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Abstract—Remote Direct Memory Access (RDMA) based network devices are increasingly being deployed in modern data centers.
RDMA brings significant performance improvements over traditional network devices such as Ethernet due to its unique features:
protocol offloading and memory semantics. In particular, it can achieve microsecond level latency, which is about 2~3 orders of
magnitude improvement. With such improvement in hardware, the software stack, including device drivers and programming libraries,
is becoming a new performance bottleneck. Developers need to use new programming libraries to take full advantage of the
performance of the underlying hardware. Storage systems are very important in modern data centers. This article surveys the current
efforts to use RDMA for optimizing storage systems. We first present five classes of RDMA-based storage systems, including key-value
stores, file systems, distributed memory systems, database systems, and systems using smart NICs, to demonstrate different design
choices. Then, we examine the core modules of storage systems from different perspectives: communication mode, concurrency
control, fault tolerance, caching, and resource management. Finally, we provide some design guidelines for new RDMA-based storage

systems, as well as a discussion of opportunities and challenges.

Index Terms—Network, storage, RDMA, RPC, key-value store, file system, distributed memory, smart NIC

1 INTRODUCTION

CURRENT distributed data center storage systems can be
equipped with high-throughput, low-latency storage
media and networking devices. The latency of NVMe SSDs
can reach tens of microseconds. A storage node with multi-
ple NVMe SSDs can easily provide 10GB/s of throughput [1],
which is far beyond what the traditional network can match.
Current persistent memory (PM) devices can even persist
data in around 100 nanoseconds [2], [3]. On the network
side, RDMA networks also offer low latency and high band-
width with unique features including protocol offloading and
memory semantics. Protocol offloading refers to offloading the
network protocol onto the RDMA NICs (RNICs), which
greatly saves CPU cycles. Memory semantics provides the
capabilities to access remote memory directly bypassing ker-
nels of both sides, without remote CPU involvement. Mem-
ory semantics can reduce context switching and data
copying. Both features help RDMA networks to reach high
bandwidth and low latency. The latest RDMA devices can

o Shaonan Ma is with the Department of Computer Science and Technology,
Beijing National Research Center for Information Science and Technology
(BNRist), Tsinghua University, Beijing 100190, China, and also with Bei-
jing HaiZhi XingTu Technology Co., Ltd, Beijing 100083, China.

E-mail: msn18@mails.tsinghua.edu.cn.

o Teng Ma is with Alibaba Group, Hangzhou 311121, China.
E-mail: sima.mt@alibaba-inc.com.

o Kang Chen and Yongwei Wu are with the Department of Computer Sci-
ence and Technology, Beijing National Research Center for Information
Science and Technology (BNRist), Tsinghua University, Beijing 100190,
China. E-mail: {chenkang, wuyw}@tsinghua.edu.cn.

Manuscript received 29 June 2021; revised 21 June 2022; accepted 30 June
2022. Date of publication 12 July 2022; date of current version 23 August
2022.

This work was supported in part by the National Key Research & Development
Program of China under Grant 2020YFC1522702, in part by the Natural Science
Foundation of China under Grants 62141216 and 61877035, and in part by the
Tsinghua University - Meituan Joint Institute for Digital Life.

(Corresponding author: Kang Chen.)

Recommended for acceptance by K. Mohror.

Digital Object Identifier no. 10.1109/TPDS.2022.3188656

achieve 600ns access latency and 200Gbps bandwidth [4]. As
network protocol overhead is greatly reduced and net-
work performance improves, the bottleneck in storage sys-
tems shifts from hardware to software [5]. The use of
RDMA networks and the combination of recent fast stor-
age media to optimize storage systems is a popular research
topic, which has attracted a lot of attention in both industry
and academia.

RDMA provides a different programming model com-
pared to the traditional socket programming model. In order
to be compatible with traditional communication libraries,
one can go through a protocol conversion approach. But the
conversion approach does not fully leverage the performance
of the underlying hardware for fast networks. Since many
storage systems in data centers were originally designed for
slow network devices, they cannot fully exploit the perfor-
mance of RDMA. As a result, there have been many efforts in
recent years to design and optimize RDMA-based storage sys-
tems. Researchers have proposed different approaches to
redesign the various modules of storage systems to match the
high speed and unique characteristics of RDMA networks [6],
(71, [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25]. In the industry, many Internet-
scale companies (e.g., Microsoft [26], [27], Google [28], Ali-
baba [29], [30], [31]) also have shared their experiences in
deploying and using RDMA in large data centers.

To understand the ways and principles of RDMA usage
in storage systems, this paper investigates various storage
systems and their associated enabling technologies. The sur-
vey is conducted through the following three steps.

1)  Westudy five classes of storage systems, namely key-
value stores (Section 3.1), file systems (Section 3.2),
distributed memory systems (Section 3.3), database
systems (Section 3.4), and systems using smart NICs
(Section 3.5). We discuss their special considerations
for RDMA at the software level. Some systems use
high-speed storage media, such as DRAM or PM, for
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TABLE 1
Categories of RDMA-Based Storage Systems and Software Techniques
System Types Related Works

Key-value Store

HERD [6] ccKVS [7] FaSST [8] Pilaf [9] RFP [10] HydraDB [11] C-Hint [12] DrTM [13] FaRM [14]
Nessie [15] RStore [16] ScaleTX [17] Cell [18] Catfish [19] NAM-Tree [20] NVDS [21] FlatStore [22]
RDMP-KV [23] RACE [24] RAMCloud [25] Sherman [32]

File System CephFS [33] GlusterFS [34] Crail [35] NVFS [36] Octopus [5] Orion [37] FileMR [38] Assise [39]
DeltaFS [40] GekkoFS [41] DAOS [42] PolarFS [43] Lustre [44] GPFS [45] BeeGFS [46] PVFS2 [47]

Distributed Memory FaRM [14] RackOut [48] Grappa [49] InfiniSwap [50] Hotpot [51] Clover [52] AsymNVM [53]
Kona [54] CoRM [55]

Databases NAM-DB [56], [57] Chiller [58] PolarDB Serverless [59] D-RDMA [60] Zamanian ef al. [61] Li et al.
[62] HyPer [63] Barthels et al. [64] I-Store [65] L5 [66] Liu et al. [67]

Smart NICs FlexNIC [68] KV-Direct [69] Lynx [70] StRoM [71] LineFS [72] Xenic [73] IRMA [28] D-RDMA [60]
HyperLoop [74]

Core Modules Related Works

Communication Mode

DrTM-H [75] Cell [18] Catfish [19] Storm [76] DaRPC [77] HERD [6] FaSST [8] RF-RPC [78]
ScaleRPC [17] Storm [76] Octopus [5] FlatStore [22] LITE [79] eRPC [80] Accelio [81] Mercury [82]
X-RDMA [29] FLOCK [83] DFI [84] HatRPC [85]

Concurrency Control

DrTM [13] FaRM [14] Cell [18] NAM-Tree [20] Pilaf [9] RACE [24]

Fault Tolerance

HydraDB [11] Mojim [86] Orion [37] Tailwind [87] HyperLoop [74] DARE [88] APUS [89]

Derecho [90] Odyssey [91] INEC [92] Aguilera et al. [93] Zamanian et al. [61]

Caching
Resource Management

GAM [94] Aguilera et al. [95] DrTM [13] HydraDB [11] C-Hint [12] XStore [96] RACE [24]
Kumar et al. [97] HERD [6] FaSST [8] FaRM [14] LITE [79] ScaleRPC [17] X-RDMA [29] FLOCK [83]

back-end data storage, which can fully exploit the
performance of RDMA [5], [98], [99].

2) To understand the impact of RDMA on different
modules in the storage system, we identify five
important modules, namely communication mode
(Section 4.1), concurrency control (Section 4.2), fault
tolerance (Section 4.3), caching (Section 4.4), and
resource management (Section 4.5). The communica-
tion mode describes how the nodes talk to each
other, such as one-sided operations, two-sided oper-
ations, or RPC mode. Concurrency control and fault
tolerance are indispensable modules to ensure cor-
rectness and availability. Caching is used to improve
performance based on locality. The resource man-
agement module tries to manage RDMA resources
in an efficient way.

3) Based on the analysis and evaluation, we provide
practical guidelines on how to use RDMA effectively
(Section 5.1). In addition, we compare the differences
in RDMA research between industry and academia
(Section 5.2) and discuss future work (Section 5.3).

To the best of our knowledge, this is the first comprehen-

sive survey on RDMA-based storage systems. Other sur-
veys on RDMA focus on the network layer [100], which can
be considered as prior and complementary material. We
consider papers presented at major conferences in the field
of computer systems. Table 1 shows the papers surveyed.

The rest of this survey is organized as follows. Section 2

presents a preliminary overview of RDMA. Section 3
describes five classes of RDMA-based storage systems and
their research roadmaps. Section 4 describes the five core
modules of storage systems in detail. Section 5 summarizes
some practical guidelines from existing works and possible
future work on RDMA-based storage systems. Section 6
concludes the entire paper.

2 RDMA PRELIMINARIES

Currently, RDMA is a broad concept used to describe a
range of hardware and software techniques for remote
memory reads and writes. This survey focuses more on the
interface level, such as RDMA Verbs [101] and associated
programming models, from a systems research perspective.
We are concerned with system implementation using
RDMA rather than the network layer, i.e., for unique fea-
tures we are more concerned with memory semantics rather
than protocol offloading. Most of the systems we study in this
survey use RDMA Verbs, or similar user-space libraries
such as Libfabric [102]. The differences between user-space
and kernel-space interfaces are discussed in Section 5.1.

2.1 Hardware Architecture
There are currently four RDMA implementations: Infini-
Band, RoCE, RoCEv2, and iWARP [101]. InfiniBand uses
special RNICs and switches. The other three are Ethernet-
enabled RDMA network protocols. With specially designed
RNICs and switches, InfiniBand can now offer the best per-
formance. The latest generation of RNIC ConnectX-6 [4] can
reach 215MPPS (million packets per second), 600ns latency
and 200Gbps throughput.

Fig. 1 shows a typical RNIC hardware connection under
the NUMA architecture. Each RNIC is connected to a CPU’s
PClIe controller. There is on-chip memory (SRAM) on the

cPU
Lossless
& 3
"""""
SRAM | [ECle

RDMA NIC

Fig. 1. Hardware connections with RNIC (QPI: QuickPath Interconnect,
LLC: Last-Level Cache).
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TABLE 2
Transport Modes and Supported RDMA Operations
Mode Send Write Read Atomic MMS Connection
RC* v v v v 2GB 1-to-1
ucC v v X X 2GB 1-to-1
UuD v X X X MTU 1-to-n
SRD v X X X MTU 1-to-n
DCT* v v v X 2GB 1-to-n

(*: Reliable Transmission, MMS: Maximum Message Size).

RNIC for caching memory address translation table (MTT),
memory protection table (MPT), QP (queue pair) data, and
WQE (work queue entry, see Section 2.3) [6], [17], [79].
RNIC requires MTT and MPT to locate pages and check per-
missions for each RDMA operation. However, the capacity
of SRAM is limited [76], [79]. If the size of the metadata
exceeds the capacity of SRAM, performance degrades
because RDMA operations need to wait for the metadata to
move from main memory to SRAM via PCle.

2.2 Communication

RDMA uses queue pairs (QPs) for communication. Before
communication, a connection between two sides needs to
be established in three steps [101].

1)  Each side creates one queue pair (QPs). Each QP is a
memory-mapped structure containing two FIFO
work queues (WQ), a sending queue (5Q) and a
receiving queue (RQ). Each work queue is associated
with a completion queue (CQ). Notice that a CQ can
be shared by multiple WQs.
2) A memory region (MR) is registered for remote
access, and a key is generated to access this MR.
3) Both sides exchange keys and addresses of MRs.
After the connection is established, both sides can send
and receive work requests (WR) via WQ. When a WR is in
the WQ, it can also be called a work queue entry (WQE).

2.3 Programming Paradigms
RDMA Semantics. The communication paradigms of
RDMA can be roughly divided into two categories: Mem-
ory Semantics (one-sided operations) and Channel Seman-
tics (two-sided operations). Memory semantics provide
rich memory operations similar to their local memory
counterparts: remote memory read/write/atomic opera-
tions (RDMA Write/Read/Atomic). RDMA atomic operations
support remote memory synchronization including
Compared AndSwap (CAS) and FetchAndAdd (FAA). While
the initiator CPU starts the RDMA operation, memory
semantics does not need any involvement of the target CPU,
i.e., the target RNIC is responsible for accessing the remote
memory. Thus, the processes running in the initiator can
directly access the remote memory in the target through one-
sided operations. Channel semantics is similar to traditional
communication paradigms such as socket programming or
RPC, where target CPUs are needed to process the requests.
Transport Modes. RDMA Verbs can support three trans-
port modes: Reliable Connection (RC), Unreliable Connec-
tion (UC), and Unreliable Datagram (UD). Two-sided
operations are supported by all transport modes. As shown

4397
CPU Mem RNIC RNIC Mem CPU Operation | Steps
\% 2| e 0,3.6,6,0
&’@A Read 08660
..... @ Sle send/Recv | @, @, @, @, 6,6,
= > Atomic D.®,6,6.0
@ (Inline) (w/o) @
(Q)" < (UnSignal) | (w/o) ®, @
" === DMA —— MMIO/PIO - Network

Fig. 2. The transmission between CPU and RNIC (MMIO: Memory-
mapped I/O, PIO: Programmed 1/O).

in Table 2, RC and UC support RDMA Write, while only RC
supports RDMA Read/Atomic. Recent works also propose new
transport modes. Amazon AWS uses SRD (scalable reliable
datagram) [103] to enjoy both the reliability of RC and the
scalability of UD. Some new generation RNICs (e.g., Con-
nectX-6 [4]) support a new experimental feature called DCT
(Dynamically-connected Transport) [104], which can achieve
good scalability through QP sharing and reestablishment.
Fig. 2 shows the life cycles for different kinds of RDMA
operations. The table in Fig. 2 shows the data flows required
for each operation. If using a two-sided operation, when the
initiator CPU sends a request, a WR will be posted with two
steps [99]: 1) MMIO/PIO, CPU initiates network operations
by sending a message to the NIC (@); and 2) DMA, RNICs
access data from DRAM through PCle without involving
the CPU (®). The target side should additionally post a
receiving WR to its RQ (®@). It also transfers request data
from the RNIC to DRAM by DMA and produces a comple-
tion queue entry (CQE) to the corresponding CQ to notify
the end of the WR (®). When the RDMA Send is finished, the
initiator CPU will also produce a CQE (®). If using a one-
sided operation, the behavior on the initiator side is similar
to a two-sided operation. ® is a DMA read for RDMA Read or
a DMA write for RDMA Write . Meanwhile, @ is not required
because of kernel bypass, and the CQE on the target side
has no need to be generated in ®. There are also some opti-
mizations (e.g., inline, unsignal ) to reduce network traffic
and data transfer between local CPU and RNIC [99], [105].

3 RDMA-BASED STORAGE SYSTEMS

This section studies five classes of RDMA-based storage sys-
tems: key-value stores (Section 3.1), file systems (Section 3.2),
distributed memory systems (Section 3.3), database systems
(Section 3.4), and systems using smart NICs (Section 3.5). We
use system implementations in each class to show the typical
usage of RDMA in the corresponding class, together with
the discussions on design considerations, challenges and
drawbacks.

3.1 Key-Value Stores

There are two typical key-value stores (KVS): hash-based
KVS (Section 3.1.1) and tree-based KVS (Section 3.1.2).
Hash-based KVS has constant time for point query while
tree-based KVS can support range query. We also discuss a
special kind of KVS implementation combining RDMA and
persistent memory (PM) (Section 3.1.3). Table 3 summarizes
several research efforts based on different indexes (hash or
tree data structures) and their implementation details.
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TABLE 3

RDMA-Based Key-Value Stores (*Index: Hash or Tree Data Structures)
Name Index PUT GET Replication Cache Transaction Race Detection
Pilaf [9] Cuckoo Send Read X X X checksum
HERD [6] MICA Write(UC)+Send(UD)  Write(UC)+Send(UD) X X X server-side
FaSST [8] MICA Send(UD) Send(UD) v X v server-side
RFP [10] Bucket Hash Write+Read Write+Read X X X server-side
FaRM [14] Hopscotch Write Read v X v cacheline version
ccKVS [7] MICA Send(UD) Send(UD) v 4 X partition
HydraDB [11] Compact Hash Send Read v X X key-value version
C-Hint [12] Compact Hash Send Read X v X key-value version
Nessie [15] Cuckoo Write+CAS Read X X X timestamp
DrTM [13] Cluster Write Read v v v lease-based lock
RStore [16] Cluster Write Read X v v COW
ScaleTX [17] MICA Read+Write Read+Write v X v server-side
RACE [24] Extendible Hash Write+CAS Read X v X RDMA Atomic
Cell [18] B-Tree Send Send/Read X v X key-value version
Catfish [19] R-Tree Read /Write Read/Write X X X server-side
NAM-Tree [20] B-Tree Send /Write+CAS Send /Read X X X OLC

3.1.1 Hash-Based KVS

Hash-based KVS using RDMA can be classified into three
categories: 1) one-sided design uses only one-sided opera-
tions, 2) two-sided design uses only two-sided operations,
and 3) hybrid design uses both one-sided and two-sided
operations. We start our discussion with the hybrid design
since it was proposed earlier than the other two.

Hybrid Design. Pilaf [9] is the first remote in-memory KVS
to optimize GET operation using RDMA Read. Its PUT is based
on two-sided design to simplify the processing logic. Pilaf has
two memory areas, a hash table area to store data addresses
and a data area to store real data. The one-sided GET reduces
the CPU consumption of the server, but introduces two net-
work round trips (one to look up the hash table to get the data
address, and the other to fetch the data). For two-sided PUT,
only one network round trip is needed. PUT can cause hash
collisions and data movement in the hash table. Handling
these tasks using one-sided operations would be complicated,
so Pilaf chooses two-sided operations to enforce target CPU
to complete these tasks. Pilaf uses checksum to guarantee the
consistency of GET, i.e., partially updated data will be
detected and discarded in GET. HydraDB [11] and C-Hint [12]
use similar storage layouts and communication modes.
HydraDB detects data races by using version numbers (PUT
increases the version twice, thus GET can detect concurrent
PUT if the version number is odd). C-Hint further implements
an RDMA-aware cache. Because the server is not aware of the
one-sided GET, clients explicitly use RDMAWrite to tell the
server about hot data and access history. The server can then
run the cache replacement policies. HERD [6] is a little differ-
ent in that it implements RPC with Write under UC mode and
Send under UD mode (details in Section 4.1.2).

Omne-Sided Design. This category becomes prevalent
because of the disaggregation architecture separating com-
putation and storage, with no computational power on the
storage side [52]. RACE [24] is a hash-based KVS for disag-
gregated memory. It chooses extendable hashing to reduce
the overhead of resizing. It caches directories on the client-
side to reduce one RDMA Read. When the hash table is resiz-
ing, the client cache may become stale. RACE adds a header
to each bucket to detect stale caches. For PUT, RACE fixes

each entry field to 8 bytes so that remote atomic writes can be
performed using RDMACAS, eliminating the overhead of
locks (remote locks can result in multiple round trips). Previ-
ous one-sided systems are not as optimized as RACE.
FaRM [14] uses RDMA Write to implement the RPC primitives,
achieving the same functionality as the two-sided opera-
tions. Dr'TM [13] uses RDMA CAS to implement remote locks,
resulting in higher overhead than RACE. DrTM is also the
first system to combine RDMA and HTM (Hardware Trans-
actional Memory) to support distributed transactions.

Two-Sided Design. Despite the attractive features of one-
sided operations, Kalia et al. [8] demonstrate that systems
based on two-sided operations can also achieve comparable
performance and better scalability. One-sided operations
need to create connections before communication, which con-
sumes on-RNIC SRAM space. A large number of connections
can overflow SRAM, leading to performance degradation
(Section 2.1). FaSST [8] only uses RDMA Send/Recv under UD
mode to improve scalability. It is a viable choice because with
the help of InfiniBand hardware, packet loss under UD mode
is extremely low. RAMCloud [25] is also a fast in-memory
KVS using two-sided design. It presents that one-sided opera-
tion is less suitable for KVS due to multiple network round
trips.

Discussion. Using one-sided operations in hash-based
KVS to bypass the server’s CPU seems to be a huge improve-
ment, but it still comes with several challenges such as data
races and extra network round trips. To address these chal-
lenges, data validation and client-side caching mechanisms
are necessary. Also, keeping the cached data fresh is a new
challenge. Due to these challenges, some systems [8], [25]
have abandoned this primitive and adopted only two-sided
design for programmability and scalability. However, in
some scenarios, such as disaggregated memory, one-sided
operations are still essential and become more important for
their rich RDMA memory semantics.

3.1.2 Tree-Based KVS

Tree-based KVS are more complex than hash-based KVS.
It is of great challenge to have efficient implementations
only using one-sided or two-sided operations. Most existing
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Fig. 3. Different partition strategies of distributed B-Tree.

works [18], [19], [20] use the hybrid design and may even
switch between one-sided and two-sided operations based
on the system load.

Tree partition is important in the tree-based KVS. There
are three common ways to partition a tree (Fig. 3). (1) Coarse
partition divides the tree based on the key ranges (e.g., A-M
and N-Z in Fig. 3). Each server stores a subtree. The draw-
back of such design is that it is hard to handle skew work-
loads. (2) Fine partition assigns nodes to servers randomly.
It can reach load balance but tree traversal needs excessive
network communication. (3) Hybrid partition takes the
advantages of above approaches. The leaf nodes are parti-
tioned randomly. Other nodes are partitioned by range.
Since coarse partition has almost same implementation as a
single node implementation, we only discuss the fine and
hybrid partitions here.

Fine Partition. Cell [18] partitions B-Tree into multiple
“fat” nodes (64MB) across servers. Each fat node is a
small local B-Tree. The server-side serves read and write
requests, and the client-side handles read-only requests via
RDMARead. Depending on the workload and resource
usage, Cell can dynamically switch between one-sided cli-
ent-side read and two-sided server-side read. However,
even with dynamic switching, its partition strategy leads to
a high number of network round trips when the data size is
large. The client cache of the nodes near the root can allevi-
ate this problem.

Hybrid Partition. NAM-Tree [20] adopts the hybrid parti-
tion. Internal nodes of NAM-Tree use coarse partition based
on key ranges. Leaf nodes use fine partition. In addition, it
proposes a hybrid access approach. For GET, it traverses the
internal nodes by using two-sided operations and fetches
the data in the leaf node using RDMA Read. PUT is similar.
RDMA Write is used to update the leaf data.

Discussion. Tree-based KVS and hash-based KVS face dif-
ferent challenges using RDMA. A good partition will gener-
ate fewer network round trips and prevent load imbalance.
Obviously, the hybrid partition strategy requires only two
round trips per operation, which keeps network overhead
well under control compared to fine partition.

3.1.3 KVS With Persistent Memory

KVS with persistent memory is special because PM provides
both byte-addressability and persistency. There are new chal-
lenges to implement KVS combining RDMA and PM, such as
the granularity mismatch and persistence overhead. Several
works [98], [106] have evaluated the performance of remote
PM and have proposed some optimizations. FlatStore [22] is
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a representative work. Since the size of PCle data words does
not match the size of PM blocks, it uses a log-based structure
in PM and proposes horizontal batch processing to persist
requests in the log with the aim of eliminating unnecessary
writes in PM. It uses volatile indexes to quickly locate data in
the logs, mitigating the performance loss of searching in PM.
Pure one-sided accesses from the client require multiple
round trips, so FlatStore designs FlatRPC to alleviate this
problem.

Discussion. RDMA and PM provide a great opportunity
to build fast and persistent distributed KVS. RDMA and
PM have different hardware parameters such as access
granularity and persistence mechanisms. The current
RDMA does not yet consider persistence, which may
change in the future. We would like to see more hardware
and software efforts to build fast and crash-consistent sys-
tems based on RDMA and PM.

3.2 File Systems
RDMA provides new mechanisms to boost the performance
of distributed file systems. We divide existing works into
two categories (Fig. 4): decoupling architecture and coupling
architecture. The decoupling architecture decouples the storage
and network devices, similar to the traditional distributed
file systems using block devices. The coupling architecture
couples the storage and network devices as the storage devi-
ces are persistent memory. File systems can directly access
the remote persistent memory through RDMA network.
Decoupling Architecture. Current production RDMA-based
file systems usually use the decoupling architecture because
they have to use block devices (e.g.,, NVMe SSD) that do not
support byte-addressable access. As a result, existing works
mainly focus on using RDMA-optimized communication
modules to improve network performance. CephFS [33] uses
Accelio [81], an asynchronous RPC library, to support
RDMA. Similar approaches are used by GlusterFS [34] and
PolarFS [43]. Crail [35] uses DaRPC [77] which adopts asyn-
chronous I/0O for accessing remote storage and reduces data
copying on the server-side. Lustre [44] uses RDMA in its net-
work communication module LNet [107] to accelerate bulk
data movement. LNet is a Linux kernel module supporting a
variety of network driver plug-ins. GPFS [45] uses multiple
QPs between each pair of nodes to pursue higher throughput.
In addition, GPFS automatically switches to TCP/IP protocol
to increase system availability in the case of RDMA failure.
PVFS2 [47] proposes two protocols to serve different scenar-
ios, eager and rendezvous. The former is mainly used for
short messages with send and receive ring buffers, and the lat-
ter is designed for long messages with RDMA Read/Write. Simi-
larly, PVFS2 and BeeGFS [46] can also switch between
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multiple network protocols. There are other communication
building blocks available. DeltaFS [40] and GekkoFS [41] use
an RPC framework called Mercury [82]. DAOS [42] imple-
ments an RDMA-based RPC CaRT [108]. DAOS uses user-
mode drivers wherever possible (e.g., DPDK, SPDK) to elimi-
nate the high latency of context switch. In addition, DAOS has
a tiered storage design, PM for small-sized data and NVMe
SSD for large-sized data.

Coupling Architecture. The coupling architecture is special
to combine RDMA and PM as we can use one-sided opera-
tion to access the remote PM. Octopus [5] is among the first
ones. It directly accesses remote and local PM through
RNIC and DAX [109] respectively, reducing the number of
memory copying in traditional file systems (Fig. 4). It allows
clients to retrieve file metadata via RDMA-based RPC and
access the data directly through a one-sided operation. This
design reduces the involvement of server CPUs and can
effectively improve the throughput. However, Octopus
implements only a simplified file system with limited meta-
data management. For example, all files are indexed by their
path names in a static distributed hash table, and operations
such as rename would lead to high overhead. As a result,
Octopus cannot adapt to complex workloads and large-
scale deployment.

Orion [37] follows the same coupling architecture and
addresses the remaining issues, such as fault tolerance and
metadata management, in Octopus. Orion creates inode
logs for each file in PM in the metadata server. Clients need
to reconstruct the metadata using logs while opening a
file. First, clients initiate the log synchronization using
RDMA Send to notify MDS. Then, MDS uses RDMA Write to
transfer the first log page. Later, clients use RDMA Read to
fetch additional log pages. Finally, clients use one-sided
operations to directly access the data stored in data servers.
RDMASend is used to send the corresponding metadata
changes (e.g., file size) to MDS.

Discussion. Traditional file systems sitting in the kernel
suffer from the context switch and multiple data copying.
RDMA drastically reduces the latency and CPU consump-
tion, making the software a new bottleneck. Thus, the cou-
pling architecture which completely refactors the software
layer can fully utilize the performance of the underlying
hardware. However, for compatibility and stability reasons,
we will continue to see the improvement of the decoupling
architecture in current distributed file systems.

3.3 Distributed Memory Systems

Distributed memory systems consolidate memory modules
from multiple machines to form a unified address space.
This architecture can benefit in-memory data processing
applications.

FaRM [14] implements a shared address space and sup-
ports transaction processing, using RDMA-based communi-
cation primitives (Section 3.1.1). Its shared address space
contains multiple 2GB-sized memory regions (MRs). Fur-
thermore, FaRM guarantees fault-tolerant transaction proc-
essing using a distributed concurrent control protocol based
on the optimistic concurrent control. FaRM tries to use one-
sided operations as much as possible. The protocol commits
to backup before primary to ensure recoverability.
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Unlike FaRM in user-space, Hotpot [51] provides a ker-
nel-level distributed shared memory based on the page fault
handler. When a page fault occurs, it fetches the corre-
sponding page from local or remote and then makes a local
copy as a cache. Hotpot's network layer uses two-sided
operations. To reduce CPU overhead, it shares a ring buffer
for all connections and uses a thread for polling.

Kona [54] cooperates with cache coherence protocol to
work at the cache-line granularity. The above efforts (FaRM
and Hotpot) work at the coarser granularity (object or
page). The cache-line granularity can effectively mitigate
the write amplification issue. Kona proposes an FPGA-
based memory manager unit (by simulation) to pull data
from remote memory in the case of cache misses. The mem-
ory management unit also needs to keep track of dirty data
and write back the dirty data to remote memory via
RDMA Write for cache eviction.

Discussion. RDMA-based distributed memory systems
still share the same performance problem as traditional dis-
tributed memory systems because the network performance
is still much lower than the memory system in a single
node. However, with performance improvement of the
RDMA network, such systems can now boost in-memory
processing applications. We can see the practical usage of
such systems [110]. With the prevalence of PM, we can see
more improvements in distributed shared persistent mem-
ory systems.

3.4 Database Systems

Undoubtedly, RDMA can improve the performance of vari-
ous modules in a database system, including storage, trans-
action processing and query execution.

Storage. Li et al. [62] explore how to use RDMA to extend
the local memory to accelerate SQL Server [111]. Using
memory as a buffer is a common way to speed up data
access in database systems. However, due to the limited
buffer size, cache misses can lead to expensive storage
accesses. Thus, this work exposes the remote memory as an
extended buffer through RDMA. Inside the implementa-
tion, each MR is represented as a file and can be accessed by
using one-sided operations.

Transaction Processing. NAM-DB [56], [57] uses RDMA-
based snapshot isolation (RSI) to deal with the poor scalabil-
ity problem of the traditional two-phase commit protocol
(2PC) based snapshot isolation (SI). As a result, there will be
six round trips in 2PC+SI: (1) a client sends the request, (2)
the transaction manager gets a timestamp from the time-
stamp service, (3) prepare phase, (4) commit phase, (5) the
transaction manager updates the timestamp service, and (6)
the client receives a response. Such a long latency increases
the transaction contention and the abort rate. NAM-DB uses
new network-attached memory (NAM), which supports
RDMA memory semantics. The transaction processing can
run on the compute node (also as the transaction manager).
The number of network round trips is reduced to four by
using one-sided operations. Based on a similar architecture,
PolarDB Serverless [59] further optimizes remote latching
(RDMA CAS) and global timestamp (RDMA FAA).

Query Execution. D-RDMA [60] points out that RDMA
has a high overhead when transferring small data. This phe-
nomenon hurts the database query performance because
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query results are often small data scattered in tables. D-
RDMA uses non-contiguous regions (NCRs) to replace scat-
ter-gather elements (SGEs) in RDMA Verbs. This structure
consists of multiple contiguous blocks. Each block contains
data and gaps, and gaps appear at the same locations in all
blocks. D-RDMA also extends the regular RNIC by adding
an optimizer. After receiving the information of NCRs, the
NIC uses the optimizer to first generate and then run the
fastest DMA execution plan to send data. The optimizer
knows the locations of all data and gaps for NCRs. It will
merge the data areas, choosing whether to fetch them along
with the gaps. Fetching gaps increases the amount of data
access but reduces the number of small DMAs. The opti-
mizer will calculate all possible execution plans based on
tunable parameters (e.g., gap size).

Discussion.Databases may be the most widely used stor-
age system today. Existing database systems have a similar
layered design, including a storage engine (also with buffer
pool management), concurrent control method, query analy-
sis, and execution engine. All the modules need to consider
the RDMA to harness the improved network performance.
Most of the current works focus on one specific module. It is
a big challenge to integrate the high-performance RDMA
network into database systems fully.

3.5 Systems Using Smart NICs

One-sided and two-sided operations have their own advan-
tages and disadvantages. Despite the effective use of current
hardware, network architecture changes are also attractive
for further improvements. Smart NICs try to extend existing
interfaces. Smart NICs have more computing power and are
more flexible than normal RNICs.

StRoM [71] uses smart NICs in near-data processing by
offloading some data processing operations to the FPGA-
based RoCEv2 NICs. StRoM introduces four programmable
kernels: (1) accessing remote data structures, (2) remote
data checksum, (3) data shuffling, and (4) data access statis-
tics. A single network round trip is enough to complete
complex operations using these kernels, which is equivalent
to a two-sided operation. At the same time, no remote CPU
is needed, which is the same as a one-sided operation.
StRoM places these kernels on the data path between the
RoCE stack and the DMA engine to increase the bandwidth
and reduce the latency. KV-Direct [69] observes a similar
problem and implements the key-value operations (GET,
PUT, DELETE) inside smart NICs.

LineFS [72] is a high-performance distributed file system
using smart NICs with client-side data cache in PM. It is
natural to offload some common file system operations,
such as data replications, compression, data publishing,
and indexing, to smart NICs. However, the computation
power of smart NICs is much lower than CPU. LineFS pro-
poses the persist-and-publish model to improve the parallel-
ism of the system, i.e., host cores and smart NIC cores to
work cooperatively. For example, the data persistence and
replication can work in a pipeline fashion, i.e., host cores
make sure the data are persisted in PM, and then smart NIC
cores replicate persisted data.

Other than RDMA Verbs extension above, some works
customize application-specific network protocols in smart
NICs. IRMA [28] deviates from the standard RDMA protocol
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and tries to design a software and hardware cooperation pro-
tocol to meet Google’s multi-tenant scenario. For example,
1RMA abandons the concept of connection because connec-
tion in RDMA is not scalable. Thus, 1IRMA has to deal with
congestion control on its own. In addition, IRMA ensures
data security for multi-tenant.

Discussion.The programmability of smart NICs provides
great flexibility in system designs. The key to effectively
using smart NICs is finding the appropriate offloading
operations. Considering the limitations of current RDMA
Verbs, it is a great opportunity and a challenge to apply
smart NICs in various storage systems.

4 CoORE MODULES OF STORAGE SYSTEMS

This section discusses five core modules that play important
roles in the design of RDMA-based storage systems.

4.1 Communication Mode

The communication mode presents how applications use the
RDMA primitives to talk to each other. RPC (i.e., two-sided)
is the classical mode in traditional networks. RDMA introdu-
ces one-sided operation, which brings a richer set of primi-
tives. These primitives offer new ways to implement
communications between nodes in the system. We roughly
divide the communication methods into two modes: custom-
ized mode and RPC mode. The customized mode attempts to
improve the performance without traditional restrictions,
while the RPC mode is compatible with the traditional mode
to support existing applications.

4.1.1 Customized Mode

One-sided and two-sided operations have their advantages
and disadvantages. In many cases, it is not enough to use
just one type. As discussed in Section 3.1, communications
in the customized mode try to use both operations (e.g.,
Pilaf [9], C-Hint [12]).

Cell [18] balances the client-side and server-side process-
ing to maximize the search throughput. Server-side process-
ing performs better by reducing the network traffic but may
overload a server. Therefore, clients can switch to client-side
search (using RDMA Read) when a server is considered over-
loaded. Catfish [19] implements two types of communica-
tions: fast messaging (RPC) and RDMA offloading (one-
sided operations). It monitors CPU utilization and the num-
ber of network round trips to predict the workload and
determines the appropriate type. Storm [76] proposes a
dynamic access strategy called one-two-sided. Pointer chasing
usually needs multiple network round trips if using one-
sided operations, in which case two-sided operations are
more suitable. Storm will first fetch a block of data (maybe
more than needed size) via RDMARead and then switch to
two-sided operations for pointer chasing if necessary.
DrTM-H [75] evaluates the effects of one-sided and two-
sided operations for different phases of distributed transac-
tion processing (execution, validation, logging, commit). The
conclusion is that using only one mode alone cannot achieve
the best performance, and a hybrid strategy is better.

DFI [84] is special that it tries to propose new communi-
cation interfaces. It proposes a new set of data flow interfa-
ces on InfiniBand for various storage systems. The flow
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abstraction represents the data movement between nodes.
There are three flow types (Shuffle, Replicate, and Com-
biner). These are building blocks for more complex commu-
nication topologies that meet application requirements. DFI
also makes optimizations for different flows.

Discussion. Customized mode tries to achieve higher per-
formance but loses generality. Experienced programmers
familiar with RDMA prefer the customized mode to get
higher performance. However, RDMA’s rich set of primi-
tives and parameters makes it complex to use in practice.
The complexity of data-center applications makes such an
approach even harder. Thus, many practical systems prefer
the RPC (two-sided) mode.

4.1.2 RPC Mode

RPC is a very important communication mode because it
has better compatibility. Many efforts have been made to
improve the RPC performance under RDMA.

Industrial Frameworks. X-RDMA [29] is a communication
library widely used in Alibaba data centers to reduce the
buffer allocation overhead for small messages. X-RDMA pro-
vides two modes to deal with small messages and large mes-
sages separately. Small messages directly use RDMA Send. For
large messages, the sender will first call RDMA Send to wake
up the receiver, who will prepare the buffer as needed. Later,
large messages are transferred through one-sided operations.
Large message communication requires at least two network
round trips, while small message only needs one. This is
because small messages are more latency-sensitive in the pro-
duction environment than large ones. Large messages can
tolerate some latency increase from buffer allocation.

Mercury [82] is an RDMA-based asynchronous RPC
framework based on Libfabric [102] for high-performance
computing applications (including burst buffer file systems
like DeltaFS, GekkoFS). Libfabric supports various kinds of
network protocols, including TCP/UDP networks, Omni-
Path, InfiniBand, iWARP, and RoCE. Whenever possible,
Libfabric tries to use the RDMA capability of the underlying
network. Similar to X-RDMA, Mercury uses two-sided
operations to send small data (e.g., metadata) and uses
RDMA Write to transfer bulk data.

Research Prototypes. There are also plenty of research pro-
totypes (Fig. 5) to improve RPC via RDMA as RPC is impor-
tant and compatible with existing applications. These
efforts mainly use the rich RDMA primitives to optimize
scalability and performance.

HERD [6] and FaSST [8] are designed for scalability, (par-
tially) using UD mode and two-sided operation in the RPC
design. HERD-RPC demonstrates that RDMAWrite always
has lower latency and higher throughput than RDMA Send.
From the server-side, RDMA Write is an in-bound operation
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with better scalability than out-bound operations [6], [10].
Thus, in the HERD-RPC, clients directly write requests to
the per-client buffer in the server. The server polls the buf-
fers to get new requests. After processing the requests,
HERD-RPC uses RDMASend/Recv (UD) to send the
responses. UD mode has better scalability because it does
not need to manage connections, which is also observed by
FaSST. FaSST-RPC uses RDMA Send/Recv under UD mode
for requests and responses to reach better scalability. There
are mainly three reasons. (1) RC mode has to manage mas-
sive connections under all-to-all communication. (2) The
probability of packet loss of InfiniBand is extremely low. (3)
With several optimizations (e.g., doorbell batching, cheap
Recv post), two-sided operation can achieve comparable
performance to one-sided operation.

Some works investigate the ways to improve the commu-
nication performance under RC mode. RFP [10] proposes a
client-centric solution. For the RPC response, the server
writes the response in its own local per-client buffer. The
REP client uses RDMA Read to fetch the response. To make
the trade-off between high throughput and low latency, RF-
RPC [78] uses an online tuning strategy to sample latency
and chooses the appropriate size to batch RPC requests.

Additional CPU cycles (polling) are needed to discover
new incoming messages under one-sided operations. Some
works try to mitigate this problem. Octopus [5] proposes a
self-identified RPC (selfRPC) for metadata management by
using RDMA Write WithImm to carry the sender’s identifier
(node id of the client and offset of the response buffer). This
mechanism allows immediate notification to the server since
a CQE (completion queue entry) on the server-side will be
generated after the completion of RDMA Write With Imm. With
this identifier, the server can locate the new request directly
without polling and then write back the response based on
the sender’s identifier. Similar to selfRPC, LITE [79] imple-
ments a general RPC with RDMA Write WithImm to provide
control information.

Discussion.The main drawback of UD-based RPC is that
the response packet size is limited by MTU (4KB) (Table 2),
and another problem is the connection reliability. According
to the RDMA deployment in Alibaba [29], packet loss brings
serious problems and can damage the entire communica-
tion system. Thus, packet loss should not be ignored even if
it rarely happens under UD or UC mode. In contrast, RC-
based RPC is reliable but requires more efforts in resource
management (e.g., QP). There is plenty of design room for
RDMA-based RPC frameworks. With new features intro-
duced in future hardwares, especially with smart NICs, we
can hope for more works on RPC.

4.2 Concurrency Control

Many storage systems, even file systems, now require trans-
action support. Thus, concurrent control in storage systems
is unavoidable.

Remote Locks. 2PL (two-phase locking) is a fundamental
concurrent control method. DrTM [13] uses one-sided opera-
tions to implement a lease-based lock for supporting exclu-
sive writes and shared reads. Exclusive write lock can be
supported by using RDMACAS and shared read lock uses
leases. The local transaction is supported by HTM (Hardware
Transactional Memory). However, remote RDMA access will
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cause the HTM to abort. So in the case of simultaneous local
and remote reads, false conflicts may happen, which reduces
the overall performance.

Optimistic Concurrency Control. FaRM [14] supports dis-
tributed transactions based on its communication primitives
using RDMA Write and ring buffers. It also supports remote
lock-free read by using RDMA Read. Upon commit, an object
is written using local memory access with locking. Servers
are not aware of concurrent lock-free reads from clients, so
a version number is placed in the cacheline to detect data
races. After fetching the result, the client needs to check that
the header version is unlocked and matches the versions of
all cachelines. Otherwise, retries are needed.

Cell [18] supports both client-side and server-side proc-
essing. To synchronize RDMA Read with the server’s local
memory access, it stores two version numbers in each B-
Tree node (head and tail). The head version number gets
incremented before updating and the tail version number
gets incremented after updating. If RDMARead finds two
versions mismatch, the read request needs to retry. NAM-
Tree [20] uses two-sided operations to traverse the index
and one-sided operations to read/update leaf nodes. It
implements OLC (optimistic lock coupling) [112] to deal
with data races. The lock is denoted as <version, lock-
bit> in an 8-byte field, which can be modified atomically
by both RDMA operations and local instructions.

Discussion. In general, existing approaches to remote con-
current control are close to those in single-machine systems.
The difference is that even with RDMA, the network latency
is still at least an order of magnitude higher than the latency
for accessing local memory. Therefore, lock contention can
be more severe in the RDMA network. Thus, one should
either reduce the influence of remote locks or resort to other
mechanisms without using locks. As a result, many works
choose lock-free designs with additional checking mecha-
nisms [9], [24].

4.3 Fault Tolerance
For fault tolerance, while replication is more common, some
systems use erasure codes [14], [86], [92].

Replication. As shown in Fig. 6, Mojim [86] uses a single
mirror node as a replica and several backups. It combines
PM and RDMA to provide low-latency replication. Each
request only updates the primary. The primary node will
transfer the update log to the mirror node via RDMA Send.
Later, the mirror node sends the logs to backups. Replica-
tion can be synchronous or asynchronous, satisfying strong
or weak consistency.

Tailwind [87] is an RDMA-based log replication protocol
that fully uses one-sided operations. It demonstrates that
replication can consume about 80% of CPU cycles under
write-intensive workloads. Therefore, it uses RDMA Write to
replicate logs from the primary to backups, bypassing
backup server CPUs. The core challenge is how the backups
detect partially applied writes in case of failure. To this end,
Tailwind uses metadata, including checksum, offset, and
open/close RPC. HyperLoop [74] enables one RNIC to
enqueue RDMA operations on other RNICs in the network
without CPU involvement. This hardware-enabled chain
replication without CPU involvement is more efficient than
pure software implementation.
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Fig. 6. Comparisons of different RDMA-based replication protocols.

Erasure Code Erasure code (EC) can greatly reduce the
amount of disk space required for fault tolerance but
with huge computation. Some new RDMA devices can
offload the erasure code [113] computation to RNIC. A
set of APIs is available to support both synchronous and
asynchronous encoding/decoding. INEC [92] proposes a
set of in-network EC primitives and implements them on
RNIC. It reports that EC offloading can effectively opti-
mize latency, end-to-end throughput, and degraded read
performance.

Discussion. Fault tolerance is vital for any storage system.
Integrating RDMA can improve the fault-tolerant protocols.
Implementing fault tolerance also requires consideration of
other requirements (e.g., concurrency control), which are
often complicated, but necessary. EC offloading seems a
promising approach to guarantee fault tolerance while reduc-
ing the storage overhead. Therefore, we should see more EC-
offloading systems that also implement other requirements in
the future.

4.4 Caching

Caching is an effective way to boost performance and
reduce network round trips. The caching strategies used in
RDMA-based storage systems can be classified into three
types according to cache invalidation strategies.

Notification-Based Cache.The simplest way to invalidate
cache is through server notification. Cell [18] caches several
tree nodes near the root to accelerate tree traversals.
DrTM [13] caches a hash table index on the client-side with
a similar structure in the remote data store to locate data for
reducing the number of RDMA Read. Both systems use server
notifications to invalidate the client-side cache.

Validation-Based Cache. Clients can also detect the validity
of the cache. RACE [24] designs a client-side cache for direc-
tories in the extendible hash to reduce network round trips.
Since hash resizing makes the cache stale, an extra checking
mechanism is necessary. RACE proposes a scheme where
the client can still access the hash table based on the stale
cache. A header with some metadata (local depth and suffix
bits) is attached to each bucket to help verify if the correct
bucket is accessed. XStore [96] proposes a learning-based
cache algorithm to reduce both the number of network
round trips and client memory footprints. It can directly
obtain the addresses of data using a trained model.

Authorized licensed use limited to: Tsinghua University. Downloaded on August 25,2022 at 08:55:12 UTC from IEEE Xplore. Restrictions apply.



4404
TABLE 4

Comparison of Different Systems
Name QP Number
Naive RC-based approach 2xN x T
FaRM [14] 2xN x T/Q
HERD [6] (N+D)xT
RFP [10] NxT
FaSST [8] T
LITE [79] KxN
FlatStore [22] C

(N: node number, K: configurable factor, T: thread number, Q: sharing factor,
C: the server-side cores number).

Lease-Based Cache.The lease-based cache ensures that the
cached data are valid to clients within a certain period of
time. C-Hint [12] caches item locations on the client-side. It
leverages the lease mechanism to efficiently manage mem-
ory reclamation without affecting performance. Due to the
unawareness of RDMARead, the client maintains a global
view of the access history and transfers it to servers periodi-
cally by using RDMA Write. C-Hint collects the frequencies of
recent access and memory utilization on the server for each
item and proposes an algorithm to determine the expiration
time of each item.

Discussion. Caching the critical parts of indexes can effec-
tively reduce network round trips. It is a challenge to design
an efficient cache invalidation scheme according to different
storage systems. Using some prediction mechanisms, like
machine learning, to optimize caching is helpful.

4.5 Resource Management

Resource management is of great importance while using
RDMA devices. As mentioned in Section 2.1, the SRAM size
of current commercial RNICs is limited. SRAM needs to cache
the MTT and MPT of MRs and the QP data of connections.
SRAM overflow will slow down the overall performance.

Memory Region (MR) Management. Some works try to
reduce the size of MTT and MPT to save the SRAM space.
FaRM [14] proposes a kernel driver, called PhyCo, to allo-
cate contiguous 2GB MRs. Since the size of each MR is 2GB,
the number of MRs is effectively reduced, thus reducing the
size of MTT and MPT. Similarly, Storm [76] manages
RDMA-enabled memory within the same allocator of FaRM.

Other works are related to region permissions. Native
RDMA memory registration is inflexible. Each MR can only
have one permission for all applications. LITE [79] proposes
LMR (LITE Memory Region), an arbitrary size virtual mem-
ory indirect region, and it can map to more than one different
ranges of physical memory. Thus, it can provide different
permissions for different applications.

QP Management. Since QP creation is expensive, many
works try to reuse created QPs or reduce the number of QPs.
ScaleRPC [17] explores how to mitigate the poor perfor-
mance problem caused by massive connections under RC
mode. It divides the server-side QPs into multiple groups,
and only one group can communicate with the clients at a
time. X-RDMA [29] manages QPs in the same context (per-
thread) as the QP cache. When a QP is reclaimed, X-RDMA
resets the QP and pushes it into the QP cache instead of deal-
locating directly. The QPs in the QP cache can be reused to
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Fig. 7. Performance of different RDMA design choices.

accelerate connection establishment. LITE [79] uses shared
receive CQ, where one thread per node is responsible for
busy polling. It chooses an appropriate K to make a trade-off
between the total system bandwidth and the total number of
QPs. Table 4 shows the number of QPs required in the repre-
sentative systems on a single server. A non-sharing RC-
based implementation uses a large number of QPs.
FaRM [14] shares QPs in an application, and RFP [10] shares
the same QP for both request and response to reduce the
number of QPs. HERD [6] and FaSST [8] need fewer QPs
because they are not RC-based. By delegating RDMA opera-
tions to agent cores, FlatStore [22] reduces the number of
QPs to the number of cores on the server-side. Its delegation
phase gathers all RDMA operations to a socket near the
RNIC to reduce the MMIO overhead. In order to prevent a
CQ from becoming a bottleneck when shared by multiple
QPs, DaRPC [77] monitors the load of each CQ and assigns
new connections to a CQ with the lowest load.

Discussion. Resource management becomes vital when the
system scales up. It brings severe performance degradation
once the metadata of MR and QP exceed the SRAM size of
RNIC. Current works on MR metadata management require
driver modifications, making it difficult for wide adoption.
As QP management can be implemented in the user level, it
has been adopted by most systems and deployed to data-
centers [14], [29].

5 ANALYSIS AND FUTURE WORK

This section first summarizes a few practical guidelines for
RDMA from existing works (Section 5.1). Then we give
some high-level discussions between industry and acade-
mia (Section 5.2). Finally, we also share our views on the
future research directions of RDMA for storage systems
(Section 5.3).

5.1 Practical Guidelines

One-Sided versus Two-Sided. Generally, one-sided operation
has better performance than two-sided operation [75]
(Fig. 7a). With the data size smaller than 128 bytes,Write is
59% faster thanSend and 34% faster thanRead. The reason
isWrite maintains fewer states, whileRead has to maintain the
states for receiving the response.However, one-sided opera-
tion only supports simple operations (e.g., Read, Write, CAS,
FAA), resulting in additional network round trips for com-
plex operations. The choice of which mode to use depends
on the particular scenario. For read-intensive workloads,
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developers can use one-sided operations for read and two-
sided for write [9], [12]. For write-intensive workloads, one
can either use two-sided operations to reduce the conflicts or
one-sided RDMA Write if a server is overloaded [18], [19], [75].
The server processing (two-sided operations) should always
be considered for complex operations other than simple read
and write. For the disaggregated applications, the storage
node can only be accessed through one-sided operations [24],
[52]. In addition, smart NICs (Section 3.5) can be used to
extend the one-sided semantics to achieve the advantages of
both one-sided and two-sided operations.

Connection versus Datagram. Connection-based communi-
cation has to maintain QPs. As mentioned in Section 2.1,
QPs are cached in on-chip SRAM, and SRAM overflow
results in poor scalability and 50%~70% performance
degradation [17], [78], [80].Grouping and reusing QPs can
mitigate the scalability issue [14], [29]. However, these opti-
mizations are not sufficient for fully connected scenarios
(e.g., distributed transaction processing). In this case, the
datagram mode (UD) would be a better choice because it
directly eliminates the connection overhead [8].

Memory Region (MR) Registration (pre- versus on-Demand
Registration). There are two strategies for registering RDMA-
enabled memory [14], [29]: pre-registration and on-demand
registration. Pre-registration registers MRs before issuing
any RDMA request, while on-demand registration registers
an MR before each RDMA request.

Existing evaluation [114] shows that the MR registration
cost is relatively fixed when the MR size is smaller than
4KB, while it increases linearly when the MR size is larger
than 4KB. It is more efficient to reuse a MR with a size
smaller than 256KB because memory copy overhead is less
than registering a MR.Therefore, we suggest pre-registra-
tion for small MRs (e.g., less than 4KB) and on-demand reg-
istration for large MRs.

Polling Mode (Busy Polling versus Event-Triggered).Busy
polling provides low latency with high CPU consumption,
while event-triggered polling [115] consumes less CPU but
with relatively longer latency. As in Fig. 7b, event-triggered
polling has comparable CPU usage (40%~60%) to busy poll-
ing when the message size is small but incurs higher
latency. On the contrary, for large-size messages, event-trig-
gered polling leads to significant CPU savings — nearly
50x when the message size is 1M.

Programming Interface (User-Space versus Kernel-Space).
Developers can use user-space interface (e.g., Verbs [101],
UCX [116], Libfabric [102]) or kernel-space interface (e.g.,
Verbs, LITE [79]). The kernel-space interface can access
physical memory directly, while the user-space interface
can only use virtual memory. These two interfaces” perfor-
mance and behavior are comparable for read and write
operations. For memory registration, the user-space inter-
face must prevent the pages from being swapped out, so it
has to pin memory, which is expensive. On the contrary,
the kernel-space interface can register physical memory
directly. LITE [79] provides a more flexible abstraction than
kernel-space Verbs. It allows users to transparently access
memory on multiple nodes while providing different per-
missions for different users.

Optimizations. RDMA programming has some standard
optimizations. (1) Batching can improve the performance.
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The batching mechanism in RDMA includes scatter/gather
list (SGL) and doorbell [99] notification mechanism. SGL
packs several scatter/ gather elements (SGE) (each SGE repre-
sents one memory operation), into a list and issues only one
RDMA operation to complete all operations. The doorbell
mechanism can use only one notification for a batch of SGLs.
(2) NUMA effect should be considered. If CPU, RNIC, and
RDMA-enabled memory are not on the same socket, latency/
throughput will increase/reduce by up to 55%/49% [105]. (3)
RDMA atomic operations can reduce the network round
trips. Though atomic operations have to lock memory buses
and perform slightly slower than RDMA Read/Write, they are
more powerful than simple read and write and scale well.
Therefore, they can be used as needed.

Experiences. We summarize some key points from existing
works. (1) One-sided operations are difficult to use, but they
are useful for performance in some scenarios. (2) Hybrid
strategies perform better. One-sided and two-sided opera-
tions alone are not perfect. (3) Client-side caching requires
validation mechanisms to detect data staleness. (4) Lock-free
concurrent control is more efficient due to network latency.
(5) QP management is critical to scalability. (6) Coupling
RDMA with other modules is necessary to get extremely
high performance. (7) The interfaces provided by RDMA are
low-level. Hence high-level abstractions need to be designed
to make RDMA programming easier. (8) Smart NICs can
extend the current RDMA interfaces and semantics.

5.2 Academia-Research versus Industry-Research
Memory semantics in RDMA provides more choices instead
of just transferring data. Thus, a lot of academic works try to
use memory semantics effectively and efficiently. However,
we can still see that in industry, as well as the high-perfor-
mance computing community, most of the current deploy-
ments consider RDMA as a faster network (e.g., Microsoft
[26], [27], Google [28], Alibaba [29], [30], [31]).

Academia-Research. Researchers want to take full advan-
tage of the memory semantics of RDMA to optimize the sys-
tem design. Academic RDMA-based storage systems use
DRAM and PM as storage media, which are more compati-
ble with RDMA in terms of byte-addressable feature. In
order to exploit the potential of high-speed hardware, many
efforts use coupling architectures and propose many spe-
cialized optimizations [5], [13], [24], [37], [38], [39]. Due to
the hardware cost and the need to modify existing source
codes, such architectures are not widely used in data cen-
ters. But some works are applied in practice that requires
high-speed data processing. For example, FaRM [14] as an
RDMA-based distributed memory can support Microsoft’s
graph database A1l [110]. Academic efforts also share some
solutions and experiences on various storage system mod-
ules such as caching and fault-tolerant protocols [12], [24],
[74], [86], [87], [96]. They fully exploit the features of new
hardware and even new algorithms to improve the perfor-
mance of different storage modules.

Industry-Research. The industry works usually use RDMA
as a fast network protocol in many cases. Developers have
designed several RDMA communication libraries, such as X-
RDMA [29], Mercury [82], UCX [116], Libfabric [102]. Such
libraries try to provide simple interfaces, support multiple
networks (high-speed networks or traditional Ethernet), and
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can adapt to many different scenarios and applications.
These libraries are usually designed to be compatible with
existing communication libraries as much as possible.

However, some works from the industry try to use one-
sided operations. For example, PolarDB [59] uses one-sided
operations to optimize remote latching and global time-
stamp. For resource resilience, industry starts to design dis-
aggregated systems [30], [59], [117], which inspires many
academia works [24], [52], [53]. Disaggregation is an inter-
esting new architecture combining different kinds of resour-
ces using RDMA devices.

5.3 Future Work

With the rapid development of hardware and changes in
distributed architectures, there are many opportunities to
improve RDMA-based storage systems. Below we have
listed some future research directions. Rather than attempt-
ing a comprehensive list of research directions, here are
some that we think are valuable.

Resource Disaggregation. The disaggregation architecture [118]
is proposed to provide flexibility and resilience in organizing
hardware resources. Applying the RDMA network to disaggre-
gation architecture allows different types of computing resour-
ces can be decoupled to different blades. This is a significant
shift in architecture for distributed systems. Thus, many system
software, as well as applications, need to be redesigned to sat-
isfy this architecture.

Virtual RDMA Network. One of the core requirements in the
cloud environment is to support multi-tenant. Therefore, we
can make isolations between tenants and achieve high perfor-
mance by using the RDMA network. The virtual RDMA net-
work is one way to satisfy this requirement. FreeFlow [119] is
the current RDMA virtualization solution for containers.
vSocket [120] explores how to provide a software-based
RDMA virtualization framework in public clouds, while
MasQ [121] proposes a low-cost solution in private clouds.

New RDMA Interfaces. Another essential future work is
about the new functionalities for RDMA devices. The cur-
rent one-sided operation is simple but results in multiple
network round trips. On the other hand, two-sided opera-
tions do not take full advantage of RDMA features.
PRISM [122] argues that an extension to the RDMA interface
can resolve this dilemma and proposes four new primitives
to increase the expressivity of RDMA. The smart NIC is also
a development in this direction.

6 CONCLUSION

This survey studies the current works on RDMA-based stor-
age systems. We have identified five different kinds of sys-
tems related to storage. Next, we point out the core and
generic modules that make up these storage systems and ana-
lyze their considerations and tradeoffs when using RDMA.
The guidelines are summarized in Section 5.1. Finally, we
think that although many efforts have been made, RDMA-
based storage systems still need more research to adapt to
new applications and architectures.
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