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Abstract—MapReduce, as a programming model and implementation
for processing large data sets on clusters with hundreds or thousands
of nodes, has gained wide adoption. In spite of the fact, we found
that MapReduce on commodity clusters, which are usually equipped
with limited memory and hard-disk drive (HDD) and have processors
of multiple or many cores, does not scale as expected as the number of
processor cores increases. The key reason for this is that the underlying
low-speed HDD storage cannot meet the requirement of frequent IO
operations. Though in-memory caching can improve IO, it is costly and
sometimes cannot get the desired result either due to memory limitation.

To deal with the problem and make MapReduce more scalable on
commodity clusters, we present mpCache, a solution that utilizes solid-
state drive (SSD) to cache input data and localized data of MapReduce
tasks. In order to make a good trade-off between cost and performance,
mpCache proposes ways to dynamically allocate the cache space be-
tween the input data and localized data and to do cache replacement.
We have implemented mpCache in Hadoop and evaluated it on a 7-node
commodity cluster by 13 benchmarks. The experimental results show
that mpCache can gain an average speedup of 2.09x when compared
with Hadoop, and can achieve an average speedup of 1.79x when com-
pared with PACMan, the latest in-memory optimization of MapReduce.

Index Terms—Big data, data caching, MapReduce, scheduling

1 INTRODUCTION

1.1 Motivation

The human society has stepped into the big data era where
applications that process terabytes or petabytes of data are
common in science, industry and commerce. Usually, such
applications are termed IO-intensive applications, for they
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spend most time on IO operations. Workloads from Face-
book and Microsoft Bing data centers show that IO-intensive
phase constitutes 79% of a job’s duration and consumes 69%
of the resources [2].

MapReduce [6] is a programming model and an as-
sociated implementation for large data sets processing on
clusters with hundreds or thousands of nodes. It adopts a
data parallel approach that first partitions the input data
into multiple blocks and then processes them independently
using the same program in parallel on a certain computing
platform (typically a cluster). Due to its scalability and ease
of programming, MapReduce has been adopted by many
companies, including Google [6], Yahoo [15], Microsoft [18]
[46], and Facebook [43]. Nowadays we can see MapReduce
applications in a wide range of areas such as distributed
sort, web link-graph reversal, term-vector per host, web log
analysis, inverted index construction, document clustering,
collaborative filtering, machine learning, and statistical ma-
chine translation, to name but just a few. Also, the MapRe-
duce implementation has been adapted to computing en-
vironments other than traditional clusters, for example,
multi-core systems [34] [17], desktop grids [42], volunteer
computing environments [23], dynamic cloud environments
[25], and mobile environments [7].

Along with the evolution of MapReduce, great progress
has also been made with hardware. Nowadays it is common
for commodity clusters to have processors of more and more
in-chip cores (referred to as many-core cluster hereafter)
[36] [26]. While MapReduce scales well with the increase
of server number, its performance improves less or even
remains unchanged with the increase of CPU cores per
server. Fig. 1 shows the execution time of self-join with
varying number of CPU cores per server on a 7-node many-
core cluster, where the line with pluses denotes the time
taken by Hadoop and the line with squares denotes the time
in an ideal world. As the number of CPU cores increases, the
gap between the two lines gets wider and wider.

The fundamental reason (refer to Section 2 for a detailed
analysis) behind this is that the underlying low-speed HDD
storage cannot meet the requirements of MapReduce fre-
quent IO operations: in the Map phase, the model reads
raw input data to generate sets of intermediate key-value
pairs, which are then written back to disk; in the Shuffle
phase, the model reads the intermediate data out from the
disk once again and sends it to the nodes to which Reduce
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Fig. 1. Execution time of self-join with varying number of CPU cores per
server using the settings in Section 4. The Input Data is of 60GB.

tasks are scheduled. In addition, during the whole execution
of jobs, temporary data is also written to local storage
when memory buffer is full. Although more tasks can run
concurrently in theory as more CPU cores are equipped, the
IO speed of the storage system which backs MapReduce
remains unchanged and cannot meet the IO demand of
high-concurrent tasks, resulting in slightly improved or
even unchanged MapReduce performance.

Indeed, the IO bottleneck of hard disk has long been
recognized and many efforts have been made to eliminate
it. The research work can be roughly divided into two
categories.

The first category tires to cache hot data in the memory
[10] [11] [12] [32]. Since the IO speed of memory is orders of
magnitude faster than that of HDD, data in memory can be
manipulated more quickly. Only hot data is cached because
only limited volume of memory is available due to the
high cost (compared with HDD). For parallel computing,
memory is also a critical resource. Many parallel comput-
ing frameworks (e.g., Apache YARN [27]) use self-tuning
technology to dynamically adjust task parallelism degree
(TPD, which is the number of concurrent running tasks)
according to available CPU-cores and memory. Caching
data in memory inevitably occupies memories and makes
the available memory for normal tasks operation drop,
thus reducing the TPD and the performance. For memory-
intensive machine-learning algorithms such as k-means and
term-vector, which consume very large volume of memory
during execution, the thing would get even worse — their
TPD would drop significantly due to reduced memory for
normal operation, leaving some CPU cores idle. Fig. 1 also
illustrates this point by the case of PACMan [2], which is
the latest work that utilizes memory caching to improve
MapReduce. Although adding more memory could alleviate
the situation, the volume of data grows even faster, meaning
more memory is needed to cache data to get the benefit.
Taking cost into consideration, it is not cost-effective to
improve IO speed by in-memory caching.

The second category tries to use new storage medium
of high-IO speed to replace HDD [24] [48] [22] [21]. Flash-

based SSD is such a most popular storage medium. Since
SSD does not have mechanical components, it has lower
access time and less latency than HDD, making it an ideal
storage medium for building high performance storage sys-
tems. However, the cost of building a storage system totally
with SSDs is often the budget of most commercial data
centers. Even considering the trend of SSD price dropping,
the average per GB cost of SSD is still unlikely to reach
the level of hard disks in the near future [16]. Thus, we
believe using SSD as a cache of hard disks is a good choice
to improve IO speed as did in [4], [35], [33], and [19].

1.2 Our Contributions
Taking both performance and cost into consideration, this
paper presents mpCache (a preliminary version has been
published in [44]), a solution that tries to accelerate MapRe-
duce on commodity clusters via SSD-based caching. mp-
Cache not only boosts the speed of storage system (thus
eliminating the IO bottleneck of HDD) for IO-intensive
applications but also guarantees TPD of memory-intensive
jobs. The contributions of our paper are as follows.

• We identify the key cause of the poor performance
of MapReduce applications on many-core clusters as
the underlying low-speed HDD storage system can-
not afford high concurrent IO operations of MapRe-
duce tasks.

• We propose mpCache, an SSD-empowered cost-
effective cache solution that caches both Input Data
and Localized Data of MapReduce jobs in SSD to
boost IO operations. In order to get the best bene-
fit of caching, a mechanism is also put forward to
dynamically adjust the SSD allocation between Input
Cache and Localized Cache.

• We present a cache replacement scheme that takes
into consideration not only replacement cost, data set
size, and access frequency, but also the all-or-nothing
characteristic of MapReduce caching [2].

• Extensive experiments are conducted to evaluate
mpCache. The experimental results shows that mp-
Cache can get an average speedup of 2.09x when
compared with standard Hadoop and an average
speedup of 1.79x when compared with PACMan.

The rest of this paper is organized as follows. Section 2
gives a brief introduction to MapReduce and analyzes the
reasons why MapReduce applications perform poorly on
many-core clusters. Section 3 describes the key ideas and
algorithms of mpCache. Section 4 shows the experimental
results. Section 5 reviews the related work and the paper
ends in Section 6 with some conclusions.

2 PROBLEM ANALYSIS

In this section, we first give a brief introduction to MapRe-
duce, and then set out to find out the bottleneck of MapRe-
duce applications on many-core clusters.

2.1 Overview of MapReduce
A MapReduce [6] program is composed of a Map function
and a Reduce function, where the Map function is used to
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process the key-value pairs associated with the input data
(supplied by a certain distributed file system or database)
to generate a set of intermediate key-value pairs and the
Reduce function is used to merge all intermediate values
associated with the same intermediate key. The program
is executed by a runtime, the core part of a MapReduce
framework that is in charge of such things as reading in
and partitioning the input data, scheduling tasks across the
worker nodes, monitoring the progress of tasks execution,
managing all the communications between nodes, tolerating
the fault encountered, and so on.

There are many MapReduce frameworks available and
in this paper, we base our prototype on YARN, the latest
version of Apache Hadoop, which is probably the most
popular open-source implementation of MapReduce model.

The execution of a MapReduce program consists of three
phases, that is, the Map phase, the Shuffle phase, and the
Reduce phase. Fig. 2 shows the execution of a MapReduce
job from the perspective of IO operations. Details are as
follows.

In the Map phase, each map task Reads in the data block
(from the source specified by the job), and runs the user-
providing Map function to generate some key-value pairs
(called intermediate results) that are stored first in a memory
buffer and then flushed to local disk as a file (called spill file
in Hadoop) when the buffer runs out. The spill procedure
repeats until the end of the Map task, generating multiple
spill files. After that, spill files of the same Map task are
Merged (denoted by M in the figure) into a single file and
written back to local disks for the purpose of fault-tolerance.

In the Reduce phase, the reduce task first Fetches input
data from all the Map nodes and Merges (denoted by M
in the figure) the fetched data into a single file. Then the
user-providing Reduce function is executed to process the
data. Since all the temporary results of Spill and Merge
procedures and the outputs of Map function are written to
local storage, they are called Localized Data in Hadoop.

Between Map phase and Reduce phase is the Shuffle
phase that is employed to sort the Map-generating results
by the key and pipeline data transfer between Mappers and
Reducers. Since Reduce tasks in a MapReduce job will not
execute until all Map tasks finish, the pipelining mechanism
in the Shuffle phase would save a large part of data transfer
time and thus improve performance.

All the three phases involve IO operations multiple
times. For example, disk manipulation occurs two times
(reading data from and writing data to disks) in the Map
phase, while during the Shuffle phase, disk operations will
happen at both the Mapper and the Reducer sides — data
is read out from the disks of the Mappers, sent over the
network, and then written to the disks of the Reducers. Since
the speed of hard disks cannot match that of CPU, IO oper-
ations are time-consuming and thus limit tasks throughput.
With IO operations improved by SSD-based caching at both
Mappers and Reducers, the computation process will be
accelerated accordingly. That is the basic idea behind our
work here.

2.2 Bottleneck Analysis
With the development of hardware technology, many-core
servers get common in data centers [36] [26]. For example,

each server in our experiment has 16 CPU cores. More cores
on a node usually means the node could process more
tasks concurrently. In a typical Hadoop configuration, one
CPU core corresponds to one Map/Reduce task. Thus, one
node could run concurrently as many tasks as the number
of CPU cores in theory. We define the number of concur-
rently running tasks (i.e., TPD) as wave-width since tasks
in MapReduce are executed wave by wave. Then we have
wave# = ceil(tasks#/wave-width). Obviously, the bigger
the wave-width, the smaller the wave# and the shorter the job
execution time.

We examines the job execution time by varying the
wave-width. As shown in Fig. 1, the execution time of the
job reaches the minimum value when the wave-width is
12 and this value remains unchanged even if the wave-
width increases. Consider a job consisting of 288 Map tasks
and running on a many-core cluster of 6 nodes. Obviously,
each node should process 288/6 = 48 Map tasks. When
each node is equipped with 12 CPU cores, the number of
concurrently running Map tasks (i.e., the wave-width) is 12.
In this case we get 48/12 = 4 waves for the job. On the
contrary, when each node is equipped with 16 CPU cores,
we get 48/16=3 waves for the same job. Ideally, if the node
could provide sufficient resources such as CPU, memory,
and IO, job execution in 3 waves should take 3/4 time of that
running in 4 waves. But as shown in Fig. 2, the Map time
remains unchanged when the wave-width increases from 12
to 16. Please note that the execution time of different waves
might be different in the real world and here we just use Fig.
2 to simplify the problem description.

The reason for unchanged execution time is that the IO-
intensive operations (i.e., Read, Spill, Merge) slow down
due to the IO bottleneck of the underlying storage system.
For commodity clusters, they are usually equipped with
HDDs. Since the MapReduce job performance is bounded
by the low IO speed of HDD, it is natural that the perfor-
mance remains unchanged with the increase of CPU cores.
This phenomenon was also reported by PACMan [2] — the
authors found that ”the client saturated at 10 simultaneous
tasks and increasing the number of simultaneous tasks beyond
this point results in no increase in aggregate throughput”.

In summary, the bottleneck of MapReduce applications
running on many-core clusters is the IO speed of storage
system. As mentioned in Section 1, caching data in mem-
ory and building total SSD storage systems have several
disadvantages, impeding them to be used for memory-
intensive applications. Therefore, we propose mpCache, an
SSD-based cache solution that caches both Input Data and
Localized Data to provide high IO speed and thus speed
up all the critical operations — Read, Spill, and Merge.
Besides, mpCache also allows dynamically adjusting the
space between Input Cache and Localized Cache to make
full use of the cache to get the best benefit.

3 MPCACHE DESIGN

This section details the design of mpCache.

3.1 Architecture
In accordance with the distributed file system that backs the
MapReduce framework up, mpCache adopts a master-slave
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Fig. 3. mpCache architecture. It adopts a master-slave architecture with
mpCache Master managing mpCache Slaves locating on every data
node. Thin lines represent control flow and thick arrows denote data
flow. Such an architecture is in accordance with that of the underlying
distributed file system that backs up the MapReduce framework.

architecture, as shown in Fig. 3, with one mpCache Master
and several mpCache Slaves. mpCache Master acts as a
coordinator to globally manage mpCache slaves to ensure
that a job’s input data blocks, which are cached on different
mpCache slaves, present in an all-or-nothing manner, for
some prior research work [2] found that a MapReduce job
can only be speeded up when inputs of all tasks are cached.
We can see from the figure that SSD-based cache space
locates in each data node of the underlying distributed file
system of the MapReduce framework. It is a distributed
caching scheme.

mpCache Master consists of two components – Dynamic
Space Manager and Replace Arbitrator. Dynamic Space Manager
is responsible for collecting the information about dynamic
cache space allocation from each mpCache Slave and record-
ing into history the job type and input data set size. Replace
Arbitrator leverages the cache replacement scheme.

mpCache Slave locates on each data node and also
consists of two components, that is, Dynamic Space Tuner
and Cache Master. Dynamic Space Tuner is deployed to adjust
the space allocation between Input Cache (for caching Input
Data) and Localized Cache (for caching Localized Data).
Cache Master is in charge of serving cached data blocks and
caching new ones.

During job execution, Cache Master on each data node
intercepts the data reading requests of Map tasks, and

checks whether the requested data block is cached. If so,
Cache Master servers the data blocks from cache and informs
Replace Arbitrator, which resides with mpCache Master, of
the block hit. Otherwise, the data block will be cached. In
the case that there is no enough cache space, Cache Master
will send cache replacement request to Replace Arbitrator and
do cache replacement according to the information returned
by Replace Arbitrator to make room for the newly requested
data block.

3.2 Dynamic Space Allocation
As described in Section 2.1, Read, Spill, and Merge are
all IO-intensive procedures, imposing restrictions on per-
formance when running on many-core clusters. Since both
reading in the job input data and reading/writing Localized
Data involve IO operation, mpCache caches both data.
Because the cache space is limited and different jobs may
have different characteristics in terms of input data size
and localized data size, we must smartly allocate the space
between Input Cache and Localized Cache to get the best
benefit. Fig. 4 illustrates this, where the x-axis represents the
Localized Cache size and y-axis represents the total benefit
of caching.

As shown in the figure, the Input Cache size as well as
the corresponding caching benefit decreases as the Localized
Cache size increases. With a larger Localized Cache, the
cost of writing/reading Localized Data reduces and the
cache performance improves. At a certain point, the two
lines cross and total benefit of caching reaches the best
value. Please note that this figure is just an illustration. In
the real world, the optimal point may vary between jobs,
for different jobs may produce quite different volumes of
Localized Data, according to which jobs can be categorized
into shuffle-heavy, shuffle-medium, and shuffle-light. Therefore,
we must dynamically adjust the space allocation to ensure
the best benefit of caching.

It is in this sense that Dynamic Space Tuner is introduced.
As shown in Fig. 5, Dynamic Space Tuner divides the whole
cache space into three parts, that is, Input Cache, Dynamic
Pool, and Localized Cache. Since the distributed file sys-
tems (e.g., GFS [14] and HDFS [39]) that back MapReduce
applications up store data in the unit of block, we also
divide Dynamic Pool into many blocks. Blocks in Dynamic
Pool will be used on demand as Input Cache or Localized
Cache. During job execution, Dynamic Space Tuner constantly
monitors the utilization of the Localized Cache. When the
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Fig. 4. Balancing the size of the Input Cache and the Localized Data
Cache is necessary to get best benefit of caching.
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Fig. 5. The whole cache space is divided into three parts, namely Input
Cache, Dynamic Pool and Localized Cache. Blocks in Dynamic Pool are
used on demand as Input Cache or Localized Cache depending on the
workload to get the most benefit of caching.

cache space runs out, Dynamic Space Tuner checks if there
are free blocks in Dynamic Pool. If not, Dynamic Space Tuner
will remove some cached input data from Dynamic Pool
using the same scheme described in Section 3.3. Then the
just freed blocks are used as Localized Cache one by one. If
the utilization of Localized Cache is below the guard value,
which is set to 0.5 in our implementation, all blocks used as
Localized Cache in Dynamic Pool are reclaimed.

3.3 Input Data Cache Model
Since the cache size is limited, it is necessary to do cache re-
placement to guarantee the desired benefit. Here we explain
the cache model used for input data.

3.3.1 Admission Control Policy
We use an admission control policy in the first place to
decide whether or not an object should be cached. Since
the cache space is limited and input data size varies job by
job, caching input data of one job may mean purging the
data of the other jobs from the cache. Too frequent cache
replacement may result in the case that some cached data
will never be used during the whole lifetime in the cache,
reducing the benefit of caching. It is the duty of admission
control policy to avoid this happening.

The admission control policy utilizes an auxiliary facility
to maintain the identities of input data sets of different jobs.
For each data set recorded in this facility, its access number
and the last access time are also maintained. Each time the
data set is accessed, the corresponding access number is
increased by 1 and the record is updated. The auxiliary
facility is kept in memory, for it just maintains metadata

about the data sets rather than the data sets themselves and
will not consume too much memory.

Using the admission control policy, we would like to
ensure that, at a certain time when some data is accessed,
the potential incoming input data jdi gets popular enough
so that it can be loaded into the cache to get more benefit.
The process is as follows.

If there is enough free space for jdi, we simply load
jdi into the main cache. Otherwise, we check to see if jdi
has been recorded by the auxiliary facility. If not, we will
record the related information with the auxiliary facility
rather than put jdi itself into the main cache. In the case
that jdi does occur in the auxiliary facility, we proceed to
see if some cache replacement is necessary. By necessary we
mean the cache replacement is profitable, or in other words,
it can bring in some benefit for the performance. This is
done by comparing the value 1/(Size(jdi)∆jdi ) with the
sum

∑
j 1/(Size(jdj)∆jdj ), where jdj is the candidate data

sets to be replaced that is determined by the replacement
scheme described in Section 3.3.2, Size(jd) is the number of
blocks in data set jd, and ∆jd is the data set access distance,
which is defined as the number of data set accesses between
the last two times that the data set jd was accessed. In the
case that jd is accessed for the first time, ∆jd is defined as
the number of all data set accesses before that, and in the
case of successive accesses, ∆jd is set to 0.01. A candidate
data set jdi can be loaded into the main cache if and only
if 1/(Size(jdi)∆jdi)>

∑
j 1/(Size(jdj)∆jdj ). It is easy to

see that the data set access distance defined in such a way
ensures those data sets being frequently accessed (and thus,
of smaller data set access distance) have greater chance to
be loaded into the main cache.

3.3.2 Main Cache Replacement Scheme
We now describe the cache replacement scheme adopted
by the main cache. For each data set in the main cache we
associate it with a frequency Fr(jd), which is the number of
times that jd has been accessed since it was loaded into the
main cache. Besides, a priority queue is maintained. When a
data set of a certain job is inserted into the queue, it is given
the priority Pr(jd) using the following way:

Fr(jd) = Blocks Access(jd)/Size(jd) (1)
Pr(jd) = Full + Clock + Fr(jd) (2)

where Blocks Access(jd) is the total number of times that
all blocks of data set jd are accessed; Full is a constant
bonus value assigned to the data set whose blocks are all
in the main cache (in favor of the all-or-nothing characteristic
of MapReduce cache [2]); Clock is a variable used by the
priority queue that starts at 0 and is set to Pr(jdevicted)
each time a data set jdevicted is replaced.

Once the mpCache Master receives a data access mes-
sage from an mpCache Slave, Algorithm 1 is used to update
Pr(jd) of the corresponding data set indicated by the mes-
sage. Since Clock increases each time a data set is replaced
and the priority of a data set that has not been accessed
for a long time was computed using an old (hence small)
value of Clock, cache replacement will happen on that data
set even if it has a high frequency. This ”aging” mechanism
avoids the case that a once frequently-accessed data set,
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which will never be used in the future, unnecessarily oc-
cupies the cache and thus degrades performance. To Del
in Algorithm 1 is a list of tuples that have the format
< data node, blocksevicted >. It is introduced for Replace
Arbitrator to record those data blocks on each data node that
have already been selected by Replace Arbitrator as outcasts
but the corresponding Cache Master is not notified of.

Algorithm 1 Main Cache Replacement Scheme.
1: if the requested block bk is in the cache then
2: jd← the data set to which bk belongs
3: Blocks Access(jd)← Blocks Access(jd)+1
4: update Pr(jd) using Equation (1)-(2) and move jd accordingly

in the queue
5: else
6: if no cache replacement is necessary then
7: cache bk
8: else
9: mpSlave← the source of the data access request

10: data node← the data node that mpSlave is seated
11: if To Del.hasRecord(data node) then
12: send blocksevicted to mpSlave, and replace blocksevicted

with bk at mpSlave
13: else
14: jdevicted ← the data set with lowest priority in the queue
15: Clock← Pr(jdevicted)
16: blocksevicted ← all the blocks of jdevicted
17: send blocksevicted to mpSlave, and replace blocksevicted

with bk at mpSlave
18: allnodes← all the data nodes that store blocksevicted
19: for dn ∈ allnodes do
20: To Del.addRecord(< dn, blocksevicted >)
21: end for
22: end if
23: end if
24: Blocks Access(jd)← Blocks Access(jd)+1
25: if all the blocks of jd are cached then
26: Full = BONUS V ALUE
27: else
28: Full = 0
29: end if
30: compute Pr(jd) using Equation (2) and put jd into the queue

accordingly
31: end if

4 EVALUATION

We implement mpCache by modifying Hadoop distributed
file system HDFS (version 2.2.0) [15] and use YARN (version
2.2.0) to execute the benchmarks.

4.1 Platform
The cluster used for experiments consists of 7 nodes. Each
node has two eight-core Xeon E5-2640 v2 CPUs running at
2.0GHz, 20MB Intel Smart Cache, 32GB DDR3 RAM, one
2TB SATA hard disk and two 160GB SATA Intel SSDs config-
ured as RAID 0. All the nodes run Ubuntu 12.04, have a Gi-
gabit Ethernet card connecting to a Gigabit Ethernet switch.
Though we have 160*2=320GB SSD on each node, we only
use 80GB as cache in our experiment to illustrate the benefit
of mpCache. Such a value is selected because the data sets
used for experiments are not large (the maximum volume of
data manipulated during our experiments is about 169GB in
the case of tera-sort) and too large cache space would hold
all data, making cache replacement unnecessary. In the real
world, the input data sets of MapReduce may be of terabytes
or even petabytes, well beyond the SSD capacity.

TABLE 1
Input data size of benchmarks. (k=1,2,. . . ,20)

Data Source Data Size Benchmarks

wikipedia k*4.3G

grep
word-count

inverted-index
term-vector

sequence-count

netflix data k*3.0G

histogram-rating
histogram-movies

classification
k-means

PUMA-I k*3.0G self-join
PUMA-II k*3.0G adjacency-list
PUMA-III k*4.2G ranked-inverted-index
PUMA-IV k*3.0G tera-sort

4.2 Benchmarks
We use 13 benchmarks released in PUMA [1], covering
shuffle-light, shuffle-medium, and shuffle-heavy jobs. We
vary the input data size of each benchmark from 1 to
20 times of the original data set. Input data size of each
benchmark is shown in Table 1. grep, word-count, inverted-
index, term-vector, and sequence-count use the same input
data, which is a text file downloaded from wikipedia.
histogram-rating, histogram-movies, classification, and k-means
use the same data set, which is classified movie data down-
loaded from Netflix. self-join, adjacency-list, ranked-inverted-
index, and tera-sort use data set downloaded from PUMA.

Since the input data size has Zipf-like frequency distri-
bution [20], we associate a probability with each data size
using Equation (3).

f(k; s,N) =
1/ks∑N
i=1 1/i

s
(3)

Since 20 times of data size are generated, we set N to
20. For the Zipf parameter s, we set it to 1 if not specially
mentioned. Table 2 summarizes the characteristics of the
benchmarks in terms of input data size (take k=10 for
example), data source, the number of Map/Reduce tasks,
shuffle size, and execution time on Hadoop.

Shuffle-light jobs, including grep, histogram-ratings,
histogram-movies, and classification, have very little data
transfer in the shuffle phase. Shuffle-heavy jobs, which have
a very large data size to be shuffled (as shown in Table 2,
almost the same as the input data size), include k-means, self-
join, adjacency-list, ranked-inverted-index, and tera-sort. The
shuffle data size of shuffle-medium jobs is between that of
shuffle-light and shuffle-heavy ones, including word-count,
inverted-index, term-vector, and sequence-count.

When submitting a job to the cluster, we randomly select
one from the 13 benchmarks, and set the input data size
according to the attached probability. Each time we submit
a job, we use ”echo 1 > /proc/sys/vm/drop caches” com-
mand to clear memory cache and make sure the data is read
from mpCache other than memory.

4.3 Experimental Results
Our experiment consists of 5 parts: i) Section 4.3.1 compares
mpCache with standard Hadoop and PACMan, the state-
of-the-art way of MapReduce optimization by in-memory



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2016.2599933, IEEE
Transactions on Big Data

7

TABLE 2
Characteristics of the benchmarks used in the experiment

Benchmark Input size(GB) Data source #Maps & #Reduces Shuffle size(GB) Map&Reduce time on Hadoop(s)
grep 43 wikipedia 688 & 40 6.9 ∗ 10−6 222&2

histogram-ratings 30 netflix data 480 & 40 6.3 ∗ 10−5 241&5
histogram-movies 30 netflix data 480 & 40 6.8 ∗ 10−5 261&5

classification 30 netflix data 480 & 40 7.9 ∗ 10−3 286&5
word-count 43 wikipedia 688 & 40 0.318 743&22

inverted-index 43 wikipedia 688 & 40 0.363 901&6
term-vector 43 wikipedia 688 & 40 0.384 1114&81

sequence-count 43 wikipedia 688 & 40 0.737 1135&27
k-means 30 netflix data 480 & 4 26.28 450&2660
self-join 30 puma-I 480 & 40 26.89 286&220

adjacency-list 30 puma-II 480 & 40 29.38 1168&1321
ranked-inverted-index 42 puma-III 672 & 40 42.45 391&857

tera-sort 30 puma-IV 480 & 40 31.96 307&481

caching; ii) Section 4.3.2 compares mpCache with traditional
cache replacement policies such as LRU (Least Recently
Used) and LFU (Least-Frequently Used); iii) Section 4.3.3
shows mpCache behavior with different numbers of CPU
cores per server; iv) Section 4.3.4 shows the adaptability
of mpCache to the cache size; v) Section 4.3.5 shows the
adaptability of mpCache to the Input Data size.

4.3.1 Comparison with Hadoop and PACMan

We compare the execution time of benchmarks on mpCache
with that on both Hadoop and PACMan. We run the bench-
marks with mpCache, Hadoop, and PACMan respectively
and get the average value. PACMan uses memory to cache
input data and the bigger the cache size, the more the
cached data and thus the faster the Map phase. However,
the concurrent running tasks number in YARN is tightly
related to the available CPU cores and the free memory, and
consuming too much memory for data caching would de-
crease the parallelism degree of the tasks. We set the volume
of memory used for cache to 12GB as did in PACMan [2].

Fig. 6 shows the normalized execution time of the Map
and Reduce phase. For shuffle-light jobs such as grep,
histogram-movies, histogram-ratings, and classification, their
execution time is short (about 241s, 253s, 279s, and 304s on
Hadoop when k=10) and most time is spent on data IO.
Input data caching supplied by mpCache can accelerates
the Map phase significantly (2.42x faster on average). In the
Reduce phase, the speedup is not notable for three reasons:
i) The Reduce phase of shuffle-light jobs is very short (about
2s, 4s, 4s, and 5s when k=10); ii) Shuffle-light jobs have
very little shuffle data (less than 10 MB); iii) The localized
data size is so small (less than 1 MB) that caching localized
data results in little acceleration. In all, mpCache gets a
speedup of 2.23 times over Hadoop for shuffle-light jobs.
When running the jobs with PACMan, each task performs
well with 1GB memory. PACMan and mpCache get the
same parallelism degree of the tasks. Although in-memory
caching could provide faster IO than SSD-based caching as
mpCache does, the larger cache size provided and cache
replacement scheme supplied ensure a higher hit ratio of
mpCache than that of PACMan does (61.7% vs. 38.5%).
Therefore, mpCache performs even better than PACMan.

For shuffle-medium jobs such as word-count, inverted-
index, term-vector, and sequence-count, their execution time

is longer than that of shuffle-light jobs(about 779s, 932s,
1209s, and 1174s), caching Map input data only results in
a speedup of 1.25 times averagely. The shuffle data size of
these jobs is about 318∼737MB; the size of localized data is
1∼3GB; caching localized data would produce great benefit
— the average speedup of the Reduce phase is 1.60 times.
In all, mpCache can averagely get a speedup of 1.25 times
over Hadoop for shuffle-medium jobs. With PACMan, word-
count and inverted-index run well using 1GB memory and the
speedup got is almost the same as in the case of mpCache.
For term-vector tasks that need at least 3GB memory, the
parallelism degree is 10 in Hadoop and 6 in PACMan.
As a result, the performance of PACMan drops to 0.762
of the performance of Hadoop. The parallelism degree for
sequence-count, whose task needs at least 2GB memory, is 16
in Hadoop and 10 in PACMan, making the performance of
PACMan drop to 0.868 of the performance of Hadoop.

For shuffle-heavy jobs such as k-means, self-join,
adjacency-list, ranked-inverted-index, and tera-sort, both the
shuffle data size and the localized data size are very big.
Thus, caching Map input data and localized data reduces
the time of Map and Reduce phases greatly. The Map phase
time of k-means, self-join, ranked-inverted-index, and tera-sort is
shorter than that of adjacency-list (1168s). Thus the speedup
got for the former three jobs is 1.82∼2.69 times, whereas the
speedup got for the latter job is 1.04 times. Caching localized
data also brings in great benefit — a speedup of 3.87 times
would be got in the Reduce phase. In all, mpCache results
in an average speedup of 2.65 times over Hadoop. For
PACMan, the parallelism degree with self-join, adjacency-
list, ranked-inverted-index, and tera-sort, each task of which
needs 2 GB memory, is 10, resulting in the performance of
PACMan dropping to 0.981 of the performance of Hadoop.
As for k-means, the number of Reduce tasks is set to 4
(because it clusters the input data into 4 categories) and each
task needs at least 8GB memory. Since less memory is left for
normal operation, PACMan spends 2.46x longer time in the
Map phase than Hadoop does. In addition, it does no help
to the heavy Reduce phase (2660s, taking about 86.2% of the
whole job execution time). As a result, the performance of
PACMan drops to 0.808 of the performance of Hadoop.

PACMan used 12GB memory for data cache and got con-
siderable performance improvement over Hadoop MapRe-
duce v1 [15], the TPD of which is determined by the ”slots”
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Fig. 6. Job execution time comparison with Hadoop and PACMan.

number in the configuration file. Usually it is set to a
constant value. Since both Hadoop and PACMan use the
same configuration, they are of the same TPD. However, in
MapReduce v2 (i.e., YARN [27]), the number of concurrent
running tasks is determined by the number of free CPU
cores and free memory, allocating memory for data cache
inevitably reduces the TPD of some jobs.

In our cluster, each node has 16 CPU cores and 32GB
memory. Since PACMan used 12GB memory for cache, the
memory left for computing is 20GB. When running ”1GB
jobs” (jobs with each task consuming 1GB memory, in-
cluding grep, histogram-rating, histogram-movies, classification,
word-count, and inverted-index) with PACMan, the TPD is
16, the same as that of Hadoop and mpCache. Therefore,
PACMan gets a better performance than Hadoop and mp-
Cache performs almost the same as PACMan. For other jobs,
each task needs at least 2GB memory (3GB for term-vector,
and 6GB for k-means), and therefore the TPD of PACMan
drops to 10 (6 of term-vector, and 3 of k-means). Although
in-memory caching could significantly speedup the Map
phase, the dropping of TPD slows down the job worse:
as illustrated in Fig. 6, PACMan performs even worse than
Hadoop for these ”at least 2 GB” jobs.

For all these benchmarks, mpCache gains an average
speedup of 2.09x when compared with the Hadoop, and an
average speedup of 1.79x when compared with PACMan.
Such improvements come from the speedup of IO opera-
tions. Since more data is read from the SSD-based cache
rather than hard disks, computing resources waste due to
lack of data is lowered and thus tasks can progress faster.
Though the speed of SSD is slower than that of memory, the
volume of SSD cache is much larger than that of memory
cache. As a result, SSD-based cache also shows advantage
over memory-based cache. This is why mpCache performs
better than PACMan.

In order to better illustrate the in-memory caching effect
of PACMan, we also do an experiment where only 8 CPU
cores are used on each node for Hadoop, PACMan, and
mpCache.

As shown in Fig. 7, for the case of 8 CPU cores, most
benchmarks can run with the same TPD on Hadoop, mp-
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Fig. 7. Job execution time comparison with Hadoop and PACMan on the
same cluster of 8 CPU cores.

Cache, and PACMan except term-vector and k-means. For
shuffle-light jobs, mpCache and PACMan run with the same
TPD, getting 1.74x and 1.67x speedup over Hadoop respec-
tively. For shuffle-medium jobs, in the 1GB job case (word-
count and inverted-index), the speedup got over Hadoop is
1.12x and 1.08x respectively; in the 3GB job case (term-
vector), Hadoop and mpCache run with TPD=8 whereas
PACMan runs with TPD=6. Thus PACMan has a longer
Map phase time than Hadoop and the whole performance
of PACMan is even worse than that of Hadoop. For shuffle-
heavy jobs, the localized data size is also big. mpCache
caches both input data and localized data, resulting in
an average speedup of 1.63 times in the Map phase and
2.09 times in the Reduce phase. In contrast, PACMan gets
an average speedup of 1.35 times in the Map phase and
introduces no benefit in the Reduce phase. Totally, for all
the benchmarks, mpCache gets an average speedup of 1.62
times, whereas PACMan gets an average speedup of 1.25
times.

4.3.2 Comparison with Traditional Cache Replacement
Policies

We implement two traditional cache replacement policies,
namely LRU and LFU. In our settings, mpCache gets an
average hit ratio of 61.7%, while LRU gets an average hit
ratio of 53.9% and LFU gets an average hit ratio of 68.3%.
The resulted performance is shown in Fig. 8. Although
LFU gets a higher hit ratio than mpCache does, mpCache
takes all-or-nothing characteristic of MapReduce caching
into consideration and deploys an auxiliary facility to pre-
vent too frequent replacements, and therefore gets a higher
speedup than LFU does. Compared with LRU, mpCache
gets both higher hit ratio and speedup. With the cache space
better utilized, it is natural that the IO operations and the
consequent tasks execution are speeded up.

4.3.3 Adaptability to the Number of CPU Cores per Server

Fig. 9 shows mpCache’s adaptability to the number of CPU
cores per server, where the line with pluses denotes the
execution time of Hadoop, the line with squares denotes
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the execution time of mpCache, and the line with asterisks
denotes the execution time of Hadoop in an ideal world (i.e.,
with no constraint). mpCache scales well when the number
of CPU cores per server increase. Its behavior is almost the
same as the ideal case.

4.3.4 Adaptability to Cache Size

We now evaluate mpCache’s adaptability to cache size by
varying the available cache size of each mpCache Slave be-
tween 5GB and 160GB. The experimental results are shown
in 3 sub-figures, i.e., Fig. 10(a), Fig. 10(b), and Fig. 10(c), in
accordance with the 3 categories of benchmarks.

Fig. 10(a) shows the impact of cache size on shuffle-light
benchmarks. All these benchmarks have very little shuffle
date and very short Reduce phase (the Reduce phase is
no greater than 2.1% of the whole time). Therefore, the
Localized Cache occupies less space and most space is used
as Input Space. The speedup of these benchmarks mainly
comes from Input Data caching. When the cache size is 5GB
per node, the speedup is very small due to insufficient space
to hold Input Data. As the cache size increases, the speedup

grows significantly and a maximum value is obtained when
the cache size is about 90GB.

Fig. 10(b) shows the impact of cache size on shuffle-
medium benchmarks. These benchmarks have some volume
of shuffle data (no more than 1GB), both Map and Reduce
phase could be accelerated by caching. When the cache size
per node is 5GB, all Localized Data is cached, resulting in an
average speedup of 59.99% in the Reduce phase. However,
since the Reduce phase only takes 3.43% of the whole time,
this only contributes 1.40% of the whole job speedup. As the
cache size increases, the speedup grows due to the reduction
of the Map phase time and a maximum value is reached
when the cache size is about 100GB.

Fig. 10(c) shows the impact of cache size on shuffle-heavy
benchmarks. These benchmarks have very large volume of
shuffle data. When tera-sort runs with 30GB input data, the
localized data occupies as large as 32GB space. Thus, when
the cache size is below 40GB, most cache is allocated to
cache Localized Data, which is the main contribution of
the speedup. As depicted in the figure, the k-means job gets
higher speedup than tera-sort does when the cache size is
below 100GB and tera-sort gets higher speedup when the
cache size is larger than 100GB. The reason behind this is:
the Reduce phase of k-means takes a very large portion of
the whole execution time (85.53%) and larger volume of
Localized Data is spilled than the case of tera-sort. Therefore,
caching Localized Data accelerates k-means faster than the
case of tera-sort. When the cache size is below 40GB, the
gradient of k-means is bigger than that of tera-sort. When
the cache size is above 40GB, the increase of speedup is
due to Input Data caching and the reduction of the Map
phase time. Since tera-sort has smaller Map phase time than
k-means (as shown in Table 2, when the input data size is
30GB, the Map phase time of tera-sort is 307s, while that
of k-means is 450s), caching Input Data accelerates tera-sort
faster than k-means, resulting in the same speedup at 100GB
and greater speedup beyond 100GB. All the shuffle-heavy
benchmarks get the maximum speedup when the cache
size is about 130∼140GB. Among these benchmarks, the
speedup of adjacency-list is smallest. The reason behind this
is that both Map phase and Reduce phase are compute-
intensive and take a long time. Since the critical resource
of this benchmark is CPU, accelerating IO only improves
the performance a little.

4.3.5 Adaptability to Input Data Size

We now evaluate mpCache’s adaptability to the input data
size by ranked-inverted-index. As described in Section 4.2, we
attach a selection probability to each input data size using
Zipf distribution, which is indicated by parameter s in Equa-
tion (3). By varying s between 0.2 and 2, we get different
distributions of input data size. Fig. 11 shows input data size
distribution with varying Input Data Size Coefficient, where
the X-axis represents the Input Data Size Coefficient k and
Y-axis indicates the CDF (cumulative distribution function)
distribution probability. It can be found that the bigger the
s, the higher the probability of small Input Data Size. For
example, when s=2, more than 80% of the Input Data size
coefficient is below 3. In other words, more than 80% of the
Input Data has a size below 12.6GB.
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Fig. 10. The impact of cache size on mpCache performance. For shuffle-
light and shuffle-medium jobs, the cache space is mainly used for
caching input data. Good benefit can be got when the cache size is
80GB.
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Fig. 12. The impact of Zipf parameter s on mpCache performance.

Fig. 12 shows the average speedups of the benchmarks
with varying s. It is easy to see that mpCache works well
in all cases. With the same cache size, the bigger the s, the
greater the speedup (a maximum value exists as illustrated
by Fig. 4). With Fig. 11 the reason behind this is obvious: a
bigger s means small input data size and thus less space is
needed to cache all the data to get the same speedup.

5 RELATED WORK

There is a lot of work about MapReduce. Below is the work
most related to ours.

5.1 MapReduce implementations
Due to the high impact, MapReduce, since the first re-
lease by Google [6], has been re-implemented by the open-
source community [15] and ported to other environments
such as desktop grids [42], volunteer computing [23], dy-
namic cloud [25], and mobile systems [7]. Besides, some
MapReduce-like systems [45] [18] [46] [5] and high-level
facilities [43] [31] [13] were proposed. In addition, MapRe-
duce has expanded its application from batch processing to
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iterative computation [38] [47] and stream processing [28]
[29]. Our solution can do help to these systems when hard
disks are used and many cores are involved.

5.2 MapReduce Optimization on Multi-Core Servers
This can be seen in [34] [41] [17] [9] [40]. All these frame-
works are designed for a single server, of which [17] [9]
[40] mainly focused on graphics processors and [34] [41]
were implemented on symmetric-multiple-processor server.
Obviously, a single node with the frameworks could only
process gigabytes of data at most and cannot afford the task
of handling terabytes or petabytes of data. Besides, they still
suffer from the IO bottleneck as could also be seen from
Fig. 2 of [34] when the number of cores is greater than 8.
Our solution is a distributed caching scheme covering each
node of the MapReduce cluster. Therefore, it cannot only
accelerate data processing on a single server but also on
clusters.

5.3 In-Memory MapReduce
In-memory MapReduce borrows the basic idea of in-
memory computing — data put in memory can be processed
faster because memory is accessed much more quickly —
and place job-related data in random access memory (RAM)
to boost job execution. Typical systems include Spark [47],
HaLoop [3], M3R [38], Twister [8], and Mammoth [37].
Spark, HaLoop, M3R, and Twister are specially designed
for iterative computation and they reduce the IO cost (and
thus boost computation) by placing in RAM the data to be
processed multiple rounds. Such a way costs more because
more memory is needed to hold the data and memory is
more expensive than SSD. Mammoth is a comprehensive
solution trying to solve inefficiencies in both memory us-
age and IO operations. To achieve the purpose, it devises
various mechanisms to utilize memory more smartly, in-
cluding rule-based prioritized memory allocation and re-
vocation, global memory scheduling algorithm, memory-
based shuffling, and so on. Mammoth can benefit from
mpCache especially in a memory-constrained environment
where only limited memory can be used for data caching.
With mpCache introduced, more memory can be released to
support computation and thus the task parallelism degree
is improved, which means faster job execution.

5.4 IO Optimization via SSD-based Cache
With the emergence of NAND (Negative-AND) Flash mem-
ory, much research work has been reported that utilized
SSD to improve storage performance. Yongseok et al. [30]
proposed a way to balance cache size and update cost of
flash memory so that better performance can be obtained in
the HDD-SSD hybrid storage system. Hystor [4], Proximal
IO [35], SieveStore [33], and HybridStore [19] also used
SSD as a cache of hard disks as we do. But these methods
only focus on a single node, with an aim to boost small
files (typical size is below 200KB) manipulation by caching.
mpCache can work across many nodes in a coordinated
way. In addition, it devises a relatively complex and efficient
cache replacement scheme to better support MapReduce
applications.

5.5 MapReduce Optimization via In-Memory Cache
PACMan [2] cached input data in memory to reduce the
high IO cost of hard disks so as to improve performance.
Since the task parallelism degree of new generation of
MapReduce (e.g., YARN) is more concerned with free mem-
ory. Caching data in memory, as shown in Section 4.3.1,
would cut down the task parallelism and lead to low perfor-
mance for some memory-intensive jobs (e.g., shuffle-heavy
jobs in our benchmarks), for the memory left for normal task
operations reduces. It is on account of only limited memory
available and the large volume of Localized Data that PAC-
Man only has Input Data cached. As a result, it just improves
the Map phase. For those shuffle-heavy MapReduce jobs
(e.g., k-means and tera-sort), they cannot benefit from in-
memory caching in the Reduce phase. Unfortunately, the
number of shuffle-heavy jobs is large in the real world.
Our SSD-based caching solution can solve the problem and
accelerate both phases.

6 CONCLUSION

In this paper we presented mpCache, a solution that utilizes
SSD to cache MapReduce Input Data and Localized Data so
that all the costly IO operations—Read, Spill, and Merge—
are boosted and the whole job is accelerated as a result.
Caching in such a way is cost-effective and can solve the
performance degradation problem caused by in-memory
caching as mentioned in Section 1. Given the fact that
data will continue growing exponentially, this is especially
important. We have implemented mpCache in Hadoop and
evaluated it on a 7-node commodity cluster. The experimen-
tal results show that mpCache can get an average speedup
of 2.09 times over Hadoop, and 1.79 times over PACMan, the
latest work about MapReduce optimization by in-memory
data caching.
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and J. Currey, “Dryadlinq: A system for general-purpose dis-
tributed data-parallel computing using a high-level language,”
in Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, OSDI’08. USENIX, 2008, pp. 1–14.

[47] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica, “Spark: cluster computing with working sets,” in Proceedings
of the 2nd USENIX Conference on Hot Topics in Cloud Computing,
HotCloud’10, 2010, pp. 10–10.

[48] M. Zheng, J. Tucek, F. Qin, and M. Lillibridge, “Understanding
the robustness of ssds under power fault,” in Proceedings of the

http://hadoop.apache.org
http://http://www.storagesearch.com/semico-art1.html
https://github.com/nathanmarz/storm


2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2016.2599933, IEEE
Transactions on Big Data

13

11th USENIX Conference on File and Storage Technologies, FAST’13.
USENIX, 2013, pp. 271–284.

Bo Wang received a BS degree in computer
science and technology from Tsinghua Univer-
sity, China in 2008 and a MS degree in com-
puter applications from North China Institute of
Computing Technology in 2011. He is currently
a PhD candidate in the Department of Computer
Science and Technology at Tsinghua University,
China, working on Hadoop optimization. His re-
search interests include distributed systems, big
data computing, storage and file systems, and
virtualization. He is a student member of IEEE.

Jinlei Jiang received a PhD degree in computer
science and technology from Tsinghua Univer-
sity, China in 2004 with an honor of excellent
dissertation. He is currently an associate profes-
sor in the Department of Computer Science and
Technology at Tsinghua University, China. His
research interests include distributed computing
and systems, cloud computing, big data, and vir-
tualization. He is currently on the editorial boards
of KSII Transactions on Internet and Information
Systems, International Journal on Advances in

Intelligent Systems, and EAI Endorsed Transactions on Industrial Net-
works and Intelligent Systems. He is a winner of Humboldt Research
Fellowship and an IEEE member.

Yongwei Wu received the PhD degree in ap-
plied mathematics from the Chinese Academy
of Sciences in 2002. He is currently a professor
in computer science and technology at Tsinghua
University, China. His research interests include
parallel and distributed processing, mobile and
distributed systems, cloud computing, and stor-
age. He has published over 80 research publica-
tions and has received two Best Paper Awards.
He is currently on the editorial boards of IEEE
Transactions on Cloud Computing, Journal of

Grid Computing, IEEE Cloud Computing, and International Journal of
Networked and Distributed Computing. He is an IEEE member.

Guangwen Yang is a professor in the Depart-
ment of Computer Science and Technology and
the director of the Institute of High Performance
Computing, Ministry of Education Key Labora-
tory for Earth System Modeling at Tsinghua
University, China. His research interests include
parallel and distributed algorithms, cloud com-
puting, and the earth system model. He received
a PhD degree in computer architecture from
Harbin Institute of Technology, China in 1996
and a MS degree in applied mathematics from

the same university in 1987. He is an IEEE member.

Keqin Li is a SUNY Distinguished Professor
of computer science. His current research in-
terests include parallel computing and high-
performance computing, distributed computing,
energy-efficient computing and communication,
heterogeneous computing systems, cloud com-
puting, big data computing, CPU-GPU hybrid
and cooperative computing, multicore comput-
ing, storage and file systems, wireless communi-
cation networks, sensor networks, peer-to-peer
file sharing systems, mobile computing, service

computing, Internet of things and cyber-physical systems. He has pub-
lished over 390 journal articles, book chapters, and refereed conference
papers, and has received several best paper awards. He is currently
or has served on the editorial boards of IEEE Transactions on Paral-
lel and Distributed Systems, IEEE Transactions on Computers, IEEE
Transactions on Cloud Computing, Journal of Parallel and Distributed
Computing. He is an IEEE Fellow.


