
0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2531666, IEEE
Transactions on Software Engineering

1

A Lightweight System for Detecting and
Tolerating Concurrency Bugs

Mingxing Zhang, Yongwei Wu, Member, IEEE, Shan Lu,
Shanxiang Qi, Jinglei Ren, Weimin Zheng, Member, IEEE,

Abstract—Along with the prevalence of multi-threaded programs, concurrency bugs have become one of the most important sources
of software bugs. Even worse, due to the non-deterministic nature of concurrency bugs, these bugs are both difficult to detect and fix
even after the detection. As a result, it is highly desired to develop an all-around approach that is able to not only detect them during
the testing phase but also tolerate undetected bugs during production runs. However, existing bug-detecting and bug-tolerating tools
are usually either 1) constrained in types of bugs they can handle or 2) requiring specific hardware supports for achieving an
acceptable overhead.
In this paper, we present a novel program invariant, name Anticipating Invariant (AI), that can detect most types of concurrency bugs.
More importantly, AI can be used to anticipate many concurrency bugs before any irreversible changes have been made. Thus it
enables us to develop a software-only system that is able to forestall failures with a simple thread stalling technique, which does not
rely on execution roll-back and hence has good performance.
Experiments with 35 real-world concurrency bugs demonstrate that AI is capable of detecting and tolerating many important types of
concurrency bugs, including both atomicity and order violations. It has also exposed two new bugs (confirmed by developers) that were
never reported before in the literature. Performance evaluation with 6 representative parallel programs shows that AI incurs negligible
overhead (<1%) for many nontrivial desktop and server applications.

Index Terms—Concurrency Bugs, Software Reliability, Bug Tolerating.

F

1 INTRODUCTION

1.1 Motivation

N OWADAYS, in order to better utilize multi-core systems
concurrent programs are becoming more and more prevalent.

But due to the inherent complexity of concurrency, these programs
are remarkably error-prone [2]. Even worse, unlike sequential
bugs, the manifestation of concurrency bugs depends not only
on input data but also on many other timing-related events (e.g.,
thread interleavings). Thus it is both hard to detect concurrency
bugs during the in-house testing phase, and difficult to fix the
detected concurrency bugs. As a demonstration of the later case,
recent investigations have shown that it frequently takes more
than one month to fix a concurrency bug [3], [4], and, even after
consuming so many development resources, nearly 70% of the
patches are buggy in their first release [5], [6]. Consequently, an
all-around approach that is able to not only detect bugs during in-
house testing but also tolerate undetected bugs in production runs

• An earlier version of this work [1] appeared in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE ’14).

• M. Zhang, Y. Wu, J. Ren and W. Zheng are with the Tsinghua National Lab-
oratory for Information Science and Technology (TNLIST) Department of
Computer Science and Technology, Tsinghua University, Beijing 100084,
China. Research Institute of Tsinghua University in Shenzhen, Shenzhen
518057, China. Technology Innovation Center at Yinzhou, Yangtze Delta
Region Institute of Tsinghua University, Ningbo 315000, Zhejiang, China.
E-mail: {zhangmx12,renjl10}@mails.tsinghua.edu.cn
{wuyw,zwm-dcs}@tsinghua.edu.cn

• S. Lu is currently with the University of Chicago, USA
E-mail: shanlu@cs.uchicago.edu

• S. Qi is currently with the UBER growth team, USA
E-mail: qi@uber.com

Manuscript received MM DD, YYYY; revised MM DD, YYYY.

are highly desired.
Generally speaking, an ideal bug-tolerating tool should satisfy

requirements from two aspects. First, it should have a high bug-
tolerating coverage, which means that the tool can handle a wide
variety of concurrency bugs that are hidden in the deployed appli-
cations. Specifically, the tool should be able to detect and tolerate
both atomicity violations and order violations that involve only
two threads and one variable, which, based on a previous empirical
study [2], are the two most common types of concurrency bugs in
the real world. Second, in order to ensure that the tool is useable
in practice, it needs to only incur a low run-time overhead even
on the commodity machines. Hence the tool must not rely on a
custom hardware that currently does not exist.

According to our investigation, the existing techniques for
tolerating concurrency bugs can be categorized into three types,
depending on when bug toleration takes effect (Figure 1). But none
of them can satisfy the above two requirements simultaneously.

failure	
 	
 	
 	
 (more	
 failures)	
 turning	
 point	

……	

hot	
 patch	

(1)	
 always-­‐on	
 ……	

Fig. 1: Categorization of bug-tolerating tools. The arrow in the
figure represents the time-line during production runs.

1) Always-on approach. The first type of existing approaches is
the Always-on approach, which constrains the program’s execution

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2531666, IEEE
Transactions on Software Engineering

2

all the time to prevent potential manifestations of concurrency
bugs. This kind of approach constrains the threads’ interleavings
even in correct runs and hence relies on transactional memory or
other custom hardware to achieve good performance. For example,
both the Atomtracker [7] and the AtomAid [8] will automatically
group instructions into chunks and require the hardware to execute
each chunk atomically. In addition, this kind of approach often
only probabilistically tolerates concurrency bugs with a specific
root cause pattern (e.g., atomicity violations), and are unable to
handle bugs with other types of root causes (e.g., order violations).

2) Failure-recovery approach. Tools within this category, such
as PSet [9] and Frost [10], will roll back the program’s execution
to a recent checkpoint when failures or errors occur and rely on
the re-execution for automated recovery. However, the checkpoint
and roll-back mechanism is quite complex. Hence it will incur
significant overhead on commodity machines, which makes it
impractical to be used in practice. A recent work ConAir [11]
has achieved the low overhead by only rolling back idempotent
regions of one thread, which can be reexecuted for any number of
times without changing the program semantics. However, as we
will discuss in Section 5.4, ConAir can only achieve that overhead
by significantly sacrificing the tool’s bug-tolerating coverage.

3) Post-mortem approach. Finally, the third kind of bug-
tolerating tools is the Post-mortem approaches. This kind of
approaches [12], [13] aims to prevent future manifestations of
a concurrency bug, after triaging earlier manifestations of the
bug. They can ease the pain of lengthy patch releasing period,
but cannot prevent failures caused by unknown bugs (i.e., losing
coverage).

1.2 Our New Approach

In this paper, we propose a new approach to tolerate concur-
rency bugs in production runs. Different from all the previous
techniques, this new approach achieves both the coverage and
the performance requirement by anticipating the manifestation
of concurrency bugs at run time. This anticipating ability enables
us to prevent bugs’ manifestations through temporarily stalling the
execution of one thread, which incurs much smaller overhead than
the checkpointing and rollback mechanism used in the previous
works.

The key observation behind our approach is that there exists
a turning point t during the manifestation of a concurrency bug.
Before t, the manifestation of the bug is non-deterministic and
can be avoided by perturbing the threads’ scheduling. In contrast,
after t the manifestation of the bug becomes deterministic and
cannot be avoided without a rollback. Thus if a concurrency bug
can be anticipated before its turning point, its manifestation can
be prevented by temporarily stalling a thread, which incurs little
overhead.

As you can imagine, anticipating bugs right before the turning
point is critical to bug tolerating. Anticipating too early will in-
evitably encounter many false positives, which causes unnecessary
thread stalling and performance losses. Anticipating too late will
miss the chance of lightweight bug toleration — only the heavy
weight checkpoint-rollback mechanism can restore the correct
states after turning points.

However, anticipating bugs right before the turning point is
also challenging. Previous concurrency-bug detection tools did
not consider bug anticipation and would indeed detect many bugs
after the turning points (we will discuss in more details in Section

5.2). Below, we simply demonstrate how two straw-man ideas do
not work for bug anticipation.

(b)

(a)
Correct Run Incorrect Run

Read X

Th read 1

Write X
Read X
Write X

Th read 2

Read X

Th read 1

Write X
Read X

Write X

Th read 2

Correct Run Incorrect Run

Th read 1

Write X
Read X

Th read 2 Th read 1

Write X
Read X

Th read 2

The turning point of the bug's manifestation.

Fig. 2: Illustrations of bugs’ turning points.

Straw-man 1: Detecting a bug before the execution of buggy
writes. Intuitively, one might think that it should be early enough
to prevent a bug, if no buggy write has happened. Unfortunately,
this is not true. Figure 2 (a) shows a typical atomicity violation
pattern, where the expected atomicity of write-after-read is vio-
lated. Many real-world concurrency bugs follow this pattern [2].
Here, the turning point is actually right before the second read
instruction, as circled in Figure 2 (a). Once that read happens,
although no bug-related write has executed, the atomicity violation
is inevitable.

Straw-man 2: Detecting a bug before the execution of the
second buggy thread. Suppose a bug involves two threads. Even if
only one thread’s buggy code region has executed, it could still be
too late. Figure 2 (b) illustrates a typical order violation pattern,
where a read in thread 2 unexpectedly executes before a write in
thread 1. Many real-world concurrency bugs follow this pattern
and lead to problems such as un-initialized reads [2]. The turning
point in this example is right before the read in Thread 2, as circled
in Figure 2 (b). Once that read is executed, although the buggy
code region in thread 1 has not executed yet, the order violation is
inevitable.

1.3 Contributions
This paper makes the following contributions.
First, we proposed a new approach for tolerating production-

run concurrency bugs. This new approach complements the exist-
ing bug tolerating approaches by anticipating concurrency bugs’
manifestations right before their turning points. As a result, we
can use a lightweight thread-stalling technique, instead of the
heavyweight checkpoint-rollback mechanism, to get around the
detected bugs.

Second, we designed a novel invariant, named Anticipating In-
variant (AI), that is suitable for effective and efficient concurrency-
bug toleration. Roughly speaking, previous bug-detecting invari-
ants [14], [15], [16], [9] usually focus on the ability to observe
the concurrency bug ultimately, hence the detections are often
too late for tolerating concurrency bugs without using roll-back.
In contrast, AI will immediately be violated after bugs’ turning
points (e.g., after the instruction enclosed by dotted oval in Figure
2 is executed), which makes the anticipation of bugs both possible
and timely. Specifically, for an instruction I that accesses variable

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2531666, IEEE
Transactions on Software Engineering

3

V , AI captures which instructions are allowed to access V right
before I from a different thread. Consequently, we can check
before the execution of each instruction I whether the immediate
execution of I would violate its corresponding invariant. If that is
the case, we need only to postpone I’s execution by temporarily
stalling I’s thread to avoid the violation. What distinguishes
AI from previously proposed interleaving invariants is that AI

can help achieve both the coverage goal and the overhead goal
of concurrency-bug toleration. In terms of coverage, it reflects
programmers’ intentions about the correct order of concurrent
memory accesses, and its violation can be used to detect both
atomicity and order violations. In terms of overhead, the violation
of AI occurs at exactly the turning point of most concurrency
bugs, not too early and not too late. More details are presented in
Section 2.

Third, based on AI, we implemented a low-overhead software-
only system1 that is able to not only detect concurrency bugs
during the testing phase but also tolerate them on-the-fly during
the production runs. Our system includes several steps: it first
automatically learns AI during the in-house testing phase; it then
monitors violations to AI during the production runs; finally, it
automatically and temporarily stalls a thread right before an AI

violation to prevent the manifestation of concurrency bugs. To the
best of our knowledge, this is the first attempt to efficiently tolerate
previously unknown atomicity and order violations at run time
without rollbacks. Our system also includes an optional bias in-
strumentation scheme and several APIs to allow easy performance
tuning for memory-access intensive applications. More details are
presented in Section 3.

Fourth, besides detecting and tolerating, we also explore the
usage of AI at other phases of the whole bug-handling lifecycle.
In Section 4, we demonstrate how to use AI to actively expose
order violations, and discuss how to use AI as an emergency patch
generator.

Finally, we conduct an evaluation that is based on 35 rep-
resentative real-world concurrency bugs. The evaluation results
show that our system can tolerate all of the 35 concurrency bugs,
which is more than each of the existing techniques that we have
evaluated. Our system also incurs low overhead — smaller than
1% overhead for many non-trivial desktop and server applications.
Furthermore, we detected two previously unknown concurrency
bugs from widely used open-source software, which are confirmed
by the corresponding programmer and fixed in the nightly build.

2 ANTICIPATING INVARIANT

Program invariants are predicates that should always be true at
certain points of the execution; they usually reflect programmers’
intentions. Many recent works pay close attention to learn “likely
invariants” from testing runs and use them to detect or tolerate
software bugs [17], [15], [16]. These invariants are supposed to
be held in all the correct runs, thus if one of them is violated
at run time, a bug probably has manifested. However, although
these invariants all differ vastly in their details, many of them are
constrained in types of bugs they can handle. More importantly,
they are designed for detecting bugs instead of anticipating bugs,
which makes them unsuitable for lightweight bug-tolerating.

1. We have made the source code of our tool publicly available at
http://james0zan.github.io/AI.html. Related documentations and several demos
are also presented there.

Testxrun

Threadx1

I3S3:ReadxX
I4S4:ReadxY

I6S6:ReadxY
I7S7:ReadxX

Threadx2

I1S1:WritexX
I2S2:WritexY

I5S5:ReadxX

RPre(I1)x=xRPre(I2)x=xnil
RPre(I3)x=xS1

RPre(I4)x=xS2

RPre(I5)x=xS3

RPre(I6)x=xS2

RPre(I7)x=xS5

IxSyxmeansxthatxdynamicx
instructionxIxxisxderived
fromxstaticxinstructionxSy.

RemotexPredecessor

Fig. 3: Demonstration of remote predecessors.

Test,run

Thread,1

I2S2:Read,X

I4S2:Read,X

Thread,2

I1S1:Write,X

I3S3:Read,X

I5S3:Read,X

RPre(I1),=,nil
BSet(S1),=,{nil}
RPre(I2),=,S1,,RPre(I4),=,S3

BSet(S2),=,RPre(I2),∪ RPre(I4),=,{S1,,S3},
RPre(I3),=,RPre(I5),=,S2

BSet(S3),=,RPre(I3),∪ RPre(I5),=,{S2},

Remote,Predecessor

Fig. 4: Demonstration of belonging sets.

In order to resolve the above problems, we proposed a novel
invariant, named Anticipating Invariant (AI), that will be violated
immediately after the bugs’ turning point. In this section, we first
introduce the definition of AI. Then, we present some case studies
to demonstrate AI’s ability of anticipating concurrency bugs right
before the turning points. Finally, we discuss why and how AI is
different from prior works.

2.1 Definition

Through investigating many real-world bugs, we find that the
manifestations of most concurrency bugs involve an instruction
I1 that is preceded by an unexpected instruction I2 from a
different thread, where I1 and I2 access the same variable. In
addition, postponing the execution of I2 can often prevent the
bug’s manifestation (i.e., the execution of I2 is the turning point).

For example, most of the order violations occur when an in-
struction I1 from Thread 1 unexpectedly executes after instruction
I2 from Thread 2, which causes I2 to be preceded by a different
instruction that accesses the same variable as I2. And these bugs
can be avoided by postponing I2 until I1 is executed. As for
another example, most of the atomicity violations occur when in-
struction I2 from Thread 2 unexpectedly interleaves the instruction
I1 and I3 from Thread 1, so that I2 is unexpectedly preceded by
I1 (instead of I3). Similar to the order violations, postponing I2
can effectively prevent this kind of atomicity violations.

Leveraging the above observation, we propose the Anticipating
Invariant, which can satisfy both of the two requirements listed in
Section 1.1. Specifically, in the rest of this paper we will use Sy

to indicate a static instruction in the source code, which is a line
of code that can be differentiated by its program counter. And
we will use IxSy to represent that the dynamic instruction Ix
observed at run time is derived from static instruction Sy . Here,
the “dynamic instruction” means an execution instance of a static
instruction, thus a static instruction in loops or recursions can have
many dynamic instructions that are derived from it.

Following these definitions, we define a remote predecessor,
expressed as RPre(Ix), for every dynamic instruction Ix in the

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2531666, IEEE
Transactions on Software Engineering

4

Incorrect(Interleaving Correct(Interleaving(i

S1(and(S2(are(assumed(to(be(executed(atomically.
Wrong(interleaving(will(lead(to(crash.

void(innobase_mysql_print_th;..=({(((((((((((((bool(do_command;...={
((...(((...
((if(;thdT>proc_info=({
((((putc;,(,3(f=;
((thdT>proc_info(=(0;

((((fputs;thdT>proc_info3(f=;
((}(...(((...
}(((}

S1

S2

S3

Thread(1 Thread(2

ha_innodb.cc sql_parse.cc

2

2

1

i

(a) The lines of code that are related to the bug.

I3S2PinPCorrectPrunP2PisPenclosedPwithPdottedPlineX
becausePthatPitPwillPbePbypassedPbyPanPif-conditionP
inPthisPinterleaving.

RemotePPredecessor

BSetZS1TP=PRPre1ZI1TP∪ RPre2ZI2TP=P{nilXPS3}PPPPPPPPRPreZPmeansPthePremotePpredecessorPP
BSetZS2TP=PRPre1ZI2TP=P{nil}PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPobtainedPfromPrunPZ.
BSetZS3TP=PRPre1ZI3TP∪ RPre2ZI1TP=P{nilXPS2}

RPre1ZI1TP=PRPre1ZI2TP=Pnil
RPre1ZI3TP=PS2

CorrectPrunP1

ThreadP2

I3S3:WritePX

ThreadP1

I1S1:ReadPX

I2S2:ReadPX

CorrectPrunP2

ThreadP2

I1S3:WritePX

ThreadP1

I2S1:ReadPX

I3S2:ReadPX

RPre2ZI1TP=Pnil
RPre2ZI2TP=PS3

IncorrectPrun

ThreadP2

I2S3:WritePX

ThreadP1

I1S1:ReadPX

I3S2:ReadPX

RPreinZI2TP=PS1

PPPPPPPPPPPPPPPPPPPPBSetZS3T
PPPPPPPPPPPPPPPPPPPPPPPPPP

(b) The simplified version of the bug.

Fig. 5: A real-world atomicity violation in MySQL. I3S2 in correct run 2 is enclosed in dotted line, because it is bypassed by an if-condition and
hence not executed in that case. As a result, the belonging set of S2 is {nil} rather than {nil, S3}.

execution traces. RPre(Ix) is a static instruction, which has at
least one dynamic instruction derived from it that 1) accesses
the same memory address as Ix; 2) comes from another thread
(besides Ix’s thread); and 3) accesses the address immediately
before Ix. By using the phrase “immediately before”, we mean
that there is no instruction that has accessed the same address
is interleaved. In other words, we consider I2 from Thread 2 to
be immediately before I1 from Thread 1 if and only if, except
instructions from Thread 1, there is no instruction that accesses
the same address of I1 between the execution of I2 and I1. And
RPre(Ix) = nil if there is no such dynamic instruction. For
example, Figure 3 shows an interleaving and each instruction’s
corresponding remote predecessor. As we can see from the figure,
although I4 executes between I2 and I6, RPre(I6) = S2,
because I4 is executed by the same thread as I6.

To be more explicit, the remote predecessor has the following
characteristics: 1) It is defined for every dynamic instruction. Thus
if one static instruction is executed more than once in an execution,
there will be multiple dynamic instructions and hence multiple
remote predecessors that are needed to be calculated; 2) the nil
state is specially defined to describe the state that the instruction
can be executed before any instructions from other threads that
access the same address. As we will discuss later in Section 2.2,
nil is very useful for anticipating bugs in practice; 3) Different
from many previous works [9], whether the instruction is a read
or a write operation does not matter in calculating the remote
predecessors.

Figure 4 shows another interleaving, in which all the memory
operations access the same address. Note that I1’s remote pre-
decessor is nil, because no instruction has accessed the variable
X before it. And, as there are two dynamic instructions derived
from the same static instruction S2 in this test run, their remote
predecessors are calculated separately, and the results are S1 and
S3 respectively.

After investigating many concurrency bugs, we observe that:
In all the correct runs, the remote predecessor of the same static
instruction’s dynamic instructions has fixed candidates. And once
a dynamic instruction’s remote predecessor does not belong to
this set, it implies the occurrence of a concurrency bug. Hence we
calculate a Belonging Set, expressed as BSet(Sy), for every static
instruction, which is the union of all the remote predecessors of its
dynamic instructions that have been seen in verified interleavings.

And we define the Anticipating Invariant to be:

RPre(IxSy) ∈ BSet(Sy), IxSy is derived from Sy

As an illustration, BSet of S2 in Figure 4 is calculated as
BSet(S2) = RPre(I2) ∪ RPre(I4) = {S1, S3}. And the
belonging set of S3 is {S2}, since the two dynamic instructions
derived from it have the same remote predecessor.

(b)

BSet(S1b)m=mRPre(I1)m=m{nil}
BSet(S2b)m=mRPre(I2)m=m{S1b}

RPrein(I1)m=mnilmmmmBBSet(S2b)

I1S1b:WritemX

Threadm1b Threadm2b

I2S2b:WritemX

CorrectmRun

I2S1b:WritemX

Threadm1b Threadm2b

I1S2b:WritemX

IncorrectmRun

(a)

BSet(S1a)m=mRPre(I1)m=m{nil}
BSet(S2a)m=mRPre(I2)m=m{S1a}

RPrein(I1)m=mnilmmmmBBSet(S2a)

I1S1a:ReadmX

Threadm1a Threadm2a

I2S2a:WritemX

CorrectmRun

I2S1a:ReadmX

Threadm1a Threadm2a

I1S2a:WritemX

IncorrectmRun

RemotemPredecessor

Fig. 6: Interleavings of two typical order violations.

2.2 Case Studies

2.2.1 Atomicity Violation

Figure 5a shows a real-world atomicity violation from the
MySQL database server, while Figure 5b is the corresponding
simplified code of this bug. As we can see from the figure, a total
of two possible interleavings can be found in correct test runs, and
only one possible interleaving can be found in incorrect runs.

After observing the correct test runs, we can calculate that
BSet(S3) is {nil, S2}. Then in the incorrect case, when I2S3

in Thread 2 wants to be executed before I3S2 in Thread 1 after
I1S1 has already been executed, its remote predecessor will be
S1. Since S1 6∈ BSet(S3), a violation is reported. Note that this
bug can be anticipated before S3’s execution, at which point, the
run-time environment still can prevent the bug from happening by

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2531666, IEEE
Transactions on Software Engineering

5

OriginalT

SourceT

Code

AIPrepare
Pass

loadTTWIDT1

storeTWIDT2

...

...

...

log(1,T...)
loadTTWIDT1

log(2,T...)
storeTWIDT2

...

...

...

In-house
Testing

AITrace
Pass

AITolerate
Pass

Access

Traces

guard(1,T...)
loadTTWIDT1

guard(2,T...)
storeTWIDT2

...

...

...

WhiteTListT&TMarkedTSourceTCode

TestingTPhase ProductionTPhase

Fig. 7: Overview of how to use AI for tolerating concurrency bugs.

temporarily stalling the execution of Thread 2. There is no need
to roll back any executed instruction here.

Another example of the atomicity violations is shown in Figure
2 (a). In the incorrect run, AI can anticipate the bug before
ReadThread 2, because ReadThread 1 does not belong to its
belonging set. Hence the bug can also be avoided by temporarily
stalling the execution of Thread 2.

In contrast, although previous works have proposed many
types of invariants to detect atomicity violations eventually [14],
[15], [16], [9], they cannot predict many kinds of atomicity viola-
tions before their turning points. We will discuss the distinctions
in more details in Section 5.2.

2.2.2 Order Violation
Figure 6 shows two representative interleavings obtained from

a R-W order violation and a W-W order violation respectively.
The remote predecessor of I1S2a in subfigure (a) and I1S2b

in subfigure (b) are both nil in the incorrect run. In this case,
a violation will be reported because neither BSet(S2a) nor
BSet(S2b) contains nil. Similar to atomicity violations, the bug
is detected right before its turning point and hence can be avoided
without using roll-back.

Unlike our Anticipating Invariant, previous works’ [15], [16],
[9] ability of anticipating order violations will be influenced by
other conditions like whether there is another leading instruction
accessing the same address. A formal discussion will be given
later in Section 5.2.

2.3 Rationales

Although most of the invariant-based techniques share the
same formation of learning some invariants from testing runs
and then checking/guarding them later. AI differs from the others
in its ability of avoiding roll-back, which requires the invariant
designer’s perspective to be shifted from “how to detect the bug
eventually” to “how to anticipate the bug right before its turning
point”. Owing to this unique perspective, many special decisions
are made during the design of AI :

1) Many previous works [14], [7] record some states in a
former instruction and check them at later instructions. Then they
learn invariants about how these states will be preserved or altered.
But when the invariant is violated at the later instruction, one can
do nothing but roll-back to tolerate the bug. Instead, AI does not
wait for the last instruction in a buggy region to detect the invariant
violation. It constrains the instant state of each instruction not a
continued state of an instruction region.

2) AI does not differentiate read and write instructions, so
that it can avoid the deficiency of straw-man idea 1 described in
Section 1.1.

3) A special state nil is explicitly defined in AI to represent
the initial state. It helps us to address the limitation of straw-man
idea 2 that is also listed in Section 1.1.

4) AI tries to make minimal assumptions about where a bug
may hide. For example, instructions involved in an Anticipating
Invariant do not need to constitute the unserializable interleaving
like AVIO [14], the read-write dependence described in DUI [15],
or the memory-dependent used in PSet [9], etc. Thus, as shown
in Section 5.2, AI can detect more bugs than each of the previous
works can do.

3 IMPLEMENTATION

In order to utilize the Anticipating Invariant for detecting
and tolerating concurrency bugs, we implement a software-only
system by using the LLVM compiler framework [18]. In this
section, we first give an overview of our system. Then, we describe
how to automatically extract AI and how to use it for detect-
ing/tolerating concurrency bugs. Finally, we discuss the usages of
custom instrumentation strategies and the provided APIs.

3.1 Overview
In our implementation, we built a system mainly consists of

three LLVM passes, namely AIPrepare, AITrace, and AITolerate.
Each of them will perform a corresponding transformation to the
input source code.

Specifically, the input of AIPrepare pass is the original source
code. It will assign an universally unique access ID to each
load/store instruction in the LLVM IR (by adding a metadata
node). The marked code is stored in bitcode format for further
usage. If the user also designs a custom instrumentation strategy
with our API, a corresponding white list file will also be generated
(elaborated in Section 3.4.2).

Then, the AITrace pass reads the marked code and adds a
logging function before each memory access, which will output a
triplet of access ID, thread ID, and the accessed memory address
to the trace file. This instrumented code is used in the in-house
testing phase to gather enough traces for computing BSets.

Finally, the AITolerate pass uses all the data generated before
(white list and traces) to transform the marked code to an AI-
guarded version of code. The generated code is compiled to
executable objects and used in production runs.

3.2 Training
In order to infer AI automatically without any programmers’

annotation, we rely on correct runs observed during the in-house
testing phase. As pointed out by prior work [9], programmers can
assert whether a test run is correct or not by verifying the outputs.

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2531666, IEEE
Transactions on Software Engineering

6

IncorrectkInterleaving CorrectkInterleaving
global_optkshouldkbekinitializedkbeforekbeingkread.
Wrongkorderkwillkleadktokcrash.

W

R

intksmallserver=...}k{
kkwebhttrack_main==charT}adrk1kp};kkkkkkkkkkkk/Tcreatedkbykwebhttrack_mainT/
kk...kkvoidkback_launch_cmd=voidTkpP}{
kkhts_cancel_file_push=global_opt2...};kkkkkkkkkkkk...
kk...kkkglobal_opt=hts_create_opt=};
kkk...
}kk}

htsserver.c htsweb.c

Threadk1 Threadk2

(a) The lines of code that are related to the bug.

BSetXS1Cx=x{nil}
BSetXS2Cx=x{S1,xS3}
BSetXS3Cx=x{nil,xS2}
BSetXS4Cx=x{S2}

ThexfirstxS4xXI3S4CxinxIncorrectxrunxisxenclosed
withxdottedxline,xbecausexitxwillxbexstalled
beforexitsxexecutionxuntilxthexsecondxone.

RemotexPredecessor

xxxxxxxxxxRPreinXI3S4Cx=xnilxxxxxxBSetXS4C

xxxxxxxxxxRPreinXI5S4C=xS2 ∈ BSetXS4C

Threadx1

I1S1:WritexX

I3S3:ReadxX
I4S4:ReadxX
I5S3:ReadxX

Threadx2

I2S2:WritexX

Correctxrunx1

Threadx1

I1S1:WritexX
I2S3:ReadxX

I4S4:ReadxX
I5S3:ReadxX

Threadx2

I3S2:WritexX

Correctxrunx2

Threadx1

I1S1:WritexX
I2S3:ReadxX
I3S4:ReadxX

I5S4:ReadxX
I6S3:ReadxX

Threadx2

I4S2:WritexX

Incorrectxrun

Stall

(b) The simplified version of the bug.

Fig. 8: A real-world W-R order violation in HTTrack, which cannot be detected by PSet.

Generally, the programmers should both run the application under
different inputs to cover all the feasible paths, and run multiple
times with every input to explore different interleavings. A sys-
tematic concurrency testing framework such as CHESS [19] or
CTrigger [20] can also be used to systematically explore different
interleavings for each input.

Then, after gathering enough trace files, we can now extracting
AI from them. Specifically, as described in the above section, after
running the instrumented program under various inputs for many
times, the added logging functions will generate corresponding
trace files that consist of triplets of (Access ID y, Thread ID tid,
Accessed Memory Address addr). Each of these triplets represents
a dynamic instruction defined in Section 2.1. By scanning the trace
files chronologically, we can calculate the remote predecessor
of each dynamic instruction according to the definition given
before. In the meantime, the Anticipating Invariant for each static
instruction is calculated by updating its belonging set, which can
be formally described by:

BSet(y) = BSet(y) ∪RPre(Tripletx) if Tripletx = (y, .., ..)

Since disk I/Os are expensive, to shorten the time spent in
training, the logging functions in our implementation first buffer
logs in memory and then use direct memory access (DMA) APIs
to flush logs to the disk.

3.3 Detecting & Tolerating

After obtaining the invariants, the AITolerate pass will encode
the synthesized BSets (the union of the results of each trace file)
into the application by adding an initialization function to the pro-
gram’s llvm.global ctors array, which is the list of constructor
functions and hence will be executed before the execution of other
functions. The AITolerate pass will also add a guarding function
before every shared-memory accesses to perform bug tolerating.
These guarding functions ensure that all the anticipating invariants
will not be violated. Since a shared variable will be accessed
by at least one static instruction S that satisfies the property:
BSet(S)− {nil} 6= ∅, we can identify shared-memory accesses
during the training while inferring AI .

Specifically, the guarding functions will maintain a data struc-
ture Recorder[M] to record the last two instructions that access
memory M and are from different threads. This is enough for
calculating the remote predecessors, because RPre of the current
operation is the last access (before updating) if the access is
from a different thread, or it must be the second last one. After
obtaining the RPre, the guarding function will check whether the

corresponding Anticipating Invariant of the current instruction is
held, and an Anticipating Invariant Violation is reported if it does
not (i.e. RPre(Ix) 6∈ BSet(Sy) although Ix is derived from
Sy). Corresponding violation reports are generated to indicate the
programmers that a potential site of concurrency bug is detected.

Moreover, as analyzed in Section 2.2, thanks to AI’s capability
of anticipating bugs before their occurrence, we can tolerate
these violations by stalling the violating thread until the violation
gets resolved. As for the implementation, the violated AI will
be checked again and again, in order to determine whether the
accesses from other threads have resolved it. If the check passes,
the stalled thread will resume its execution.

Although it is rare, not all the Anticipating Invariant Violations
can be tolerated by just perturbing the thread schedule. It is
possible that the only correct interleaving for an input is untested.
If such “fake” violation (i.e. false positive) is not properly treated,
it may cause an indefinite stall. Thus, in order to ensure forward
progress, we set the maximum stall time to a threshold (10ms
is used in our experiments). Once the threshold is reached, the
system will log the violation and resume the stalled thread’s
execution. The log is sent back to developers to determine whether
this violation is a bug. If it is not, we can update the relevant AI

to green-light this new interleaving in future runs. Our algorithm
ensures that stalling does not occur during the tested interleavings.

Figure 8b shows the simplified version of Figure 8a, which is
a real-world W-R order violation in HTTrack. The order assumed
by developers is that S4 should always be executed after S2. As
pointed out by Shi et al. [15], since S2 may inject between S1

and S3’s execution in some cases (like correct run 1), PSet cannot
detect this bug. But the remote predecessor of S4 is always S2 in
both two correct test runs, and hence BSet(S4) = {S2}. This
invariant constrains that S4 is impossible to be executed before
S2 in production runs. More details about this violation in the
incorrect run can be found in Figure 8b.

To be more clear, Algorithm 1 gives the pseudo code of our
guarding function, in which the recorder data structure is used
for collecting runtime information and the learnt invariants are
stored in BSet. Specifically, the elements of recorder are initialized
with two nil flags, and for each tracked shared memory access the
corresponding element is updated by right shifting the data array.
In contrast, the BSet data structure is initialized at the beginning
of the program’s execution and keeps unchanged for the whole ex-
ecution. As for the stalling mechanism, we currently use a simple
method that just calls an “usleep()” functions to stall the thread
for one millisecond, which is enough because the program will
not encounter with unnecessary stalling after achieving sufficient

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2531666, IEEE
Transactions on Software Engineering

7

Algorithm 1 Pseudo code of the Guarding Function.

Global Variable:
recorder[M]={< id, tid >, < id, tid >}:

The map that maps a memory address M to
the last two instructions that operate address M
and are from different threads.
The elements of recorder are initialized with two
nil flags.

BSet[I]: The map that maps an instruction I to its
Belonging Set.

function UpdateRecorder(Memory Address m, Access ID id,
Thread ID tid)

if recorder[m][0] = nil then
recorder[m][0] := < id, tid >
return nil

end if
if recorder[m][0].tid 6= tid then

recorder[m][1] := recorder[m][0]
end if
recorder[m][0] := < id, tid >
if recorder[m][1] = nil then

return nil
else

return recorder[m][1].id
end if

end function
function Guard(Dynamic Instruction ins, Memory Address m)

iter := 0; id := GetAccessID(ins)
tid := GetCurrentThreadID()
while iter < threshold do

RPre := GetRPre(ins)
if RPre 6∈ BSet[id] then

Report an violation
Stall this thread for a while.

else
Break

end if
iter := iter + 1
if iter = threshold then

Report an unresolved violation
end if

end while
UpdateRecorder(m, id, tid)

end function

training. Moreover, several tricks are used in our implementation
to further lower the run-time overhead of our AI system: 1) a fine
grain locking mechanism is used for the implementation of the
hash map that reserves the learnt belonging sets and the recorder,
which allows synchronized and efficient hash-map accesses and
hence the horizontal scalability of the original program will likely
not to be constrained by AI ; 2) a tuned hash function that uses
bitwise operators only are used for speeding up the hash-table
queries; and 3) thread local variables are used for caching the
thread-depended information that is different for each thread and
does not need to be synchronized with each other (e.g., the thread
ID), which can save the time caused by repeated system calls.

3.4 Custom Instrumentation Strategy

Since only shared-variable accesses have to be instrumented
and there is no need to roll back, AI incurs low overhead for
many nontrivial desktop and server programs and is promising
for production deployment. But for some applications, such as the
high-performance computing (HPC) programs that have intensive

heap accesses, the default instrumentation scheme may still incur
very high overhead. To alleviate this problem, AI also provides
users the ability to design custom instrumentation strategies that
can decrease the overhead with little damage to AI’s ability of
detecting and tolerating bugs. For example, Lu et. al. [21] shows
that a quarter of concurrency bugs in filesystem arise on failure
paths. A custom strategy that preferentially covers these regions
will definitely be very useful.

3.4.1 The Bias Instrumentation Scheme
As an illustration of the custom instrumentation strategy,

we have proposed an optional bias instrumentation scheme that
selectively instruments the “cold-region” of a program. We expect
that this scheme can decrease the overhead while only missing few
harmful bugs in practice. According to our evaluation, this scheme
is effective for the aforementioned HPC programs (the results will
be elaborated in Section 5.5).

Specifically, our bias instrumentation scheme is based on the
so-called “cold-region” hypothesis [22], which is “in a well-
tested program, bugs usually occur in less-executed (i.e., cold)
regions”. The intuition of this hypothesis is simple: the more
frequently (i.e., “hot”) a code region is executed, the more it
is examined in the standard stress testing period, and hence the
less possible a bug is hidden in it. Many previous sampling-based
tools [22], [23] leverage this hypothesis by sampling executions of
code segments at a rate inversely proportional to their execution
frequency. Thus, with this method, rarely executed code segments
are effectively traced whereas frequently executed code segments
are sampled at a very low rate. This approach trades the ability
to collect more samples from frequently executed code segments
for more comprehensive code coverage, while maintaining similar
runtime overhead. According to their evaluation, this mechanism
can significantly reduce the overhead and, at the same time, do
not hurt the coverage, which achieves a good result in Google’s
practice [24].

Moreover, according to our investigation, the “cold-region”
hypothesis can be further strengthened for the HPC programs,
because the distribution of code execution frequency in HPC
programs is extremely skewed. In HPC programs, there will
usually be a few instructions that are responsible for calculat-
ing mathematical kernels. These instructions are hot since they
account for a large portion of all the executed shared memory
accesses, but they are also bug-sensitive, since if a bug is hidden
in them it is not possible for the program to output correct results.
As a result, our bias instrumenting scheme simply chooses to
not instrument this kind of instructions, which will improve the
performance significantly.

As for the implementation, we first group all the static instruc-
tions into maximal number of groups that: if instruction Sa and
Sb belong to different groups, they will never access the same
memory location. In order to achieve this goal, we leverage the
traces obtained in the training phase and a data structure named
disjoint-set. Specifically, a disjoint-set is a data structure that keeps
track of a set of elements partitioned into a number of disjoint
subsets [25]. It supports two useful operations: 1) Find: determine
which subset a particular element is in; and 2) Union: join two
subsets into a single subset. With this data structure, we can first
let all the instructions and all the memory addresses belong to
their own distinct groups. And then, for each memory access
record in the trace “IxSy : Read/Write Addr′′, the group of
instruction Sy is merged with the group of memory address Addr

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2531666, IEEE
Transactions on Software Engineering

8

by executing Union(Find(Sy), F ind(Addr)). According to
the complexity analysis, after adopting the common optimization
technique of disjoint-set named “path compression” and “link-
by-rank”, the amortized cost of each Find and Union operation
become O(log(n)) and O(1) respectively.

After the grouping, we compute an ins-proportion (IP) for
each group, which is the proportion of dynamic instructions
generated by members of this group to all the shared memory
accesses. This information can also be gathered from the traces
and calculated in tandem with the grouping. As for the imple-
mentation, we maintain an execution count ECount for each
group, and for each Union operation the corresponding ECount
is accumulated by using the following formula:

ECount[Union(Find(Sy), F ind(Addra))]

:= ECount[Find(Sy)] + ECount[Find(Addra)]

The procedure of this calculating is formalized as Algorithm 2.
Finally, if a specific flag is set when applying the AITolerate

pass, those groups whose IP is larger than a threshold will
not be instrumented. As we will discuss more in detail later in
Section 5.5, in the HPC programs that we tested, there are usually
several groups that only contains a few (< 20) instructions and
in that same time, accounts to a large portion (> 30%) of shared
memory accesses. Through not instrumenting the instructions of
these groups, we can significantly reduce the overhead and, at the
same time, not miss the bugs we evaluated.

Theoretically, other metrics, such as the ins-proportion of
each single instruction, can also be used to identify the “hot”
instructions. But, in our case on HPC programs, the IP for each
group is enough.

Algorithm 2 Pseudo code for calculating instruction groups and
the corresponding execution count.

Global Variable:
DisjointSet: A disjoint-set that keeps track of the groups of

each static instructions and memory addresses.
ECount[G]: The map that maps a group G to its

execution count.

for all record ∈ trace do
if record is a memory access then

Sy := GetInstruction(record)
Ga := DisjointSet.Find(Sy)
Addr := GetMemoryAddress(record)
Gb := DisjointSet.Find(Addr)
Gc := DisjointSet.Union(Ga, Gb)
ECount[Gc] := ECount[Ga] + ECount[Gb]

end if
end for

3.4.2 APIs for Designing Custom Strategies
Generally speaking, the users can implement their own

instrumentation strategies very conveniently by directly mod-
ifying the generated BSets. However, we also provide sev-
eral APIs to further facilitate this procedure. By default the
AITolerate pass will instrument all the shared variable ac-
cesses, but if a specific flag is set, it will only instrument
the instructions declared by the following annotations: 1) the
AI INS THIS FUNC and AI INS THIS BB macros
are used to tell AI that all the shared memory accesses belong
to this function (or basic block) should be instrumented; and 2)

the AI INS THIS ADDR(void∗addr) function is given to
state that AI should instrument all the accesses to addr, which is
implemented by using a dynamic analysis technique. Specifically,
when applying the AITrace pass, this function will be replaced
by a function that outputs the actual value of addr to the trace
file. Then, combining this information with the former mentioned
triplets, all the related instructions (that have been observed during
the testing phase) can be identified. The users only need to posit
these annotations in the proper positions of the code and set
the corresponding flags. Then the whole procedure, such as the
recomputation of BSets (because the omitted instructions should
not affect Recorder) and selective instrumentation, will all be
automatically handled.

4 OTHER USAGES OF AI

Essentially, AI learns the correct order of concurrent memory
accesses that are intended by programmers. And these learnt
invariants can be used for many other purposes apart from passive
bug detecting and tolerating. In this section, we will demonstrate
the potentials of using AI to actively expose concurrency bugs,
especially the order violations. Moreover, we will also show how
to use AI as an emergency patch generator.

4.1 Exposing Order Violations
As we have discussed in Section 1.1, concurrency bugs rarely

manifest during in-house testing as they depend on rare thread
interleaving. Hence many active testing tools [20], [26], [27] have
been proposed to predict and actively exercise the potentially
buggy interleavings. However, most of these bug-exposing tools
only target specific bug types such as data races or atomicity vio-
lations, and therefore can miss many concurrency bugs, especially
the order violations [28].

Fortunately, by learning the anticipating invariants of a pro-
gram, we have also inferred the “critical order” of shared-memory
accesses that is assumed by programmers. Thus we can build an
active testing tool to purposely promote memory-access orders that
violate the learnt anticipating invariants, i.e., validating whether
those critical orders are indeed enforced by the program. For
example, if the belonging set of a static instruction S2 contains
only one instruction S1, we know that S1 should probably always
be executed before S2 at the run time. Consequently, we can
intentionally stall S1’s thread before its execution to test whether
S1 is enforced to execute before S2 by the program and check the
impact of executing S1 after S2, if possible.

As an illustration, Figure 9a shows a real-world order violation
bug that is reported in the famous Transmission bittorrent client.
Figure 9b, which is a simplified version of the bug, illustrates the
key memory accesses in this bug. Without active timing perturba-
tion, the variable initialization at S1 in Thread 1 almost always
executes before the variable usage at S2 in Thread 2, leading to
correct execution. Thus this bug will very likely escape in-house
testing and slip into production runs. Fortunately, AI will learn
that BSet(S1) = S2 from these passive testing runs. Then if we
apply the AI-based active testing described above to Transmission,
the Thread 1 will be stalled before S1’s execution and, in the
meantime, the Thread 2 is still allowed to make progress, which
will inverse the common order between variable initialization (S1)
and variable usage (S2) and hence expose the bug.

Implementing the above active testing scheme is straightfor-
ward. The only tricky issue is how to coordinate thread stalling

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2531666, IEEE
Transactions on Software Engineering

9

"h->bandwidth" in Thread 1 and "b" in thread 2 represent the same variable,
which should be initialized before the reading.
Wrong order will lead to an assertion failed.

S 1

S 2

(a) The lines of code that are related to the bug.

The first S1 in the exposing run
is stalled, since we want to check
wether the order between S1 and
S2 can be flipped.

Correct run Exposing run

BSet(S1) = {nil}
BSet(S2) = {S1}

(b) The simplified version of the bug.

Fig. 9: Another real-world W-R order violation in Transmission.

and lock acquisition, which is illustrated in Figure 10. In such a
case, AI observes S2 to always execute before S5 during passive
testing runs and tries to reverse this order during active testing.
Unfortunately, simply stalling Thread 1 right before the execution
of S2 cannot make S5 execute before S2, because Thread 1 has
already acquired lock X at the moment of stalling, which makes
it impossible for S5 to execute.

Thread=1

I1S1:=Lock(lock_X)
I2S2:=Write(X)
I3S3:=Release(lock_X)

Thread=2

I4S4:=Lock(lock_X)
I5S5:=Read(X)
I6S6:=Release(lock_X)

BSet(S2)==={nil}
BSet(S5)==={S2}

Remote Predecessor

Stall the thread at the first
lock aquisition that strides
the S2, which is S1..

Fig. 10: Simplified code of a test interleaving involving locks.

In order to resolve this problem, the exposing tool needs to
move the stalling up to where the lock is acquired. In the example
shown in Figure 10, Thread 1 should be stalled right before S1,
instead of S2. In short, the AI-based active testing tool will obtain
all the lock acquisition/release information through trace analysis
and decide where to stall a thread accordingly2.

To be more clear, programmers can add an exposing phase
between the training and production phases mentioned in Figure
7. During this exposing phase, the workflow of using our algorithm
is: 1) calculating the belonging sets with the gathered traces;
2) scanning the traces chronologically again for identifying the
stalling points; 3) adding stalling functions to the program by
instrumenting; and finally 4) executing the instrumented program
for more traces and verify those traces with the invariants learnt
before. Specifically, Algorithm 3 presents the algorithm of iden-
tifying stalling points, which will scan the traces chronologically
and maintain the lock information of each thread correspondingly.
After obtaining the stalling points, the program is instrumented

2. The thread is stalled at the earliest lock-acquiring site if it acquires more
than one lock.

once again for adding stalling function calls. In other words,
the program is instrumented with not only the log functions for
generating traces but also several usleep() calls for purposely
perturbing the thread scheduling. This program will also generate
a trace for each execution while its interleaving may be different
from the uninstrumented ones. Thus we can scan the new traces for
verifying whether the original leant invariants are still held or not.
If there is an invariant violation, it indicates that some order that
is preserved in normal execution is actually not enforced, which
may be caused by a bug.

Moreover, we expect that the exposing phase is used as
part of in-house testing, where test inputs and test oracles are
provided. Thus, whether a run is a failure or success run can be
determined by the test oracles. If the invariant violation happens
during failure runs, our exposing phase generates bug reports to
programmers. Otherwise, if the invariant violation happens during
success runs, our exposing phase successfully prunes out wrong
invariants before the production phase (through the relaxing tool
described in Section 5.6).

Algorithm 3 Pseudo code for identifying the stalling points.

Global Variable:
recorder[M], BSet[I]: The definitions are the same

as Algorithm 1.
Locks[tid]: The map that maps a thread tid to the set of

locks it acquires, initialized with ∅.

for all dynamic instance of instructions IxSy do
tid := GetCurrentThreadID()
if IxSy is acquiring a lock then

Locks[tid] := Locks[tid] ∪ IxSy

end if
if BSet[Sy].size() = 1 then

precedent := BSet[Sy][0]
if Sy 6∈ BSet[precedent] then

first lock = GetFirstLock(precedent)
Record first lock as a stalling point.

end if
end if
if IxSy is releasing a lock then

Locks[tid] := Locks[tid] - ins
end if

end for

4.2 Generating Emergency Patches

Additionally, AI can also be used as an emergency patch
generator, Specifically, once a bug is detected or reported by the

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2531666, IEEE
Transactions on Software Engineering

10

users, the programmers can apply the AITolerate pass to only the
bug related instructions. The instrumented program can prevent all
the future failures of this bug with only trivial overhead. Benefiting
from the custom instrumentation mechanisms described in Section
3.4, the users can implement the above emergency patch very
easily, and hence ease the pain caused by lengthy patch releasing
period.

5 EXPERIMENTAL EVALUATION

5.1 Test Platform, Applications, and Bugs
We analyzed AI’s capability of detecting and tolerating con-

currency bugs by using 35 representative real-world bugs from
11 multi-threaded applications. These applications include three
widely used servers (Apache Httpd , Cherokee and MySQL),
seven desktop/client applications (Mozilla, Axel, Pigz, HTTrack,
Transmission, PBZip2, ZSNES) and the SPLASH-2 benchmarks
[31]. As shown in Table 1, we group the found bugs into eight
patterns: 1) for atomicity violations, symbols on each side of
the vertical line represent the assumed atomicity region in that
thread. Thus a R-R | W Atomicity Violation is a bug in which
two consecutive read operations in one thread are assumed to
be executed atomically, but in fact they can be interleaved by
a write operation from another thread. And a R-R-W | R-R-W
Atomicity Violation occurs when two threads concurrently execute
an atomic region of two read operations followed by a write
operation without acquiring a lock; 2) for order violations, the
symbols represent the assumed order. For example, in a W-R
Order Violation, the programmer intends that a write operation
should always be executed before another read operation, but this
intention is not guaranteed.

According to their particular conditions, we identify these bugs
by a bug report ID in the software’s bug database, a forum post ID,
a paper/web page that describes them, or a commit ID that fixes
them. Moreover, two of these bugs were never reported before but
detected by our system.

We also evaluated the overhead of our software implementa-
tion with several real-world applications and the kernel programs
from SPLASH-2. All these experiments were conducted on a 12-
core Intel Xeon machine (2.67GHz, 24GB of memory) running
Ubuntu-12.04.3-amd64 and using the LLVM 3.3 compiler3.

5.2 Detecting and Anticipating Capability
In order to evaluate whether each kind of bug can be detected

or tolerated (without using roll-back) by AI and several other
existing invariants (AVIO [14], DUI [15], CCI [16], and PSet
[9]), we execute the corresponding buggy programs4 under the
bug-triggering input for 1, 000 times and check whether the bug
is detected or tolerated (random sleeps are added to increase the
bug manifestation probability, following the methodology used by
previous works [16], [9], [32]). Table 2 gives our results, in which
Xrepresents that all the manifestations from this kind of bug are
detected/tolerated in our experiments; Xrmeans that the bugs can
only be detected/tolerated on particular interleavings; and the rest

3. Since the compilation of MySQL requires the -fno-implicit-templates
flag, which is not supported in clang++. We use llvm-g++ from LLVM 2.9
in that case.

4. Among all the 35 bugs we used, 13 of them (mainly from Mozilla) are
bug kernels, which contain all bug-related code snippets extracted from the
original buggy programs. We use the original programs for the experiments of
the remaining 22 bugs.

blank cells represent the corresponding invariant is not violated in
all executions even when the bug is triggered.

Overall, AI can detect all the patterns of bugs we have found,
which is more than each prior invariant. Moreover, it has a superior
anticipating ability and thus can tolerate more bugs without using
roll-back. In the rest of this section, we will compare AI with the
prior invariants one by one.

5.2.1 AVIO
AVIO [14] invariant consists of two static instructions from

one thread that should not be interleaved by an unserializable
memory operation from a different thread. In AVIO, an interleav-
ing is unserializable if the remote operation cannot be reordered
out of the atomicity region without changing the result (two
read operations or operations that access different locations can
exchange their place without changing the result, but if they access
the same variable and at least one of them is write, they cannot do
this). It is an effective invariant for detecting atomicity violations.

W_>CR_CandCWKCareCassumedCtoCbeCexecutedCatomicallyf
WrongCinterleavingCwillCleadCtoCcrashf

nsFileTransportfcpp

IncorrectCInterleaving CorrectCInterleavingCi

nsFileTransport::ProcessS=C{CCnHandleEventS=C{
CCCCfffCCCfff
CCCCmStatusC=
CCCCCCCCmOutputStream;>WriteFromS=;
CCCifSmStatusC:=CNS_OK=
CCCreturn;

CCCCifSmStatusC==CSTREAM_WOULD_BLOCK=C{
CCCCCCCCmStatusC=CNS_OK;
CCCCCCCCreturn;
CCCC}
CCCCfffCCfff
}CC}

ThreadC_ ThreadCK

K

K

_

R_

WK

W_

R_

i

Fig. 11: An atomicity violation bug in Mozilla, which will not
raise an AVIO invariant violation.

However, 1) as a representative of those tools that focus on de-
tecting atomicity violations, AVIO cannot handle order violations
at all; 2) AVIO can only detect a subset of atomicity violations,
because it only checks whether two consecutive memory accesses
are unserializably interleaved. As an illustration, Figure 11 shows
a W-W | R Atomicity Violation given by Yu et al. [9] that will be
ignored by AVIO. In this bug, R2’s interleaving between W1−R1

or R1 − W2 are both serializable; 3) since AVIO invariant is
checked when the second instruction is about to be executed, it
can hardly anticipate the bugs, hence is not able to be used for
preventing them without using roll-back.

5.2.2 DUI
As stated by Shi et al. [15], DUI is a set of Definition-Use

Invariants, which can be used to detect a large variety of soft-
ware bugs including concurrency bugs (both order and atomicity
violations) and sequential bugs. Specifically, 1) DUI-LR describes
the property that a local read should always read a value defined
by a local or remote writer; 2) DUI-Follower checks whether two
consecutive reads from one thread must read the same value; and
3) DUI-DSet defines a “definition set” for every read instruction,
which encloses all the write instructions that the read instruction
can read from.

However, since DUI concentrates on definition-use data flows
which can only be undermined by unexpected write operations

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2531666, IEEE
Transactions on Software Engineering

11

TABLE 1: Evaluated real-world bugs.

Category Pattern Number of bugs Bugs

Atomicity
Violation

R-R |W 5 MySQL]644; MySQL]3596; MySQL]12228;
Mozilla]341323; Mozilla]224911

W-R |W 2 pigz]9ef658babd†; MySQL]19938

W-W | R 5 MySQL]791; MySQL]12848; Mozilla]52111;
Mozilla]73761; Mozilla]622691

R-W | R-W 7
MySQL]56324; MySQL]59464; Apache]48735;
Apache]21287; Mozilla]342577; Mozilla]270689;
Mozilla]225525;

R-R-W | R-R-W 3 Apache]25520; Apache]46215; Cherokee]326

Order
Violation

W-R 10

Axel]313564†; Httrack]20247; Transmission]1660;
Transmission]1827; ZSNES]10918; Mozilla]61369;
MySQL bug from paper Bugaboo [29];
FFT, LU, Barnes bug from paper LOOM [13]

R-W 1 Pbzip2 bug from Yu’s Homepage [30]

W-W 2 MySQL]48930;
Mozilla bug from paper Lu2008 [2]

TABLE 2: Evaluation results on different invariants’ bug detecting and tolerating (without using roll-back) capability. Due to space
constraints, we aggregate the evaluation results of the 35 bugs into 8 patterns. All results of AI in this table are obtained through experiments.
And the results for other detectors are obtained based on our understanding of their algorithms.

Category Pattern AI AVIO DUI CCI PSet
Detect Tolerate Detect Tolerate Detect Tolerate Detect Tolerate Detect Tolerate

Atomicity
Violation

R-R |W X X X X X X X
W-R |W X X X X X X X
W-W | R X X Xr X X X X X
R-W | R-W X X Xr Xr X
R-R-W | R-R-W X X Xr Xr X X

Order
Violation

W-R X X Xr Xr Xr Xr Xr Xr
R-W X X X X X X
W-W X X X X X X

Incorrect Interleaving Correct Interleaving

int ReadWriteProc (...) {
 ... /*callback function of
 PBReadAsync(&p); PBReadAsync*/
 io_pending = TRUE; void DoneWaiting (...) {
 while (io_pending) {...}; ...
 ... io_pending = FALSE;
 ...
} }

Thread 1 Thread 2

W1

W2

W1 is assumed to be executed before W2.
Wrong order will lead to hang.

macio.c macthr.c

R

Fig. 12: A real-world W-W order violation in Mozilla nspr that
cannot be detected by DUI.

before reads, it cannot detect R-W | R-W Atomicity Violations
(e.g. Figure 2 a). In that kind of bugs, the write operation is
following the read operation, not antedating it. And it also cannot
handle W-W Order Violations as shown in Figure 12, because it
is the order within write operations not the order between read
and write that matters. As for R-W | R-W Atomicity Violations,
although DUI can detect the most probable incorrect run shown in
Figure 13 (b) by its DUI-Follower, it will miss the other probable
incorrect interleaving (Figure 13 c).

Moreover, like AVIO, DUI-LR and DUI-Follower are checked
at the last instruction of the buggy regions, thus they cannot be
used to anticipate bugs. And DUI-DSet can only predict W-W | R
Atomicity Violations and a subset of W-R Order Violation if there
exists another leading write operation that is executed before the

buggy region.

Correctbrun

Threadb1

I1S1:ReadbX
I2S2:ReadbX
I3S3:WritebX

Threadb2

I4S1:ReadbX
I5S2:ReadbX
I6S3:WritebX

(a)
RemotebPredecessor

Incorrectbrunb1

Threadb1

I1S1:ReadbX

I5S2:ReadbX
I6S3:WritebX

Threadb2

I2S1:ReadbX
I3S2:ReadbX
I4S3:WritebX

(b)
Incorrectbrunb2

Threadb1

I1S1:ReadbX
I2S2:ReadbX

I5S3:WritebX

Threadb2

I3S1:ReadbX
I4S2:ReadbX

I6S3:WritebX

(c)

Fig. 13: The simplified code of a R-R-W | R-R-W Atomicity
Violation

5.2.3 CCI

CCI [16], which tracks properties like “whether the last access
was from the same thread” and “whether a variable has changed
between two consecutive accesses from one thread”, can detect
both atomicity and order violations.

...
Write1 X
Write2 X

Thread 1 Thread 2

...

Read X
Correct Run

...
Write1 X

Write2 X

Thread 1 Thread 2

...

Read X

Incorrect Run

Fig. 14: A W-R Order Violation that CCI will ignore.

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2531666, IEEE
Transactions on Software Engineering

12

But limitation still remains. Since CCI does not record the
exact program counters, it is relatively simpler than our Anticipat-
ing Invariant. As a double-edged sword, this simplification both
promotes its efficiency and restricts its capability. For example,
Figure 14 gives a complex version of the W-R Order Violation
shown in Figure 2 (b). In this example, the programmer’s accurate
intention is that the read operation in Thread 2 should be executed
after the second write operation in Thread 1. But CCI cannot tell
different write operations apart and will ignore this kind of bugs.
CCI may also miss the bug shown in Figure 2 (a), because it
cannot differentiate it from a common benign race, where a single
read operation interleaves the R-W atomicity region. In contrast,
AI can correctly distinguish them by checking program counters.

Then, once again, CCI is similar to AVIO, DUI-LR and DUI-
Follower in the respect that it is about whether some properties
will be preserved until a later instruction. This kind of invariants
is unsuitable for anticipating bugs.

5.2.4 PSet
Different from the above 3 invariants, PSet [9] was proposed

to prevent undetected concurrency bugs from happening at the
production phase, which is the same as our Anticipating Invariant.
During the production runs, PSet will ensure that a memory
operation M can only “immediately depend on” an instruction
P that belongs to a specific set named PSet, which is established
during the testing phase. Here, “immediately depend on” means
that 1) P and M should access the same memory location and at
least one of them is a write operation; 2) there is no instruction
from either remote or local thread that accesses the same memory
location between P and M .

Although similar to our belonging set in the format, PSet is
still an invariant about data dependencies like DUI-DSet, thus
it constrains that at least one of P and M should be write.
As a result, it can only detect the bug after its turning point in
many cases, which makes the heavy-weight roll-back mechanism
indispensable. Take the R-W atomicity bug shown in Figure 2
(a) as an example, since PSet assumes that two consecutive read
instructions do not construct any “depend on” relationship, it can
only detect the bug at WriteThread 1, which is too late to prevent
the bug without roll-back. According to their experiments [9], only
6 out of 15 bugs they have tested can be resolved by PSet without
using roll-back, which are consistent with our evaluation results.

In contrast, AI does not differentiate read and write instruc-
tions. And it explicitly defines the state nil to represent the
initial state, which is critical in anticipating W-R Order Violations.
Therefore, as shown in Table 2, AI can prevent all the bugs we
have found by merely temporarily stalling the thread.

Additionally, Shi et al. [15] pointed out that PSet cannot detect
the bug if it is similar to the W-R Order Violation Httrack]20247
(Figure 8a), because the influence of a remote operation will
be blocked by local operations in PSet (caused by the second
condition of PSet). This is not the case in AI .

5.2.5 Discussion
Our experiment shows that AI is able to detect and tolerate

all the bugs we examined, but this does not mean that AI is the
silver bullet for concurrency bugs. Currently, AI primarily aims
to handle non-deadlock concurrency bugs where no more than
1) two threads; 2) one variable; and 3) three memory accesses
are involved. Thus AI cannot handle deadlocks, multi-variable
bugs, and some high-level concurrency bugs such as linearizability

violations. Park et al. [33] has concluded that the bugs within the
aforementioned scope can be grouped into 8 patterns. The 35 bugs
we examined have covered 7 out of 8 them, which demonstrates a
good representativeness. Even the neglected one, W1−W2−W1,
is semantically akin to our W-W | R Atomicity Violation since we
can predict the bug before W2’s execution in AI (right before its
turning point).

The reason that we choose to cover only these types of
concurrency bugs is that we intend to keep our method lightweight
and, at the same time, achieve a good coverage. According to
a recent investigation [2], 1) the manifestation of most (96%)
concurrency bugs involves no more than two threads; 2) only about
30% non-deadlock concurrency bugs access multiple variables;
and 3) almost all the single-variable concurrency bugs contain
no more than three memory accesses. These investigation results
conform with the theoretical deductions: the more complex a
concurrency bug is; the more complex its exposing condition is;
and hence the rarer it will manifest in production runs.

Moreover, AI’s capability of detecting and tolerating bugs can
be enhanced by integrating with other techniques. For example, AI

can be easily extended to handle multi-variable bugs by leveraging
the coloring technique proposed by ColorSafe [34]. Since Color-
Safe is able to assign the same color to related variables, the only
modification needed in AI is replacing the memory address with
the color assigned to it. The bugs can be detected and tolerated
without using roll-back, if the corresponding related variables are
correctly colored. Since the cooperation with ColorSafe does not
add any more instructions to our guard function, it should not
incur additional overhead.

The other main drawback of AI is that it cannot tell different
dynamic instructions apart if they are derived from the same static
instruction, because it does not record any context information.
As an illustration, the allA-B order violations described by Jin
et al. [35] is a kind of bugs that: instruction B is expected to
be executed after all instances of instruction A. Since AI only
records the program counter of an instruction, it will allow B to
be executed immediately after the first instance of A (AI can still
detect this bug because the following A will find that it is un-
expectedly preceded by B, but AI cannot tolerate this bug without
roll-back). Theoretically, AI can be extended to handle this kind
of bugs by adding context information, such as recent memory-
access history [29] or call stack, to RPre. But, it is obvious that
this integration will increase AI’s overhead in both the runtime
overhead and the time needed for achieving sufficient training,
which may become non-trivial if one tries to record too much
execution context. According to our experiments, recording five
nearest previous access each shared memory access may increase
the overhead for ten times and even higher overhead is imposed
if the calling stack is recorded. Even for desktop and server
applications, this may become not acceptable in practice.

Since we use a dynamic analyzing technique to identify the
shared memory accesses, our method may also miss a bug if we
miss some instructions that access the same memory. However,
as we will discuss later in Section 5.6, the time for achieving
sufficient training is acceptable.

5.3 Exposing Capability

We have also evaluated the exposing capability of AI by
using the order violations given in Table 1. According to the
results, all these known order violations can be exposed by the

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2531666, IEEE
Transactions on Software Engineering

13

TABLE 3: Run-time overheads. In this table, the “Bias” column and the “Default” column give the overhead with and without bias
instrumentation respectively.

Applications Overhead
Default Bias

Desktop
Application

PBZip2 0.38% -
Pigz 0.20% -

Server
Application

Apache 0.34% -
MySQL 0.57% -

SPLASH-2
Benchmarks

FFT 1345% 115%
LU 1613% 127%

exposing algorithm described in Section 4.1. Here, by using the
word “exposed”, we mean that through following the workflow
described in Section 4.1 the possibility of the bug been observed
(reported as a potential bug) is increased to almost 100% after the
application is attached with our exposing tool.

Moreover, although Axel Download Accelerator and Pigz
compressing tool († in Table 1) are two widely used applications,
we have exposed two new bugs in them that have never been
reported before. Since these two bugs are both dangerous ones
that may lead to infinite loop and assertion failed respectively,
both of them were confirmed by the developers and fixed in the
nightly build.

W R

axel.c

last_transfer*should*be*updated*by*W*before*being*read*by*R.
Wrong*order*will*lead*to*unnecessary*thread*canceling.

Incorrect*Interleaving Correct*Interleaving

Thread*1 Thread*2

void*]setup_thread;void*]c[{******************************void*axel_do;...[{
****...**...
****if;*conn_exec;*conn*[*[{**************************************if;gettime;[*>*
********conn->last_transfer=gettime;[;***************************axel->conn[i].last_transfer
**+axel->conf->reconnect_delay[{
********...***pthread_cancel;...[;
****}***...
****...**}
***...
}**}**

Fig. 15: An exposed order violation in Axel.

Figure 15 shows the detected order violation in Axel, in which
the last transfer should be updated before it is read in Thread 2.
If this order is flipped, Thread 1 will be unnecessarily canceled,
although it has already downloaded the current chunk. Moreover,
if this order is always flipped, there will be an infinite loop.
This bug has been confirmed by the developer, and fixed in the
developing version by using unblocked asynchronous I/O model
instead of the previous block one.

We have also detected an atomicity violation in Pigz. It is a
data race in pigz.c, where an instruction reads a shared variable
pool→made in free pool() after releasing the corresponding mu-
tex lock pool→have. This bug has also been confirmed by the
developer and fixed in the developing version 2.2.5.

5.4 Performance
Table 3 gives the evaluation result of the performance for our

current AI implementation5. Since we want our benchmark suit
to cover different types of multi-threaded applications, we select
two representatives from each category (desktop applications,

5. Since the overhead for desktop and server applications are low enough
even when instrumenting all the shared-memory accesses, their overheads after
applying bias instrumentation are omitted.

server applications, and the scientific-computing kernels). These
applications are chosen because they are also the choices of many
previous bug detection papers [16], [27]. We compute the overhead
by counting the “Total time” or “Wall Clock” field of output for
the kernel programs and desktop applications, and the throughput
output by testing benchmarks (httperf, super-smack) for server
applications.

The applications shown in Table 3 can be roughly split into
three categories. The first category includes desktop applications
like PBZip2 and Pigz, which do not have many instructions that
access shared variables. Hence only a little run-time overhead
is imposed. The second category includes those server applica-
tions. Although they may have relatively more heap accesses,
the overheads are still low, it is usually other factors, such as
the I/O latencies, that obstruct these applications’ performance.
Applications from the SPLASH-2 benchmark suites belong to
the third category, they have extremely intensive heap accesses
and loops. In this case, a proper custom instrumentation scheme
is critical for low overhead. As shown in the table, our general
bias instrumentation scheme (with threshold 30%) can reduce the
overhead to about 100%. And it will not ignore the bug listed in
Table 1.

Overall, since only shared-variable accesses have to be in-
strumented and there is not need to roll back, AI is much faster
than those existing software-only concurrency bug tolerating tools,
which usually impose an impractical overhead. For example, even
in terms of I/O intensive applications, the software implementa-
tion of PSet incurs more than 100× overhead, which is caused
by its heavyweight software roll-back implementation [9]. And,
thanks to the use of static instrumentation, AI is also much
more lightweight than those dynamic instrumentation based bug
detection tools, such as AVIO’s [14] software implementation and
DUI [15], which incur 15 × −40× and 5 × −20× overhead
respectively.

Contrary to our method, ConAir [11] takes a different ap-
proach to achieve low run-time overhead. It only aims to tolerate
bugs that can be recovered by rolling back an idempotent region
in one thread, which can be reexecuted for any number of times
without changing the program’s semantics. This policy allows
ConAir to eschew the time-consuming memory-state checkpoint
in general roll-back. Nevertheless, it also restricts ConAir’s ability.
First, ConAir cannot handle concurrency bugs that have I/O
operations. A study [36] shows that about 15% of concurrency
bugs belong to this kind. Second, an idempotent region should
not contain any shared variable write. Thus ConAir is not able
to tolerate W-R | W Atomicity Violations and some of R(-R)-W
| R(-R)-W Atomicity Violations. Third, even some local variable
writes are not idempotent, which constrains an idempotent region’s
length. But in ConAir, the idempotent region should both cover

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2531666, IEEE
Transactions on Software Engineering

14

TABLE 4: The instruction groups that are removed by bias instrumentation. For each application, we list all the instruction groups of it that has
an ins-proportion (IP) larger than 0.1%. The groups whose IP are larger than 30% are removed, which are labeled in bold type.

Application List of Instruction Groups (ranked by IP in descending order). For each group, we present <IP , # of instructions>.
FFT < 37.8%, 19 >, < 37.8%, 19 >, < 5.67%, 3 >, < 5.67%, 3 >, < 4.13%, 179 >, < 0.012%, 29 >, ...
LU < 81.9%, 18 >, < 11.6%, 242 >, < 1.91%, 12 >, < 0.014%, 21 >, ...

the whole error-propagation region to tolerate a bug, since ConAir
can only affirm a bug after it has incurred some kinds of program
failures.

Frost [10] is a novel technique to tolerate races. It is efficient
in terms of overhead (12%). But it gains this efficiency on the
cost of high CPU utilization (3×), because it needs to run three
independent instances of the program simultaneously. And it can
only process data races.

5.5 Bias Instrumentation
As mentioned above, the bias instrumentation strategy that we

used can decrease the overhead dramatically while still detecting
and tolerating the bugs we evaluated. However, the readers may
wonder whether these are just coincidences, whether there are
other bugs that will be omitted by this custom instrumentation
strategy. In this section, we will give a more detailed discussion
about the code that we chose to not instrument.

As we can see from Table 4, a distinguishable property of
HPC programs is that the distribution of the instruction groups’
ins-proportion is extremely skewed. There are usually a dozen of
instructions that dominate almost all the shared memory accesses.
As an illustration, in FFT, two groups of instruction are omitted
by the bias instrumentation. Each of them contains only 19
instructions but has an IP of 37.8%. These instructions are related
to the exact fast Fourier transformation and will be executed for
millions of times in an execution. As a result, they are carefully
synchronized by the programmers for getting the correct result. It
is hard to imagine that the program can pass in-house testing with
a bug hiding in them.

The case of LU is similar, only one group of instructions is
removed, which contains only 18 instructions while accounting
for more than 80% of all the shared memory accesses. The in-
structions within this group are used for updating the result matrix
and hence must have been checked carefully by the programmers.

However, our bias instrumentation scheme is only suitable for
those programs whose distribution of memory-accesses frequency
is skewed. It may not be able to filter out any distinct group for
programs that use shared memory accesses only for synchroniza-
tions. Thus, we also expect that the programmers can use the APIs
provided by us to design even more effective custom instrumenting
strategies that further lower the overhead for that kind of CPU-
intensive programs, because they are more familiar with the
programs. In fact, they can manually check part of the code that
is important and hot and let our tool to guard the other part
of the program for them. Essentially, the custom instrumenting
mechanism gives the programmers a tradeoff between overhead
and coverage.

5.6 Sufficient Training
Similar to all the other invariant-based techniques, AI needs

sufficient execution traces to achieve a good coverage of the
possible interleavings. Although the invariants are only a com-
pressed expression of interleaving, whose number will not grow

exponentially as the number of possible interleavings, it still
requires a sufficient exercise. Otherwise, there will be 1) false
positives: some correct interleavings are not observed during the
training phase and hence will be classified as potential bugs in
production runs, which will cause unnecessary stallings; and 2)
false negatives: certain shared-memory accesses are not identified
during the training thus the concurrency bugs related to them will
be omitted by AI.

In order to avoid these problems we need to gather sufficient
training data so that all the possible positive/negative examples
are observed and learnt by AI. In general, this requires that
the programmers should both run the application under different
inputs and configurations to cover all the feasible paths, and run
multiple times with every input to explore different interleavings.
The programmers can also use a systematic concurrency testing
framework such as CTrigger [20] to systematically explore differ-
ent interleavings for different inputs.

1

10

100

1000

10000

LU FFT PBZip2 Pigz MySQL Apache

#	

of
	
 ru

ns
	
 n
ee
de
d	

fo
r	
 s
uf
fic
ie
nt
	
 t
ra
in
in
g

Fig. 16: The number of runs needed for achieving sufficient
training.

In our evaluation, we use another metrics to evaluate the
complexity of training AI, which is the number of independent
executions that AI needed to become converge. Here, by using
the word “converge”, we mean that the learnt invariants will not
change even if new traces are provided. In our experiments, all the
evaluated bugs are detected/tolerated and no more false positive
or unnecessary stalling arises during the testing, if such a set of
converged invariants is obtained. Figure 16 shows the results of
our evaluation. As we can see from the figure, small applications
like PBZip2, Pigz, FFT, LU will converge in about 200 runs (i.e.,
200 times of execution of each kind of inputs). As for large server
applications like MySQL and Apache, less than 5, 000 executions
are sufficient. In other words, even for Apache, the training can
be completed within several days. Comparing to the release cycle
of large software (usually several months) and the fixing period of
every bug (more than a month on average [37]), we think that this
cost is acceptable.

Moreover, since the logging function added by the AITrace
pass and the guarding function added by the AITolerate pass

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2531666, IEEE
Transactions on Software Engineering

15

impose a different overhead, there may exist some interleavings
that are less likely to happen in the testing phase. Thus we also
provide a tool to automatically relax the BSets (i.e. reduce the false
positives). It simply run the AI-guarded application and verifies
the output. If the outcome is correct, the tool will relax the BSets
with the generated violation report. Specifically, if a violation of
“RPre 6∈ BSet[Sy]” is reported, the programmers are required
to manually check the results. If it is not a bug, the corresponding
BSet is relaxed by BSet[Sy] := BSet[Sy] ∪RPre.

After the aforementioned two steps, the applications reach to a
stage we named as sufficient training. Here, by sufficient training,
we mean that no false positive and false negative are observed in
our experiments. Although the possibility of false positives cannot
be eradicated, it will only incur a stalling timeout in our work. And
the corresponding invariants can be updated immediately (used
the relax mechanism described above), in order to green-light all
the future runs. These stallings will never affect the program’s
correctness. Since the threads are randomly scheduled, a correctly
synchronized program will not depend on time delays.

6 RELATED WORK

6.1 Concurrency-bug Detecting

Data race detection has been the subject of many works (e.g.,
[38], [39], [40], [41], [42], [43], [44]). In general, these works
can be classified into two classes namely the lock-set approach,
as in Eraser [45], and the happened-before ones, as in SigRace
[46]. However, it’s claimed in [14] that detecting data race is not
sufficient. Because, 1) many data races in real-world applications
are benign thus race detectors may have too many false alarms;
2) Data race free atomicity violation is prevalent and 3) order
violations usually cannot be fixed by simply using critical sections.

Due to the limitations of detecting data races only, detecting
atomicity violations become a hot topic recently. A lot of research
has been conducted on it [47], [48], [14], [49], [50], [32], [7],
[51], [52], [53], [54]. Most of them attempt to detect Atomic
Regions (AR) by either annotation from programmers or invariants
obtained from test runs. However, the order violations has so
far received much less attentions. Only a few works [15], [29],
[27] deal with this kind of bugs and with limited types of bugs
supported, mostly due to the limitation of the type of code
constructs in which these works are embedded.

In contrast, AI can collect invariants automatically without
any annotations and is capable for dealing with various types of
concurrency bugs.

6.2 Concurrency-bug Tolerating

A complementary approach to detecting and removing bugs
through in-house testing is to tolerate the remaining ones during
production runs. This approach is attractive for that 1) even after
extensive in-house testing, bugs have been shown to remain in
the code after deployment; 2) the misunderstanding of a reported
bug may introduce new bugs; and 3) it takes a long time between
the detection of the bug and the release of a fix by the manufac-
turer. Therefore, bug prevention techniques have gained interests
recently.

Among this category, the most closely related work of AI

is PSet [9], which also proposes an invariant-based technique to
tolerate both atomicity and order violations at run time. However,
as shown in Section 5.2.4, PSet’s ability of tolerating bugs relies

heavily on roll-back, which makes it hard to be applied in
production environments. Although one can substitute roll-back
with the idempotent reexecution technique introduced by ConAir
[11] to reduce the overhead, there will be a consequent decrease
in comprehensiveness as a side-effect. As we have discussed in
Section 5.4, ConAir is incapable for tolerating many kinds of bugs.

Moreover, the other concurrency bug tolerating methods like
Frost [10], LifeTx [32] and AtomAid [8] are all constrained in
type of bugs that they can handle, such as data races or atomicity
violations. In contrast, AI can tolerate both atomicity and order
violations without roll-back and incurs moderate overhead.

On the other hand, EnforceMOP [55] and Zhang et al. [56]
both propose a method that enables the programmers to specify
and enforce complex properties in multithreaded programs. They
can also be used tolerate concurrency bugs that are caused by
unexpected interleavings. However, both of them require the pro-
grammers to manually specify the correct order either by a type-
state automaton or annotations in the program. In other words,
they can be used as the implementation method of AI but cannot
replace AI.

6.3 Concurrency-bug Exposing
Apart from passive bug detecting and tolerating, many tech-

niques have been proposed to actively expose concurrency bugs
[57], [53]. These interleaving testing papers use different “heuris-
tics” to insert delay and enhance the chance of bugs’ exposedness.
For example, RaceFuzzer [58] and CTrigger [20] try to exercise a
suspicious buggy interleaving in a real execution to verify whether
it is really a bug or merely a false positive. Similar to the above
two methods, Maple [59] is a new coverage-driven approach to
test multithreaded programs, which achieves high efficiency by
avoiding testing the same thread interleavings across different test
inputs. There also exist approaches, such as ConTest [60] and PCT
[61], that randomly insert delays or assign priority of threads to
improve stress-testing.

Different from them, AI mainly targets on bug detection and
avoidance, which is not part of these works. These works can also
be used to complement AI by producing new thread interleavings
for training.

In addition, as we have mentioned in Section 4.1, AI can also
be extended to expose the order violations. The algorithm we pro-
posed is similar to HaPSet [62], which uses an enhanced version
of PSet to speed up systematic concurrency testing. Specifically,
HaPSet leverages the property that invariants are essentially a
compressed expression of interleavings and hence one of the two
interleavings can be omitted if they produce the same invariant
set. Thus, in HaPSet, the invariant is used as a metric of testing
coverage and the target of HaPSet is covering all the possible
kinds of interleavings. In contrast, our method is based on AI

rather than PSet, which observes more types of ordering (e.g.,
the order between two read instructions). Moreover, our exposing
method only purposely examines whether a certain type of order
intension is guaranteed by the program. As a result, our method
will consume less time (in cost of missing more bugs).

6.4 Concurrency-bug Fixing
Finally, many solutions have been proposed to help fixing

concurrency bugs. There are both dynamic methods that integrate
dynamic bug detection and fixing and static methods that generate
the patches offline. More specifically, Gadara [63] is a tool that

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2531666, IEEE
Transactions on Software Engineering

16

can automatically fixing the deadlocks. CFix [35], on the other
hand, automates the fixing procedure of both atomicity violations
and order violations. The researchers have also tried using Petri-
Net mechanisms to automatically fix concurrency bugs [64],
[65]. And, the usages of satisfiability (SAT) solver and bounded
model checker in fixing concurrency bugs have been explored by
ConcBugAssist [66]. These tools can be used for repairing the
program after the bug is detected by AI .

Liu et al. [67] have proposed a method for fixing linearizability
violations in concurrent data structures. However, these kind of
high-level violations is not targeted by AI and hence the cooper-
ating with it is remained as future works.

7 CONCLUSION

This paper presents Anticipating Invariant, whose violations
can anticipate bugs right before their turning points. Based on
it, we implement a software-only tool that can tolerate both
atomicity and order violations with a lightweight stalling strategy,
instead of roll-back mechanism or chunk based execution used
in prior works. Our experiment results with 35 real-world bugs
of different types have shown that AI is capable of detecting
and tolerating all the eight patterns of bugs we have found. In
addition, AI only incurs negligible overhead (<1%) for many
nontrivial desktop and server applications. And its slowdown on
computation-intensive programs can be reduced to about 2× after
using the bias instrumentation. In contrast, prior bug tolerating
tools are usually constrained in types of bugs or incurring very
high (100x for PSet [9]) run-time overhead in their software-only
implementation. Additionally, we also explore the usage of AI

at other phases of the whole bug-handling lifecycle, such as bug
exposing and patch generation. Two previously unknown concur-
rency bugs are exposed by our method, and they are confirmed by
the corresponding developers and fixed in the nightly build.

8 ACKNOWLEDGMENTS

The authors from Tsinghua University are sponsored by
the Natural Science Foundation of China (61433008, 61373145,
61170210, U1435216), the National Basic Research (973) Pro-
gram of China (2014CB340402), National High-Tech R&D (863)
Program of China (2013AA01A213), Chinese Special Project
of Science and Technology (2013zx01039002-002). Shan Lus
research is partly supported by NSF grant CCF-1217582 and CCF-
1439091.

REFERENCES

[1] M. Zhang, Y. Wu, S. Lu, S. Qi, J. Ren, and W. Zheng, “AI: A Lightweight
System for Tolerating Concurrency Bugs,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2014, pp. 330–340.

[2] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from Mistakes: A
Comprehensive Study on Real World Concurrency Bug Characteristics,”
in Proceedings of the 13th International Conference on Architectural
Support for Programming Languages and Operating Systems, ser. ASP-
LOS ’08, pp. 329–339.

[3] “Microsoft. Revamping the microsoft security bulletin release process,
Feb. 2005. URL http://www.microsoft.com/technet/security/bulletin/
revsbwp.mspx.”

[4] “MySQL. Bug report time to close stats.
url http://bugs.mysql.com/bugstats.php.”

[5] C. Cowan, H. Hinton, C. Pu, and J. Walpole, “The cracker patch choice:
An analysis of post hoc security techniques,” 2000.

[6] Z. Gu, E. T. Barr, D. J. Hamilton, and Z. Su, “Has the Bug Really Been
Fixed?” in Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ser. ICSE ’10, pp. 55–64.

[7] A. Muzahid, N. Otsuki, and J. Torrellas, “AtomTracker: A Comprehen-
sive Approach to Atomic Region Inference and Violation Detection,” in
Proceedings of the 2010 43rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, ser. MICRO ’10, pp. 287–297.

[8] B. Lucia, J. Devietti, K. Strauss, and L. Ceze, “Atom-Aid: Detecting
and Surviving Atomicity Violations,” in Proceedings of the 35th Annual
International Symposium on Computer Architecture, ser. ISCA ’08, pp.
277–288.

[9] J. Yu and S. Narayanasamy, “A case for an interleaving constrained
shared-memory multi-processor,” in Proceedings of the 36th Annual
International Symposium on Computer Architecture, ser. ISCA ’09, pp.
325–336.

[10] K. Veeraraghavan, P. M. Chen, J. Flinn, and S. Narayanasamy, “De-
tecting and Surviving Data Races Using Complementary Schedules,” in
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, ser. SOSP ’11, pp. 369–384.

[11] W. Zhang, M. de Kruijf, A. Li, S. Lu, and K. Sankaralingam, “ConAir:
Featherweight Concurrency Bug Recovery via Single-threaded Idempo-
tent Execution,” in Proceedings of the Eighteenth International Confer-
ence on Architectural Support for Programming Languages and Operat-
ing Systems, ser. ASPLOS ’13, pp. 113–126.

[12] B. Lucia and L. Ceze, “Cooperative Empirical Failure Avoidance for
Multithreaded Programs,” in Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’13, pp. 39–50.

[13] J. Wu, H. Cui, and J. Yang, “Bypassing Races in Live Applications with
Execution Filters,” in Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation, ser. OSDI’10, pp. 1–13.

[14] S. Lu, J. Tucek, F. Qin, and Y. Zhou, “AVIO: Detecting Atomicity
Violations via Access Interleaving Invariants,” in Proceedings of the
12th International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’06, pp. 37–48.

[15] Y. Shi, S. Park, Z. Yin, S. Lu, Y. Zhou, W. Chen, and W. Zheng,
“Do I Use the Wrong Definition?: DeFuse: Definition-use Invariants
for Detecting Concurrency and Sequential Bugs,” in Proceedings of
the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, ser. OOPSLA ’10, pp. 160–174.

[16] G. Jin, A. Thakur, B. Liblit, and S. Lu, “Instrumentation and Sampling
Strategies for Cooperative Concurrency Bug Isolation,” in Proceedings
of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, ser. OOPSLA ’10, pp. 241–255.

[17] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The daikon system for dynamic detection of
likely invariants,” Sci. Comput. Program., vol. 69, no. 1-3, Dec. 2007.

[18] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed
and Runtime Optimization, ser. CGO ’04, pp. 75–.

[19] M. Musuvathi and S. Qadeer, “Iterative context bounding for systematic
testing of multithreaded programs,” in Proceedings of the 2007 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, ser. PLDI ’07, pp. 446–455.

[20] S. Park, S. Lu, and Y. Zhou, “CTrigger: Exposing Atomicity Violation
Bugs from Their Hiding Places,” in Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’09, pp. 25–36.

[21] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Lu, “A Study
of Linux File System Evolution,” in Proceedings of the 11th USENIX
Conference on File and Storage Technologies, ser. FAST ’13, pp. 31–44.

[22] M. Hauswirth and T. M. Chilimbi, “Low-overhead memory leak de-
tection using adaptive statistical profiling,” in Proceedings of the 11th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS’ 04, 2004, pp. 156–
164.

[23] D. Marino, M. Musuvathi, and S. Narayanasamy, “LiteRace: effective
sampling for lightweight data-race detection,” in Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’09.

[24] K. Serebryany, A. Potapenko, T. Iskhodzhanov, and D. Vyukov, “Dy-
namic race detection with llvm compiler,” in Runtime Verification.
Springer, 2012, pp. 110–114.

[25] C. E. Leiserson, R. L. Rivest, C. Stein, and T. H. Cormen, Introduction
to algorithms. The MIT press, 2001.

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2531666, IEEE
Transactions on Software Engineering

17

[26] K. Sen, “Race Directed Random Testing of Concurrent Programs,” in
Proceedings of the 2008 ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’08, pp. 11–21.

[27] W. Zhang, C. Sun, and S. Lu, “ConMem: Detecting Severe Concurrency
Bugs Through an Effect-oriented Approach,” in Proceedings of the
Fifteenth Edition of ASPLOS on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’10, pp. 179–192.

[28] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam, “Maple: A Coverage-
driven Testing Tool for Multithreaded Programs,” in Proceedings of
the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, ser. OOPSLA ’12, pp. 485–502.

[29] B. Lucia and L. Ceze, “Finding concurrency bugs with context-aware
communication graphs,” in Proceedings of the 42Nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’09, pp.
553–563.

[30] “http://web.eecs.umich.edu/∼jieyu/bugs.html.”
[31] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-

2 Programs: Characterization and Methodological Considerations,” in
Proceedings of the 22Nd Annual International Symposium on Computer
Architecture, ser. ISCA ’95, pp. 24–36.

[32] J. Yu and S. Narayanasamy, “Tolerating concurrency bugs using transac-
tions as lifeguards,” in Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’10, pp.
263–274.

[33] S. Park, R. W. Vuduc, and M. J. Harrold, “Falcon: Fault Localization in
Concurrent Programs,” in Proceedings of the 32Nd ACM/IEEE Interna-
tional Conference on Software Engineering - Volume 1, ser. ICSE ’10,
pp. 245–254.

[34] B. Lucia, L. Ceze, and K. Strauss, “ColorSafe: Architectural Support
for Debugging and Dynamically Avoiding Multi-variable Atomicity
Violations,” in Proceedings of the 37th Annual International Symposium
on Computer Architecture, ser. ISCA ’10, pp. 222–233.

[35] G. Jin, W. Zhang, D. Deng, B. Liblit, and S. Lu, “Automated
concurrency-bug fixing,” in Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation, ser. OSDI’12, 2012,
pp. 221–236.

[36] H. Volos, A. J. Tack, M. M. Swift, and S. Lu, “Applying Transactional
Memory to Concurrency Bugs,” in Proceedings of the Seventeenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’12, pp. 211–222.

[37] “Mysql bugs: Statistics. http://bugs.mysql.com/bugstats.php.”
[38] C. Flanagan and S. N. Freund, “FastTrack: efficient and precise dynamic

race detection,” ser. PLDI ’09, 2009.
[39] S. L. Min and J.-D. Choi, “An efficient cache-based access anomaly

detection scheme,” ser. ASPLOS ’91, 1991.
[40] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder,

“Automatically classifying benign and harmful data races using replay
analysis,” ser. PLDI ’07, 2007.

[41] R. H. B. Netzer and B. P. Miller, “Improving the accuracy of data race
detection,” ser. PPOPP ’91, 1991.

[42] Y. Yu, T. Rodeheffer, and W. Chen, “RaceTrack: efficient detection of
data race conditions via adaptive tracking,” ser. SOSP ’05, 2005.

[43] D. Li, W. Srisa-an, and M. B. Dwyer, “SOS: saving time in dynamic race
detection with stationary analysis,” ser. OOPSLA ’11.

[44] C.-S. Park, K. Sen, P. Hargrove, and C. Iancu, “Efficient data race
detection for distributed memory parallel programs,” in SC, 2011.

[45] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: a dynamic data race detector for multithreaded programs,” ACM
Trans. Comput. Syst., vol. 15, no. 4, Nov. 1997.

[46] A. Muzahid, D. Suárez, S. Qi, and J. Torrellas, “SigRace: signature-based
data race detection,” ser. ISCA ’09, 2009.

[47] C. Flanagan and S. N. Freund, “Atomizer: a dynamic atomicity checker
for multithreaded programs,” ser. POPL ’04, 2004.

[48] C. Flanagan and S. Qadeer, “A type and effect system for atomicity,” ser.
PLDI ’03, 2003.

[49] A. Sasturkar, R. Agarwal, L. Wang, and S. D. Stoller, “Automated type-
based analysis of data races and atomicity,” ser. PPoPP ’05, 2005.

[50] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. Midkiff, and
J. Torrellas, “AccMon: Automatically detecting memory-related bugs via
program counter-based invariants,” ser. MICRO 37, 2004.

[51] M. Xu, R. Bodı́k, and M. D. Hill, “A serializability violation detector for
shared-memory server programs,” ser. PLDI ’05, 2005.

[52] J. Burnim, G. Necula, and K. Sen, “Specifying and checking semantic
atomicity for multithreaded programs,” ser. ASPLOS ’11.

[53] C.-S. Park and K. Sen, “Randomized Active Atomicity Violation Detec-
tion in Concurrent Programs,” in Proceedings of the 16th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, ser.
SIGSOFT ’08/FSE-16, pp. 135–145.

[54] J. Huang and C. Zhang, “Persuasive prediction of concurrency access
anomalies,” in ISSTA, 2011, pp. 144–154.

[55] Q. Luo and G. Roşu, “Enforcemop: A runtime property enforcement
system for multithreaded programs,” in Proceedings of the 2013 Inter-
national Symposium on Software Testing and Analysis, ser. ISSTA 2013,
2013, pp. 156–166.

[56] L. Zhang and C. Wang, “Runtime prevention of concurrency related type-
state violations in multithreaded applications,” in Proceedings of the 2014
International Symposium on Software Testing and Analysis, ser. ISSTA
2014, 2014, pp. 1–12.

[57] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu,
“Finding and Reproducing Heisenbugs in Concurrent Programs,” in
Proceedings of the 8th USENIX Conference on Operating Systems Design
and Implementation, ser. OSDI’08, pp. 267–280.

[58] K. Sen, “Race directed random testing of concurrent programs,” ser.
PLDI ’08.

[59] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam, “Maple: A coverage-
driven testing tool for multithreaded programs,” 2012.

[60] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur, “Multithreaded
Java program test generation,” IBM Systems Journal, vol. 41, no. 1, pp.
111–125, 2002.

[61] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, “A Ran-
domized Scheduler with Probabilistic Guarantees of Finding Bugs,” in
Proceedings of the Fifteenth Edition of ASPLOS on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’10,
pp. 167–178.

[62] C. Wang, M. Said, and A. Gupta, “Coverage Guided Systematic Concur-
rency Testing,” in Proceedings of the 33rd International Conference on
Software Engineering, ser. ICSE ’11, pp. 221–230.

[63] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlke, “Gadara:
Dynamic deadlock avoidance for multithreaded programs,” in Proceed-
ings of the 8th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI ’08, pp. 281–294.

[64] P. Liu and C. Zhang, “Axis: Automatically fixing atomicity violations
through solving control constraints,” in Proceedings of the 34th Interna-
tional Conference on Software Engineering, ser. ICSE ’12, pp. 299–309.

[65] P. Liu, O. Tripp, and C. Zhang, “Grail: Context-aware fixing of concur-
rency bugs,” in Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2014, pp.
318–329.

[66] S. Khoshnood, M. Kusano, and C. Wang, “Concbugassist: Constraint
solving for diagnosis and repair of concurrency bugs,” in Proceedings of
the 2015 International Symposium on Software Testing and Analysis, ser.
ISSTA 2015, 2015, pp. 165–176.

[67] P. Liu, O. Tripp, and X. Zhang, “Flint: Fixing linearizability violations,”
in Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications, ser.
OOPSLA ’14, 2014, pp. 543–560.

Mingxing Zhang is a PhD candidate in De-
partment of Computer Science and Technol-
ogy, Tsinghua University, China. His research
interests include parallel and distributed sys-
tems. He received his B.E. degree from Bei-
jing University of Posts and Telecommunica-
tions, China, in 2012. He can be reached at:
zhangmx12@mails.tsinghua.edu.cn.

0098-5589 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2531666, IEEE
Transactions on Software Engineering

18

Yongwei Wu received the PhD degree in ap-
plied mathematics from the Chinese Academy of
Sciences in 2002. He is currently a professor in
computer science and technology at Tsinghua
University of China. His research interests in-
clude parallel and distributed processing, and
cloud storage. Dr. Wu has published over 80
research publications and has received two Best
Paper Awards. He is currently on the editorial
board of the International Journal of Networked
and Distributed Computing and Communication

of China Computer Federation. He is an IEEE member. He can be
reached at: wuyw@tsinghua.edu.cn.

Shan Lu is an Associate Professor in the
Computer Science Department of University of
Chicago. She got her Ph.D. degree from Uni-
versity of Illinois at Urbana Champaign. Her re-
search focuses on building tools to help improve
software reliability and efficiency.

Shanxiang Qi is a software engineer at Uber
working on China growth. Prior to Uber, Shanxi-
ang was a software engineer in Google working
on knowledge graph. He has B.S. degree from
Tsinghua University and a Ph.D from University
of Illinois at Urbana-Champaign, both in Com-
puter Science.

Jinglei Ren is a PhD candidate in Department
of Computer Science and Technology, Tsinghua
University, China. His research interests include
distributed systems, storage techniques, and op-
erating systems. He has developed a storage
system for virtual machines with enhanced man-
ageability, and is currently working on the flash-
aware and energy-efficient smartphone filesys-
tem. He received his BE from Northeast Normal
University, China, in 2010.

Weimin Zheng received the BS and MS de-
grees, respectively, in 1970 and 1982 from Ts-
inghua University, China, where he is currently a
professor of Computer Science and Technology.
He is the research director of the Institute of
High Performance Computing at Tsinghua Uni-
versity, and the managing director of the Chinese
Computer Society. His research interests include
computer architecture, operating system, stor-
age networks, and distributed computing. He is
a member of the IEEE.

