used to analyze vari-
ous aspects in distributed computing systems.

QoS parameters of any web service sometimes de-
pend on its internal complexity i.e. apart from unpredict-
able internet. Such as, how the programmer has written
his algorithm to accomplish users’ requests or how the
architect has defined the architecture to entertain users’
requests. Therefore, estimating behavior of individual
component service with respect to response time (RT) in
turn requires ensuring behavior of all possible hidden
states within component service [21]. Therefore, this pa-
per provides comprehensive information for selecting an
optimal WS and predicting it’s behavior in terms of RT.

3 SYSTEM MODEL AND PARAMETERS
HMM is a powerful statistical tool for modeling ge-

nerative sequences that can be characterized by an under-
lying process generating observable sequences [23]. Word
hidden specifies that internal structure of the underlying
system is hidden from the observer. Observer does not
know in which state system may be in, but has only prob-
abilistic insight where it should be. In HMM, one does not
know how many hidden states to use. Usually, based on
domain knowledge there is only some guess about hid-
den states. We have discussed in detail about WS hidden
states below in sections 3.2.1 and 3.2.2. Later training al-
gorithm find out how to connect these hidden states.
HMM can solve three fundamental issues i.e. Evaluation,
Decoding, Training. More details can be found in [23].

Using HMM to measure and predict WS behavior
with respect to response time, our model consists of a two
step process. First step will require us to train the model
to find optimal HMM parameters i.e. A, B & , such that
model best fits the training sequence. Training sequence
in our model can be exploited by recording and labeling
response time of a web service at regular intervals of
time. Baum-Welch algorithm a particular case of expecta-
tion-maximization (EM) can be used to train the model. It
iteratively improves the basic model which provides con-
vergence to local optima, whereas second step, first re-
quires us to compute current state of the system. Then
based on current state, future behavior of the system is
predicted. This can be computed using VITERBI algo-
rithm.Based on above two steps, for selecting an optimal
WS and an optimal path for executing user requests our
strategy can be further divided into following steps:

1. Building a directed graph among hidden states of
component web services used in composition.

2. Analyzing the current status of each vertex of di-
rected graph i.e. underlying hidden states.

3. Predicting hidden states’ behavior in terms of re-
sponse time during nth time interval t.

4. Finally, selecting optimal web services used in
composition based on hidden states’ behavior.

3.1 Exemplary Scenario
To analyze the behavioral pattern of hidden states, we
have selected a weather forecast WS with best rank. More
than 500 threads are used in parallel in a distributed envi-
ronment. As in HMM, one does not know how many
hidden state to use, so we have supposed that target WS
is running on a clustser of webserver, containing 2 web-
servers. We found that 9% of the overall result was with
observation symbol “C” as shown in Fig.1. Later, when
we further scrutinized the result by training the model,
we have found that 8.2% from 9% failures were caused by
web server1 whereas only 0.8% failures were originated
by web server2. This shows that probability of receiving
failure when web server1 executes the results is more
than web server2. The analysis shows that at runtime be-
havioral patterns of the hidden states can be utilized for
selecting optimal web services among the list of function-
ally equivalent web services. Hidden states with observa-
tion symbol A (as shown in Table-3) of different WSs can
be connected at runtime to process user’s request.
In the next step we will explain the process of building a
directed graph among the hidden states of different web
services used in composition.
3.2 Directed Graph Among Hidden States
The key idea to select optimal WS for completing user re-
quests is to exploit behavioral patterns of underlying hid-
den states. This can be done by recognizing hidden states’
emission probabilities and combining them with integra-
tion patterns. As per our knowledge, previously different
hidden states have never been considered with the inte-
gration patterns of WSC to estimate its behavior in terms
of RT. The basic structure of hidden states and corres-
ponding observations in terms of RT is necessary to un-
derstand before building a directed graph.

TABLE 2

RESPONSE TIME PATTERN

Label Response Time (sec) Remarks
A Response time < = 5 Normal
B Response Time > 5 Delay
C Not replied so long or Crashed Error

a. Defined by architect and can be re-defined based on the nature of application

Fig.1 Hidden states’ observation patterns in terms of number of
requests

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

3.2.1 Hidden States Analysis
Generally atomic web service is composed of different
hidden states that are invisible to consumers as shown in
Table-1. Each state is responsible to output certain results
during time t. The probability of the response to certain
requests depends on execution of these hidden states.
When a consumer of a web service accesses a remote web
service, sometimes he receives an unprecedented delay
even under best operational conditions. We believe that
this exceptional delay is because of unreliable hidden
states responding to users’ request at that particular time.
Delay represents the state where system receives the re-
sults after long time, however, crash / error represents
the state where WS crashes or user receives no response
from WS.

Predicting WS behavior in our model is about evaluat-
ing hidden states’ replies in terms of response time during
the nth time interval. Generally, to build a highly available
system, venders normally use different processing units to
implement WS. In our model these processing units are
termed as hidden states. For example, in case of web serv-
ers, network load balancing distributes incoming users’
requests among multiple web servers to handle more traf-
fic and faster response. Depending on a consumer’s re-
quirement and nature of application, response time pat-
terns (shown in Table-2) for different observable units
(shown in Table-3) can be redefined.

3.2.2 Response Time Analysis with HMM
Hidden states can entertain user’s requests randomly and
produce results anytime. As these hidden states can also
be accessed from other hidden states while service invo-
cation, hence the model is of ergodic type. There may
be/exist certain hidden states that may produce results in
similar patterns of time intervals of having different con-
figurations. For instance, hidden state 2 and 4 (defined in
Table-1) can have similar response time patterns. Thus for
a given time interval we can define feature vectors includ-
ing values defined in Table-1. Because of differences in
implementation of hidden states (e.g. for hidden state 4 in
Table-1, communication delay or latency for calling another
service inside target web service will also be involved in over all
response time) clear identification among feature values is
required which in machine learning is referred to as Fea-
ture Normalization [18]. These features may be catego-
rized in terms of memory requirements, network re-
quirements, software service requirements etc. This will
help to define the initial values of the probability of suc-
cess or failure of hidden states.
Fig.2 shows general implementation of a WS used in ex-
amplory scenario. User receives different observation
symbols A, B, and C while he invokes a web service dur-
ing a certain time interval t. Here observation symbols
represent response time (as defined in Table-2) of output
values. Depending on hidden states i.e. Web Server 1 and
Web Server 2, the application users receive the results
from a web service with either A, B or C. In our approach
when a user receives an unprecedented delay or error i.e

TABLE 3

OBSERVATION UNITS

Observation Symbols Labels
1. Normal Execution A
2. Delay in Response B
3. Error / Crash C

with response time pattern C, underlying hidden state is
considered as an unreliable state urelS as shown in Fig.2.
By initializing HMM parameters it can be ensured that
the model transits to an unreliable state once the user
receives exceptional delay or error. We have further ex-
plained this concept in the “Training the model” section
below. For now we can define some basic parameters of
HMM in terms of component web service as:

1. States: Number of hidden states S within a com-
ponent web service.

2. Observations: Distinct output observations i.e V=
(Normal (A), Delay (B), and Error/Crash (C)) such
that output observation at time t is tO where se-
quence of observation is n21 O,...,O,OO Here
sequence of observation represents various re-
sponse times generated by remote web service de-
pending upon execution of relevant hidden state.

3. ji,A represents the transitional probability from
hidden state iS following jS .

4. sjB represents the probability of hidden state gene-
rating output being produced from an hidden
state jS .

5. represents the initial probability distribution
values of underling hidden states.

As per definition of HMM we have:
λ = (A, B,) (1)

With the help of training algorithm of the HMM we can
identify model parameters λ in the light of the analysis
above. To train the model, observations must represent
the actual execution time of the hidden states. Below we
have outlined the mechanism for extracting execution
time of the hidden states.

3.2.3 Web Service Execution Time
Execution time of any hidden state at time t must be re-
quired to compute λ in “(1)”. This will further help to fig-
ure out unreliable hidden states. Generally, response time
of a web service observed on the client side during any
specific time t is composed of two things.

Application
user

VPN

b1(A)
A

B

Cb3(C)

b2(A)

b1(C)

a(i,j)

Cluster of Computers

Web Server 1

Web Server 2

Unreliable Web
Server
S_urel

a(i,j)

a(i,j)

Fig. 2. Hidden States and corresponding observation symbol

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

AUTHOR ET AL.: W. AHMED AND YONG W.W. 5

Response time rt = Latency + Execution Time of WS (2)

Based on the instability of the internet, users receive dif-
ferent quality of service in terms of response time. There-
fore, it is necessary to subtract latency from round-trip
time to obtain the exact execution time of corresponding
hidden states. Latency can be calculated by using any
NMS (network management system) tool. A common me-
thod to calculate latency is to “send an echo request at the
same time when web service was being invoked by the
application i.e. PING to the destination IP and record the time
it takes to receive answer. Later this time can be subtracted
from round-trip time to obtain actual execution time”.

3.2.4 Basic Concept of Directed Graph
Fig.2 indicates that A, B and C are the discrete emissions
representing Normal, Delay and Crash respectively.
These emissions are based on the execution of different
hidden states as per the defined range (mentioned in Ta-
ble-2). Nonetheless, in reality emissions (A, B and C) for
different web services having similar functionalities con-
sist of vector of probabilities during time interval t as
shown in Fig.3a), e.g. For hidden state1, HS1P1 represents
hidden state1 with probability-1 and HSnPn represents
hidden staten with probability-n. To build a directed
graph among hidden states, following is the basic defini-
tion used in our model.
Definition1: Directed Graph: Let HS be the set of hidden

states for each WS and U be the set of observations produced by
different hidden states, P be the set of probabilities for each ob-
servation, Then we can define the parameters for a directed
graph G= (V, E) as:

V=HS, set of the hidden states of each candidate web
services registered for composition are considered as ver-
tices.

iji P,HSHS E , edge represents the link from a
hidden state iHS of iS with observation symbol iU hav-
ing probability iP to hidden state jHS of jS , iS , jS S
and iHS iS jHS jS .

In the next section we will discuss how the hidden
states of atomic web services can be combined in a process
of composition with a directed graph to select optimal
path during any time interval t

3.2.5 Composition Model
Selecting the optimal path in a composed web service in

turns requires examining QoS (response time) attributes
of the each component WS. This can be examined by ana-
lyzing probabilistic behavior of their hidden states. In our
approach estimating probabilistic behavior of hidden
states (vertices) of component web services can be com-
bined together to select an optimal path. Fig.4 shows the
detailed process of web service composition in terms of
hidden states. Let us consider a simple case with two web
services “a” and “b” consisting of hidden states 3 and 2
respectively. Then they can be connected with each other
in the form of a directed graph as shown in Fig.4. Any
hidden state i.e. 1HS , 2HS or 3HS of the component web
service “a” can execute users’ requests during certain
time interval t and give response to the end user as de-
fined above in the “Response Time Analysis with HMM”
section. The response of hidden states is categorized by
observation symbols U as defined above. The dotted line
in Fig.4 shows that probabilistic value of service “a” i.e.
its hidden state 3HS has produced results with observa-
tion symbol A which was used as input of service “b”. In
service b hidden state 2HS has produced results with ob-
servation symbol A, and finally user receives reply with a
minimum time. So our main objective can be achieved
using this model. Therefore, at first current state of the
system is estimated using training sequence as discussed
in section D. Later, future behavior of each hidden state of
the WS is predicted.

3.3 Analyzing Current Status
The current status of underlying hidden states (men-
tioned in Table-1) is analyzed using HMM. Each hidden
state is analyzed in terms of QoS attribute i.e response
time. State of WS during time interval t can be considered
as vector of probabilities that WS is in hidden state execut-
ing a certain request R during time interval t having pat-
tern of response time n21 O,...,O,OO . The current state

Start
Sa

HS1

HS2

HSm

Sb
End

Service a, Hidden
Scenarios

Service b, Hidden
Scenarios

HS1P1

HSnPn
HS2P1

HS2nPn

HSmP1

HSmPn

HS1

HS2

HSm

HS1P1
HSnPn

HS2P1
HS2nPn

HSmP1

HSmPn

SbSa
Start End

sa1

sa2

sb1

sb2

Optimal Composition

sb2Sa
Start End

a.) Basic composition (Simple case) b.) Optimal composition of web services

Fig. 3. Example of a simple case in composite web service (CWS) with various hidden scenarios

Start

Service a, Hidden
Scenarios

HS1

HS2

HS3

G

N

D

HS1

HS3

G

N

D

End

Service b, Hidden
Scenarios

Fig. 4. Directed graph of composition in terms of hidden
states

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

of WS can lead us to predict state of WS during the nth
time interval under various operational conditions. State
of WS during time interval t can be computed with the
help of HMM i.e:

λ)n,...,1i,n,1-n,...,11-n,...,1 OOHSHSP(HSHSHS(i)tδ /

Max
 (3)

Here (i)tδ represents the state of WS i.e. it represent

maximum probability (computing maximum over all
possible hidden states sequences) that the model went
through hidden states -1n,...,1 HSHS and the system is in
state i at hidden state n. i.e. nHS = i while observing

n,...,1 OOO . Equation “(3)” in HMM is known as VI-
TERBI algorithm, which can help users to build relations
among hidden states iS and response time pattern gener-
ated by each hidden state iS during time interval it . VI-
TERBI algorithm can further be used to calculate the
probability of a current status of any specific hidden state

iHS .Let k
j

Q be the probability of observations from k+1
to n such that kHS = j, Then recursively we can write:

 1j
k

Qi)P1kHS1kQP(j
k

Q ij,|

(4)

Here ij,P represents the marginal probability distribution
of hidden states described by the homogenous Markov
Chain process such that ij,P = P (kHS = i , 1kHS = j). If

jkHS

ikOP is the probability of the observations (
k21 O,...,O,OO) such that kHS = j, then the probabil-

ity of the current status of any specific hidden state can be
calculated as:

P(O)QPHSP /j
k

j
kj)k((5)

Where P (O) is the probability of observations and can be
recursively calculated as

jH
P(O)

n

jn

n

H
iOP

(6)

3.4 Predicting Future Behavior of Component
Service

To find the probabilistic behavior of each hidden state of
a WS for defined response time pattern (as shown in Ta-
ble-2) against different user requests, we can calculate urP
(n). That is, probability of hidden state kHS in the kth
time interval is unreliable or hidden state kHS producing
results with delay during kth time interval. This probabili-
ty is calculated by “First Passage Time Distribution”. Let

kT be the time in the kth time interval, also known as
“First Passage Time”, when hidden state kHS produced
delayed results, then

kT = min (n=>k>=0: kHS = urHS)

Here kHS represents the hidden state at time k during
the nth time interval. Probability distribution among hid-
den states can be computed as below:

n

0i
)P()nP(| iHSiHST jjk (7)

 s.t j=0
Where)P(iHS j is the probability of response time pat-
terns that WS is in hidden state j at current time as com-
puted in “(3)”.)nP(| iHST jk is the probability of
going through hidden state during the nth time interval
starting from j=0 which can be computed recursively.
Equation (7) represents probability distribution that hid-
den state urHS produces unreliable results during time
interval k which can be further scrutinized using dynamic
programming to efficiently compute for various time in-
tervals.

3.4.1 Training the Model
In prediction models, training is generally done through
historical data. To obtain actual execution time of a web
services as a training sequence we have randomly se-
lected a web service with best rank. Then, we developed
an interface in .Net to access this WS in a distributed en-
vironment. Response time of more than 500 threads is
then recorded during parallel execution in a distributed
environment. Equation (2) was then used to extract actual
execution time of the target web service.
To train the model a training sequence as described above
is used. This sequence is first labeled as an observation
symbol as shown in Fig.5 i.e. A, B and C (as defined in
Table-3) based on the criteria as defined in Table-2. When
an error is produced during service invocation observed
by any thread in distributed environment, we represent it
as observation symbol C. In our framework such res-
ponses are modeled and represented by hidden state

urelS as shown in Fig.2.For example, when data with un-
certain result is obtained i.e. with observation symbol C,
the underlying state is considered as an unreliable state.
Each column in Fig.5 represents the execution time of
each WS invocation, received by different users, when a
web service with higher rank was invoked in parallel.
Then by initializing HMM parameters in “(1)” i.e. initial,
transition and emission probabilities, such that states
representing as unreliable, are the only states that pro-
duce results with “C”, it can be ensured that the model
transits to the unreliable state when uncertainty appears
in the training sequence. Baum-Welch algorithm a partic-
ular case of expectation-maximization (EM) is used to
train the model. It iteratively improves the basic model
which provides convergence to local optima. After train-
ing the model, current and future state is predicted using
VITERBI algorithm as discussed above.

3.5 Optimal WS Selection
Selecting an optimal WS among list of functionally equiv-
alent WSs we refer to defination1.
Alogrithm1

of users / Service 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 …

WS responses A A A A B A B B B A B A A A A C B A A B B C …

Fig. 5. Example of a simple case in composite web service (CWS) with various hidden scenarios

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

AUTHOR ET AL.: W. AHMED AND YONG W.W. 7

Input: DIRECTED_GRAPH(V,E)
// V = Set of hidden states group by web services and E
represents edges from each Hidden State group by obser-
vation symbol i.e. (Good /Normal /Bad)
Output: OPTIMAL_PATH

1. for each sv in V
2. for each hsv in sV
3. for each e (start, hsv) in E
4. CALCULATE_MIN
5. CREATE_PATH iP

6. If e (hsv , End) true
7 FIND_MIN_PATH iP
8 ADD MIN_PATH iP to Graph G

9 else
10 Initialize_Parameter
11 For each iP in Graph G
12 For each iP in iGroup
13 SUM_QoS
14 FIND_MIN_PATH
15 OP=Build_OPTIMAL_PATH
16 IF (iP in Graph G ends) true;
17 Return OP;
In our model we exploited pool of WSs having similar
functionalities and selected a better WS at runtime to per-
form certain task. As per definition1 in section 3.4.2 each
component web service iS consists of n number of hidden

states iHS that correspond to user requests on invoca-
tions. This can help to build a directed graph G= (V, E)
among the hidden states of different component web ser-
vices as shown in Fig.4. Each hidden state has an edge
from hidden state of web service iS to hidden states of
web service kS with the observation symbol U having
probability iP .Therefore it can be observed that during
anytime interval t the edge from hidden state iHS can be
categorized into various feasible solutions when invoked
by service users as shown in Fig.3b). The process of select-
ing the best feasible solution produced by underlying
hidden state among several feasible solutions is shown in
Algorithm1.
Algorithm1 indicates that application at client side ex-
ploits HMM parameters for each WS to build a directed
graph among hidden states. Later, it returns the optimal
path by calculating MIN of QoS values i.e. response time.
Finally, system uses this optimal path to execute user’s
requests efficiently and reliably.

4 EXPERIMENTS AND RESULTS
Selecting web services for composition at runtime with
better QoS (i.e response time), it is necessary to have a
pool of web services having similar functionalities. In our
experiment we have randomly selected two groups of
services to integrate, each group consists of 5 web services
having similar functionalities. Response time observa-
tions against all these WSs have special patterns (as

a). Respose time patterns of Flight booking WSs
(Percentage % wise)

b). Comparisons of minimum results received in
terms of response time of each flight booking WS

c). Response time pattern of flight booking WSs

d). Response time pattern of each flight booking
web service.

e). Response time patterns of hotel booking web
service

f). Comparison of minimum results received in
terms of response time for each hotel booking
web service

g). Response time pattern for 5 different hotel booking web services (S1,S2,S3,S4,S5) h). Response time pattern of each hotel booking web service

Fig. 6. Status of various flight and hotel booking web services

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

shown in Table-2) linked with the execution of each hid-
den state as discussed in Section A-2. Our case study is
based on a real scenario where an application facilitates
end users for flight and hotel reservation simultaneously
as shown in Fig.6. Response time observations are catego-
rized using Table-2 as shown in Fig.6. It is apparent from
Fig.6a-d) that more than 80% of user’s requests responded
with label A by all flight web services. Nonetheless, all
these web services encountered failure during different
time intervals as shown in Fig.6a) and 6c). Fig.6d) shows
that the WS3 and WS5 have produced best results with
respect to response time, during simultaneous invocation.
However when data was compared in terms of minimum
of QoS attribute (response time), we noticed WS4 gener-
ated results in less time among selected WSs as shown in
Fig.6b). Percentage of results with observation symbol A
is a lot better than having some exceptions as shown in
Fig. 6e). However, there still exist a small percentage of
exceptions for each flight WS. Consequently, selecting
any WS for composition can make the composition unre-
liable.
As discussed in Section-3.2.1 and exemplary scenario sec-
tion, these exists some hidden states. We believe that these
exceptions are because of those unreliable hidden states res-
ponding to users’ request at that particular time. To further
scrutinize results of WSs shown in Fig.6 for optimal WS se-
lection, we analyzed internal structure of these WSs using
HMM. Fig.6 e-h) shows the QoS details of hotel booking
web services. To deal with exceptions discussed above, we
have exploited more than 300 simultaneous requests to:

1. Adjust the model parameters to analyze current
state of the internal structure of web services.

2. Build a directed graph using concept of hidden
states to select optimal path for executing the user
request.

3. Predict the future behavior of these web services
during nth time interval to select better web ser-
vice for optimal composition.

4.1 Adjusting the Model Parameters
Before predicting behavior of the hidden states, it is ne-

cessary to train the model to get estimated transition and
emission probabilities. Detailed process of adjusting
HMM parameters is discussed in section 3.4.1. These es-
timated values are then used in “(3)” to compute most
probable hidden states sequences. Purpose of training the
model is to find optimal HMM parameters i.e. A, B and

, such that model best fits the training sequence. Baum-
Welch algorithm that iteratively improves the basic mod-
el is used. Trained HMM is then used to analyze the cur-
rent status of hidden states in terms of response time. Fi-
nally, response time is predicted during anytime interval

t.

4.2 Analyzing Current State
The state of component web service during time interval t
is a vector of probabilities that system is in the hidden
state iHS when observation symbol U is observed. VI-
TERBI algorithm is used to calculate the most probable
hidden state sequence (as discussed in section III-B) that
has generated the training sequence as shown in Fig.7.
Fig.7 a-e) shows the current value of various hidden states
(as defined in Table-1) of Flight web services. It is appar-
ent from Fig. 7 a-j) and Fig.6d) and 6h) that most of the
results were produced by State1. However, each web ser-
vice encountered errors which resulted when the internal
system transited to the other hidden states. Predicting
these transitions among hidden states for any WS can
help to gauge the behavior of that WS. This will further
help to select optimal WS at runtime when there is a
chance of transition among hidden states of one WS.

4.3 Predicting Future Behavior and Selecting

Optimal Path
As HMM is normally used to recognize patterns, there-
fore to predict behavior of the hidden states, idea is to
classify suspicious response time patterns i.e. patterns
with observation symbols C. This classification will indi-
cate upcoming suspicious patterns. As per proposed
technique, response time in a training sequence is divided
into equal lengths slots. These time slots having observa-
tions symbol “C” are termed as “unreliable”.

a).Hidden States pattern for
Flight WS1

b).Hidden States pattern for
Flight WS2

c).Hidden States pattern
for Flight WS3

d).Hidden States pattern
for Flight WS4

e).Hidden States pattern for
Flight WS5

f).Hidden States pattern for
Hotel Booking WS1

g).Hidden States pattern for
Hotel Booking WS2

h).Hidden States pattern
for Hotel Booking WS3

i).Hidden States pattern for
Hotel Booking WS4

j).Hidden States pattern for
Hotel Booking WS5

Fig. 7. Current State of Hidden States of various Flight and Hotel web services

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

AUTHOR ET AL.: W. AHMED AND YONG W.W. 9

First the model is trained using training sequences (as
shown in Fig.5). Then based on trained HMM current
status of the hidden state’s behavior is analyzed using
VITERBI algorithm. Later, based on current state, future
behavior of hidden states is predicted by calculating “first
passage time distribution” into unreliable state. Based on
minimum QoS attribute analysis users can select WS4
considering it as best among all in group1 and WS2 from
group2 to integrate in one application. Nonetheless, over-
all behavior of the CWS cannot be ensured. Because there
still exist some hidden states in WS4 and WS2 of group1
and group2 respectively (as shown in Fig.7d and 7g), that
can cause slow response or sometime failure making
overall composition as unreliable. For instance in Fig8
user’s request between 120-130 and 180-190 in WS4 of
group1 and 115-130 in WS2 of group2 transited from hid-
den state1 to other hidden states causing slow response or
failure. Eventually, selecting web services at runtime
from each group based only on minimum of QoS
attribute still not sufficient. Therefore, behavior of hidden
states along with minimum of QoS attribute can ensure
reliable composition in terms of response time. Fig.8a-j)
represents the predicted behavior of underlying hidden
states for both types of web services i.e flight and hotel
reservations. It can be observed in prediction results that
the probability of transiting from hidden state1 to other
hidden states of a web service have increased significant-
ly that may cause response from web services as either B

or C (as defined in Table-2).
However, probability of time of transition among hid-

den states of the web services having similar functionali-
ties is different from each other. This can be useful in
building a directed graph among hidden states of web
service in group1 to the hidden states of web service in
group2 at time t. As per results in Fig.8, a directed graph
is developed among 12 hidden states of 3 web services
WS3, WS4 and WS5 from group1 and 16 hidden states of
4 web services WS1, WS2, WS3 and WS4 of group2
(shown in Fig.9). For simpilicity we have shown only two
web services with their corresponding hidden states.
When user connects with the system, then based on pre-
diction results system finds the WS, probabilistic behave-
or of whose hidden states are at their best level during
that interval and then connect with it. Later algorithm1 is
exploited to select an optimal path with minimum proba-
bilistic value for executing user requests in the most effi-
cient and reliable way.

4.4 Comparison of Prediction Accuracy
For comparing the accuracy of our results and also com-
paring the model with existing methodologies we have
used receiver operating characteristic (ROC) graph. ROC
technique is basically used for visualizing, organizing and
selecting classifiers based on their performance. For proof
of concept, we have selected the best WS among the pool
of services to compare prediction accuracy results of our
model with existing methodologies such as user collabor-
ative approach [6], execution time probabilistic approach
[22] . Table-4 shows the sensitivity & specificity of differ-
ent prediction approaches employing certain cut of values
to response time of WS4 of group1. We defined maximum
tolerable response value and then sliced the results on
different points of possible response values. In Fig.10
ROC graph shows that our prediction methodology ob-
tains better predictions accuracy.

5 CONCULSION
In this paper, we at first propose a probabilistic model for
predicting response time of web service and then selected

a).Predicted hidden states
pattern for flight WS1

b).Predicted hidden states
pattern for flight WS2

c).Predicted hidden states
pattern for flight WS3

d).Predicted hidden states
pattern for flight WS4

e).Predicted hidden states
pattern for flight WS5

f).Predicted hidden states
pattern for hotel WS1

g).Predicted hidden states
pattern for hotel WS2

h).Predicted hidden states
pattern for hotel WS3

i).Predicted hidden states
pattern for hotel WS4

j).Predicted hidden states
pattern for hotel WS5

Fig. 8. Predicted values of Hidden States of various Flight and Hotel Web services

Web
Server1

Web
Server 2

Web
Service 3

WSs for Flight
Reservation

Web Service 1

WSs for Hotel
booking

Invoke
WS

Receive
Result

Web
Server 4

Web
Server 3

Web Service 4

Web Service 5

Web
Service 2

Web
Server1

Web
Server 2

Web
Server 4

Web
Server 3

Web Service 3

Web Service 4

Hidden
States

Hidden
States

Receive data from
one WS and process

Invoke
WS 2

Application for Flight & Hotel Reservation System

Fig.9. Directed graph among hidden states of different WSs in
an online flight and hotel reservation system

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

an optimal web service at runtime from the list of func-
tionally equivalent web services. To know the probabilis-
tic insight of WSs we have used HMM. In our model we
have assumed that WS is deployed on a cluster of web
servers and sometime the delay or crash during WS invo-
cation is because the bad node in sever clustering re-
sponds to users’ requests.

With the help of HMM we have predicted the proba-
bilistic behavior of these web servers and then selected
the WS based on their probabilistic value. Experiment
shows that the proposed model is more general and de-
tailed in comparison to existing models. This not only
predicts the overall behavior of composite web service
but it further provides the solution to complete user re-
quests in the most efficient and reliable way.

ACKNOWLEDGMENT
We are grateful to Feben Teklemical for her support &

proof reading of our paper. This Work is supported by
National Basic Research (973) Program of China
(2011CB302505), Natural ScienceFoundation of China
(61373145, 61170210), National High-Tech R&D (863)
Program of China (2012AA012600, 2011AA01A203).

REFERENCES
[1] Grassi, V., et al., Architecture-Based Reliability Prediction for Service-

Oriented Computing, in Architecting Dependable Systems III. 2005,
Springer Berlin Heidelberg. p. 279-299.

[2] Baresi, L., et al., Reliability Modeling and Analysis of Service-Oriented
Architectures, in Test and Analysis of Web Services. 2007, Springer Ber-
lin Heidelberg. p. 339-362.

[3] Stefano, G., et al., Quality Prediction of Service Compositions through
Probabilistic Model Checking, in Proceedings of the 4th International
Conference on Quality of Software-Architectures: Models and Architec-
tures. 2008, Springer-Verlag: Karlsruhe, Germany.

[4] Menasce, D.A., Composing Web services: a QoS view. Internet Compu-
ting, IEEE, 2004. 8(6): p. 80-90.

[5] Kappel, G., et al., QoS Analysis for Web Service Compositions Based on
Probabilistic QoS, in Service-Oriented Computing. 2011, Springer Berlin
Heidelberg. p. 47-61.

[6] Zibin, Z. and R.L. Michael, Collaborative reliability prediction of ser-
vice-oriented systems, in Proceedings of the 32nd ACM/IEEE Interna-
tional Conference on Software Engineering - Volume 1. 2010, ACM:
Cape Town, South Africa.

[7] Perrone, R., An Approach for Estimating Execution Time Probability
Distributions of Component-based Real-Time Systems. J. UCS, 15
(2009), Nr. 11, S. 2142-2165 2009.

[8] Cristescu, M., Ciovica, L., Estimation of the Reliability of Distributed
Applications. Informatica Economică 14, 2010: p. 19-29.

[9] Duhang Zhong, Z.Q.a.X.X., Reliability Prediction and Sensitivity Anal-
ysis of WS Compostion. In: V. Kordic ed. Petri Net: Theory and Appli-
cations, I-Tech Education and Publishing, 2008: p. pp. 459-470.

[10] El Haddad, J., et al. QoS-Driven Selection of Web Services for Transac-
tional Composition. in Web Services, 2008. ICWS '08. IEEE International
Conference on. 2008.

[11] Sami, B., G. Claude, and P. Olivier, Transactional patterns for reliable
web services compositions, in Proceedings of the 6th international con-
ference on Web engineering. 2006, ACM: Palo Alto, California, USA.

[12] Li, L., L. Chengfei, and W. Junhu. Deriving Transactional Properties of
CompositeWeb Services. in Web Services, 2007. ICWS 2007. IEEE Inter-

national Conference on. 2007.
[13] Kaouthar Boumhamdi, Z.J., A Flexible Approach to Compose Web

Services in Dynamic Environment. International Journal of Digital So-
ciety (IJDS), 2010. Volume 1(Issue 2).

[14] Tao, Y., Z. Yue, and L. Kwei-Jay, Efficient algorithms for Web services
selection with end-to-end QoS constraints. ACM Trans. Web, 2007. 1(1):
p. 6.

[15] Yilei, Z., Z. Zibin, and M.R. Lyu. WSPred: A Time-Aware Personalized
QoS Prediction Framework for Web Services. in Software Reliability
Engineering (ISSRE), 2011 IEEE 22nd International Symposium on.
2011.

[16] Maheswari, S., QoS Based Efficient Web Service Selection. European
Journal of Scientific Research, 2011. European Journal of Scientific Re-
search.

[17] Leilei, C., et al., Evaluating the Survivability of SOA Systems Based on
HMM, in Proceedings of the 2010 IEEE International Conference on
Web Services. 2010, IEEE Computer Society.

[18] Rahnavard, G., M.S.A. Najjar, and S. Taherifar. A method to evaluate
Web Services Anomaly Detection using Hidden Markov Models. in
Computer Applications and Industrial Electronics (ICCAIE), 2010 In-
ternational Conference on. 2010.

[19] Salfner, F., Predicting Failures with Hidden Markov Models. Proceed-
ings of 5th European Dependable Computing Conference, 2005.

[20] Zaki, M., A. Ihsan, and B. Athman, Web Services Reputation Assess-
ment Using a Hidden Markov Model, in Proceedings of the 7th Interna-
tional Joint Conference on Service-Oriented Computing. 2009, Springer-
Verlag: Stockholm.

[21] W. Ahmed, Y.w.w., A Survey on Reliability in Distributed Systems.
Journal of Computer and System Sciences (JCSS), in press, 2012.

[22] Lima, R.P.a.R.M.a.G.L.a.V., An Approach for Estimating Execution
Time ProbabilityDistributions of Component-based Real-Time Sys-
tems. Journal of Universal Computer Science (j-jucs), 2009. 15: p. 2142—
2165

[23] Blunsom, P., Hidden Markov Models. Retrieved May 19, 2006, from,
www.cs.mu.oz.au/460/2004/materials/hmm-tutorial.pdf 2004.

Fig. 10. ROC curve for best WS among given pool of web services

TABLE 4
COMPARISON OF PREDICTION ACCURACY

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

AUTHOR ET AL.: W. AHMED AND YONG W.W. 11

Waseem Ahmed received MSc
degrees from the Computer
Science Department of Quaid-e-
Azam University, Islamabad, in
2002. In the time frame of 2002
to 2010 he assumed various
roles within the Software Indus-
try in Pakistan. Since Septem-
ber 2010, he is following a doc-
toral track in Computer Science
within the Parallel and Distri-
buted Systems Group, Tsinghua
University. His research

interests are in the areas of performance evaluation of large-scale
distributed systems, in particular Service Oriented Archtiecture.

Yongwei Wu received his PhD
degree in Applied Mathematics
from the Chinese Academy of
Sciences in 2002. He is current-
ly an professor in Computer
Science and Technology at
Tsinghua University, China. His
research interests include dis-
tributed processing, virtualiza-
tion and cloud computing. Dr.
Wu has published over 80 re-
search publications and has
received two Best Paper
Awards. He is currently on the
editorial board of the Interna-
tional Journal of Networked and

Distributed Computing and Communication of China Computer
Federation. He is a member of the IEEE.

Weimin Zheng received the BS
and MS degrees, respectively,
in 1970 and 1982 from Tsing-
hua University, China, where he
is currently a professor of Com-
puter Science and Technology.
He is the research director of
the Institute of High Perfor-
mance Computing at Tsinghua
University and the managing
director of the Chinese Com-
puter Society. His research
interests include computer ar-
chitecture, operating system,
storage networks, and distri-
buted computing. He is a me-
meber of the IEEE.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

