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Abstract—Disk I/O is the major performance bottleneck of existing out-of-core graph processing systems. We found that the total I/O
amount can be reduced by loading more vertices into memory every time. Although task partitioning of a graph processing system is
traditionally considered equivalent to the graph partition problem, this assumption is untrue for many Machine Learning and Data
Mining (MLDM) problems: instead of a single value, a vector of data elements is defined as the property for each vertex/edge. By
dividing each vertex into multiple sub-vertices, more vertices can be loaded into memory every time, leading to less amount of disk I/O.
To explore this new opportunity, we propose a category of 3-D partitioning algorithm that considers the hidden dimension to partition

the property vector.

The 3-D partitioning algorithm provides a new tradeoff to reduce communication costs, which is adaptive to both distributed and
out-of-core scenarios. Based on it, we build a distributed graph processing system CUBE and an out-of-core system SINGLECUBE.
Since network traffic is significantly reduced, CUBE outperforms state-of-the-art graph-parallel system PowerLyra by up to 4.7x. By
largely reducing the disk I/O amount, the performance of SINGLECUBE is significantly better than state-of-the-art out-of-core system

GridGraph (up to 4.5x).

Index Terms—Graph Processing, Task Partitioning, Distributed Systems, Disk I/O, Big Data.

1 INTRODUCTION

ANY real-world problems, including MLDM prob-

lems, can be presented as graph computing tasks.
Because the graph sizes are often beyond the memory
capacity of a single machine, the graphs must be partitioned
to distributed memory or out-of-core storage. As a result,
many graph processing systems have emerged in recent
years to process large-scale graphs efficiently, which can be
mainly divided into two categories: distributed in-memory
systems and single-machine out-of-core systems.

In distributed graph processing systems [2], [3], [4],
[5], each cluster node only holds a subset of vertices/edges
(i.e., a sub-graph/partition). During computation, network
communications frequently happen between different nodes
to exchange information. Therefore, the task partitioning
algorithm plays a pivotal role because the load balancing
and network cost are largely determined by it.

As an alternative to distributed graph processing, single-
machine out-of-core systems [6], [7]], [8], [9] make large-
scale graph processing available on a single machine by
using disks efficiently. Because of the limitation of a single
machine’s memory, in an out-of-core system, only a partition
of the data (i.e., a sub-graph/partition) can be loaded into
memory and processed every time. Besides, a vertex can
update another vertex only when they are both in memory.
As a result, some data will inevitably be loaded multiple
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times to guarantee the correctness of the algorithm. That is
to say, information exchange between different partitions is
implemented by disk accesses. In fact, in such systems, disk
I/0 is the major performance bottleneck.

In GraphChi [6], which is the first large-scale out-of-core
vertex-centric graph processing system, the whole set of
vertices are partitioned into disjoint intervals. It processes
an interval at a time and only edges related to vertices
in this interval are accessed. GraphChi uses a novel par-
allel sliding windows method to reduce random I/O ac-
cesses, thus provides competitive performance compared to
a distributed graph system [6]]. X-Stream [§] is a successor
system that proposed an edge-centric programming model
rather than the vertex-centric model used in GraphChi.
Although accesses to vertices are random in X-Stream, edges
and updates are accessed sequentially so that maximum
throughput can be achieved.

Different from GraphChi/X-Stream, GirdGraph [7]
groups edges into a grid representation. Vertices are par-
titioned into 1-D chunks, and edges are partitioned into 2-D
grids. To execute a user-defined function in the edge-centric
model, only edges that are related to the specific source
and destination vertices are allowed to access. Through a
novel dual sliding windows method, GridGraph outper-
forms other out-of-core systems including GraphChi and X-
Stream. It is even competitive with distributed systems [7].

Improving the locality of disk I/O has been the main
goal for optimizing these out-of-core systems. However,
there is another way to improve overall performance, that
is reducing the total I/O amount [9]. For example, in an
iteration of GridGraph, only one pass over edge blocks is
needed, while vertices are accessed multiple times. More-
over, the more vertices loaded every time, the fewer times
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Fig. 1: Collaborative Filtering.

each vertex needs to be loaded on average because more
vertices can exchange their information in the memory
at one time. We will explain this finding furthermore by
formulas in the next sections. Therefore, we can reduce the
I/0O amount by increasing the number of vertices loaded at
one time, which is implemented by dividing each vertex
to multiple smaller sub-vertices. In fact, although exist-
ing graph processing systems differ vastly in their design
and implementation, they share a common assumption:
the property of each vertex/edge is indivisible, thus task
partitioning is equivalent to graph partitioning. In reality,
for many MLDM problems, the property associated with a
vertex/edge is not indivisible but a vector of data elements.

This new feature can be illustrated by a popular ma-
chine learning problem, Collaborative Filtering (CF), which
is used to estimate the missing ratings based on a given
incomplete set of (user, item) ratings. The original problem
is defined in a matrix-centric view. Given a sparse rating
matrix R with size Nx M, the goal is to find two low-
dimensional dense matrices P (with size NxD) and Q
(with size M x D) that are R’s non-negative factors (i.e.,
R ~ PxQT). Here, N and M are the numbers of users
and items, respectively. D is the size of the feature vector.
When formulated in a graph-centric view, the rows of P and
Q correspond to vertices of a bipartite graph with edges
between each vertex of P and each vertex of Q. Each vertex
is associated with a property vector with D features. The
rating matrix R corresponds to edge weights. The two views
are illustrated in Figure |1} The distinct nature of the graph
in Figure|l| (b) is that each vertex is associated with a vector
of elements, which is a common pattern when modeling
MLDM algorithms as graph computing problems.

In essence, for graph problems that are formulated to
solve matrix-based problems, the property of vertex or
edge is usually a vector of elements, instead of a single
value. During computation, the property vectors are mostly
manipulated by element-wise operators, where the compu-
tations can be perfectly parallelized without any additional
communication when disjoint ranges of vector elements are
assigned to different partitions. Due to the common pattern
of vector property, this paper considers a new dimension
of task partitioning by assigning disjoint elements of the
same property to different partitions. It is considered to be a
hidden dimension in 1-D/2-D partitioners used in previous
systems [6], [7]], [8] because all of them treat the property
as an indivisible component. To the best of our knowledge,
we are the first to leverage the 3-D partitioning by dividing
property vectors, in addition to vertices and edges. In the
out-of-core graph processing system, by dividing each ver-
tex into L sub-vertices, more vertices can be loaded into
memory every time. As a result, the times of repeatedly
loading vertex data is reduced. Although this method may

2

increase the times of loading edge data, the programmers
can achieve the best performance by carefully choosing the
parameter L. Our results show that by 3-D partitioning, the
I/O amount reduction can up to 86.5%.

The key intuition of 3-D partitioning is that each par-
tition only holds a subset of elements in property vectors
but can be assigned with more vertices/edges that oth-
erwise need to be assigned to different partitions. There-
fore, certain communications previously happened between
different partitions are converted to local value exchanges,
which are much cheaper. On the other side, 3-D partition-
ing may incur occasional extra synchronizations between
sub-vertices/edges. In fact, the 3-D partitioning algorithm
is adaptive to both distributed and out-of-core scenarios
because it provides a new tradeoff, which can reduce the
communication cost between different partitions (network
traffic in the distributed scenario or disk I/0 in the out-of-
core scenario). Based on it, we build a distributed graph
processing engine CUBE that introduces significantly less
communication than existing distributed systems in many
real-world cases. And we also build a new single-machine
out-of-core graph processing system SINGLECUBE. By 3-D
partitioning, it can largely reduce disk I/O amount, thus
achieve better performance than other systems.

In summary, the contributions of this paper are:

o We propose the first 3-D graph partitioning algorithm
(Section 3)) for graph processing systems. It considers a
hidden dimension that is ignored by all previous sys-
tems, which allows dividing the elements of property
vectors. Our 3-D partitioning algorithm can be used in
two scenarios: the distributed in-memory scenario and
the single-machine out-of-core scenario. In both scenar-
ios, it offers unprecedented performance not achievable
by traditional graph partitioning strategies.

e We propose a new programming model UPPS (Section
M) designed for 3-D partitioning. The existing graph-
oriented programming models are insufficient because
they implicitly assume that the entire property of a
single vertex is accessed as an indivisible component.

o We build CUBE (Section[f), a distributed graph process-
ing engine that adopts 3-D partitioning and implements
the proposed vertex-centric programming model UPPS.
The system significantly reduces communication cost
and memory consumption.

 We present SINGLECUBE (Section [6), which is a single-
machine out-of-core graph processing system based on
3-D partitioning and the UPPS model. By carefully
setting the number of layers, SINGLECUBE can largely
reduce the amount of disk I/O (up to 86.5%).

o We systematically study the effectiveness of 3-D parti-
tioning (Section [7). The results show that it leads to sig-
nificantly better performance in both scenarios. Overall,
CUBE outperforms state-of-the-art graph-parallel sys-
tem PowerLyra by up to 4.7x (up to 7.3x speedup
against PowerGraph) because of a notable reduction of
communication cost. SINGLECUBE outperforms Grid-
Graph by up to 4.5x through reducing total disk I/0O.

2 BACKGROUND
Efficient graph processing systems require cautious task
partitioning. It plays a pivotal role in both distributed
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TABLE 1: Partition algorithms for some systems.

[ 1-D 2-D 1-D/2-D 3-D
Distributed | [21, [3B1  [4], [10], {111 5], [12] CUBE
Out-of-core | [6], [8]  [7] S SINGLECUBE

and out-of-core systems because the network/disk-I1/O cost
is largely determined by the partitioning strategy. More
specifically, the partitioner of a distributed graph processing
system should 1) ensure the balance of each node’s compu-
tation load; and 2) try to minimize the communication cost
across multiple nodes. And for the single-machine out-of-
core system, the partitioner should 1) reduce random I/O
accesses; and 2) try to minimize the total disk I/O amount.
As the existing schemes assume that the property of each
vertex is indivisible, the partitioning of the graph-processing
task is considered equivalent to graph partitioning. To solve
this problem, there are two kinds of approaches proposed
by existing systems: 1-D partitioning and 2-D partitioning.
Partition algorithms used by part of existing works and our
work are listed in Table

Distributed Systems Some distributed systems such as
GraphLab [3] and Pregel [2] adopt a 1-D partitioning al-
gorithm. It assigns each node/partition a disjoint set of
vertices and all the connected incoming/outcoming edges.
This algorithm is enough for randomly generated graphs,
but for real-world graphs that follow the power law, a 1-D
partitioner usually leads to considerable skewness [4].

To avoid the drawbacks of 1-D partitioning, distributed
systems [4], [10] are based on 2-D partitioning algorithms,
in which the graph is partitioned by edge rather than the
vertex. With a 2-D partitioner, the edges of a graph will be
equally assigned to each partition. The system will set up the
replica of vertices to enable computation, the automatic syn-
chronization of these replicas requires communication. Vari-
ous heuristics are proposed to reduce the number of replicas
to reduce communication costs. For example, PowerLyra [5]
uses a hybrid graph partitioning algorithm Hybrid-cut that
combines 1-D and 2-D partitioning with heuristics. Besides,
Gluon [12]] is a recent distributed system that supports
heterogeneous 1-D/2-D partitioning policies.

Out-of-core Systems As for out-of-core systems, GraphChi
[6] is a typical one that adopts 1-D partitioning. Specifically,
it divides the whole set of vertices into P intervals and
breaks the edge list into P shards, with each shard contain-
ing edges with destinations in corresponding intervals. It
adopts a vertex-centric processing model and only processes
the related sub-graph of an interval at a time. By using a
novel parallel sliding windows method, GraphChi requires
a smaller number of random I/O accesses and is able to
process large-scale graphs in a reasonable time. However,
fragmented accesses over several shards are often inevitable
in GraphChi, decreasing the usage of disk bandwidth.
GridGraph [7] is an out-of-core system that adopts 2-D
partitioning. It uses an edge-centric programming model in
which a user-defined function is only allowed to access the
data of an edge and the related source and destination ver-
tices. Specifically, in GridGraph, vertices are also partitioned
into P 1-D chunks, with each chunk containing vertices
within a contiguous range. Edges are partitioned into P x P
2-D blocks according to the source and destination vertices
(the source vertex of an edge determines the row of the
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Fig. 2: Access sequence of blocks in GridGraph (P = 4).

block, and the destination vertex determines the column
of the block). In each iteration, GridGraph streams every
edge block by block and update instantly onto the source or
destination vertex. When processing a specific block (e.g., in
the i*" row and j** column), the i*" and j*" chunks will be
used. By accessing all blocks in a column-oriented or row-
oriented way (as Figure [2| shows), in each iteration, edges
are accessed once, and source vertex data is read P times
while destination vertex data is read and written once.

3 3-D PARTITIONING

All of the existing systems, no matter use 1-D or 2-D
partitioning, treat the vertex/edge property as an indivisible
component and do not assign the same property vector to
different partitions. However, in many MLDM problems,
a vector of data elements is associated to each vertex or
edge and hence the assumption of the indivisible property is
untrue. This new dimension for task partitioning naturally
leads to a new category of 3-D partitioning algorithms.

3.1 3-D Partitioning for Distributed Systems

Assuming an N-node cluster, a 3-D partitioner first selects
an L, the number of layers, where N is divisible by L. Then
the property vector elements associated with the vertices or
edges are partitioned across L layers evenly. In this setting,
each layer occupies N/L cluster nodes and the same graph
with only subset of elements (1/L of the original property
vector) in its edges/vertices are partitioned among these
N/L nodes by a regular 2-D partitioner. Therefore, the ith
layer maintains a copy of the graph that comprises all the ;"
sub-vertices/edges. 3-D partitioning reduces communica-
tion cost along edges because by processing only a subset of
the original vector, each node in a layer could be assigned to
more vertices and edges, therefore, the graph is partitioned
across fewer nodes. This essentially converts the otherwise
inter-node communication to local data exchanges.

Figure B| compares the different partition algorithms
applied to the graph in Figure (3| (a). In 1-D partitioning
(Figure [3| (b)), each cluster node is assigned with one vertex
and the incoming edges. There are six replicas in total. In
2-D partitioning (Figure 3|(c)), edges are equally partitioned
as much as possible and each node is also assigned with
the connected vertices. The number of replicas is also six.
Figure 3| (d) illustrates the concepts of 3-D partitioning,
where N is 4 and L is 2. First, the total of 4 cluster nodes are
divided into two layers. We denote each node as Node; ;,
where i is the layer index and j is the node index within
a layer. Second, the graph is partitioned in the same way
in both layers using a 2-D partitioning algorithm. Different
from 1-D and 2-D partitioning, since the number of cluster
nodes for each layer is halved (2 nodes for each layer),
each node is assigned with more vertices and edges. In the
example, the first node (Nodegg and Node; o) is assigned
with 3 edges and 3 connected vertices, in which 1 vertex
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Fig. 3: 1-D, 2-D, and 3-D partitioning in distributed systems.

is a replica. The second node (Nodeg,; and Node, 1) is also
assigned with 3 edges and 3 connected vertices but with 2 as
replicas. The increased number of vertices and edges in each
node (3 edges in Figure |3| (d) compared to 1 or 2 edges in
Figure[3|(b),(c)) translates to the reduced number of replicas
needed for each layer (3 replicas in Figure[3|(d)) compared to
6 in Figure 3| (b),(c)). Although the total number of replicas
(3 replicas x 2 layers = 6 replicas) in all layers stays the same,
the size of each replica is halved, therefore, the network
traffic needed for replica synchronization is halved E In
essence, a 3-D partitioning algorithm reduces the number of
sub-graphs in each layer and hence reduces the intra-layer
replica synchronization overhead.

However, 3-D partitioning will incur a new kind of syn-
chronization not needed before: the inter-layer synchroniza-
tion between sub-vertices/edges. Therefore, programmers
should carefully choose the number of layers to achieve the
best performance. The traditional 1-D and 2-D partitioning
do not allow programmers to explore this tradeoff. A de-
tailed discussion of this tradeoff is given in Section

3.2 3-D Partitioning for Out-of-Core Systems

Similar to distributed systems, existing out-of-core graph
processing systems also assume that the property of each
vertex is indivisible. This assumption is insignificant in 1-
D partitioning because GraphChi reads every vertex only
once for each iteration, no matter how many intervals that
vertices are divided into. However, in GridGraph that uses
2-D partitioning, source vertex data will be read P times in
an iteration if vertices are divided into P intervals. Thus a
smaller P should be preferred to minimize the I/O amount.
In fact, the smallest value of P can be calculated with the
memory limit M. Although GridGraph can stream the edges
during execution, it needs to cache vertices of the ith and J th
intervals in memory when processing grid[i][j] (the edge
block in the i*" row and j** column). Suppose the graph
contains |V| vertices and |E| edges, and the size for every
vertex is Sy while the size for every edge is Sg. In order
to work, there needs to be M > 2 x Sy * |V|/P because
two intervals should be held in memory. That is to say, the
smallest P is 2x[ Sy *|V|/M]. Then we give the I/O analysis
of GridGraph using the method provided in [7].

Assuming edge blocks are accessed in the column-
oriented order (as shown by the left figure in Figure J2), in
each iteration, edges are accessed once, and source vertex
data is read P times while destination vertex data is read
and written once. Thus we can calculate the total disk I/O

1. In some cases, there may be a shared part of every sub-vertices. We
will discuss this situation later.
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partitioned into 4 X4 grids (P = 4). into two sub-vertices, and edges are

partitioned into 2X2 grids (P =2, L=2).
Fig. 4: 2-D and 3-D partitioning in out-of-core systems.

amount for an iteration, which is Sg*|E|+(P+2) xSy *|V|.
Given the memory limit M, we can get the minimum value:

Traffic(M) = Sg * |E|+ (2 [Sy = |V|/M]+2)« Sy = |V| (1)

As we have mentioned, in many MLDM problems, the
vertex property is a vector of data elements and hence can
be divided. In out-of-core systems, every vertex can also be
divided into L sub-vertices evenly, whose size is [Sy /L]
at most. Since the property vectors are mostly manipulated
by element-wise operators, sub-vertices with the same ele-
ments are positioned in the same layer. That is to say, We
divide the whole |V'| vertices into L layers, with all the ;"
sub-vertices in the 7! layer. As a result, the smallest value of
P will be 2« [[Sy /L] = |V|/M]. Figure @ illustrates the 2-D
partitioning and 3-D partitioning algorithms applied to the
sample graph in Figure B (a). In 2-D partitioning (Figure [4]
(a)), vertices are partitioned into 4 chunks (P = 4), and
edges are partitioned into 4 x 4 blocks. In 3-D partitioning
(Figure [ (b)), vertices are divided into 2 layers (L = 2). As
a result, the new value of P will be 2 to maintain the same
memory consumed. Because every vertex is divided into 2
sub-vertices, in each layer, half of the total vertex data is
contained. At the same time, all edge data is needed during
computation for every layer.

To implement an element-wise operator, all layers will
be processed one by one, with each layer comprising of cor-
responding sub-vertices as well as all of the edges. Although
all sub-vertices are still read P times as source vertex data
for each iteration, since P is reduced, the total read amount
for vertex data is reduced. However, 3-D partitioning will
incur another overhead. For calculating each layer, the edge
data will be accessed once, i.e., edges are read L times totally
instead of only once. Formally, given L and the memory
limit M, the minimum I/O amount for an iteration is:

Traffic(M) = L« Sg« |E|+ (2% [[Sy /L] = |V|/M]+2)* Sy *|V| (2)
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TABLE 2: The programming model UPPS.

Data
G — {V, E, D ={DShare, DColle}, Sc'} Gyipartite — {U,V, E, D={DShare, DColle}, Sc}
DShare, — asingle variable DSharey—, — asingle variable
DColle,, — a vector of variable with size S¢ DColley—sqy — a vector of variable with size S¢
DColley]i] — the i*" element of DColle, DColley—y[i] — the it element of DColley—sy
D[] — abbreviation of {DShare,, DColley[i]} Dy—o[i] — abbreviation of {DSharey—v, DColley—yv[t]}
Computation
UpdateVertex(F) — foreach vertex u € V do D*" := F(D,,);
UpdateEdge(F)  — foreach edge (u,v) € E do D¢ := F(Dy—v);
Push(S, A, ®) — foreach vertex v € V, index ¢ € [0, S¢) do
DCollep[i] := A(Duli], @D (y)ep(S(Dulil; Duso[i]);
Pull(G, A, ®) —_ foreach vertex u € V, index i € [0, S¢) do
DColle*[i] := A(Dulil, @(yuye£(G(Dulil, Dusulil));
Sink(H) — foreach edge (u,v) € E, index i € [0, S¢) do

DCollene [i] :== H(Duy[i], Dy[i], Du—vli]);

U—V

Obviously, the first part of this formula is in proportion to L,
while the second part is in negative correlation with L. For
many real-world MLDM algorithms, Sy is far larger than
Sk, thus increasing L will reduce the total I/O amount and
lead to better performance. We should also note that this
assumption is not true for some other applications such as
PageRank and BFS (where Sy is the size of a single value
and can not be divided). As a result, the layer count needs
to be set as one, and then the disk I/O amount is completely
as same as that of GridGraph. In other words, the 2-D
partitioning strategy adopted by GridGraph is a special case
of our 3-D partitioning. In general, the programmers should
carefully choose the number of layers to achieve the best
performance, just as in the distributed scenario. A detailed
discussion of this tradeoff is presented in Section [/}

4 UPPS

Graph-oriented programming models of existing works are
designed for 1-D/2-D partitioning, thus insufficient for 3-
D partitioning because it is assumed that all elements of
property vector are accessed as an indivisible component.
Therefore, we propose a new model, UPPS (Update, Push,
Pull, Sink) that accommodates 3-D partitioning require-
ments. In this section, we first introduce UPPS in the dis-
tributed scenario. We will describe the operations of UPPS
and showcase their usages with two examples. The UPPS
model for out-of-core systems is a simplified version of that
described in this section and will be discussed in Section [l

4.1 Data

UPPS is a vertex-centric model. The user defined data D
is modeled as a directed data graph G, which consists of
a set of vertices V' together with a set of edges E. Users
are allowed to associate the arbitrary type of data with
vertices and edges. The data attached to each vertex/edge
are partitioned into two classes: 1) an indivisible property
DShare that is represented by a single variable; and 2) a di-
visible collection of property vector elements DColle, which
is stored as a vector of variables. The detailed specification
of UPPS is given in Table 2| Users are required to assign an
integer S¢ as the collection size that defines the size of each
DColle vector. When only DShare part of the edge data is
used, DColle of edges is set to NULL. If DColle of vertices
and edges are both enabled, UPPS requires that their length

be equal. This restriction avoids inter-layer communication
for certain operations (see Section[4.3). It is already the case
for graph problems formulated from matrix-based prob-
lems. Moreover, if the input graph is undirected, the typical
practice is using two directed edges (in each direction) to
replace each of the original undirected edges. But, for many
bipartite graph based MLDM algorithms, only one direction
is needed (see more details in Section [.5).

4.2 Data Partitioning
UPPS allows users to divide each vertex/edge into several
sub-vertices/edges so that each of them has a copy of
DShare (the indivisible part) and a disjoint subset of
DColle (the divisible property vector). Based on UPPS, a
3-D partitioner could be constructed by first dividing nodes
into layers based on a layer count L and then partitioning
the sub-graph in each layer following a 2-D partitioning
algorithm P. The 3-D partitioner is denoted as (P, L).
To be specific, we should first guarantee that N is divis-
ible by L. After that, the partitioner will 1) equally group
the nodes into L layers so that each layer contains N/L
nodes; 2) partition edge set £ into N/L sub-sets with the
2-D partitioner P; and 3) randomly separate vertex set V'
into N/L sub-sets. Node; ; represents the j'" node of the
ith layer. E; and V; denote the j'" subset of E and V,
respectively. So Node; ; contains the following data copies:
o ashared copy of DShare,, if vertex u € V};
« an exclusive copy of DColle,[k], if vertex u € V; and
LowerBound(i) < k < LowerBound(i + 1);

o a shared copy of DShare, ., if edge (u,v) € Ej;

« an exclusive copy of DColle,_,,[k], if edge (u,v) € E;
and LowerBound(i) < k < LowerBound(i + 1);

Lower Bound(i) equals to i x (| Sc/L]) +min(i, Sc%L).
In other words, each layer contains a shared copy of all the
DShare data and an exclusive sub-set of the DColle data.

In a 3-D partitioning (P, L), both L and P affect the
communication cost. When L = N, each layer only has
one node which keeps the entire graph and processes 1/L
of DColle elements. In this case, no replica for DColle data
is needed, and the intra-layer communication cost is zero.
The communication cost is purely determined by L. It
could potentially incur higher inter-layer communication
due to synchronization between sub-vertices/edges. When
L =1, there is only one layer and (P, L) is degenerated as
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the 2-D partitioning P. The communication cost is purely
determined by P. The common practice is to choose the L
between 1 and N so that both L and P will affect com-
munication cost. It is the responsibility of programmers to
investigate the tradeoff and choose the best setting. To help
users choose the appropriate L, we provide the equations
to calculate communication costs for different UPPS opera-
tions that are used as building blocks for real applications
(see Section [7.2). Within a layer, one can choose any 2-D
partitioning P and it is orthogonal to L.

4.3 Computation

There are four types of operations in UPPS (Update, Push,
Pull, and Sink). The definition of these operations is given in
Table |2} All possible variant forms of computations allowed
in UPPS are also encoded in these APIs.

Update The Update operation takes all the information of
each vertex/edge to calculate the new value. Roughly, it
operates on all elements of an edge or vertex in the vertical
direction. Since vertices and edges may be split into sub-
vertices/edges, each node Node; ; needs to synchronize
with nodes in other layers while updating. Note that Update
only incurs inter-layer communicate between a node and
nodes in other layers that share the same subset of vertices
(V) or edges (E;) (i.e., Node, ;).
Push, Pull, Sink All of these three operations handle
updates in the horizontal direction: the updates follow the
dependency relations determined by the graph structure.
For each edge (u,v) € E: Push operation uses data of vertex
u and edge (u,v) to update vertex v; Pull operation uses
data of vertex v and edge (u,v) to update vertex u; Sink
operation uses data of u and v to update edge (u, v).
Push/Pull operation resembles the popular GAS (Gather,
Apply, Scatter) operation. In GAS, each vertex reads data
from its in-edges with the gather function g, generates the
updated value based on sum function @, which is used to
update the vertex using the apply function A. UPPS further
partitions property vertex, which is always considered as an
indivisible component in GAS. To avoid inter-layer commu-
nication, UPPS restricts that the it DColle element of each
vertex/edge will only depend on either DShare (which is by
definition replicated in all layers) or the i*" DColle element of
other vertices/edges (which is by definition exist in the same
layer). A similar restriction applies to Sink. In other words,
Node; ;j only communicates to Node; . in Push/Pull/Sink.

4.4 Bipartite Graph

In many MLDM problems, the input graphs are modeled
as bipartite graphs, where vertices are separated into two
disjoint sets U and V and edges connect pairs of vertices
from U and V, respectively. A recent study [13] demonstrates
the unique properties of bipartite graphs and the special
need for differentiated processing for vertices in U and V.
To capture this requirement, UPPS provides two additional
APIs: UpdateVertexU and UpdateVertexV. They only update
the vertices in U or V. We use the bipartite-specialized 2-D
partitioner bi-cut [13] as P for bipartite graphs.

4.5 Examples

To demonstrate the usages of UPPS, we implemented two
different algorithms that both solve the Collaborative filter-
ing (CF) problem. CF is a kind of problem that estimates

Algorithm 1 Program for GD.

Data:
SC — D
DShare, — NULL; DShare, s, :— {double Rate, double Err}
DColle,,, DColley— :— vector<double>(S¢c)

Functions:
F1(u;,vi, e;) — {return u;. DColle[i] * v;. DColle[i];}
Fs(e) — |
e.DShare.Err := sum(e.DColle) — e.DShare.Rate;
return e; }

F3(u;,e;) — {return e;.DShare.Err = u;.DCollel[i]; }

Fy(vi, X) — {return v;.DColle[i] + o * (X — a * v;. DColle[i]);}
Computation for each iteration:

Sink(Fy);

UpdateEdge(F»);

Pull(Fs, Fy, +);

Push(F3, Fu, +);

the missing ratings based on a given incomplete set of (user,
item) ratings. Let N denote the number of users and M
denote the number of items, R = {R, ,} N« is a sparse
user-item matrix where each item R, , represents the rating
of item v given from user u. Let P and () represent the
user feature matrix and item feature matrix, respectively. P,
and (), are feature vectors with size D that represent the
feature of user u and item v. E'rr, , represents the current
prediction error of user-item pair (u,v), it is calculated by
subtracting the dot product of the corresponding feature
vectors with the actual rate, i.e., Err,, , = <P,, Qf> — Ry
The object function of CF is minimizing »_,, ,)er Err? .
GD Gradient Descent (GD) algorithm [14] is a classical
solution to solve CF problem, which starts with randomly
initializing feature vectors and improving them iteratively.
The parameters of it are updated by a magnitude propor-
tional to the learning rate « in the opposite direction of the
gradient, which results in the following update rules:
Pl = P+ ax (Errj « Q; — o Py)
Q7" = Qj +ax (Errjx P —axQy)

The program of GD implemented in UPPS is given by
Algorithm |1} which is almost a straightforward translation
of the above equations. Here, + is an abbreviation of the
simple “sum” function. We do not show the regularization
code for simplicity. In GD, S¢ is set to D and the DShare
part of each vertex is not used. Each edge e contains the
corresponding rating value (e.DShare.Rate), the current
prediction error (e.DShare.Err) and a computation buffer
whose length is D (e.DColle). Then, the algorithm is imple-
mented by a Sink operation, an UpdateEdge operation and
the last Pull and Push operation.

ALS Alternating Least Squares (ALS) [15] is another al-
gorithm to solve CF problem. It alternatively fixes one
unknown feature matrix and solves another by minimizing
the object function }_, ,)cr Err? . This approach turns a
non-convex problem into a quadratic one that can be solved
optimally. A general description of ALS is as follows:

Step 1 Randomly initialize matrix P.

Step 2 Fix P, calculates the best () that minimizes the
error function. This can be implemented by setting ), =
(Z(u,v)GR PEP’U«)_l(E(u,U)GR Ru”UPE)

Step 3 Fix @), calculates the best P in a similar way.

Step 4 Repeat Steps 2 and 3 until convergence.
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Algorithm 2 Program for ALS.

Data:
SC — D+ DxD
DShare, :— NULL;
DColle,, :— vector<double>(S¢);
Functions:
Fi(v) :—{
foreach (i, ) from (0,0) to (D —1,D — 1) do
v.DColle[D + i * D + j| := v.DColle[i] x v.DColle[j];
return v; }
Fo(ui,eq) —1{
if i < D do return e;.DShare.Rate * u;. DColle[i];
else return u;.DColle[i]; }
F3(v) — {DSYSV(D, &v.DColle[0], &v.DColle[D]); return v;}
Computation for each iteration:
UpdateVertexU(F1);
Push(Fz, +, +);
UpdateVertexV (F3);
UpdateVertexV (F1);
Pull(F, +, +);
UpdateVertexU(F3);

DShareqy—, :— {double Rate}
DColley—v :— NULL

As a typical bipartite algorithm, we implement ALS with
the specialized APIs described in Section 4.4. Algorithm
presents our program, where the regularization code
is also omitted. In ALS, the collection size Sc is set to
“D + D x D” and contains two parts: 1) a feature vector
Vec with size D for user/item vertex and 2) a buffer Mat
with size Dx D to keep the result of Vec! Vec. Step 2 is
implemented as an UpdateVertexU to calculate Vec! Vec
and store it in Mat. Then, a Push is used to aggregate
the corresponding >, ,)er Ry »PT (stored in DColle[0:D-
1) and >, ,)er PT P, (stored in DColle[D:D+D?-1]) for
each v € V. Finally, the optimal value of @), is calculated
by solving a linear equation (calling the DSYSV function in
LAPACK [16]). Step 3 is implemented similarly.

5 CUuBE

To adopt the UPPS model in the distributed scenario, we
build a new distributed graph computing engine CUBE,
which is written in C++ and based on MPICH2. For optimiz-
ing performance, CUBE uses the matrix-based backend data
structures because the matrix-based execution engines can
be 2 x —6x faster than a naive vertex-centric programming
model [17], [18], [19]. This strategy is the same with a single-
machine system [18] while we use the data structures in
a distributed environment. Next, we will describe the pre-
processing procedure and the implementation of UPPS in
CUBE.

5.1 Pre-processing

At initialization, each node loads a separate part of the
graph and the data is re-dispatched by a global shuffling
phase. The 3-D partitioning algorithm in CUBE consists of a
2-D partitioning algorithm P and a user-defined layer count
L. Since Hybrid-cut [5] works well on real-world graphs,
We deploy it as the default 2-D partitioner. And Bi-cut
[13] is used for bipartite graphs. They are the best 2-D
partitioning algorithms for the three representative datasets
used in experiments (see more details in Section [7.I). Af-
ter partition, each Node; ; contains a copy of D,[k] and
Dy [K], if vertex a € V;, edge (b — ¢) € Ej, and
LowerBound(i) < k < Lower Bound(i + 1).

5.2 Implementation

Update In an Update, all the elements of DColle properties
are needed. Each vertex or edge is assigned a node as
the master to perform the Update, which needs to gather
all the required data before execution. The master node
then iterates all data elements it collected, applies the user-
defined function and finally scatters the updated values.
For bipartite graph oriented operations UpdateVertexU and
UpdateVertexV, only a subset of vertex data is gathered.

As defined before, E; and V; are the subsets of edges and
vertices in j*" partition determined by a 2-D partitioning
algorithm, and Node, ; is the set of nodes in all layers to
process F; and V;. In Update, each edge or vertex in E;
(or V;) should have one master node Node; ;, i € [0,L)
among Node, ; that needs to gather all data elements for
the edge or vertex to the perform update operation. We
define the set of edges or vertices of which the master node
is Node; ; as F;; or V; ;. So we have Uf:_ol E; = Ej
and Uf;ol Vi,; = Vj. For simplicity, we randomly select a
node from Node, ; for each edge and vertex in F; and V.
The inter-layer communications are incurred in Update by
gathering and scattering, which are implemented by two
rounds of AllToAll communication among the same nodes
in different layers (i.e. Node, ;).

For certain associative operations (e.g. sum), only the
aggregation of the elements in a node is needed. For ex-
ample, GD algorithm (Algorithm [1) only requires the sum
of each node’s local DColle elements. We allow users to
define a local combiner for Update operations. With the
local combiner, each node reduces its local DColle elements
before sending the single value to its master. Local combiner
further reduces communication because the master node
only needs to gather one rather than S¢ /L elements from
each node in all other layers. The different operations could
be specified by MPI_OP in the implementation. We leverage
the existing MPI_AlIReduce instead of gather and scatter to
further reduce network traffic.

Push, Pull, Sink A replica for D,,[i| exists at node Node; ;
if v : (u,v) € Ej or v : (v,u) € E;. The execution
of each operation starts with replica synchronization within
each layer. It could be implemented by executing L AllToAll
communications among Node; . concurrently in each layer.

Then, for Push and Pull, the user defined gather function
§ is used to calculate the gather result for each vertex; for
Sink, the user defined function H is applied to each edge. Af-
ter that, for Push/Pull, another L AllToAll communications
among Node; . are used to gather the results reduced by
the user defined sum function @ and then the user defined
function A updates the vertex data. Similar to Update, the
sum function @ is used as a local combiner, thus the gather
results are locally aggregated before sending. In the bipartite
mode, only a subset of vertex data is synchronized in Push
and Pull (U for Push and V for Pull).

6 SINGLECUBE

To use 3-D partitioning in the out-of-core scenario, we build
SINGLECUBE, which is a new single-machine out-of-core
graph computing system. In this section, we present its
programming model and system implementation. We also
use a real application ALS as the example to demonstrate
the usages of SINGLECUBE.
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TABLE 3: The programming model for SINGLECUBE.

gata — {V, E, D ={DShare, DColle}, Sc} Guipartite — {U,V, E, D={DShare, DColle}, Sc}
DShare, — asingle variable DSharey—s» — asingle variable
DColle,, — avector of variable with size S DColle, i) — the i*" element of DColle,,
Dy i — abbreviation of {DShare,, DColle,[i]} Dy—0[i] — abbreviation of {DShare,—}
Computation
UpdateVertex(F) — foreach vertex u € V do D% := F(D,,);
Push(U) — foreach vertex v € V, index i € [0, S¢) do
foreach (u,v) € E do Dy [i] := U(Duli], Du—vli], Dy[i]);
Pull(U) — foreach vertex u € V, index i € [0, S¢r) do

foreach (u,v) € E do Dy[i] := W(Dy[i], Du—svli], Duli]);

6.1 Programming model

Existing programming models assume that all elements of
the property vector for a specific vertex are indivisible.
However, this assumption is not true for 3-D partitioning.
As a result, we present the UPPS model that accommodates
3-D partitioning in Section Similarly, in SINGLECUBE, we
try to reduce total disk I/O amount by partitioning the
vector of data elements associated to each vertex, thus Grid-
Graph'’s programming model is insufficient for our system.
Therefore, we propose a new model for SINGLECUBE.

As shown in Table [3] the programming model of SIN-
GLECUBE is a simpler version of the UPPS model described
in Section [ As for data model, we still model the user
defined data as a directed data graph G. The data contains
two parts: an indivisible property DShare and a divisible
collection of property vector elements DColle. However, in
SINGLECUBE, only data attached to vertices is partitioned
into these two classes, while data attached to edges con-
tains D.Share alone. This is because we follow GridGraph’s
streaming-apply model which stores values on vertices and
only requires one (read-only) pass over the edges. Through
read-only access to the edges, it can reduce the write amount
compared with systems who write values on edges such
as GraphChi. That is to say, SINGLECUBE sacrifices the
ability to modify edge values for better performance. The
same limitation exists in GridGraph. However, GridGraph
has proved that the streaming-apply model is workable for
most applications since they do not need to modify the
edge values. Since modifying the edge data is not allowed,
we eliminate the UpdateEdge and Sink functions in the
programming model. In addition, since SINGLECUBE is
executed in a single-machine environment where proper-
ties for both vertices of an edge (u,v) could be accessed
immediately, it can operate corresponding vertices directly
in Pull/Push, rather than using an update for relaying.

6.2 Implementation

Since SINGLECUBE is a single-machine system, the imple-
mentation of our programming model is easier and more
direct. Specifically, in SINGLECUBE, edges are stored in 2-
D grids (edge data files), and sub-vertices of each layer are
stored continuously (vertex data files) on disks. To imple-
ment UpdateV ertex, the system only needs to go through
all vertices and then write updates back. Therefore, the I/O
amount will be 2 x Sy * |V|. As for the Push operation, the
execution procedure is exactly identical as in GridGraph, ex-
cept that all layers should be processed one by one. In each

layer, SINGLECUBE accesses all edge grids in the column-
oriented order (the same with GridGraph), and the Update
function U will be executed on every edge. Similar to Push,
the Pull function also needs to access all grids for each layer.
However, in order to ensure that updated vertices are writ-
ten only once, Pull accesses grids in a row-oriented order
instead of the column-oriented order. These two accessing
ways are demonstrated in Figure [2} Since Push and Pull
are both element-wise operators, the I/O amount of one
operation is definitive to be L+ Sg *|E|+ (P +2) xSy % |V|,
as we have analyzed in Section 3}

Other execution implementations of SINGLECUBE are as
same as GridGraph since our system is based on it. To calcu-
late each layer, all edge blocks are streamed one by one. And
before processing an edge block, the corresponding source
vertex chunk is first loaded into memory. Then, a main
thread will continuously push reading and processing tasks
to the queue, while other worker threads fetch tasks from
the queue, read data from specified location and process
each edge. After all edge blocks for a specific destination
vertex chunk are processed, updates to those vertices will
be written back to the disk. By using this parallel pipeline
way, the usage of disk bandwidth is increased.

6.3 Examples

To demonstrate the usages of SINGLECUBE, we use the
ALS algorithm as an example. The general description of
ALS has been provided in Section In fact, the imple-
mentation of ALS in SINGLECUBE (shown by Algorithm
is similar to the implementation using UPPS in CUBE.

Algorithm 3 Program for ALS in SINGLECUBE.

Data:
Sc — D+ DxD; DColle, :— vector<double>(S¢)
DShare, — NULL;, DSharey—s, — {double Rate}
Functions:
Fi(ui,e,v;) —{
if i < D do v;.DColle[i] += e.DShare.Rate * u;. DColleli;
else v;.DColleli] += u;.DColle[i];
return v;;}
Fr(v) :—{
DSYSV(D, &v.DColle[0], &v.DColle[D]);
foreach (¢, 5) from (0,0) to (D —1,D — 1) do
v.DColle[D + i * D + j| := v.DColle[i] x v.DColle[j];
return v;}
Computation for each iteration:
Push(F);
UpdateVertexV (F2);
Pull(Fh);
UpdateVertexU(F»);
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TABLE 4: A collection of real-world graphs.

[ Dataset [ 100 V] [E] | Best 2-D Partitioner | Description ]
Libimseti 135,359 168,791 17,359,346 Hybrid-cut Dating data from libimseti.cz. [20]]
Last.fm 359,349 211,067 17,559,530 Bi-cut Music data from Last.fm. [21]

Netflix 17,770 480,189 100,480,507 Bi-cut Movie review data from Netflix. [15]

Besides, because of the simplicity of single-machine oper-
ations, the DColle part of edge for saving intermediate
results is not necessary. Instead, the results of vector Vec
and VecTVec can be added directly on associated vertices to
calculate Z(uw)ER RU,UPUT and Z(u,v)ER PTP,. After that
accumulation procedure, there is a simple UpdateVertexV
or UpdateVertexU to complete the final update.

7 EVALUATION

To study the effectiveness of our 3-D partitioning algorithm,
we conduct experiments on both CUBE and SINGLECUBE,
and systematically analyze the system performance. In Sec-
tion[7.2) we analyze the basic operations and the layer count
L in the novel UPPS model. In Section we present
evaluation results of CUBE and compare it with two ex-
isting frameworks, PowerGraph and PowerLyra. We com-
pare our work with PowerGraph/PowerLyra because the
partitioning algorithms in them produce significant fewer
replicas than the others and hence PowerGraph/PowerLyra
performs better than other distributed graph processing sys-
tems. We also present other aspects of CUBE such as memory
consumption and scalability. In Section we present the
evaluation results of SINGLECUBE and compare it with the
state-of-the-art out-of-core system GridGraph. We compare
our work with GridGraph because it is reported to out-
perform other works, including GraphChi and X-Stream.
Although Cagra [22] uses a novel technique to improve the
cache performance and outperforms GridGraph, it is an in-
memory system thus not able to process large-scale graphs.
We provide the calculation of total disk I/O and the exper-
imental performance, both of which show that our method
is efficient. We also compare SINGLECUBE with CUBE, both
similarities and distinctions of them are presented. Besides,
to get a thorough understanding of our work, we discuss
other aspects in Section

7.1 Setup
We conduct the experiments of CUBE on an 8-node Intel®
Xeon® CPU E5-2640 based system, while we use a single
node for testing SINGLECUBE. All nodes are connected with
a 1Gb Ethernet, and each node has 8 cores running at 2.50
GHz. We use a collection of real-world bipartite graphs
gathered by the Stanford Network Analysis Project [23].
Table 4 shows the basic characteristics of each dataset.
Since in CUBE, our 3-D partitioning algorithm relies on
a 2-D partitioner within each layer. We first select the best
2-D partitioner for each dataset. To do so, we evaluated
all existing 2-D partitioning algorithms in PowerGraph and
PowerLyra, including the heuristic-based Hybrid-cut [5],
the bipartite-graph-oriented algorithm Bi-cut [13] and many
other random/hash partitioning algorithms. We calculated
the average number of replicas for a vertex (i.e., replication
factor, A) for each algorithm. A includes both original vertices
and the replicas. We consider the best partitioner as the one
that has the smallest . To capture the number of partitions,
we use )\, to denote the average number of replicas for a

vertex when a graph is partitioned into x sub-graphs (e.g.,
A1 = 1). Table[d]also shows the best 2-D partitioner for each
data set: Hybrid-cut is the best Libimseti, while Bi-cut is
the best for LastFM and Netflix. For LastFM, the source set
should be used as the favorite subset, while for Netflix, the
target set should be used as the favorite subset in Bi-cut.

7.2 Basic operations

We use several micro benchmarks to analyze the character-
istics of the basic operations of the UPPS model. We also
give a guideline to decide the parameter L. As analysis for
disk I/O amount of the basic operations in SINGLECUBE
has been provided in Section we conduct the exper-
iments on CUBE and analyze the network traffic. We use
micro-benchmarks first instead of full applications is two-
fold: 1) each benchmark only requires a single operation in
UPPS so that we can isolate it from other impacts; 2) the
equations obtained for each case can be used as building
blocks to construct communication traffic equations for real
applications.

7.2.1  Push/Pull
We use the Sparse Matrix to Matrix Multiplication (SpMM)
application to discuss the Push/Pull operation since it can be
implemented by a single Push (or Pull) operation. Specifi-
cally, the SpMM multiplies a dense and small matrix A (size
Dx H) with a big but sparse matrix B (size H xW), where
D <« H, D < W. This computation kernel is prevalently
used in many MLDM algorithms, such as in training phase
of a Deep Learning algorithm [24]. In UPPS, this problem
could be modeled by a bipartite graph with |V| = H + W,
where |[U| = H and |V| = W. The non-zero elements in
the big sparse matrix are represented by an edge i—j (from
a vertex in U to a vertex in V) with DShare;_,; = b; ; and
DColle;—,; = NULL. On the other side, the dense matrix A
is modeled by vertices: the i'" column of A is represented
as the DColle vector associated with vertex 7 in U, where
Sc = D and DShare = NULL. Then, the computation of
SpMM is implemented by a single Push (or Pull) operation.
Figure [5] (a) shows the execution time of SpMM on 64
workers with L from 1 to 64. Since different L is based on
the same 2-D partitioning P, reduction on execution time is
mainly due to the reduction on network traffic. With a 3-D
partitioner (P, L), a total of Ay, * [V] exist in all nodes in
a layer. Push or Pull only involve intra-layer communication
and only DColle elements of vertices need to be synchro-
nized. For the general graph, the total network traffic can be
calculated by summing the number of DColle elements sent
in each layer, which is (S¢/L)* (A, —1)*|V|. The amount
of network traffic is the same for Push and Pull. For the
bipartite graph in SpMM, synchronization is only needed
among replicas in the sub-graph where the vertices are up-
dated (U or V). If SpMM is implemented as a Push, the net-
work traffic is (S¢ /L) * (/\X/L — 1) *|V]; if it is implemented
as a Pull, the network traffic is (SC/L)*(/\H]{,/L —1)x[U]. )\HJ{,/L
and A}, /1, are replication factor for U and V, respectively.
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Fig. 5: The impact of layer count on average execution time for running the micro benchmarks with 64 workers.

Then, we can calculate the amount of network traffic in a
SpMM operation by the following equations. S denotes the
size of each (DColle,[i]). The traffic is doubled because two
rounds of communications (gather and scatter) are needed
in replica synchronization.

Traflic(SpMMpysh) = 2 % S * S¢ * (AYV/L —1)x|V] ©)]

Traffic(SpMMpyp) = 2% S % S¢ * ()‘BJV/L —1)*|U] (4)

For a general graph, |V| is the total number of synchronized
vertices. We have:

Traffic(Push/Pull) = 2 % S * S¢ * (AN/L —1)*|V| (5)

For the Libimseti dataset, about 91% of the network
traffic is reduced by partitioning the graph into 32 layers
(so that in each layer just has 2 partitions) rather than 1.
And Figure (a) shows that the reduction on network traffic
incurs a 7.78x and 7.45x speedup on average execution
time when S is set to 256 and 1024, respectively.

7.2.2 UpdateVertex

For Push/Pull, the best performance is always achieved by
having as many layers as possible (i.e., L is the number of
workers) because it does not incur any inter-layer commu-
nication. However, for operations that need all elements in
nodes from different layers, the network traffic and execu-
tion time will increase with large L.

To understand this aspect, we consider a micro bench-
mark SumV, which computes the sum of all elements in
DColle vector of each vertex and stores the result in DShare
of each vertex (i.e.,, DShare, := sum(DColle,)). It can be
implemented by a single UpdateVertex. since we intend to
measure the overhead of general cases.

Figure 5| (b) provides the execution time of SumV on 64
workers with L from 1 to 64. We see that as L increases,
the execution time becomes longer, this validates our pre-
vious analysis. We also see that the slope of execution time
increase is decreased when L becomes larger. To explain
this phenomenon, we calculate the exact amount of network
traffic during the execution of one SumV. Specifically, for en-
abling an UpdateVertex operation, each master node Node; ;
needs to gather all elements of DColle of v, if v € V; ;. Since
Vi; € Vj, the total amount of data that Node; ; should
gather is S Vi j| — 22 « |V; j| = 72 % Sc + |V ;. Then,
all master nodes perform the update and scatter a total
amount of (L — 1) * |V| DShare data. As a result, the total
communication cost of a SumV operation is

Traffic(SumV) = Traffic(UpdateVertex)

L—1 (6)

=2%Sx*

*So*|V|+S*(L—1)«|V|

Since the collection size S¢ is usually large, the com-
munication cost will be dominated by the first term, which
has an upper bound and the slope of its increase becomes
smaller as L becomes larger. Since the execution time is
roughly decided by network traffic, we see a very similar
trend in Figure | (b).

7.2.3 UpdateEdge

To discuss UpdateEdge, we implement SumE, which is a
micro benchmark similar to SumV. It does the same oper-
ations but for all edges. Figure [5| (c) presents the average
execution time for executing a single UpdateEdge, which
performs the equation “DShare,_., := sum(DColle,_,)".
The communication cost of SumE is almost the same as
SumV, except that DColle of edges rather than vertices are
gathered and scattered. The communication cost is:

Traffic(SumE) = Traffic(UpdateEdge)

L-1 7)

=2%S*

*So* |E|+S*(L—1)«|E|

As a result, data lines in Figure 5|(c) share the same tendency
of the lines in Figure 5] (b).

7.2.4 The Layer Count

Given a real-world algorithm which uses the basic opera-
tions in UPPS as building blocks, programmers could obtain
the equations of communication cost and estimate a good
layer count L that achieves low cost.

In CUBE, Update becomes slower as L increases while
Push/Pull/Sink becomes faster. Since most applications use
two kinds of operations at the same time (such as GD and
ALS), L is a key factor determining the tradeoff between
the intra-layer and inter-layer communication amount. Two
extreme values for L are: 1, where the inter-layer communi-
cation is zero and 3-D partitioning degenerates to 2-D par-
titioning; and /N (the number of workers), where the intra-
layer communication is zero. Still, it is difficult to get the best
L directly because the communication cost of Push/Pull/Sink
depends on the replica factor A\, which is influenced by the 2-
D partitioner. Fortunately, some 2-D partitioning algorithms
(e.g., Hybrid-cut [5]) perform a theoretical analysis of the
expected A , which is a function of the number of sub-graphs
(i.e., N/L in CUBE) for a given input graph. By taking A into
our communication cost equations, L becomes the single
variable, hence it is possible to estimate a good L.

As for SINGLECUBE, the I/O amount of an UpdateVertex
operation is fixed to be 2 x Sy * |V|. And the reduction on
I/O amount comes from the Push/Pull operation, in which
the I/O amount is L Sg * |E|+ (P 4 2) % Sy x |V]. Since the
memory needed is M = 2 x [Sy /L] * |V|/P, we can define
K = P x L, which is obtained according to the memory
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TABLE 5: Results on execution time (in Second). Each of the
cell gives data in the format of “PowerGraph / PowerLyra
/ CUBE”. The number in parenthesis is the chosen L.

D # of Libimseti

workers GD ALS

8 978 / 956 / 2.04(2) 708 / 704 / 46.7 (8)
64 16 8.04 / 816 / 1.95(4) 726 / 715 / 37.6 (16)

64 6.82 / 689 / 259 (4) 87.0 / 86.8 / 28.7(64)

8 1499 / 1494 / 3.87(2) 261 / 258 / 193 (8)
128 16 12.81 / 1291 / 2.62 (4) 270 / 270 / 135(16)

64 11.64 / 11.62 / 3.33(8) 331 / 331 / 109 (64)
D # of LastFM

workers GD ALS

8 12.0 / 898 / 3.45(2) 124 / 735 / 709 (8)
64 16 105 / 822 / 259(2) 128 / 69.5 / 61.6(16)

64 104 / 986 / 248 (4) 158 / 111 / 57.6 (64)

8 19.0 / 138 / 4.74(2) 465 / 263 / 270 (4)
128 16 176 / 135 / 335(4) 490 / 253 / 200 (16)

64 18.6 / 17.8 / 3.47(8) Failed / Failed / 230 (64)
D # of Netflix

workers GD ALS

8 344 / 277 / 6.03(1) 256 / 204 / 110(2)
64 16 267 / 173 / 397(1) 186 / 107 / 604 (2)

64 183 / 742 / 4.16(1) 179 / 66.0 / 42.5(8)

8 51.8 / 386 / 9.65(1) 865 / 657 / 463 (1)
128 16 419 / 230 / 6.59 (1) 669 / 340 / 258 (2)

64 30.6 / 11.3 / 6.55(2) Failed / 239 / 118 (8)

capacity M. Therefore, the I/O amount of Push/Pull is L *
Sg*|E|+(K/L+2)xSy x|V|, which is a hyperbolic function
of L. Since L is the only variable, it is easy to estimate a best
available L after bringing other values into the equation.
We further explain this method to decide L through a real
application in Section [7.4.2}

7.3 CUBE
To illustrate the efficiency and generality of CUBE, we im-
plemented the GD and ALS algorithm that we explained
in Section ALS involves intra-layer communications
due to Push/Pull and inter-layer communications due to
UpdateVertex. GD combines the intra-layer operation Sink
with the inter-layer operation UpdateEdge. The UpdateEdge
of GD can be optimized by the local combiner. ALS explores
the specialized APIs for bipartite graphs while GD uses the
normal ones. The implementation of the two algorithms
covers all common patterns of CUBE. Also, many other
algorithms can be constructed by some weighted combina-
tions of GD and ALS. For example, the back-propagation
algorithm for training neural networks can be implemented
by combining an ALS-like round (for calculating the loss
function) and a GD-like round (that updates parameters).
Both PowerGraph and PowerLyra have provided their
implementation of GD and ALS, we use oblivious [4] for
PowerGraph. And for PowerLyra, the corresponding best
2-D partitioners (as listed in Table are used, which are the
same as in CUBE. For CUBE, the implementation of GD and
ALS are given in Section The optimizations for further
reducing network traffic are applied. For GD, we enable a
local combiner for the UpdateEdge operation. For ALS, we
merge successive UpdateVertexU and UpdateVertexV opera-
tions into one. Next, we first demonstrate the performance
of CUBE and then present the network traffic calculations.

7.3.1  Overall Performance
Table [B] shows the execution time results. D is the size of
the latent dimension that was not exploited in previous
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Fig. 6: Reduction on GD (64 workers, D = 128).

systems. We report the execution time of GD and ALS on
three datasets (Libimseti, LastFM and Netflix) with three
different numbers of workers (8, 16 and 64). For each case,
we conduct the execution on three systems: PowerGraph [4],
PowerLyra [5] and CUBE, the results are shown in the same
order in the table. The number in parenthesis for CUBE indi-
cates the chosen L for the reported execution time, which is
the one with the best performance. “Failed” means that the
execution in this case failed due to exhausted memory.

The results show that CUBE outperforms PowerLyra by
up to 4.7x and 3.1x on GD and ALS respectively. The
speedup to PowerGraph is even higher (about 7.3 x —1.5x).
According to our analysis, the speedup on ALS is mainly
caused by the reduction on network traffic,c while the
speedup on GD is caused by both the reduction on network
traffic and the increasing of data locality. This is because the
computation part of the ALS algorithm is dominated by the
DSYSV kernel, which is a CPU-bounded algorithm that has
an O(N?) complexity. In contrast, GD is mainly memory
bounded and hence is sensitive to memory locality.

732 GD
The network traffic of GD can be calculated with the
equations given in Section Since a local combiner
is used for UpdateEdge, its communication cost is only
2% 8byte * (L — 1) x| E| (in Equation[7} S = 8 and divide the
first term by D/ L, the second term is zero because D Share
is NULL). The network traffic for a Sink is half of Push/Pull,
so the communication cost of each GD iteration is:
Traffic(GD) = (242 + 1) * 8byte * (An/r — 1) * S¢ * |V|

8
+ 2 % 8byte * (L — 1) | E| ®)

The reduced network traffic is plotted in Figure [6} We
see that the network traffic reduction is related to replication
factor, density of graph (i.e. |E|/|V]) and Sc. If the density
large enough (|E|/|V| > Sc¢), the best choice will be
grouping all the nodes into one layer. It happens to be the
case for Netflix dataset, which has a density of more than
200. Therefore, the best L is almost always 1 for a small
D. Even for Libimesti of which the density is 57, our 3-D
algorithm can reduce about 64% network traffic. However,
if D is set to 2048, for Netflix, the best L becomes 8 with 64
workers, achieving a 2.5 speedup compared to L = 1.

Moreover, since we use a matrix-based backend that is
more efficient than the graph engine used in PowerGraph
and PowerLyra, the speedup on memory-bounded algo-
rithms, such as GD, is still up to 4.7x. A similar speedup
(1.2 x =7x) is reported by GraphMat [18]], which also maps
a vertex program to matrix backend.

7.3.3 ALS
As we have discussed, we merged the successive UpdateV-
ertex and UpdateVertexV in ALS for reducing the needed
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Fig. 7: Reduction on ALS (64 workers, D = 128).

synchronizations. After this merge, each iteration of the ALS
algorithm only needs to execute each of the four opera-
tions (i.e., UpdateVertexU, Push, UpdateVertexV and Pull) in
bipartite mode once. Thus, based on the estimating formulas
given in Section[7.2](i.e, Equation[3] Equationd]and Equation
[6), the network traffic needed in each iteration is:

Traffic(ALS) =2 * 8byte * (An,;, — 1 +
+ 8byte * (L — 1) = (|U[ + [V])

) *Sc (U] + V)

©)

According to Equation[9} our 3-D partitioner can achieve
more significant network traffic reduction on a graph if it is
hard to reduce replicas (i.e. Ay is large). For example, Figure
[7] shows the relationship between layer count L and the
proportion of reduced network traffics when executing ALS
with 64 workers and D = 128. For Libimseti, A\gs = 11.52,
by partitioning the graph into 64 layers, network traffic is
drastically reduced by 90.6%. Table [5| shows that such re-
duction leads to about 3x speedup on the average execution
time. In contrast, the replication factor for the other two
datasets is relatively small, and hence the speedup is also
not as significant as on Libimseti.

7.3.4 Memory Consumption
L affects memory consumption in different ways. On one
side, when L increases, the size of memory for replicas
of DColle is reduced by the partition of property vector.
On the other side, the memory consumption could increase
because DShare needs to be replicated on each layer. In ALS,
since each edge has DShare data with type double, the total
memory needed is (An/y, * S¢ * |[V| + L * |E|) x 8 bytes,
where Sc = D? + D. Figure |8 shows the total memory
consumption (sum of the memory needed on all nodes) with
different L when running ALS on Libmesti with 64 workers.
Figure [8| shows that the total memory consumption first
decreases, but after a point (roughly L = 32) it slightly
increases. The memory consumption with L = 64 is larger
than L = 32, because the reduction on replicas of DColle
data cannot offset the increase of shared DShare data. Nev-
ertheless, we see that the total memory consumption at
L = 1 is much larger than cases when L > 1. Therefore,

Total Memory Needed (GB)
N
(=]

0 10 20 30 40 50 60 70
# of layers (L)

Fig. 8: Total memory needed for running ALS with 64
workers and D = 32, S¢ = 1056.
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CUBE using a 3-D partitioning algorithm always consumes
less memory than PowerGraph and PowerLyra, who do not
support 3-D partitioning.

7.3.5 Scalability

The communication cost of graph algorithms usually grows
with the number of nodes used. Because the network time
may soon dominate the whole execution time and the re-
ducing of computation time could not offset the increase of
network time, the scalability could be limited for those al-
gorithms on small graphs. Although the potential scalability
limitations exist, since CUBE reduces the network traffic, it
scales better than PowerGraph and PowerLyra.

For example, for Libimseti and LastFM, the execution
time of PowerLyra actually increases after the number of
workers reaches 16, while CUBE with lower network traffic
can scale to 64 workers in most cases. Although the scalabil-
ity of CUBE also becomes limited for more than 16 workers,
we believe that it is mainly because that the graph size is not
large enough. We expect that for those billion/trillion-edge
graphs used in industry [25], our system will be able to scale
to hundreds of nodes. To partially validate our hypothesis,
we tested CUBE on a random generated synthetic graph
with around one billion edges. The results show that CUBE
can scale to 128 workers easily. Moreover, existing tech-
niques [26], [27] that could improve Pregel/PowerGraph'’s
scalability can also be used to improve our system.

7.4 SINGLECUBE

To evaluate SINGLECUBE, we implement two basic appli-
cations SpMM and ALS in SINGLECUBE and evaluate the
performance under setting the different number of layers.
All of our experiments are conducted on a single node of the
cluster introduced in Section[7.1] As we have mentioned, the
computation of SpMM could be implemented by a single
Push/Pull operation. And the implementation of the ALS
algorithm in SINGLECUBE has been discussed in Section [6]
We don't provide an implementation of the GD algorithm
in SINGLECUBE because our system is built based on Grid-
Graph, which does not support the modification of edges.

In the following sections, we first present the overall per-
formance of SINGLECUBE. After that, for each application,
we present the total I/O amount needed and analyze the
speedup under the different settings of L. At last, we make
a comparison between SINGLECUBE and CUBE.

7.4.1  Overall Performance

Table [6] shows the overall execution time results. We report
the execution time of SpMM and ALS on three datasets (Li-
bimseti, LastFM and Netflix) with two different sizes of the
latent dimension (D = 256, 1024 for SpMM, and D = 16, 64
for ALS). We set K = L x P = 32 in our experiments,
i.e., the initial 2-D partitioning (when L = 1) contains
32 x 32 grids. For each case, we conduct the execution with
L varying from 1 to 32 and report the execution time. In fact,
since our system is implemented based on GridGraph, when
L =1, the result represents the performance of GridGraph.
As a summary of the results, SINGLECUBE can outperform
GridGraph by up to 4.5x and 3.0x on the SpMM and ALS
algorithm, respectively.
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TABLE 6: Execution time (in Second) for SINGLECUBE.

SpMM D =256 D =1024

L P [Libimseti LastFM Netflix Libimseti LastFM Netflix

1 32 (334 4.27 10.0 9.48 19.7 38.9

2 16 |1.73 2.73 7.49 6.46 10.8 27.9

4 8 1.61 2.07 6.40 4.82 7.99 23.1

8 4 |[1.77 1.75 6.78 3.91 5.22 20.7

16 2 2.14 1.27 7.66 3.25 4.40 19.3

321 2.47 2.50 10.6 3.31 5.04 19.9
ALS D=16 D=64

L P [Libimseti LastFM Netflix Libimseti LastFM Netflix

1 32 (432 7.32 8.38 84.4 107 136

2 16 [3.25 4.96 8.19 56.9 80.6 122

4 8 2.47 3.73 8.06 449 60.6 122

8 4 [2.06 3.52 9.31 43.8 50.1 124

16 2 2.67 4.38 17.4 37.7 43.0 130

321 (444 6.91 24.3 28.0 37.0 138

7.4.2 SpMM

Since the SpMM application could be implemented by a
single Push/Pull operation, we can calculate the amount
of total disk I/O using the method presented in Section
Given P and L, the I/O amount can be calculated by
the following formula, where |V| is the total number of
synchronized vertices for a general graph:

Traffic(P,L) = L x Sg % |E| + (P + 2) * Sy *|V]| (10)

The first part of the equation represents that SINGLECUBE
reads the edge data (Sg * |E|) by L times, while the second
part of the equation represents that it repeatedly reads the
vertex data (Sy * |V|) by (P + 1) times and write once.

We present the I/O amount with varying L under differ-
ent fixed K (Px L) in Figure[9} To get close to real results, we
set |V| and |E| as the actual size of the Last.fm dataset, thus
|[V| = 570416 and |E| = 17359346. At the same time, we
also set Sy and Sg as a common configuration when run-
ning SpMM, that is Sg = 8byte, Sy = 256 * 4 = 1024byte.
That is to say, the smaller dimension of the smaller matrix
in SpMM is 256. From the results we can see that, the
total amount of disk I/O for our system will increase with
K increases (i.e., the memory needed decreases). In the
meantime, by increasing L with fixed K (i.e., fixed memory
size M), the amount of disk I/O will first decrease and
then increase. Therefore, we can significantly reduce the I/O
amount (about 71.5% to 86.5%) by carefully choosing the
number of layers. Table [p| shows that this reduction on I/O
amount incurs a significant speedup (up to 3.4x and 4.5x)
on average execution time when D is set to 256 and 1024,
respectively. Typically, the larger D is (means that the larger
Sy is), SINGLECUBE can achieve a larger speedup. That is
because when D is very large, the second part accounts for
the most of Equation[I0} thus we can reduce I/O amount by
increasing L and decreasing P.

40000
35000
30000
25000
20000
15000
10000
5000 =
o .
1 10 100

Disk /O (GB)

# of layers

Fig. 9: Total I/O amount needed for a Push/Pull operation
for calculating SpMM on Last.fm with Sc = 256.
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Fig. 10: Speedup on ALS (D = 64).
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Fig. 11: Speeup on ALS (D = 16).

7.4.3 ALS

The implementation of ALS has been presented in Section
[l Using the same method as SpMM, we can estimate the
amount of total disk I/O by the following formula:

Traffic(P,L) =2 L* Sg = |[E|+ (P +2) * Sy = (|U] + |V])

w2 sy« (U vy Y

The first two parts of the equation are caused by the Pull
and Push operation, which are the same as Equation
and have been discussed. And the third part of the equa-
tion represents the UpdateVertexU /UpdateVertexV operation,
which needs to read all operated vertices and then write
them back. According to Equation [11} the I/O amount of an
UpdateVertexU / UpdateVertexV operation is fixed, no matter
which L we set. As a result, the reduction on I/O amount for
ALS also comes from the Pull/Push operation, which is as
same as SpMM. Table [p| shows that such reduction leads to
about 2.0x ~ 3.0x speedup on the average execution time
for calculating ALS on Libimseti and LastFM. However, our
3-D partitioning method brings little optimization on Netflix
dataset because the density of Netflix (i.e, IEI/IVI) is
more than 200, which is much larger than other datasets,
hence the reduction in reading vertex data could not cover
the overhead of repeatedly reading edge data. In this situa-
tion, we can set L as a small number (even as one).

Figure[I0|shows the impact of layer count on speedup for
running ALS on Libimseti and LastFM with D = 64 (ie,,
Sc = 4160). The initial 2-D partitioning contains 32 x 32
grids and K = P x L = 32, thus L varies from 1 to 32. From
this figure, we can see that the speedup increases with L
increases, up to about 3.0x on both datasets, which shows
that our method is very efficient. However, a larger number
of layers does not lead to a larger speedup for every case.
For example, Figure[lL1|shows another situation that D = 16
(i.e.,, Sc = 272). The performance for both datasets is best
when L = 8, about 2.0x faster than the baseline. This is
because that, the frequency of reading edge data increases
with L increases, while the frequency of reading vertex data
decreases, leading to a trade-off. Compared with Figure
Figure [11] adopts a smaller D, thus the I/O amount
for accessing vertices accounts for a smaller part of total
disk I/O amount. In a word, users of SINGLECUBE need to
carefully set L to get the best performance.
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TABLE 7: Comparisons between CUBE and SINGLECUBE.
| CUBE

SINGLECUBE

Supporting 3-D partitioning v
Supporting vertex-centric programming | v’
Supporting distributed environment v
Supporting using disks X
Supporting modifying edge values v

X AX AN

140 DOSINGLECUBE

120 CUBE(8 workers) —
W CUBE(16 workers)
100 W CUBE(64 workers)
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Dataset

Fig. 12: Execution time for running ALS (D = 64).

Execution time (Sec.)

Libimseti Netflix

7.4.4 Compare with CUBE

CUBE and SINGLECUBE are both based on our 3-D parti-
tioning algorithm and the novel programming model UPPS.
Still, these two systems have some differences. Similarities
and distinctions between them are listed in Table[7]

CUBE is a distributed in-memory graph processing sys-
tem. Since it holds all the graph data in memory, it needs
the computing cluster to have enough nodes to process a
large-scale graph. On the contrary, SINGLECUBE is a single-
machine out-of-core system, which can largely eliminate the
challenges of using a distributed framework and is much
easier to use. The developer could decide how much data
is loaded into memory every time according to the memory
capacity by setting the parameters L and P. Because the
disk capacity is usually far larger than that of memory,
SINGLECUBE makes practical large-scale graph processing
available to anyone with a single PC. To be specific, the
total memory size required by CUBE can be calculated using
the method that we have presented in Section And
SINGLECUBE requires the disk capacity of the machine to be
larger than the graph data size.

However, SINGLECUBE has a restriction compared to
CUBE. Since it is implemented based on the system Grid-
Graph, which does not support the modification of edges,
it also does not allow users to modify the edge data. As a
result, the Update Edge operation and the Sink operation
are eliminated in SINGLECUBE. Applications that require
modification for edge values are not able to be implemented
in SINGLECUBE, such as the GD algorithm.

As for system performance, we compare the execution
time for running ALS (D = 64) of CUBE and SINGLE-
CUBE. The evaluation results are illustrated in Figure
and every value in the figure represents the best system
performance under setting different values for L. In general,
the performance of SINGLECUBE is competitive and even
better than CUBE when the cluster size of CUBE is small
(e.g., 8 workers). Besides, because of the good scalability
of CUBE, the execution time of it may decrease with more
nodes contained in the cluster. In fact, according to our test,
for those very large graphs used in industry, CUBE will be
able to scale to hundreds of nodes. As a result, it usually
performs better than SINGLECUBE for large graphs, if there
are enough computing resources.
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7.5 Discussion

Partitioning Cost Some works (e.g., [28]) indicated that
intelligent graph partitioning algorithms might have a dom-
inating time and hence actually increase the total execu-
tion time. However, according to [5], this is only partially
true for simple heuristic-based partitioning algorithms. The
partitioning complexity of a 3D partitioner is almost the
same as the 2D partitioning algorithm it used. Thus it only
trades a negligible growth of graph partitioning time for
a notable speedup during graph computation. Moreover,
for those sophisticated MLDM applications that our work
focuses on, the ingress time typically only counts for a small
partition of the overall computation time. So we believe that
the partitioning time of CUBE/SINGLECUBE is negligible.
Applicability In general, our method is applicable to algo-
rithms that: 1) the property vectors are divisible; and 2) the
operators are element-wise (thus the inter-layer communi-
cation overhead will not offset its benefits). The algorithms
presented in this paper are only examples but not all we can
support. As an illustration, the SpMM and matrix factoriza-
tion examples presented above are building blocks of many
other MLDM algorithms. Thus, these problems (e.g., mini-
batched SGD) can also benefit from our method. Moreover,
some algorithms whose basic version has only indivisible
properties (thus do not meet the first requirement), have
advanced versions that involve divisible properties (e.g.,
Topic-sensitive PageRank, Multi-source BFS, etc.),which ob-
viously can take advantage of a 3-D partitioner. The graph
neural network (GNN) is also a kind of applications with
divisible vertex/edge properties, and is gaining significant
increasing popularity in the MLDM community recently.
Some works [29] proved that the frequently-used skip-gram
model can achieve better performance by partitioning the
property vector. As a result, GNN applications that contain
this model (including many graph embedding algorithms
such as deepwalk and node2vec) can also make use of 3-D
partitioning. And for some of the other GNN applications,
since the computation is not always element-wise, they can
not benefit from the 3-D partitioner.

We follow the popular “think like a vertex” philosophy,
thus it is easy to rewrite an algorithm in our model. Besides,
when 3-D partitioning is not applicable, our work can be
used as a traditional vertex-centric graph system by group-
ing all data into one layer. Still, users of CUBE can take ad-
vantage of our efficient matrix backend. In conclusion, our
work provides an alternative to partition a new dimension
(which is common in MLDM problems), as well as keeps
the ability to implement other algorithms efficiently.

8 OTHER RELATED WORK
There are many distributed ( [3], [4], [5], [10], [11], [12],
[30], I31], [32]], [33], [34], [35]) and single-machine out-of-
core ([6], 7], [8], [91, [36], [37], [38], [39]) systems have
been proposed for processing the large graphs and sparse
matrices. Although these systems are different from each
other in terms of programming models and backend imple-
mentations, our work, is fundamentally different from all of
them with a novel 3-D partitioning strategy.

Our 3-D partitioning algorithm is inspired by the 2.5D
matrix multiplication algorithm [40], which is designed for
multiplying two dense matrices. There are also many other
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algorithms proposed for partitioning large matrices ( [29],
[41], [42], [43], [44], [45]), and some of them discuss 3-D
parallel algorithms. However, they are all designed for a
specific problem or the standard matrix multiplication, and
hence cannot be used in other graph applications. Instead,
both CUBE and SINGLECUBE are general graph processing
systems that provide a vertex-centric programming model.
Furthermore, the system SINGLECUBE uses 3-D partitioning
in the out-of-core environment to reduce disk I/O. This is
a new scenario that is not considered by previous related
works because they all focus on distributed computing.
There are also some works provide a simpler alter-
native to out-of-core graph systems, which are based on
data caching mechanisms. For example, by leveraging the
well-known memory mapping capability alone, MMap [37]
outperforms some graph systems. Importantly, we do not
intend to replace existing approaches with 3-D partitioning.
Rather, our work can benefit these works, besides general
graph processing systems that we focus on in this paper.
Specifically, once the property vector is divided into differ-
ent layers, more vertices/edges can be cached in memory,
thus reduce the number of page replacement. In other
words, 3-D partitioning still leads to a I/O reduction.

9 CONCLUSION

Disk I/0 is the major performance bottleneck of existing
out-of-core graph processing systems. And the total I/O
amount is largely determined by the partitioning strategy.
We found that the popular “task partitioning == graph par-
titioning” assumption is untrue for many MLDM algorithms
and may result in suboptimal performance. We explore this
feature and propose a category of 3-D partitioning algorithm
that considers the hidden dimension to partition the prop-
erty vector. By 3-D partitioning, the I/O amount of the
out-of-core system can be largely reduced. In fact, this 3-
D partitioning algorithm is adaptive to both distributed and
out-of-core scenarios. Based on it, we built a new distributed
graph computation engine CUBE and an out-of-core graph
processing system SINGLECUBE, both of which can perform
significantly better than the state-of-the-art systems.
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