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ABSTRACT
Many real-time OLAP systems have been proposed to query evolv-

ing data with sub-second latency. Although this feature is highly

attractive, it is very hard to be achieved on analytic graph queries

that can only be answered after accessing every connected vertex.

Fortunately, researchers recently observed that answering pairwise

queries is enough for many real-world scenarios. These pairwise

queries avoid the exhaustive nature and hence may only need to

access a small portion of the graph. Obviously, the crux of achieving

low latency is to what extent the system can eliminate unnecessary

computations. This pruning process, according to our investigation,

is usually achieved by estimating certain upper bounds of the query

result in existing systems.

However, our evaluation results demonstrate that these existing

upper-bound-only pruning techniques can only prune about half

of the vertex activations, which is still far away from achieving

the sub-second latency goal on large graphs. In contrast, we found

that it is possible to substantially accelerate the processing if we

are able to not only estimate the upper bounds, but also foresee

a tighter lower bound for certain pairs of vertices in the graph.

Our experiments show that only less than 1% of the vertices are

activated via using this novel lower bound based pruning technique.

Based on this observation, we build SGraph, a system that is able

to answer dynamic pairwise queries over evolving graphs with

sub-second latency. It can ingest millions of updates per second

and simultaneously answer pairwise queries with a latency that is

several orders of magnitude smaller than state-of-the-art systems.
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1 INTRODUCTION
1.1 Motivation
In recent years, the topic of real-time OLAP has gained a great deal

of attention in the area of relational data analysis. Many real-time

OLAP systems [17, 29, 61, 64] have been proposed to query evolv-
ing datawith sub-second latency. Although this feature is highly
attractive, it seems impossible to achieve the same capability on ana-

lytic graph queries. Typical graph applications terminate only after

accessing every connected vertex (multiple times) and hence lead

to large overhead in both computation and communication. This

exhaustive nature (named by Xu et al.[59]) of graph applications

precludes the possibility of achieving sub-second latency over large

graphs. Fortunately, recent researchers [65] observed that instead

of computing an exhaustive “one-to-all-the-others” single-source

query, answering a “point-to-point” pairwise query is enough for

many real-world scenarios. This observation opens the possibility

of building real-time OLAP systems for large and evolving graph

data.

As an illustration, Single Source Shortest Path (SSSP) is a typical

single-source query application that computes the shortest paths

from the source to all other destination vertices. In contrast, the

dynamic “pairwise query” version of SSSP is called Point-to-Point

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
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Shortest Path (PPSP), where the users are only interested in the

shortest path between a pair of two arbitrary vertices. PPSP is not

only the most important problem in a navigation system [57] over

a dynamic road graph but also the basic building block of many

high-level graph analysis applications in social/financial networks.

For example, recommendation systems need to frequently examine

the shortest path between two arbitrary users in a large network

extracted from the shopping logs, and the risk detection systems use

PPSP to measure the distance between a newly-arrived transaction

and certain risk users [22, 28, 35].

Since both the source and destination vertices are given in pair-

wise queries, the corresponding evaluation algorithm only needs to

achieve convergence for this specific pair of vertices. It avoids the

exhaustive nature and hence enables the query system to achieve a

much smaller latency.

1.2 Challenges and Observations
The key to building efficient evolving graph and pairwise query

processing systems is to what extent the system can eliminate

wasteful computations. One prominent direction is to make use of

the widespread monotonicity of graph applications. According to

our investigation, the pruning techniques proposed by most of the

existing evolving graph or pairwise query processing systems [18,

26, 56, 59] can be viewed as a leveraging of this simple property.

Simply speaking, given source vertex 𝑠 and destination vertex 𝑑 ,

a monotonic graph application attaches a property 𝑄 (𝑠 ↦→ 𝑣) to
every vertex 𝑣 . Then, the algorithm starts from initializing 𝑄 (𝑠 ↦→
𝑠) := 0 and 𝑄 (𝑠 ↦→ 𝑣) := 𝑖𝑛𝑓 for every 𝑣 except 𝑠 . These properties
are updated in a monotonically decreasing manner through the

iterations of the algorithm before 𝑄 (𝑠 ↦→ 𝑑) stabilizing to its final

value
1
.

Leveraging this property, existing works prune unnecessary

updates and computations by establishing an upper bound of

𝑄 (𝑠 ↦→ 𝑣) for some or all of the vertices via prior knowledge ob-

tained before [26], or during the query [59], or both. As shown in

Figure 1 (a), an update to vertex 𝑣 can be ignored if it is already

larger than 𝑈𝐵(𝑠 ↦→ 𝑣), the current estimated upper bound from

the source to vertex 𝑣 , or𝑈𝐵(𝑠 ↦→ 𝑑), the current estimated upper

bound from the source to the final destination. In PnP [59], these

upper bounds are established using the current intermediate re-

sult of 𝑄 (𝑠 ↦→ 𝑣) or 𝑄 (𝑠 ↦→ 𝑑). More detailed and sophisticated

approaches to estimating upper bounds will be discussed in Section

2.2.

However, upper-bound-only pruning is still not enough to achieve

the sub-second latency goal on large graphs. To demonstrate the

problem, we present both analysis and evaluation results with the

above PPSP example. Theoretically, suppose the queried vertices

are randomly selected from the graph, then in expectation, half of

the vertices will have a smaller distance from the source than the

queried destination. Those vertices can never be pruned thoroughly

via an upper-bound-only technique, hence have to be activated at

least once and possibly multiple times before convergence. We also

validate this analysis by running our implementation on several

1
Without loss of generality, we concentrate only on monotonically decreasing prob-

lems. All the discussion results still hold for monotonically increasing problems by

simply interchanging decreasing with increasing, larger with smaller, and positive

with negative.

s

v

d

𝐐 𝒔 → 𝒗 > 𝑼𝑩 𝒔 → 𝒅

𝐐 𝒔 → 𝒗 + 𝑳𝑩 𝒗 → 𝒅 > 𝑼𝑩 𝒔 → 𝒅

UB only: 𝐐 𝒔 → 𝒗 > 𝑼𝑩 𝒔 → 𝒗
UB+LB: 

(a) Pruning conditionwithUB and LB.

s a

b

2 4
5

d

c
e

2 3
2

6

(b) A demo graph.
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(c) PPSP pruning demo for UB-only (left) and UB+LB (right).

Figure 1: An illustration of using Upper Bound (UB) and
Lower Bound (LB) to prune unnecessary computations, as-
suming optimal bounds can be derived.

real-world datasets and counting the number of activated vertices

in each iteration. Results show that pruning only half of vertex ac-

tivations is still several orders of magnitude away from the desired

performance. More details about the evaluation will be given in

Section 5.3.

To resolve this problem, we study the characteristics of wasted

activations, i.e., those vertex activations that are not pruned but

actually do not contribute to the final result of the query. Results

show that these upper bound estimations only make use of the cur-

rent history of computation, but a capability to foresee the future

is required to reach the desired performance. As an illustration,

Figure 1(a) visualizes the pruning condition using a triangle of

source 𝑠 , destination 𝑑 , and an intermediate vertex 𝑣 . The mono-

tonicity of the graph applications tells us that this activation on 𝑣

can be omitted if 𝑄 (𝑠 ↦→ 𝑣) plus the lower bound of the distance

between 𝑣 and 𝑑 , denoted as 𝐿𝐵(𝑣 ↦→ 𝑑), is larger than the upper

bound condition stated by 𝑈𝐵(𝑠 ↦→ 𝑑). There are three variables
in this condition, where both 𝑄 (𝑠 ↦→ 𝑣) and 𝑈𝐵(𝑠 ↦→ 𝑑) can be

estimated by the current processing history. In contrast, the value

of 𝐿𝐵(𝑣 ↦→ 𝑑) is related to the future path from 𝑣 to 𝑑 that has not

been accessed. As a result, since existing works have no hints on the

future path, the current upper-bound-only method can be viewed

as a conserved form of the generalized formulation, assuming that

𝐿𝐵(𝑣 ↦→ 𝑑) can be as small as zero, which is the key reason for
wasted activations.

In contrast, it is possible to substantially accelerate the processing

if we are able to foresee a tighter lower bound of 𝐿𝐵(𝑣 ↦→ 𝑑).
Theoretically, if both the lower bound and upper bound estimation

are accurate, all the vertices that are not on the best paths between

2
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source and destination, i.e. do not contribute to the final results, can

be skipped. We demonstrate this advantage via the hypothetical

graph described in Figure 1 (b-c). As we can see, using the upper

bound can only prune the activation to vertex 𝑐 because 1) the
update through 𝑠 ↦→ 𝑒 ↦→ 𝑐 is larger than the upper bound from

𝑠 to 𝑐; and 2) the update through 𝑠 ↦→ 𝑏 ↦→ 𝑐 , though no larger

than 𝑈𝐵(𝑠 ↦→ 𝑐), is larger than the upper bound from 𝑠 to the

final destination 𝑑 . In contrast, if a tight lower bound is given,

theoretically, only the activation through 𝑠 ↦→ 𝑎 ↦→ 𝑑 will be

allowed because only vertex 𝑎 is on the critical/shortest path to

the final destination. Both activations from 𝑠 to 𝑏 and 𝑒 are pruned

due to the tighter pruning condition. Our evaluation results also

demonstrate that it is possible to forecast lower bounds that are tight

enough in practice. Only less than 1% of the vertices are activated

via using our novel lower bound based pruning technique.

1.3 Our Contributions
To bridge the gap between large graph size and strict latency require-

ment, in this paper, we present the design and evaluation results

of SGraph, which is a lower bound based system that can answer

dynamic pairwise queries over evolving graphs with sub-second

latency. It can ingest millions of updates per second and simultane-

ously answer pairwise queries with a latency that is several orders

of magnitude smaller than state-of-the-art systems.

The crux of our optimization is a novel technique for predicting

the lower bounds and a corresponding pruning technique that can

prune more than 99% of vertex activations with both upper and

lower bounds. A certain amount of prior knowledge is needed to

get a good estimation of lower and upper bounds. We design a

hub-based solution that consumes only 𝑂 ( |𝑉 |) additional space
and can be maintained efficiently upon graph updates. Similar to

existing works [18, 26, 56, 59], the correctness and generality of

our technique are based on the observation that the algorithm of

most important pairwise graph queries will iteratively update the

property of vertices in a monotonic way that obeys the triangle

inequality. A detailed discussion about this assumption is given in

Section 2.2.

In order to implement the above optimization for graph query

and simultaneously support concurrent graph mutations, SGraph

proposes a decoupled architecture and corresponding storage for-

mat that directly supports snapshot isolation over adjacency lists.

It enables low query latency and high ingesting throughput simul-

taneously and stores only two additional meta bits for every edge.

Our approach takes advantage of the unique property of SGraph

that only two recent snapshots are needed during the processing.

SGraph also implements the ad-hoc calculation of only needed

upper/lower bounds, which is very important for the query per-

formance. Otherwise, the query latency may be dominated by the

pre-computation stage since most vertices will not be visited with

our powerful pruning method. More details can be found in Section

3.2.

Moreover, existing graph processing frameworks, either vertex-

centric [20, 36, 47, 67], edge-centric [43, 68], or graph-centric [48,

54, 60], only hide underlying system implementation from users.

However, since there are many different kinds of pairwise queries

(e.g., reachability, BFS, shortest path, widest path, label propaga-

tion), and the specific business logic of each application may also

differ in many details (e.g., different edge/vertex label/property fil-

ters), it would be very complicated and cumbersome if users need

to design and implement a specific upper/lower bound maintaining

and pruning logic for every different kind of these queries. As a re-

sult, SGraph proposes a higher-level abstraction that can hide both

system implementation and algorithm logic of the pruning tech-

nique from users. Users only need to specify the properties of the

application, typically in only a few lines of code. Then SGraph will

automatically deduce all the logic for prior knowledge generation

and maintenance, as well as pruning the query.

Evaluation results on different kinds of pairwise queries and

real-world datasets show that SGraph can ingest millions of graph

updates per second and simultaneously answer dynamic pairwise

queries with sub-second-level latency, which is several orders of

magnitude smaller than our baseline implementations of the state-

of-the-art pruning techniques (e.g., PnP [59], Tripoline [26]) and

industry graph databases (e.g., Neo4j [3], TuGraph [4]). Experiment

results show that SGraph is able to answer pairwise queries via

only activating less than 1% of the vertices, which demonstrates

the effectiveness of our lower bound based pruning technique.

2 CASE STUDY: POINT TO POINT SHORTEST
PATH

In this section, we present the intuition of our system via a thor-

ough case study on PPSP, a typical example of pairwise queries.

We start with a standard SSSP algorithm that is exhaustive and

works only on static graphs, and then demonstrate the procedure of

adapting this simple algorithm step by step. The resultant solution

is able to dynamically maintain a bunch of upper and lower bounds

upon graph updates and use them to largely prune unnecessary

computations. We will also discuss the principle underneath this

adaption procedure, which is then generalized and formalized into

the high-level programming model described in Section 3.1.

2.1 PPSP Problem
Given a pair of source vertex 𝑠 and destination vertex 𝑑 , the goal of

Point-to-Point Shortest Path (PPSP) is to compute the distance of the

shortest path from 𝑠 to 𝑑 . As a pairwise version of the SSSP problem,

although it is exhaustive and expensive, PPSP can also be calculated

by the same program of SSSP. Specifically, we attach a property

ub to every vertex 𝑣 representing the current observed shortest

distance from 𝑠 to 𝑣 . We use ub because v.ub can also be viewed as

the current upper bound of𝑄 (𝑠 → 𝑣). Then, these vertex properties
can be initialized and updated by the simple vertex-centric program

described in Listing 1.

This is a simple iterating algorithm that starts from activating the

source vertex and terminates when there are no more activations.

The only difference in the programming model is that we purposely

separate the pruning logic from the main vertex program (i.e., the

TryActivate function). Currently, an update can only be pruned if

it violates the monotonicity of the application, i.e., this update is

already larger than the current upper bound (line 10 of Listing 1).

3
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1 func Init(v Vertex , q Query) {
2 // Init ub with infinity
3 v.ub = inf;
4 // Unless it is the source vertex
5 if (v.id == q.source.id)
6 v.ub = 0;
7 }
8 func TryActivate(v Vertex , dis Value) {
9 // Prune non -monotonic updates
10 if (dis > v.ub) return;
11 OnActivate(v, dis);
12 }
13 func OnActivate(v Vertex , dis Value) {
14 v.ub = dis;
15 for e := v.outgoingEdges () {
16 newdis = v.ub + e.weight;
17 TryActivate(e.target , newdis);
18 }
19 }

Listing 1: Vertex Program for PPSP.

2.2 Triangle Inequality
Similar to many existing works [18, 26, 56, 59], we observed that

most of the monotonic graph applications also follow another im-

portant property that is usually described as “Triangle Inequality”.

This inequality is originally from Euclidean geometry. It states the

fact that, for any given triangle, the sum of the lengths of any two

sides must be greater than or equal to the length of the third side.

Equivalently, the minus of the lengths of any two sides must be

smaller than or equal to the length of the third side. This prin-

ciple can be extended to not only Euclidean geometry but also

many important pairwise graph queries by generalizing the above

sum/minus/greater_or_equal operators.

Definition 1. Given a pairwise query𝑄 (𝑠 ↦→ 𝑑), it follows the tri-
angle inequality if we can define a triplet of binary operators (⊕, ⊖, ⪰)
such that the final converged results of 𝑄 (∗ ↦→ ∗) satisfy
• 𝑄 (𝑠 ↦→ 𝑣) ⊕ 𝑄 (𝑣 ↦→ 𝑑) ⪰ 𝑄 (𝑠 ↦→ 𝑑)
• 𝑄 (𝑠 ↦→ 𝑑) ⪰ 𝑄 (𝑣 ↦→ 𝑑) ⊖ 𝑄 (𝑣 ↦→ 𝑠)

Obviously, PPSP follows the triangle inequality. If the final result

of 𝑄 (𝑠 ↦→ 𝑣) plus 𝑄 (𝑣 ↦→ 𝑑) is not greater or equal to 𝑄 (𝑠 ↦→ 𝑑),
we can simply choose this path 𝑠 ↦→ 𝑣 ↦→ 𝑑 to obtain a shorter

path. Similarly, the second ⊖ clause of the inequality is just an

equivalent transformation of 𝑄 (𝑣 ↦→ 𝑠) ⊕ 𝑄 (𝑠 ↦→ 𝑑) ⪰ 𝑄 (𝑣 ↦→ 𝑑).
It must hold because otherwise, the result of 𝑄 (𝑣 ↦→ 𝑑) can be

updated and hence is not converged. It is demonstrated by existing

works [18, 26, 56, 59] that many important pairwise queries, such

as reachability, BFS, widest/narrowest path, Viterbi, Radii, etc., also

obey this inequality. For these queries, one just needs to override the

definition of these abstract sum/minus/greater operators ⊕/⊖/⪰,
other than simply using arithmetic +/−/≥ in PPSP.

The first ⊕ clause in this definition has been widely used in

existing works to obtain a tighter upper bound of the query.

For example, Tripoline [26], VRGQ [25], and Quegel [65] can op-

timize pair-wise queries by using hub-based methods to estimate

the upper bounds. In VRGQ (for static graphs) and Tripoline (for

insertion-only dynamic graphs), these upper bounds are maintained

by choosing one or more hub vertices ℎ and calculating 𝑄 (ℎ ↦→ ∗)
and 𝑄 (∗ ↦→ ℎ) . 𝑄 (ℎ ↦→ ∗) and 𝑄 (∗ ↦→ ℎ) mean that the result of

𝑄 (ℎ ↦→ 𝑣) and 𝑄 (𝑣 ↦→ ℎ) for every vertex 𝑣 is calculated before-

hand and stored alongside vertex 𝑣 . Then, in the initializing period

of answering 𝑄 (𝑠 ↦→ 𝑑), these pre-calculated results will be used

to initialize the ub property with a tighter estimated upper bound.

Specifically, for every vertex 𝑣 except the source 𝑠 , v.ub is initialized
to 𝑄 (𝑠 ↦→ ℎ) ⊕ 𝑄 (ℎ ↦→ 𝑣) instead of infinity. This procedure is

formalized in lines 4-6 of the PostInit function described in Listing 2,

which is executed right after the execution of the aforementioned

Init function.
Similar ideas have also been applied to incremental graph com-

puting systems. These systems try to dynamically maintain the

results of 𝑄 (𝑠 ↦→ ∗), e.g., the shortest paths from vertex 𝑠 to all

other vertices. Each time graph updates invalidate (part of) the re-

sults, systems like KickStarter [56] and RisGraph [18] re-calculate

𝑄 (𝑠 ↦→ ∗) from a tight upper bound to drastically speed up the

convergence of the computation.

1 // The hub vertex
2 Global h Vertex;
3 func PostInit(v Vertex , q Query) {
4 // Tighter upper bound via h
5 ub = Q(q.source , h) + Q(h, v);
6 if ub < v.ub: v.ub = ub;
7 // Tighter lower bound via h
8 v.lb = 0;
9 lb = Q(h, q.dest) - Q(h, v);
10 if v.lb < lb: v.lb = lb;
11 lb = Q(v, h) - Q(q.dest , h);
12 if v.lb < lb: v.lb = lb;
13 }
14 func TryActivate(v V, dis Value , q Query) {
15 if (dis > v.ub) return;
16 // Prune with lower bound
17 if (dis + v.lb > q.dest.ub) return;
18 OnActivate(v, dis);
19 }

Listing 2: Pruning Logic for PPSP.

2.3 Pruning with Lower Bounds
In contrast to the widely-used ⊕ clause, according to our investi-

gation, the second ⊖ clause of the definition is usually ignored in

existing works because it seems to be equivalent to the first clause.

However, we found that this ignored clause is, in fact, much more

effective with respect to pruning.

As mentioned in Section 1.2, the crux of avoiding wasted activa-

tions to vertex 𝑣 is to foresee a tighter lower bound of 𝑄 (𝑣 ↦→ 𝑑)
rather than simply using 0. Although the current execution has not

explored the path from 𝑣 to 𝑑 , this is actually achievable without

maintaining any more pre-calculation results other than 𝑄 (ℎ ↦→ ∗)
and 𝑄 (∗ ↦→ ℎ). Firstly we can directly infer from the ⊖ clause

that 𝑄 (𝑣 ↦→ 𝑑) ⪰ 𝑄 (ℎ ↦→ 𝑑) ⊖ 𝑄 (ℎ ↦→ 𝑣). Secondly, we
can also infer another lower bound condition 𝑄 (𝑣 ↦→ 𝑑) ⪰
𝑄 (𝑣 ↦→ ℎ) ⊖ 𝑄 (𝑑 ↦→ ℎ) because if this condition does not

hold, 𝑣 ↦→ 𝑑 ↦→ ℎ will be a path shorter than 𝑣 ↦→ ℎ. With

these lower bounds, we can prune more activations by avoiding

“(𝑢𝑝𝑑𝑎𝑡𝑒 𝑡𝑜 𝑣) ⊕ 𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 (𝑣 ↦→ 𝑑) ⪰ 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 (𝑠 ↦→ 𝑑)”.

4
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This logic is formalized in lines 7-12 and 16-17 of Listing 2. As we

can see from the algorithm, we attach an additional lower bound

property lb to vertex 𝑣 , which is calculated by the above inequali-

ties and the pre-calculated results. Moreover, we add an additional

prune condition in the TryActivate function to ensure that a vertex

is not activated unless it is possible to contribute to the final result

of 𝑄 (𝑠 ↦→ 𝑑).
More importantly, we found that Listing 2 outlines a general

template for adapting a simple exhaustive single-source query al-

gorithm to an efficient pairwise query algorithm. For applications

other than PPSP, one just needs to override the definition of +/−/≥
for type Value to the real logic of the abstract operator ⊕/⊖/⪰.
According to our experiments, this overriding can be implemented

in only a few lines of code.

2.4 Micro Benchmarks
In order to demonstrate the effectiveness of our novel lower bound

based pruning technique, we measure the number of active vertices

in PPSP for each iteration over several real-world graphs. As we

can see from Figure 2, after using lower bounds, the number of

active vertices becomes much smaller than using upper bounds

only after about five iterations. In fact, as we will demonstrate later

in Section 5.3, the total number of active vertices is about 50% of

the total number of vertices in the graph if only upper bounds are

used. In comparison, less than 1% of vertices are activated in our

novel approach, leading to a significant speedup.
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Figure 2: The number of active vertices on each iteration of
PPSP query with and without lower bounds.

3 SYSTEM DESIGN
Following the intuition described above, we design and implement

an evolving graph processing system called SGraph, which can

accelerate the processing of dynamic pairwise queries via both

upper and lower bounds. With a higher-level program abstraction,

SGraph can support all the graph applications that iteratively up-

date the property of vertex in a monotonic way that obeys the

triangle inequality. In this section, we will first introduce SGraph’s

programming model, and then the main workflow and the corre-

sponding decoupled architecture of SGraph. Finally, we will discuss

the necessary system optimizations that are used in SGraph to

achieve sub-second query latency.

3.1 Programming Model
Similar to the versatility of OLAP queries, there are many different

kinds of pairwise queries, and the specific business logic of each

application may also differ in many details. The originally designed

upper and lower bounds may become completely useless if the

business logic changes a bit by adding an edge (or label or property)

filter to prohibit the use of a certain portion of the edges. It would

be very complicated and cumbersome if users needed to design and

implement a specific upper/lower bound maintaining and pruning

logic for every different kind of these queries. As a result, the users

desire a generalized abstraction that hides not only the system im-

plementation but also the algorithm logic of the pruning technique

from users. The system should be able to automatically generate

the building and maintenance logic of upper/lower bounds for each

different kind of query.

To this end, we provide a simple vertex-centric programming

model to users, which is almost identical to the classical vertex pro-

gram abstraction. As we can see from Listing 3, the vertex program

OnActivate has two input variables. Variable v with type Vertex pro-
vides access to the vertex property and in-going/out-going edges

of this vertex. The other update variable with type Value, which
is the same type of vertex property, is the updating information

sent from another vertex. This notification is achieved using the

provided TryActivate function, as shown by Line 7 of Listing 3.

Users of SGraph can express their algorithm and business logic

in this vertex program straightforwardly without considering how

to avoid the exhaustive nature that prohibits it from finishing in

sub-second latency. The initializing (executed in the Init function)
and pruning logic (executed in TryActivate before actually invok-

ing OnActivate) are all generated automatically by SGraph. This

generation is possible if the user specifies the triangle inequal-
ity of vertex property for SGraph. Specifically, the user needs to

provide five simple functions related to type Value, representing
different aspects of the triangle inequality. As demonstrated by List-

ing 3, these five functions express the logic of the aforementioned

0/𝑖𝑛𝑓 /⊕/⊖/⪰, respectively. From our experience, they can all be

implemented in one or two lines of code in practice.

1 func OnActivate(v Vertex , update Value) {
2 for e := v.outgoingEdges () {
3 // Send update to e's target vertex
4 ...; TryActivate(e.target , ....); ...;
5 }
6 }
7 // Expressing the triangle inequility
8 func Zero(): Value { ... }
9 func Inf(): Value { ... }
10 func Add(l Value , r Value): Value { ... }
11 func Minus(l Value , r Value): Value { ... }
12 func LargerOrEqual(l Value , r Value): Bool {
13 ...
14 }

Listing 3: Programming Model of SGraph.

With these definitions, the initializing, dependency tracking, in-

cremental maintaining, and pruning procedures of this application

are all automatically generated by SGraph. As mentioned before,

both the upper and lower bounds can be maintained by hub-based

approaches. With a selected hub vertex h, it is enough to calculate

all the needed upper and lower bounds by pre-calculating𝑄 (ℎ ↦→ ∗)
and 𝑄 (∗ ↦→ ℎ) (named hub indexes for brevity). For static graphs,
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these hub indexes can be calculated directly by the provided OnAc-
tivate function with an empty pruning logic in TryActivate. Thus,
we can use this user-provided function to initialize the hub indexes

without any further user inputs. Moreover, the indexes can be main-

tained very efficiently over evolving graphs. It can be proved that

once a graph application follows the triangle inequality, it also fol-

lows the constraints specified in KickStarter [56]. As a result, the

indexes can be maintained by the same mechanism as KickStarter.

Specifically, since all the graph applications we use are mono-

tonic graph algorithms, if only edge/vertex adding are given, the

hub indexes 𝑄 (ℎ ↦→ ∗) and 𝑄 (∗ ↦→ ℎ) can be maintained by sim-

ply incrementally processing over the old results. The old values

right before the updates will serve as a good approximation of the

actual results and, hence, it is quicker to reach convergence. In

contrast, for edge/vertex deletions, our system will automatically

track a tree-structure dependency relationship of these indexes,

just like KickStarter. This tree-structure dependency will be used

to identify old values that are (directly or transitively) impacted by

vertex/edge deletions and adjust those values before they are fed

to the subsequent computation. After the adjustment, the trimmed

approximation results can be used as a good approximation for

accelerating the convergence of maintaining the hub indexes. With

the above procedure, SGraph can work only on a subset of vertices

impacted by added/deleted edges and restore the correct results effi-

ciently by re-executing OnActivate from approximate intermediate

results. More optimizations are discussed in Section 3.3.

3.2 Decoupled System Architecture
Similar to the graph databases, SGraph needs to process dynamic

graph queries and concurrent graph mutations simultaneously.

It would unnecessarily enlarge the query latency and limit the

throughput if SGraph processes these queries and mutations in a

series mode. Fortunately, we found that even though the arrivals

of queries and mutations interleave with each other, it is enough to

provide a consistent snapshot of dynamic graphs for each query in

many real-world scenarios. This property naturally enables us to de-

couple the procedure of query processing from graph mutation and

upper/lower bounds maintenance. To make use of this advantage,

this section presents the main workflow and the corresponding

decoupled architecture of SGraph, which is also the key point of

achieving low latency and high throughput simultaneously.

As shown in Figure 3, SGraph incrementally maintains a series of

snapshots of the graph. The last closed Snapshot x is a static version
of the graph that contains both a consistent view of the graph and

the corresponding indexes. In contrast, the unclosed Snapshot x+1

contains only a consistent view of the graph without ready indexes,

and the later Snapshot x+2 is still open for graph updating. All

the dynamic queries are answered upon the most recent closed

Snapshot at their arrival time, so that they are not blocked by graph

mutations and indexes maintenance. An independent procedure is

used to compute the indexes for the unclosed Snapshot x+1 upon

the recent graph mutations. As discussed in the above section, such

index maintaining procedure is processed incrementally by using

the remained indexes in Snapshot x that are not trimmed by the

dependency relationship. Since Snapshot x+1 can be transferred

to a closed snapshot for serving the queries as long as the index
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Figure 3: The overview of SGraph’s snapshot based decou-
pled system architecture.

maintaining procedure is finished, the freshness of the query data is

only related to the latency of this maintaining algorithm. As we will

show in Section 5.4, such freshness can be limited to second-level

upon a throughput of millions of mutations per second, which is

acceptable in most real-world scenarios. Once an unclosed snapshot

finishes its index maintenance, it becomes a closed snapshot, and

the current snapshot open for graph mutation is transferred to a

new unclosed snapshot.

Storage Design. In order to implement the above decoupled archi-

tecture, SGraph needs a multi-version graph storage that supports

snapshot isolation. As an illustration, GraphOne [31] provides a

hybrid store that utilizes both an edge log and an adjacency list.

Graph mutations are first preserved in a circular buffer based edge

log to achieve high ingestion throughput. These mutations will

be periodically archived into an adjacency list that keeps all the

neighbors of a vertex together and indexed by their source vertex,

which provides efficient data access for graph processing. Since the

cost of this archiving is relatively high, only coarse-grained snap-

shots can be provided if only the data in the adjacency list are used

in the processing. To support fine-grained snapshots, GraphOne

combines the per-vertex adjacency list with the shared edge log

to obtain a complete edge set during the processing. However, as

we will show with more experiment results later in Section 5.4, a

larger number of graph mutations buffered in the edge log leads to

both a higher ingestion throughput and a lower query performance,

because of the read amplification problem caused by scanning the

edge log.

To mitigate this problem, SGraph designs a mechanism that di-

rectly supports snapshot isolation over the adjacency list. In SGraph,

each vertex has its local adjacent edges stored continuously in a

dynamic array. When the array size surpasses a certain threshold

(set as 512 in our evaluation), an additional dense map [1] is at-

tached to it for fast edge indexing during updating. This hash map

is only used by the single graph mutation thread of the correspond-

ing graph partition and hence does not need to be a concurrent

hash map (different partitions can use different threads). In order

to provide fine-grained consistent snapshots for the processing,

meta bits are used to indicate whether an edge is visible in certain

snapshots. Each edge uses 2 bits since only two recent snapshots

(closed and unclosed) are needed in SGraph.

6



Achieving Sub-second PairwiseQuery over Evolving Graphs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Epoch 0

e1 1 1

e2 1 1
Adjacency

list

Epoch 1

e1 1 1

e2 1 1

Epoch 2

e1 0 1

e2 1 1

Epoch 3

e1 0 0

e2 1 0

e3 1 1

e4 1 0

e5 0 1

e3 0 0

e4 0 0

e3 1 0

e4 1 0

e5 0 0

Epoch 4

e1 0 0

e2 0 0

e3 1 1

e4 0 0

e5 1 1

!e3Message queue

Arrive at epoch 2

!e4 "e1 !e5 "e2 "e4

Arrive at epoch 1

Meta bit for unclosed snapshot

Meta bit for closed snapshot

Set the meta bit

Reset the meta bit

……

Figure 4: An example of updating the adjacency list of a sin-
gle vertex in SGraph.

As discussed above, our goal is to 1) provide consistent snap-
shots for both query processing and index maintaining threads;

2) ensure that the query processing threads are never stalled by

index maintaining or graph mutations; and 3) maximize both the

ingesting throughput and query performance.

In order to demonstrate our design, we use the example in Figure

4 to describe the update process of the adjacency list for a single

vertex in SGraph. First, we assume that there are initially two edges

(e1, e2) in the adjacency list before updating, and the system ingests

graph mutations related to that vertex from a message queue. As

shown in the figure, the meta bits of all these edges are initialized

as 11. Without loss of generality, we assume that the first meta bit

is used to indicate its visibility in the closed snapshot at epoch 1.

In this case, the query processing thread checks the visibility of an

edge (i.e., whether it is in the current closed snapshot) by checking

whether the first meta bit of this edge is set to 1.
During epoch 1, the vertex receives three graph mutation mes-

sages to add e3 and e4, and to delete e1, denoted as +e3, +e4 and

-e1. The graph mutation thread directly appends e3 and e4 to the

adjacency list with meta bits set to 00 (represented by dashed boxes).
Note that, during the mutation, index maintaining and query pro-

cessing threads can simultaneously work on this adjacency list

without any blocking, each seeing different snapshots. The edges

with meta bits 00 are not visible to both the closed and unclosed

snapshots.

After a certain fine-grained period of time, SGraph terminates

epoch 1 and starts epoch 2 by switching the meta bit indicating
the closed snapshot from the first bit to the second bit. After
switching, the system can maintain the indexes for the current

unclosed snapshot produced by epoch 1 through two steps. As

demonstrated in the figure, SGraph first modifies the meta bits of

the edges mutated in the last epoch, which changes the meta bits

of e3 and e4 to 10 (visible in the unclosed snapshot but not in the

closed snapshot) and e1 to 01 (visible in the closed snapshot but

not in the unclosed snapshot). Then, SGraph can start the index

maintaining algorithm because the maintaining threads can now

identify the visible edges in the corresponding unclosed snapshot by

checking whether the first meta bit is set. This whole maintaining

procedure does not need to block the concurrent querying and

ingesting, because the querying threads can check the second bit

for visibility and the newly ingested edges (e.g., e5) are labeled with

00.
After finishing the index maintaining, SGraph starts epoch 3

by switching the indicating bit once again from the second bit to

the first bit, and hence the querying threads can make use of the

newly maintained indexes. However, at this time, the first step

of indexes maintenance (for the unclosed snapshot produced by

epoch 2) needs to modify the meta bits of the edges mutated in the

last two epochs. As a result, the meta bits of e1 are modified to 00
and its space can be recycled later because it will not be used any

further; the meta bits of e3 are modified to 11; the meta bits of e4

are first modified to 11 and then to 10 because e4 is added in epoch

1 and deleted in epoch 2 and hence is only visible in the current

closed snapshot; the meta bits of e5 are modified to 01 because

it is not visible in the current closed snapshot but visible in the

current unclosed snapshot; and the meta bits of e2 are modified

to 10 as opposite to e5. Again, these modifications of meta bits do

not stall the query processing because they can use the first bit to

identify the right closed snapshot. The maintenance procedure of

the following epochs will be the same as epoch 3.

In conclusion, the meta bits of every edge will be constantly

modified four times during its whole life cycle. From 00 to 01/10
to 11 for insertion and from 11 to 01/10 to 00 for deletion (01 or 10
depends on which bit is currently used for indicating the closed

snapshot). The whole process does not need to be protected by locks

that would stall the query processing. With the carefully storing

and manipulating of the meta bits, the producing and accessing of

fine-grained snapshots brings very few space and time overhead.

3.3 System Implementation
SGraph is implemented in C++ with around 2000 lines of code,

using OpenMP for multi-thread processing and OpenMPI for mes-

sage passing. The underlying graph engine shares many system

designs with state-of-the-art graph systems like Gemini [67], Kick-

Starter [56], and RisGraph [18], such as 2-D graph partitioning,

computation-communication overlapping, and multi-thread work

stealing. Here we focus on introducing the system designs and

tradeoffs specific to pairwise query processing on dynamic graphs.

Hub selection. To further accelerate the speed of indexes main-

taining, SGraph maintains 𝐾 hubs and tracks the dependency of

their pre-processing results simultaneously. The advantages of us-

ing more than one hub are twofold: 1) 𝐾 hubs can derive 𝐾 up-

per bounds and 2𝐾 lower bounds for each vertex. Thus tighter

bounds can be selected to deliver more accurate pruning; 2) al-
though updates between two snapshots may invalidate many of

the pre-processing results, the remained ones can still be used to

provide upper/lower bounds that can accelerate the maintenance

procedure. In SGraph, the 𝐾 pre-processing results for each vertex

are stored together for quick accessing and the updating of these

indexes are scheduled in a co-located and coalesced way to reduce

the maintaining overhead. Evaluation results show that, on average,

maintaining indexes of 16 hubs takes only 3.23x more time than

maintaining only a single hub.
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If a vertex is not connected to a specific hub, then its corre-

sponding upper bound and lower bound have to be set as inf and

0, respectively. This is a rare case in real-world graphs, since there

usually exists a single large WCC/SCC that covers most of the ver-

tices and many small WCC/SCC containing the rest vertices [50]. A

recent study [30] shows that the WCC containing the vertex with

the maximum degree covers 94.5% or more vertices for all the 15

graphs evaluated in their paper. So, similar to existing works [26],

SGraph also intuitively selects 𝐾 vertices with the highest degree

as hubs.

Ad-hoc index calculation. Thanks to SGraph’s efficient index-

based pruning, during a query, only a tiny portion of vertices need

to be activated in each iteration. However, the cost of calculating

the indexes themselves can be𝑂 (𝐾 |𝑉 |), if the bounds for all vertices
are calculated for every query. This is obviously a huge waste when

only a small portion of vertices are accessed during a query. To

resolve this problem, SGraph proposes ad-hoc index calculation.

Specifically, before starting the process, the lower and upper bounds

of 𝑄 (𝑠 ↦→ 𝑑) are first calculated through iterating all the hubs,

which only takes 𝑂 (𝐾) time. As we will show later in Section 5.3,

SGraph can directly answer certain queries without accessing the

graph if this lower bound equals the upper bound, which leads to

extremely low latency. Then, during the processing, SGraph co-

locate the hub-based index information with the vertex data. The

results of both 𝑄 (ℎ ↦→ 𝑣) and 𝑄 (𝑣 ↦→ ℎ) for every hub ℎ are stored

with the vertex data of 𝑣 . In this case, the upper and lower bounds

of 𝑣 can be calculated only when this vertex is activated, and hence

omit the unnecessary calculation.

Triangle inequality based bi-directional search. Besides prun-
ing, SGraph also proposes a novel triangle inequality based bi-

directional search for pairwise query processing. For a query𝑄 (𝑠 ↦→
𝑑), SGraph alternately computes 𝑄 (𝑠 ↦→ ∗) and 𝑄 (∗ ↦→ 𝑑) from
forward and backward directions, respectively. SGraph limits the

search space by pruning any vertex 𝑣 that satisfies 𝑈𝐵(𝑠 ↦→ 𝑣) ⊕
𝑈𝐵(𝑠 ↦→ 𝑣) ≻ 𝑈𝐵(𝑠 ↦→ 𝑑) in forward search and pruning any

vertex 𝑣 that satisfies 𝑈𝐵(𝑣 ↦→ 𝑑) ⊕ 𝑈𝐵(𝑣 ↦→ 𝑑) ≻ 𝑈𝐵(𝑠 ↦→ 𝑑) in
backward search.

The bi-directional search does not only supplement the pruning

conditions introduced in Section 2, e.g.,𝑈𝐵(𝑠 ↦→ 𝑣) ⊕ 𝐿𝐵(𝑣 ↦→ 𝑑) ≻
𝑈𝐵(𝑠 ↦→ 𝑑) in forward search, but also explicitly constraints the

search radius in both directions. Intuitively, in an N-dimensional

search space, this reduces the search radius by half and the search

space by 2
𝑁−1

times. As we will show later in Section 5.5, the syn-

ergy between bi-directional search and our novel lower bound based

pruning technique dramatically boosts SGraph’s query processing

speed.

4 EXAMPLE APPLICATIONS
Besides the PPSP problem described in Section 2, we will present

example applications in this section to demonstrate the general-

izability and simplicity of SGraph’s programming model. All the

applications evaluated in this paper and their overridden operators

are summarized in Table 1.

Table 1: Overridden operators for each application.

Application 𝑎 ⊕ 𝑏 𝑎 ⊖ 𝑏 𝑎 ⪰ 𝑏
PPSP

𝑎 + 𝑏 𝑎 − 𝑏 𝑎 ≥ 𝑏
BFS

Reachability

𝑎 ∧ 𝑏 𝑎 ∨ ¬𝑏 𝑎 → 𝑏
Connectivity

PPWP 𝑚𝑖𝑛(𝑎, 𝑏) 𝑎 < 𝑏 ? 𝑎 : ∞ 𝑎 ≤ 𝑏
PPNP 𝑚𝑎𝑥 (𝑎, 𝑏) 𝑎 > 𝑏 ? 𝑎 : 0 𝑎 ≥ 𝑏
Viterbi 𝑎 × 𝑏 𝑎 ÷ 𝑏 𝑎 ≤ 𝑏

4.1 Unweighted Graph Queries
Connectivity, Reachability and Breadth First Search (BFS) are three of
the most fundamental pairwise queries on unweighted graphs and

are used by more complex applications like bi-connectivity [52],

higher-order connectivity [6] and graph clustering [44]. Specifically,

1) given an undirected graph,𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑠 ↦→ 𝑑) checks whether
there exists a path connecting vertex 𝑠 and 𝑑 ; 2) 𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑠 ↦→
𝑑) checks whether there exists a path from vertex 𝑠 to𝑑 on a directed

graph; and 3) 𝐵𝐹𝑆 (𝑠 ↦→ 𝑑) searches the shortest path from vertex 𝑠

to 𝑑 , assuming that the weight of every edge equals to one.

Connectivity query can also be considered as a pairwise version

of the exhaustive Weakly Connected Component (WCC) problem.

Due to its importance, many works [16, 23, 24, 53] are dedicated

to answering connectivity queries over dynamic graphs. However,

most of these works need to dynamically maintain complicated dy-

namic data structures, such as spanning forests [5, 19, 49], that are

not easy to implement in a distributed environment. Even worse,

all these works take advantage of the unique commutative property

of connectivity query. As a result, even the reachability query, a di-

rected graph version of connectivity, cannot be processed efficiently

with the above works. Instead, many separate works [15, 42, 66]

are dedicated to the reachability query.

In contrast, with SGraph, both connectivity and reachability

queries can be answered very efficiently via the same program.

Here we take the reachability query as an example. 𝑄 (𝑢 ↦→ 𝑣)
could be either True or False, indicating whether v is reachable

from u. Initially, the source vertex is initialized as True, while all
other vertices are False. During processing, the True value is propa-
gated to all reachable vertices from the source. This process can be

dramatically accelerated by triangle inequality based pruning:

(1) Upper bound pruning. If ℎ is reachable from𝑢, and 𝑣 is reach-

able from ℎ, then 𝑣 must be reachable from 𝑢, as shown in

Figure 5(a).

(2) Lower bound pruning. If ℎ can reach 𝑢 but cannot reach 𝑣 ,

then 𝑢 cannot reach 𝑣 , either. Otherwise, there would be a path

from ℎ to 𝑣 via 𝑢 (Figure 5(b)). Similarly, if ℎ is reachable from 𝑣

but not reachable from 𝑢, then 𝑢 cannot reach 𝑣 (Figure 5(c)).

The above pruning logic can be automatically derived from the

user-defined operators 𝑎 ⊕ 𝑏, 𝑎 ⊖ 𝑏 and 𝑎 ⪰ 𝑏, overridden as 𝑎 ∧ 𝑏,
𝑎 ∨ ¬𝑏, and 𝑎 → 𝑏, respectively. In these equations, both 𝑎 and

𝑏 are boolean vertex properties, and 𝑎 → 𝑏 denotes the logical

implication operator that “if 𝑎 is True, then 𝑏 must also be True”.

Based on them, SGraph generates the upper bound and lower bound
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Figure 5: The triangle example of reachability query.

pruning as:

𝑄 (𝑢 ↦→ ℎ) ∧𝑄 (ℎ ↦→ 𝑣) → 𝑄 (𝑢 ↦→ 𝑣) (a)

𝑄 (𝑢 ↦→ 𝑣) → 𝑄 (ℎ ↦→ 𝑣) ∨ ¬𝑄 (ℎ ↦→ 𝑢) (b)

𝑄 (𝑢 ↦→ 𝑣) → 𝑄 (𝑢 ↦→ ℎ) ∨ ¬𝑄 (𝑣 ↦→ ℎ) (c)

The operators for the connectivity query are exactly the same

as the reachability query. And the operators for the BFS query are

similar to the PPSP query, with the edge weight fixed as one for all

edges. We omit the details due to space limitations.

4.2 Weighted Graph Queries
Besides PPSP, Point-to-Point Widest Path (PPWP) and Point-to-Point
Narrowest Path (PPNP) are two important pairwise queries that are

widely used in many real-world analysis scenarios. For example,

one may want to find the widest or the narrowest route between

two cities in traffic planning [7, 41] or a path between two Internet

nodes with maximum bandwidth [45]. To detect money laundering,

one canmodel the transaction history as a huge graph and study the

PPWP over two suspicious accounts [33, 51]. Similar to connectivity

and reachability queries, PPWP and PPNP are also the fundamen-

tal kernels and subroutines of many important high-level graph

analysis applications, such as the network flow algorithm [58].

Both PPWP and PPNP are defined on weighted graphs, where

each edge is associated with a number as its weight. In PPWP, a

pairwise query𝑄 (𝑠 ↦→ 𝑑) finds the path from 𝑠 to 𝑑 that maximizes

the minimum-weight edge on the path, i.e., the widest path. As a

dual problem of PPWP, in PPNP,𝑄 (𝑠 ↦→ 𝑑) finds the path from 𝑠 to

𝑑 with the maximum-weight edge on the path to be the minimum

among all legal paths, i.e., the narrowest path.

With SGraph, the acceleration of PPWP and PPNP is rather

straightforward by overriding the binary operators in triangle in-

equality. Here we take the PPWP query as an example. 𝑄 (𝑢 ↦→ 𝑣)
denotes the maximum path width from 𝑢 to 𝑣 . To answer query

𝑄 (𝑠 ↦→ 𝑑), SGraph initializes the maximum known width from

𝑠 to 𝑠 as ∞ and from 𝑠 to other vertices as 0. During processing,

these values are gradually increased until convergence. Again, our

triangle inequality based pruning can significantly speed up the

convergence, as listed below:

(1) Upper bound pruning. For every path 𝑢 ↦→ ℎ ↦→ 𝑣 , its width

equals the narrower one of 𝑢 ↦→ ℎ and ℎ ↦→ 𝑣 (Figure 6(a)).

Thus the widest path from 𝑢 to 𝑣 must be no narrower than this,

which serves as the upper bound pruning in SGraph since the

operator ⪰ is overridden to ≤.
(2) Lower bound pruning. If the width of ℎ ↦→ 𝑢 is larger than

ℎ ↦→ 𝑣 , then 𝑢 ↦→ 𝑣 must be no wider than ℎ ↦→ 𝑣 . Otherwise,

ℎ ↦→ 𝑢 ↦→ 𝑣 would be wider than ℎ ↦→ 𝑣 , contradicting its

h

vu

𝟖 𝟏𝟎

𝟖 ≤ 𝑸 𝒖 → 𝒗
(a) Upper bound

h

vu

𝟏𝟐 𝟏𝟎

𝑸 𝒖 → 𝒗 ≤ 𝟏𝟎
(b) Lower bound ①

h

vu

𝟖 𝟏𝟒

𝑸 𝒖 → 𝒗 ≤ 𝟖
(c) Lower bound ②

Figure 6: The triangle example of PPWP query.

widest path definition (Figure 6(b)). Similarly, if the width of

𝑣 ↦→ ℎ is larger than 𝑢 ↦→ ℎ, then 𝑢 ↦→ 𝑣 cannot be wider than

𝑢 ↦→ ℎ (Figure 6(c)).

The above pruning logic can be automatically derived by overrid-

ing the operators 𝑎⊕𝑏, 𝑎⊖𝑏 and 𝑎 ⪰ 𝑏 to as𝑚𝑖𝑛(𝑎, 𝑏), 𝑎 < 𝑏 ?𝑎 : ∞
and 𝑎 ≤ 𝑏, respectively. This implies the following pruning seman-

tics:

𝑚𝑖𝑛(𝑄 (𝑢 ↦→ ℎ), 𝑄 (ℎ ↦→ 𝑣)) ≤ 𝑄 (𝑢 ↦→ 𝑣) (a)

𝑄 (𝑢 ↦→ 𝑣) ≤ (𝑄 (ℎ ↦→ 𝑣) < 𝑄 (ℎ ↦→ 𝑢) ?𝑄 (ℎ ↦→ 𝑣) : ∞) (b)

𝑄 (𝑢 ↦→ 𝑣) ≤ (𝑄 (𝑢 ↦→ ℎ) < 𝑄 (𝑣 ↦→ ℎ) ?𝑄 (𝑢 ↦→ ℎ) : ∞) (c)

The overridden operators of PPNP are dual to PPWP, as shown

in Table 1.

4.3 Machine Learning Queries
In addition to traditional graph analysis applications, recently there

are also many data mining and machine learning algorithms mod-

eled and calculated as graph processing problems. One prominent

example is the Viterbi algorithm (Viterbi) [34], which is widely

used in convolutional code decoding [55], speech recognition [40],

bioinformatics [63], etc [9, 14]. Viterbi searches for the most likely

state sequence that has the maximum posterior probability, called

the Viterbi path. Viterbi is defined on weighted graphs, where the

weight of an edge denotes the conditional probability of a state, and

the product of edge weight along a path denotes the conditional

probability of a sequence of states. A Viterbi query 𝑄 (𝑠 ↦→ 𝑑) finds
the path from 𝑠 to 𝑑 with the maximum edge weight product. The

pruning of the Viterbi query is similar to the PPSP query. With the

operators 𝑎 ⊕ 𝑏, 𝑎 ⊖ 𝑏 and 𝑎 ⪰ 𝑏 overridden as 𝑎 × 𝑏, 𝑎 ÷ 𝑏 and

𝑎 ≤ 𝑏, respectively, SGraph automates the triangle inequality based

pruning as:

𝑄 (𝑢 ↦→ ℎ) ×𝑄 (ℎ ↦→ 𝑣) ≤ 𝑄 (𝑢 ↦→ 𝑣) (a)

𝑄 (𝑢 ↦→ 𝑣) ≤ 𝑄 (ℎ ↦→ 𝑣) ÷𝑄 (ℎ ↦→ 𝑢) (b)

𝑄 (𝑢 ↦→ 𝑣) ≤ 𝑄 (𝑢 ↦→ ℎ) ÷𝑄 (𝑣 ↦→ ℎ) (c)

5 EVALUATION
Our experiments are set up on a 10-node cluster with 24 physi-

cal cores and 375GB of memory per machine. The machines are

connected through a 200Gbps Infiniband Network.

Table 2 shows the real-world graph datasets used in the evalua-

tion. Twitter-2010 and Friendster are large social network graphs.

UK-2007-05 and Gsh-2015-host are large web crawl graphs. The av-

erage degree ranges from 52 to 71. Our evaluation is based on

a versatile set of seven different applications, namely Shortest

Path (PPSP), Breadth First Search (BFS), Reachability, Connectivity,

9
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Widest Path (PPWP), Narrowest Path (PPNP), and Viterbi Algo-

rithm (Viterbi). All these applications are important pairwise graph

queries that 1) not only themselves are widely used; 2) but also the

combination of these basic kernels can form many important high-

level graph analysis applications such as clustering, classification,

and prediction. In the following experiments, SGraph selects K=16

vertices with the highest degree as hubs. We run 1000 different

queries for all the experiments and present the average results.

5.1 Query Performance
First, we compare the query performance of SGraph with PnP [59],

Tripoline [26], Neo4j [3], and TuGraph [4]. PnP is currently, as far as

we know, the fastest single-machine pairwise query processing sys-

tem. It elaborates on the potential and importance of point-to-point

queries and inspires our optimizations on SGraph. A comparison

with our implementation of distributed PnP can be used to mea-

sure the effectiveness of our optimizations. In contrast, Tripoline is

designed to use the triangle inequality property to accelerate the

process of exhaustive “one-to-all-the-others” single-source queries.

For a fair comparison, we extend Tripoline’s upper bound based

pruning with the pruning approach of PnP to efficiently answer

pairwise queries, which is equivalent to the UB pruning condition in-
troduced in Figure 1. We denote the extended version as Tripoline+.
Since both PnP and Tripoline are not open source, we re-implement

their mechanism based on Gemini [67] distributed graph processing

framework, the same execution engine of SGraph.

Table 3 gives the average query processing latency for seven ap-

plications. As shown in the table, for all the applications other than

BFS, SGraph can be much faster than PnP because of the indexes.

Different from SGraph, PnP does not require any pre-computation

and hence can always compute on the freshest data. However, this

benefit also limits its performance when SGraph can take advantage

of the maintained pre-computed triangle inequality based indexes.

PnP’s two-phase algorithm is also particularly effective on BFS,

because the second phase can be fully skipped. In contrast, 1) in
PPSP/Viterbi/PPWP/PPNP queries, the second phase for queries

whose destination vertex is reachable from the source vertex cannot

be skipped; and 2) in connectivity/reachability queries, though the

second phase can still be skipped in PnP, SGraph is much more effi-

cient since the queries can usually be answered by accessing only

the indexes. More details can be found later in Section 5.3 where

we compare the number of activated vertices between PnP and

SGraph. The overhead of graph updating and index maintaining

are evaluated in Section 5.4. Although SGraph is not able to provide

the same freshness guarantee as PnP, thanks to our system and

architectural optimizations, SGraph can provide sub-second-level

Table 2: Real-world graph datasets.

Graph |𝑉 | |𝐸 | Type

Twitter-2010(TW) [32] 41.7M 1.47B directed

Friendster(FS) [62] 65.6M 1.81B undirected

UK-2007-05(UK) [12] 106M 3.74B directed

Gsh-2015-host(GS) [10] 68.7M 1.80B directed

Table 3: Query performance (time in milliseconds).

Algorithm Graph PnP Tripoline+ SGraph

PPSP

TW 365 (10.9×) 312 (9.29×) 33.6

FS 752 (18.0×) 757 (18.1×) 41.8

UK 1471 (18.8×) 1656 (21.2×) 78.2

GS 513 (16.6×) 518 (16.8×) 30.9

Viterbi

TW 384 (10.8×) 364 (10.3×) 35.4

FS 725 (18.2×) 794 (19.9×) 39.9

UK 984 (9.28×) 1214 (11.5×) 106

GS 453 (13.0×) 471 (13.5×) 34.9

PPWP

TW 235 (79.1×) 10.1 (3.40×) 2.97

FS 533 (1697×) 8.85 (28.2×) 0.314

UK 1632 (85.4×) 225 (11.8×) 19.1

GS 479 (63.3×) 42.5 (5.61×) 7.57

PPNP

TW 234 (75.7×) 11.4 (3.69×) 3.09

FS 533 (1605×) 8.32 (25.1×) 0.332

UK 1645 (87.5×) 244 (13.0×) 18.8

GS 475 (65.4×) 40.7 (5.61×) 7.26

BFS

TW 22.1 (1.33×) 155 (9.34×) 16.6

FS 41.7 (1.63×) 380 (14.8×) 25.6

UK 114 (1.22×) 743 (7.93×) 93.7

GS 30.3 (1.16×) 191 (7.32×) 26.1

Reachability

TW 16.0 (24.9×) 7.72 (12.0×) 0.642

FS 29.0 (92.1×) 8.88 (28.2×) 0.315

UK 109 (33.5×) 22.5 (6.92×) 3.25

GS 22.2 (17.2×) 11.3 (8.76×) 1.29

Connectivity

TW 35.8 (117×) 6.16 (20.2×) 0.305

FS 29.0 (92.1×) 8.88 (28.2×) 0.315

UK 94.3 (289×) 12.3 (37.7×) 0.326

GS 36.4 (111×) 8.28 (25.3×) 0.327

freshness while ingesting millions of updates per second, which is

sufficient in most real-world scenarios.

However, as shown by the comparison with Tripoline+, with-

out the lower bound estimation, simply using indexes to estimate

tighter upper bounds is still not enough. Tripoline+ can achieve a

significant speedup on PPWP and PPNP, where the final result is a

selection instead of an accumulation over the path. In such cases,

the error of bound estimation is also not accumulated, and hence

the bounds are tighter than in other applications. However, SGraph

is still 3− 28× times faster than Tripoline+ in such cases. According

to the evaluation of these existing systems, without lower bounds,

neither 1) altering the search direction; nor 2) adding the upper-

bound-only pruning methods, can lead to satisfactory performance.

Furthermore, as we will demonstrate in the breakdown analysis

later in Section 5.5, without lower bounds, a combination of the

above two optimizations still performs several times slower than

our final approach.

We also compare SGraph with Neo4j and TuGraph. The latter is

reported to be the fastest industry graph database in LDBC SNB [2].

The results show that SGraph is 262 − 659× faster than TuGraph

for PPSP query, 249 − 378× faster for Viterbi query, and more than
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Figure 7: The average number of active vertices on each iteration during the query on UK-2007-05.

three orders of magnitude faster for the other five applications. The

speedup over Neo4j is even larger than TuGraph. We omit their

results in Table 3 as they are significantly slower than the other

three systems.

5.2 Larger Graph Dataset
To evaluate the query performance of SGraph on larger graph

datasets, we use UK-2014 [10, 11, 13] as an extension of UK-2007-05.

It has similar properties to UK-2007-05, and has 788 million vertices

and 47.6 billion edges, which is much larger than UK-2007-05. We

use all seven applications to compare the query speedup of SGraph

on UK-2007-05 and UK-2014, taking the faster one in PnP and

Tripoline+ as a baseline for each application. As shown in figure 8,

with the expansion of graph size, the speedup of PPSP/Viterbi/BFS

query increases by 2 − 3×, because of SGraph ’s capability of fast

convergence; the speedup of Connectivity query increases by 5+

times, because SGraph can still answer most queries by accessing

only the indexes; and the speedup of the other three applications

also increases slightly. The results show that the pruning technique

of SGraph works better with larger graph datasets, and thus can

deal with massive data in complex real-world scenes.
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Figure 8: The query speedup of SGraph on UK-2007-05 and
UK-2014.

5.3 Vertex Activation
To further verify the pruning effects of SGraph, We measure the

activation ratio of each system and it is less than 1% for SGraph

in most applications, which is 20+ times lower than other systems.

Figure 7 presents the average number of active vertices on each

iteration during the query on UK-2007-05, the largest graph in our

datasets. As we can see, for all three systems, with the increase of

iteration number, the number of active vertices first increases to

the peak and then decreases, which also depicts the process of ex-

ponentially expanding the search space from the source vertex (or

destination vertex, or both) and gradually converging. Compared

with the other two systems, SGraph typically uses fewer iteration

rounds to both reach the peak and converge, and the peak value of

active vertices is several orders of magnitude smaller. This demon-

strates that our lower bound based pruning technique significantly

reduces search space.

The lower bound based pruning is particularly useful for PPWP,

PPNP, reachability, and connectivity, resulting in an activation ratio

very close to zero. For these queries, the upper bound of 𝑄 (𝑠 ↦→ 𝑑)
is only slightly larger or even equal to the lower bound of𝑄 (𝑠 ↦→ 𝑑),
which is the key reason for the effectiveness of the lower bound.

Even further, it is possible that𝑈𝐵(𝑠 ↦→ 𝑑) is equal to 𝐿𝐵(𝑠 ↦→ 𝑑) in
many cases, where the answer can be determined without visiting

the graph (i.e., zero vertex activation). As for BFS, the pruning

effects of upper/lower bounds are not that significant compared to

the usage of bi-directional search. This is because that UK-2007-05

is a power graph that has a small diameter and many high-degree

power vertices.

5.4 Update Performance
As described in Section 3.1, in order to maintain the lower and

upper bounds over evolving graphs, we adopt a hub-based incre-

mental processing technique. In this section, we evaluate the index

maintain performance, which also shows the maximum throughput

of graph updates SGraph can ingest. In our experiments, 70% of

the edges are loaded as the initial graph, then randomly selected

updates are streamed in batches. The batch size is set as 0.01M,
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Table 4: Time (s) to maintain the indexes for each batch.

Algorithm Batch Size TW FS UK GS

PPSP

0.01M 0.321 0.227 0.783 0.468

0.1M 0.453 0.315 1.22 0.636

1M 1.39 0.846 2.66 2.06

Viterbi

0.01M 0.325 0.231 0.807 0.475

0.1M 0.462 0.309 0.940 0.636

1M 1.42 0.822 2.24 1.82

PPWP

0.01M 0.320 0.246 0.808 0.565

0.1M 0.471 0.427 1.35 0.964

1M 1.89 1.56 3.82 4.10

PPNP

0.01M 0.306 0.260 0.782 0.537

0.1M 0.497 0.440 1.33 0.918

1M 1.96 1.60 3.70 3.96

BFS

0.01M 0.368 0.219 0.780 0.459

0.1M 0.419 0.280 0.985 0.562

1M 1.22 0.689 2.22 1.43

Reachability

0.01M 0.342 0.209 0.652 0.434

0.1M 0.368 0.229 0.776 0.470

1M 0.665 0.418 1.38 0.816

Connectivity

0.01M 0.163 0.209 0.332 0.230

0.1M 0.174 0.229 0.356 0.232

1M 0.309 0.418 0.541 0.450

0.1M, and 1M, respectively. Each batch has 50% additions and 50%

deletions. Table 4 shows the average time cost of maintaining the

indexes for each batch in SGraph. With the increase of the batch

size, the per-batch processing time grows sub-linearly. i.e., the av-

erage time of each update decreases. This is because the indexes

invalidated by different updates always overlap greatly.

Thanks to SGraph’s decoupled architecture, the updates will not

block queries, but only affect the freshness of query results. As we

can see from Table 4, SGraph is able to provide sub-second level

freshness while ingesting millions of updates per second for simple

queries, and constrain the freshness within several seconds for the

other complicated queries.
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Figure 9: A comparison of the storage format of SGraph and
GraphOne+S.

We also compare our storage format that enables SGraph’s snap-

shot based decoupled architecture with GraphOne [31]. In our ex-

periments, we use the same lower and upper bound based algorithm

to process PPSP queries on Twitter-2010, but replace the storage

format with GraphOne’s hybrid design. The combined version is

denoted as GraphOne+S. As we can see from Figure 9(a), with the

increase of the number of buffered mutations in the shared edge

logs, GraphOne+S can also ingest millions of updates per second.

However, as shown in Figure 9(b), the query performance of Gra-

phOne+S continuously decreases when the size of the edge log

increases. This is because, in order to enable fine-grained snapshots

in GraphOne+S, when answer a query, the system needs to scan

the whole edge log once for each iteration to combine the graph

mutations in the logs with the adjacency list. Since the vertex ac-

tivation ratio is very low in SGraph, such repetitive scan leads to

non-negligible unnecessary costs. Note that this does not mean that

our method can lead to a better general-purpose dynamic graph

storage format. It is specially designed for our decoupled architec-

ture that the maximum ingesting rate is bounded by the speed of

maintaining the indexes and only two rolling snapshots are needed.

5.5 Breakdown
We analyze the performance impact of the three main pruning

methods in SGraph, i.e., UB for upper bound based pruning, LB

for lower bound based pruning, and BS for bi-directional search.

Table 5 reports the result of the breakdown test, taking PPSP as an

example. Each entry is the average speedup over the baseline, which

does not apply the above pruning methods and hence degenerates

into a straightforward algorithm. As expected, the speedup of ap-

plying UB only is relatively low, since upper bound based pruning

techniques can only prune the vertices with an upper bound larger

than the known upper bound of the queried destination vertex.

For BS and LB, the effect of BS differs a lot on different graphs.

It accelerates the query significantly on Friendster, which is the

only undirected graph, but has a smaller benefit on directed graphs.

On the other hand, LB provides more stable accelerations. More

importantly, it is really interesting to see that the synergy among

all these three optimizations is the key reason for our significant

speedup. Applying UB only with LB or only with BS will be several

times slower than the final results, as the lower bounds can take

effect in both directions and hence largely reduce the search space,

leading to a combinatorial effect.

Table 5: PPSP speedups with different pruning methods.

Graph UB UB+BS UB+LB UB+BS+LB

TW 1.43× 3.28× 5.89× 20.7×
FS 1.66× 18.1× 4.12× 30.2×
UK 1.92× 2.11× 3.97× 34.8×
GS 2.04× 2.79× 4.79× 35.7×

5.6 Scalability
Finally, we evaluate the inter-node scalability of SGraph using PPSP,

since it is one of the most time-consuming applications and thus
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will benefit significantly from scalability. We process PPSP queries

with 1, 2, 4, and 8 nodes on different graphs, respectively. Results

show that SGraph with an 8-node cluster is about 4 − 6× times

faster than with a single machine, which demonstrates the good

scalability of SGraph. For benchmarks where only a tiny portion

of vertices will be activated (e.g., reachability), adding more nodes

can also help hold larger graphs and speed up the ingestion.

6 RELATEDWORKS
6.1 Dynamic Graphs
Evolving graphs have attracted a lot of attention in recent years [8].

Many systems have been proposed to provide timely responses

to online analytic graph queries via incremental algorithms. For

example, Tornado [46] observes that many analytic graph prob-

lems are solved by starting with an initial guess and repeatedly

refining the solution. Loops starting from good initial guesses usu-

ally converge faster. Differential Dataflow [39] records the whole

trajectory of past iterative processing procedures instead of only

the former results. It is a generalized approach that extends incre-

mental processing to iterative applications, not only iterative graph

processing.

A common assumption of the former works is that the interme-

diate value of a previous version is indeed closer to the actual result

than the initial value, even when the graph mutates. However, Vora

et al. [56] found that this implicit assumption does not hold if the

graph mutations include edge deletions. In such cases, the graph

mutations may break the monotonicity of graph applications and

invalidate the intermediate values being maintained. To resolve this

problem, systems like KickStarter [56] and GraphBolt [37] carefully

track dependencies between vertex values (that are being computed)

and edge modifications. By recording these dependencies, they can

efficiently identify values that are (directly or transitively) impacted

by edge deletions and incrementally adjust those values before they

are fed to the subsequent computation. A recent work RisGraph [18]

also applies KickStarter’s approach for incremental computation to

its design based on concurrent ingestion of fine-grained updates

and queries.

Comparison.While the details for achieving incremental changes

vary across systems, according to our investigation, they all record

a certain kind of intermediate results that help them converge faster

or exclude part of the graph from re-computation. Moreover, the

space complexity of such intermediate results is at least 𝑶 (|𝑽 |)
for each specific query. Since these intermediate results cannot

be reused if the query is changed, it is unacceptable to extend these

methods naively to support dynamic queries.

A recent work Tripoline [26] tries to avoid this problem by using

a hub-based approach and triangle inequality, which is similar to

our work. However, as compared in Section 5.1, the lack of the

lower bound estimation makes Tripoline several orders of magni-

tude slower than our system. Moreover, Tripoline only supports

insertion-only graph mutations (i.e., no edge deletion) and is not

optimized for pairwise query (cannot avoid the exhaustive nature

inherited in the graph application).

6.2 Pairwise Queries
Recently, the unique property of pairwise queries has attracted

interest from many researchers. For example, 𝐻𝑢𝑏2 [27] proposes

a specialized accelerator for PPSP queries that uses high degree

vertices as hubs to accelerate the PPSP queries. To implement this

algorithm in a distributed environment, Quegel [65] allows users

to construct distributed graph indexes at graph loading. However,

Quegel simply allows users to write arbitrary code for construct-

ing static indexes at the beginning. All the cumbersome indexes

building logic needs to be implemented by the users themselves.

And it does not support dynamic graphs, once the graph is updated,

the stored index may no longer be correct. There are also many

theoretical efforts [21, 38] on accelerating dynamic pairwise graph

queries via constructing and maintaining indexes structure like

graph synopses and sketches. To the best of our knowledge, these

algorithms cannot be implemented straightforwardly in existing

distributed graph processing systems. PnP [59] is a recent single-

machine system that specializes in processing pairwise queries. It

proposes a generalized pruning technique that is applicable for

many different kinds of workloads but also not based on lower

bounds.

Comparision. As discussed above, many important kinds of dy-

namic graph queries have been supported in a static graph scenario,

but the indexes needed by these algorithms are too complicated to

be efficiently maintained when the graph mutates. Since all these al-

gorithms are designed case by case for a certain kind of application,

it is also hard to summarize a generalized form of building such

indexes for a wide range of graph applications. More importantly,

although some efforts have been made to propose a generalized

framework for processing pairwise queries, they are based only on

upper bounds.

7 CONCLUSION
In this paper, we present the design, implementation, and evalu-

ation results of SGraph. Based on our novel lower bound based

pruning technique, SGraph can ingest millions of updates per sec-

ond and simultaneously answer pairwise queries with a latency that

is several orders of magnitude smaller than state-of-the-art systems.

Moreover, SGraph proposes a higher-level abstraction that can hide

both system implementation and algorithm logic of pruning tech-

nique from users. Users only need to specify the properties of the

application, typically in only one line of code. Then, SGraph will

automatically deduce all the logic for prior knowledge generation

and maintenance, as well as pruning for the query.

ACKNOWLEDGMENTS
We thank our shepherd and all the reviewers for their valuable com-

ments and suggestions. This Work is supported by National Key

Research & Development Program of China (2020YFC1522702), Nat-

ural Science Foundation of China (62141216, 61877035), Young Elite

Scientists Sponsorship Program by CAST (2022-2024), Tsinghua

University Initiative Scientific Research Program, Tsinghua Univer-

sity - Meituan Joint Institute for Digital Life, and Beijing HaiZhi

XingTu Technology Co., Ltd.

13



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Hongtao Chen, Mingxing Zhang, Ke Yang, Kang Chen, Albert Zomaya, Yongwei Wu, and Xuehai Qian

REFERENCES
[1] [n.d.]. Google Dense Hashmap. Retrieved January 6, 2022 from https://github.

com/sparsehash/sparsehash

[2] [n.d.]. LDBC-SNB. Retrieved October 7, 2022 from https://ldbcouncil.org/

benchmarks/snb/

[3] [n.d.]. Neo4j. Retrieved November 15, 2021 from https://neo4j.com/

[4] [n.d.]. TuGraph. Retrieved October 7, 2022 from https://www.tugraph.com/

[5] Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup.

1997. Minimizing diameters of dynamic trees. In Automata, Languages and
Programming. Springer Berlin Heidelberg, Berlin, Heidelberg, 270–280. https:

//doi.org/10.1007/3-540-63165-8_184

[6] Michael O. Ball, Charles J. Colbourn, and J. Scott Provan. 1995. Chapter 11

Network reliability. In Network Models. Handbooks in Operations Research and

Management Science, Vol. 7. Elsevier, 673–762. https://doi.org/10.1016/S0927-

0507(05)80128-8

[7] Oded Berman and Gabriel Y Handler. 1987. Optimal minimax path of a single

service unit on a network to nonservice destinations. Transportation Science 21,
2 (1987), 115–122. https://doi.org/10.1287/trsc.21.2.115

[8] Maciej Besta, Marc Fischer, Vasiliki Kalavri, Michael Kapralov, and Torsten Hoe-

fler. 2021. Practice of Streaming Processing of Dynamic Graphs: Concepts, Models,

and Systems. IEEE Transactions on Parallel and Distributed Systems (2021), 1–1.
https://doi.org/10.1109/TPDS.2021.3131677

[9] Ramaprasad Bhar and Shigeyuki Hamori. 2004. Hidden Markov models: ap-
plications to financial economics. Vol. 40. Springer Science & Business Media.

https://doi.org/10.1007/b109046

[10] Paolo Boldi, Andrea Marino, Massimo Santini, and Sebastiano Vigna. 2018. BUb-

iNG: Massive Crawling for the Masses. ACM Trans. Web 12, 2, Article 12 (jun

2018), 26 pages. https://doi.org/10.1145/3160017

[11] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered

Label Propagation: A Multiresolution Coordinate-Free Ordering for Compressing

Social Networks. In Proceedings of the 20th International Conference on World
Wide Web (Hyderabad, India) (WWW ’11). Association for Computing Machinery,

New York, NY, USA, 587–596. https://doi.org/10.1145/1963405.1963488

[12] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. 2008. A Large Time-Aware

Web Graph. SIGIR Forum 42, 2 (nov 2008), 33–38. https://doi.org/10.1145/1480506.

1480511

[13] P. Boldi and S. Vigna. 2004. TheWebgraph Framework I: Compression Techniques.

In Proceedings of the 13th International Conference on World Wide Web (New York,

NY, USA) (WWW ’04). Association for Computing Machinery, New York, NY,

USA, 595–602. https://doi.org/10.1145/988672.988752

[14] Horst Bunke and Terry Michael Caelli. 2001. Hidden Markov models: applications
in computer vision. Vol. 45. World Scientific.

[15] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reachability

and Distance Queries via 2-Hop Labels. SIAM J. Comput. 32, 5 (2003), 1338–1355.
https://doi.org/10.1137/S0097539702403098

[16] Laxman Dhulipala, Changwan Hong, and Julian Shun. 2020. ConnectIt: A

Framework for Static and Incremental Parallel Graph Connectivity Algorithms.

arXiv:2008.03909 RetrievedAugust 14, 2020 from https://arxiv.org/abs/2008.03909

[17] Harish Doraiswamy, Huy T. Vo, Cláudio T. Silva, and Juliana Freire. 2016. A

GPU-based index to support interactive spatio-temporal queries over historical

data. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE).
1086–1097. https://doi.org/10.1109/ICDE.2016.7498315

[18] Guanyu Feng, Zixuan Ma, Daixuan Li, Shengqi Chen, Xiaowei Zhu, Wentao

Han, and Wenguang Chen. 2021. RisGraph: A Real-Time Streaming System for

Evolving Graphs to Support Sub-Millisecond Per-Update Analysis at Millions

Ops/s. In Proceedings of the 2021 International Conference on Management of Data
(Virtual Event, China) (SIGMOD ’21). Association for Computing Machinery, New

York, NY, USA, 513–527. https://doi.org/10.1145/3448016.3457263

[19] Greg N. Frederickson. 1983. Data Structures for On-Line Updating of Minimum

Spanning Trees. In Proceedings of the Fifteenth Annual ACM Symposium on Theory
of Computing (STOC ’83). Association for Computing Machinery, New York, NY,

USA, 252–257. https://doi.org/10.1145/800061.808754

[20] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.

2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs.

In Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation (Hollywood, CA, USA) (OSDI’12). USENIX Association, USA,

17–30.

[21] Sudipto Guha and Andrew McGregor. 2012. Graph Synopses, Sketches, and

Streams: A Survey. Proc. VLDB Endow. 5, 12 (Aug. 2012), 2030–2031. https:

//doi.org/10.14778/2367502.2367570

[22] Q. Guo, F. Zhuang, C. Qin, H. Zhu, X. Xie, H. Xiong, and Q. He. 5555. A Survey on

Knowledge Graph-Based Recommender Systems. IEEE Transactions on Knowledge
and Data Engineering 01 (oct 5555), 1–1. https://doi.org/10.1109/TKDE.2020.

3028705

[23] Monika R. Henzinger and Valerie King. 1999. Randomized Fully Dynamic Graph

Algorithms with Polylogarithmic Time per Operation. J. ACM 46, 4 (jul 1999),

502–516. https://doi.org/10.1145/320211.320215

[24] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. 2001. Poly-Logarithmic

Deterministic Fully-Dynamic Algorithms for Connectivity, Minimum Spanning

Tree, 2-Edge, and Biconnectivity. J. ACM 48, 4 (jul 2001), 723–760. https:

//doi.org/10.1145/502090.502095

[25] Xiaolin Jiang, Chengshuo Xu, and Rajiv Gupta. 2021. VRGQ: Evaluating a Stream

of Iterative Graph Queries via Value Reuse. SIGOPS Oper. Syst. Rev. 55, 1 (jun
2021), 11–20. https://doi.org/10.1145/3469379.3469382

[26] Xiaolin Jiang, Chengshuo Xu, Xizhe Yin, Zhijia Zhao, and Rajiv Gupta. 2021.

Tripoline: Generalized Incremental Graph Processing via Graph Triangle Inequal-

ity. In Proceedings of the Sixteenth European Conference on Computer Systems
(Online Event, United Kingdom) (EuroSys ’21). Association for Computing Ma-

chinery, New York, NY, USA, 17–32. https://doi.org/10.1145/3447786.3456226

[27] Ruoming Jin, Ning Ruan, Bo You, and Haixun Wang. 2013. Hub-Accelerator: Fast

and Exact Shortest Path Computation in Large Social Networks. arXiv:1305.0507

Retrieved August 13, 2018 from http://arxiv.org/abs/1305.0507

[28] Kevin Joseph and Hui Jiang. 2019. Content Based News Recommendation

via Shortest Entity Distance over Knowledge Graphs. In Companion Proceed-
ings of The 2019 World Wide Web Conference (San Francisco, USA) (WWW
’19). Association for Computing Machinery, New York, NY, USA, 690–699.

https://doi.org/10.1145/3308560.3317703

[29] Niranjan Kamat, Prasanth Jayachandran, Karthik Tunga, and Arnab Nandi. 2014.

Distributed and interactive cube exploration. In 2014 IEEE 30th International
Conference on Data Engineering. 472–483. https://doi.org/10.1109/ICDE.2014.

6816674

[30] Mohsen Koohi Esfahani, Peter Kilpatrick, andHans Vandierendonck. 2021. Thrifty

Label Propagation: Fast Connected Components for Skewed-Degree Graphs. In

2021 IEEE International Conference on Cluster Computing (CLUSTER). 226–237.
https://doi.org/10.1109/Cluster48925.2021.00042

[31] Pradeep Kumar and H. Howie Huang. 2020. GraphOne: A Data Store for Real-

Time Analytics on Evolving Graphs. ACM Trans. Storage 15, 4, Article 29 (jan
2020), 40 pages. https://doi.org/10.1145/3364180

[32] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What

is Twitter, a Social Network or a News Media?. In Proceedings of the 19th
International Conference on World Wide Web (Raleigh, North Carolina, USA)

(WWW ’10). Association for Computing Machinery, New York, NY, USA, 591–600.

https://doi.org/10.1145/1772690.1772751

[33] Meng-Chieh Lee, Yue Zhao, Aluna Wang, Pierre Jinghong Liang, Leman Akoglu,

Vincent S. Tseng, and Christos Faloutsos. 2020. AutoAudit: Mining Accounting

and Time-Evolving Graphs. In 2020 IEEE International Conference on Big Data
(Big Data). 950–956. https://doi.org/10.1109/BigData50022.2020.9378346

[34] Jüri Lember, Dario Gasbarra, Alexey Koloydenko, and Kristi Kuljus. 2019. Esti-

mation of Viterbi path in Bayesian hidden Markov models. Metron 77, 2 (2019),

137–169. https://doi.org/10.1007/s40300-019-00152-7

[35] Jun Ma, Danqing Zhang, Yun Wang, Yan Zhang, and Alexey Pozdnoukhov. 2018.

GraphRAD: a graph-based risky account detection system. In Proceedings of ACM
SIGKDD conference, London, UK, Vol. 9.

[36] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System for Large-

Scale Graph Processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data (Indianapolis, Indiana, USA) (SIGMOD ’10).
Association for Computing Machinery, New York, NY, USA, 135–146. https:

//doi.org/10.1145/1807167.1807184

[37] Mugilan Mariappan and Keval Vora. 2019. GraphBolt: Dependency-Driven

Synchronous Processing of Streaming Graphs. In Proceedings of the Fourteenth
EuroSys Conference 2019 (Dresden, Germany) (EuroSys ’19). Association for

Computing Machinery, New York, NY, USA, Article 25, 16 pages. https:

//doi.org/10.1145/3302424.3303974

[38] Andrew McGregor. 2014. Graph Stream Algorithms: A Survey. SIGMOD Rec. 43,
1 (May 2014), 9–20. https://doi.org/10.1145/2627692.2627694

[39] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. 2013.

Differential Dataflow. In Sixth Biennial Conference on Innovative Data Systems
Research, CIDR 2013, Asilomar, CA, USA, January 6-9, 2013, Online Proceedings.
www.cidrdb.org.

[40] J. Picone. 1990. Continuous speech recognition using hidden Markov models.

IEEE ASSP Magazine 7, 3 (1990), 26–41. https://doi.org/10.1109/53.54527

[41] Maurice Pollack. 1960. Letter to the Editor—The Maximum Capacity Through a

Network. Operations Research 8, 5 (1960), 733–736. https://doi.org/10.1287/opre.

8.5.733

[42] Liam Roditty and Uri Zwick. 2008. Improved Dynamic Reachability Algorithms

for Directed Graphs. SIAM J. Comput. 37, 5 (2008), 1455–1471. https://doi.org/10.

1137/060650271

[43] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-Stream: Edge-

Centric Graph Processing Using Streaming Partitions. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton,

Pennsylvania) (SOSP ’13). Association for Computing Machinery, New York, NY,

USA, 472–488. https://doi.org/10.1145/2517349.2522740

[44] Satu Elisa Schaeffer. 2007. Graph clustering. Computer Science Review 1, 1 (2007),

27–64. https://doi.org/10.1016/j.cosrev.2007.05.001

14

https://github.com/sparsehash/sparsehash
https://github.com/sparsehash/sparsehash
https://ldbcouncil.org/benchmarks/snb/
https://ldbcouncil.org/benchmarks/snb/
https://neo4j.com/
https://www.tugraph.com/
https://doi.org/10.1007/3-540-63165-8_184
https://doi.org/10.1007/3-540-63165-8_184
https://doi.org/10.1016/S0927-0507(05)80128-8
https://doi.org/10.1016/S0927-0507(05)80128-8
https://doi.org/10.1287/trsc.21.2.115
https://doi.org/10.1109/TPDS.2021.3131677
https://doi.org/10.1007/b109046
https://doi.org/10.1145/3160017
https://doi.org/10.1145/1963405.1963488
https://doi.org/10.1145/1480506.1480511
https://doi.org/10.1145/1480506.1480511
https://doi.org/10.1145/988672.988752
https://doi.org/10.1137/S0097539702403098
https://arxiv.org/abs/2008.03909
https://arxiv.org/abs/2008.03909
https://doi.org/10.1109/ICDE.2016.7498315
https://doi.org/10.1145/3448016.3457263
https://doi.org/10.1145/800061.808754
https://doi.org/10.14778/2367502.2367570
https://doi.org/10.14778/2367502.2367570
https://doi.org/10.1109/TKDE.2020.3028705
https://doi.org/10.1109/TKDE.2020.3028705
https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/502090.502095
https://doi.org/10.1145/502090.502095
https://doi.org/10.1145/3469379.3469382
https://doi.org/10.1145/3447786.3456226
https://arxiv.org/abs/1305.0507
http://arxiv.org/abs/1305.0507
https://doi.org/10.1145/3308560.3317703
https://doi.org/10.1109/ICDE.2014.6816674
https://doi.org/10.1109/ICDE.2014.6816674
https://doi.org/10.1109/Cluster48925.2021.00042
https://doi.org/10.1145/3364180
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1109/BigData50022.2020.9378346
https://doi.org/10.1007/s40300-019-00152-7
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/3302424.3303974
https://doi.org/10.1145/3302424.3303974
https://doi.org/10.1145/2627692.2627694
https://doi.org/10.1109/53.54527
https://doi.org/10.1287/opre.8.5.733
https://doi.org/10.1287/opre.8.5.733
https://doi.org/10.1137/060650271
https://doi.org/10.1137/060650271
https://doi.org/10.1145/2517349.2522740
https://doi.org/10.1016/j.cosrev.2007.05.001


Achieving Sub-second PairwiseQuery over Evolving Graphs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

[45] N. Shacham. 1992. Multicast routing of hierarchical data. In [Conference Record]
SUPERCOMM/ICC ’92 Discovering a New World of Communications. 1217–1221
vol.3. https://doi.org/10.1109/ICC.1992.268047

[46] Xiaogang Shi, Bin Cui, Yingxia Shao, and Yunhai Tong. 2016. Tornado: A Sys-

tem For Real-Time Iterative Analysis Over Evolving Data. In Proceedings of the
2016 International Conference on Management of Data (San Francisco, California,

USA) (SIGMOD ’16). Association for Computing Machinery, New York, NY, USA,

417–430. https://doi.org/10.1145/2882903.2882950

[47] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph Process-

ing Framework for Shared Memory. In Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Shenzhen, China)

(PPoPP ’13). Association for Computing Machinery, New York, NY, USA, 135–146.

https://doi.org/10.1145/2442516.2442530

[48] Yogesh Simmhan, Alok Kumbhare, Charith Wickramaarachchi, Soonil Nagarkar,

Santosh Ravi, Cauligi Raghavendra, and Viktor Prasanna. 2014. Goffish: A sub-

graph centric framework for large-scale graph analytics. In European Conference
on Parallel Processing. Springer, 451–462. https://doi.org/10.1007/978-3-319-

09873-9_38

[49] Daniel D. Sleator and Robert Endre Tarjan. 1981. A Data Structure for Dynamic

Trees. In Proceedings of the Thirteenth Annual ACM Symposium on Theory of
Computing (Milwaukee, Wisconsin, USA) (STOC ’81). Association for Computing

Machinery, New York, NY, USA, 114–122. https://doi.org/10.1145/800076.802464

[50] George M. Slota, Sivasankaran Rajamanickam, and Kamesh Madduri. 2014. BFS

and Coloring-Based Parallel Algorithms for Strongly Connected Components

and Related Problems. In 2014 IEEE 28th International Parallel and Distributed
Processing Symposium. 550–559. https://doi.org/10.1109/IPDPS.2014.64

[51] Xiaobing Sun, Wenjie Feng, Shenghua Liu, Yuyang Xie, Siddharth Bhatia, Bryan

Hooi, Wenhan Wang, and Xueqi Cheng. 2022. MonLAD: Money Laundering

Agents Detection in Transaction Streams. In Proceedings of the Fifteenth ACM
International Conference on Web Search and Data Mining (Virtual Event, AZ, USA)
(WSDM ’22). Association for Computing Machinery, New York, NY, USA, 976–986.

https://doi.org/10.1145/3488560.3498418

[52] Robert Tarjan. 1972. Depth-First Search and Linear Graph Algorithms. SIAM J.
Comput. 1, 2 (1972), 146–160. https://doi.org/10.1137/0201010

[53] Mikkel Thorup. 2000. Near-Optimal Fully-Dynamic Graph Connectivity. In

Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing
(Portland, Oregon, USA) (STOC ’00). Association for Computing Machinery, New

York, NY, USA, 343–350. https://doi.org/10.1145/335305.335345

[54] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and

John McPherson. 2013. From "Think like a Vertex" to "Think like a Graph". Proc.
VLDB Endow. 7, 3 (nov 2013), 193–204. https://doi.org/10.14778/2732232.2732238

[55] A. Viterbi. 1967. Error bounds for convolutional codes and an asymptotically

optimum decoding algorithm. IEEE Transactions on Information Theory 13, 2

(1967), 260–269. https://doi.org/10.1109/TIT.1967.1054010

[56] Keval Vora, Rajiv Gupta, and Guoqing Xu. 2017. KickStarter: Fast and Ac-

curate Computations on Streaming Graphs via Trimmed Approximations. In

Proceedings of the Twenty-Second International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (Xi’an, China) (ASP-
LOS ’17). Association for Computing Machinery, New York, NY, USA, 237–251.

https://doi.org/10.1145/3037697.3037748

[57] Henan Wang, Guoliang Li, Huiqi Hu, Shuo Chen, Bingwen Shen, Hao Wu, Wen-

Syan Li, and Kian-Lee Tan. 2014. R3: A Real-Time Route Recommendation System.

Proc. VLDB Endow. 7, 13 (aug 2014), 1549–1552. https://doi.org/10.14778/2733004.

2733027

[58] David PWilliamson. 2019. Network flow algorithms. Cambridge University Press.

[59] Chengshuo Xu, Keval Vora, and Rajiv Gupta. 2019. PnP: Pruning and Prediction

for Point-To-Point Iterative Graph Analytics. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association for Comput-

ing Machinery, New York, NY, USA, 587–600. https://doi.org/10.1145/3297858.

3304012

[60] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. 2014. Blogel: A Block-Centric

Framework for Distributed Computation on Real-World Graphs. Proc. VLDB
Endow. 7, 14 (oct 2014), 1981–1992. https://doi.org/10.14778/2733085.2733103

[61] Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray, Gian Merlino, and Deep

Ganguli. 2014. Druid: A Real-Time Analytical Data Store. In Proceedings of the
2014 ACM SIGMOD International Conference on Management of Data (Snowbird,
Utah, USA) (SIGMOD ’14). Association for Computing Machinery, New York, NY,

USA, 157–168. https://doi.org/10.1145/2588555.2595631

[62] Jaewon Yang and Jure Leskovec. 2012. Defining and Evaluating Network

Communities Based on Ground-Truth. In Proceedings of the ACM SIGKDD
Workshop on Mining Data Semantics (Beijing, China) (MDS ’12). Association
for Computing Machinery, New York, NY, USA, Article 3, 8 pages. https:

//doi.org/10.1145/2350190.2350193

[63] Byung-Jun Yoon. 2009. Hidden Markov Models and their Applications in Bio-

logical Sequence Analysis. Current genomics 10, 6 (September 2009), 402—415.

https://doi.org/10.2174/138920209789177575

[64] Chaoqun Zhan, Maomeng Su, ChuangxianWei, Xiaoqiang Peng, Liang Lin, Sheng

Wang, Zhe Chen, Feifei Li, Yue Pan, Fang Zheng, and Chengliang Chai. 2019.

AnalyticDB: Real-Time OLAP Database System at Alibaba Cloud. Proc. VLDB
Endow. 12, 12 (aug 2019), 2059–2070. https://doi.org/10.14778/3352063.3352124

[65] Qizhen Zhang, Da Yan, and James Cheng. 2016. Quegel: A General-Purpose

System for Querying Big Graphs. In Proceedings of the 2016 International Con-
ference on Management of Data (San Francisco, California, USA) (SIGMOD
’16). Association for Computing Machinery, New York, NY, USA, 2189–2192.

https://doi.org/10.1145/2882903.2899398

[66] Andy Diwen Zhu, Wenqing Lin, Sibo Wang, and Xiaokui Xiao. 2014. Reachability

Queries on Large Dynamic Graphs: A Total Order Approach. In Proceedings of the
2014 ACM SIGMOD International Conference on Management of Data (Snowbird,
Utah, USA) (SIGMOD ’14). Association for Computing Machinery, New York, NY,

USA, 1323–1334. https://doi.org/10.1145/2588555.2612181

[67] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:

A Computation-Centric Distributed Graph Processing System. In Proceedings of
the 12th USENIX Conference on Operating Systems Design and Implementation
(Savannah, GA, USA) (OSDI’16). USENIX Association, USA, 301–316.

[68] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-Scale

Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning. In

Proceedings of the 2015 USENIX Conference on Usenix Annual Technical Conference
(Santa Clara, CA) (USENIX ATC ’15). USENIX Association, USA, 375–386.

Received 2022-07-07; accepted 2022-09-22

15

https://doi.org/10.1109/ICC.1992.268047
https://doi.org/10.1145/2882903.2882950
https://doi.org/10.1145/2442516.2442530
https://doi.org/10.1007/978-3-319-09873-9_38
https://doi.org/10.1007/978-3-319-09873-9_38
https://doi.org/10.1145/800076.802464
https://doi.org/10.1109/IPDPS.2014.64
https://doi.org/10.1145/3488560.3498418
https://doi.org/10.1137/0201010
https://doi.org/10.1145/335305.335345
https://doi.org/10.14778/2732232.2732238
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1145/3037697.3037748
https://doi.org/10.14778/2733004.2733027
https://doi.org/10.14778/2733004.2733027
https://doi.org/10.1145/3297858.3304012
https://doi.org/10.1145/3297858.3304012
https://doi.org/10.14778/2733085.2733103
https://doi.org/10.1145/2588555.2595631
https://doi.org/10.1145/2350190.2350193
https://doi.org/10.1145/2350190.2350193
https://doi.org/10.2174/138920209789177575
https://doi.org/10.14778/3352063.3352124
https://doi.org/10.1145/2882903.2899398
https://doi.org/10.1145/2588555.2612181

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Challenges and Observations
	1.3 Our Contributions

	2 Case Study: Point to Point Shortest Path
	2.1 PPSP Problem
	2.2 Triangle Inequality
	2.3 Pruning with Lower Bounds
	2.4 Micro Benchmarks

	3 System Design
	3.1 Programming Model
	3.2 Decoupled System Architecture
	3.3 System Implementation

	4 Example Applications
	4.1 Unweighted Graph Queries
	4.2 Weighted Graph Queries
	4.3 Machine Learning Queries

	5 Evaluation
	5.1 Query Performance
	5.2 Larger Graph Dataset
	5.3 Vertex Activation
	5.4 Update Performance
	5.5 Breakdown
	5.6 Scalability

	6 Related Works
	6.1 Dynamic Graphs
	6.2 Pairwise Queries

	7 Conclusion
	Acknowledgments
	References

