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Abstract—Predicting grid performance is a complex task because heterogeneous resource nodes are involved in a distributed

environment. Long execution workload on a grid is even harder to predict due to heavy load fluctuations. In this paper, we use Kalman filter

to minimize the prediction errors. We apply Savitzky-Golay filter to train a sequence of confidence windows. The purpose is to smooth the

prediction process from being disturbed by load fluctuations. We present a new adaptive hybrid method (AHModel) for load prediction

guided by trained confidence windows. We test the effectiveness of this new prediction scheme with real-life workload traces on the

AuverGrid and Grid5000 in France. Both theoretical and experimental results are reported in this paper. As the lookahead span increases

from 10 to 50 steps (5 minutes per step), the AHModel predicts the grid workload with a mean-square error (MSE) of 0.04-0.73 percent,

compared with 2.54-30.2 percent in using the static point value autoregression (AR) prediction method. The significant gain in prediction

accuracy makes the new model very attractive to predict Grid performance. The model was proved especially effective to predict large

workload that demands very long execution time, such as exceeding 4 hours on the Grid5000 over 5,000 processors. With minor changes

of some system parameters, the AHModel can apply to other computational grids as well. At the end, we discuss extended research

issues and tool development for Grid performance prediction.

Index Terms—Grid computing, performance prediction, workload characterization, autoregression method, Kalman filter, Savitzky-

Golay filter, and parallel applications.
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1 INTRODUCTION

AGGREGATED grid performance is directly related to the
collective workload to be executed on a large number

of processors scattered on all participating grid sites.
Predicting the collective grid workload is a very challenging
task [1], [3], [13], [34], [43] because heterogeneous resources
are widely distributed under the control of different
administrations. We propose a new adaptive approach to
predicting workload on computational grids within a
confidence window, which is dynamically trained with
the load variations.

The grid workload is represented by a collective load
index among all processors. The load index XðtÞ is the
percentage of processors utilized within a unit time interval
½t� 1; t�. All discrete-time instances t are denoted by
nonnegative integers. For simplicity, we assume 5 minutes
per time step. Load index reflects the CPU utilization rate
among all available processors in a grid platform. For
example, XðtÞ ¼ 0:45 implies that 45 percent processors are
busy during the observation period.

Workload is difficult to predict due to the lack of runtime
information on job scheduling and resource allocation on
remote machines [22], [29]. Predicted workload may contain
errors, if loading noises cannot be filtered out. Some

previous workload prediction methods have ignored two
problems: One is the workload measurement errors and
another is the load data noise introduced by workload
fluctuation [11], [19].

In this paper, we offer an adaptive method to predict the
workload for parallel execution on grid resource sites. We
use Kalman filter [23], [39] and Savitzky-Golay smoothing
techniques [33] to filter out potential errors. Filtering out
noises from workload fluctuation and measurement errors,
one can predict grid workload more accurately. This
prediction scheme can forecast execution time [44], [46]
and guide the job scheduling strategies [21], [37].

Traditional point value prediction methods [11], [40], [41]
apply a very short prediction window. Although they may
work well to predict CPU load in centralized computer
systems, they do not work well on large-scale production
grids due to the long execution time expected. In fact, point
value prediction can hardly cover workload fluctuation in a
long time frame.

In general, the load index is used to estimate the
percentage of peak performance achievable on a given
computational grid. The management console of such a grid
can monitor the CPU utilization. However, it is rather
difficult to predict CPU utilization rate in the future [21].
The grid performance in Tflops can be predicted by dividing
the total workload integrated over the entire observation
period by the execution time of job completed [4], [11], [19].

Workload managers in large grid infrastructures are
notoriously weak in determining correct scheduling scenar-
ios, which affects the application execution time on the grid.
This paper is about predicting the future workload within a
reasonable confidence range. The narrower is the prediction
range, the higher is the accuracy of prediction. Long-range
workload prediction is bound to have some errors. But we
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try to minimize the prediction errors by using lookahead
filtering techniques within a trained confidence range.

The remainder of the paper is organized as follows:
Section 2 introduces related works and outlines our unique
approach. Section 3 discusses the causes of workload
measurement errors. We suggest to use Kalman filter to
minimize the errors. Section 4 presents our hybrid work-
load prediction scheme, which is denoted by HModel.
Section 5 analyzes the impact of system and parameter
values on the prediction accuracy. Section 6 presents an
adaptive prediction scheme, AHModel. Section 7 reports
the experimental results on real-life workload traces on
Grid5000 and AuverGrid in France. Finally, in Section 8, we
summarize the contributions and suggest directions for
further research.

2 RELATED WORK AND OUR NEW APPROACH

Related work is reviewed first. Then we introduce our
unique approach to predicting grid workload accurately.

2.1 Related Work

In the past, many research groups attempted to predict grid
performance [3], [5], [9], [11], [13], [14]. Grid workload
varies with time but it is correlated in different time spans
[10], [41]. Thus, system workload is predictable from
checking the historical performance records. By correlating
historical workload data, we predict the future workload,
and thus, the Grid performance with controlled accuracy.

Feitelson has developed some workload models for
parallel computers [12], [30]. Berman’s group at UCSD has
developed tools for prediction of parallel applications on
Grids [34]. The Grid research group led by Fortes at
University of Florida has developed a predictive application-
performance model for computational grids [24]. Super-
computer workloads were characterized in [6] and [36].

Maheswaran et al. [31] have studied the dynamic
mapping issues in heterogeneous computers. Risk-tolerant
scheduling of parallel jobs on grids is studied by Song et al.
[37]. Li and associates have reported progress on workload
characterization for grids [24], [25], [26]. In particular, Li’s
PhD Thesis [25] has given a comprehensive treatment of
this subject area.

The concept of confidence window was first proposed by
Schopf and Berman [34] to address the accuracy issue.
Historical workload data are used by tendency-track models,
e.g., AR model or polynomial fitting methods [32], [33], to
forecast future workload status. However, this tendency
may be distorted or concealed in noisy data, which will
consequently impair the accuracy of workload prediction.

Workload variation and resource consumption in grid
environments exhibit a wide range of dynamics, such as
sudden local change, sudden level change, etc., [27]. Adaptive
techniques are introduced. The purpose is to capture the
dynamic characteristics. Normally, two types of adaptation
approaches are introduced to improve prediction accuracy.

One approach is the use of adaptive static predictor [41],
[47] with fixed parameters as used in AR method. This
scheme works under the hypothesis that predictor varies
with resource types [40]. However, the predictor for a
particular resource may also change over time. This
approach is to select the best predictor among a number

of predictors with the minimum prediction errors for a
particular load pattern.

The second approach is adaptive prediction implemen-
ted with parameter adaptation [27]. When an adaptation is
triggered by workload variation, this adaptive prediction
automatically modifies some system parameters to adapt
with the resource consumption patterns. The purpose of
this approach is to achieve lower errors in workload
prediction than using AR method with fixed parameters.

Jiang et al. [20] extend the prediction by using Markov
model-based metapredictor in addition to seasonal varia-
tion recognition for 1-step-ahead prediction. A multi-
resource prediction model is proposed in [27], which uses
both autocorrelation and cross correlation to achieve a
higher prediction accuracy.

Several workload prediction methods [4], [10], [15], [16],
[20], [34], [40], [41], [46] measured mean value or median
performance, or using AR, polynomial fitting, Markov
model, or seasonal variation to predict performance with
various lookahead times. In a large-scale grid environment,
tasks usually require long time to run, thus, the task scheduler
needs a large lookahead span to predict the performance [28].

Network Weather Service (NWS) in US [40] provides a
dynamically monitoring and forecasting method to imple-
ment 1-step-ahead prediction. Various prediction methods
are used together in the NWS to forecast the performance of
a Grid system. NWS tracks the prediction accuracies of all
these predictors and selects the one exhibiting the lowest
prediction error.

Dinda and O’Hallaron [10] evaluated the prediction
power of several models, including the AR, Moving Average
(MA), etc., methods. Their evaluation results show that a
simple predictor model such as AR is sufficient for a single
CPU load prediction. In [44], several 1-step lookahead
predictors are evaluated. Static prediction methods are only
effective with steady workload. Adaptive prediction is
needed to handle time-varying workloads.

The prediction of future value is adjusted according to
the magnitudes of the last workload measurement. Con-
ventional point value prediction models are often inaccu-
rate, since they can only represent one point in a range of
possible behaviors. In [34], stochastic interval values are
introduced to address this drawback. The interval value
prediction model performs more effectively than point
value prediction model in production grid environments.

Adaptive predictor integration [47] adopts an approach
for predictor integration based on learning historical
predictions. Classification algorithms like the k-nearest
neighbor are based on supervised learning. This approach
can achieve higher predictor accuracy. The NWS model
ends up with lower cumulative error [40]. A multiresource
prediction model was proposed in [27] using both auto-
correlation of single resource and cross correlation over
multiple resources.

2.2 Adaptive Prediction in Confidence Windows

We introduce in Fig. 1 an adaptive workload prediction
process by a time series of events. Current time is marked
at t. The real workload is shown by a series of dots up to
time t. The future load indices can only be predicted
beyond time t. The conventional prediction scheme, like
the AR(p) method, predicts the future load indices using
load information from the past p point values. The
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predicted point values are marked by stars in Fig. 1.
Details of the AR(p) scheme are given in Section 4.

An n-step lookahead process predicts the load index
Xðtþ nÞ using all load data in a historical interval w plus
predicted load values in a lookahead span of n time steps
beyond t. Instead of predicting a point value, which may
not be accurate due to the load fluctuation, we use a
confidence window to predict Xðtþ nÞ within a range
{Xlðtþ nÞ; Xuðtþ nÞ}.

For example, a window {0.75, 0.82} implies that the
predicted workload is considered totally accurate or
acceptable if the value falls within this range. Any predicted
workload outside the range should introduce some unac-
ceptable errors. In other words, this range reflects the error
tolerance, which can be accepted by the users of the
workload prediction system. The sequence of confidence
windows plays a crucial role to minimize the prediction
errors by lookahead filtering within confidence windows.
The historical interval is dynamically trained to support
adaptive load prediction.

To benefit readers, we summarize in Table 1 the key
parameters and their default values used. The time interval
parameters (p; n; w; up; n; w; u) are used to trace back the past, look
into the future, review the history, and train the historical
interval size. The threshold values "" and vv are used for
historical interval validation and sample training, respec-
tively. The total time span from historical load to predicted
future load is simply wþ n.

The basic idea of adaptive prediction and preliminary
results of this work were presented in the IEEE CCGrid 2008
[42]. The conference version, containing no theoretical
results, overlaps with this version in less than 20 percent. A
comprehensive set of new experiments is presented. In
summary, we make original contributions in four technical
aspects of dynamic workload prediction on large-scale grids.

1. We reveal the causes of sampling errors in work-
load prediction. We use Kalman Filter [23] to
minimize sampling errors. We apply Savitzky-Golay
filter [33] to smooth data noises from unexpected
load fluctuation.

2. We propose a new hybrid model (HModel) to
integrate the AR model within an estimated
confidence window. The purpose is to forecast work-
load status n steps ahead of current time. This
method results in less prediction error.

3. We use mean-square error (MSE) analysis and create
an interval control process to generate an adaptive
hybrid model (AHModel) for workload prediction.
This model automatically adapts to the change of
Grid workload.

4. Experiment results demonstrate the advantages of
using the AHModel, which outperforms both the
HModel and AR methods. The AHModel appeals to
predicting long execution jobs on computational
grids.

3 WORKLOAD TRACES AND SAMPLING ERROR

Workload traces on two French grids are introduced in this
section. Sampling errors are analyzed. A poor load
prediction method may amplify the errors. Wolski et al.
[40] have introduced three prediction methods for work-
stations and servers. The mean sampling errors of their
methods vary from 3.2 percent to 41.3 percent. Our
sampling errors are around 6.9 percent on ChinaGrid nodes
at Tsinghua University.

3.1 Job Characteristics on AuverGrid and Grid5000

Two grid workload traces come from the AuverGrid [3]
and Grid5000 [18] in France. AuverGrid is a production
grid, consists of five clusters. It has 475 CPUs in total, which
are geographically scattered around Auvergne area in
France. Grid5000 is an experimental grid platform, built
over 5,000 processors in nine sites throughout France.

The Grid Workloads Archive (GWA) [17] collected job
traces from these two grids. GWA records information of all
jobs submitted to these two grid systems by 11 data items:
(Job Number, Submit Time, Wait Time, Runtime, Number
of Allocated Processors, Average CPU Time Used, used
Memory, Requested Number of Processors, Requested
Time, Requested Memory, Status, User ID, Group ID,
Executable (Application) ID, and Site ID). These data items
are used at different places of our AHModel.

Table 2 summarizes job statistics on the two French grids.
The traces characterize the jobs submitted. Normalized
workloads are calculated as the average CPU utilization rate
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Fig. 1. Concept of adaptive lookahead prediction of grid workload using
confidence windows derived from historical load information and
projected load values in the future.

TABLE 1
Notations and Basic Terms Used in the Paper



in every 5 minutes over all processors in the grids. The
workload traces on these two grids were collected in 2006
[3], [15]. Both AuverGrid and Grid’5000 have a large number
of failed jobs in GWA. On AuverGrid, the job failure rate is
13.9 percent. Grid5000 has a 8.67 percent job failure rate.

3.2 Workload Traces on Two Grid Platforms

Two grid workload traces on AuverGrid and Grid5000 are
shown in Fig. 2. Job log entries of AuverGrid and Grid’5000
consist of two types: those run successfully and those for
failed jobs. Measurement errors are possibly caused by
failed jobs or erroneous job entries.

By a 2006 trace report [6], the average workload on
AuverGrid ranges from 58.5 to 80 percent. As shown in
Fig. 2a, AuverGrid has a heavy and fluctuated workload.
Load distribution of Grid5000 is shown in Fig. 2b from
January to October 2006. The average workload on
Grid5000 is 10.6 percent. During these 10 months, Grid5000
was lightly loaded and fluctuated around the average load.

All workload traces applied in this section are collected
from AuverGrid [3]. We apply three workload traces:
Trace1 for sudden level change, Trace 2 for sudden fluctuation,
and Trace 3 for gradual level change. These three traced load
characteristics are summarized in Table 3. The sample space
has collected 1,000 load index values. The mean value is
related to the load level and the standard deviation reflects
the fluctuations around the mean value.

3.3 Sampling Errors on Three Grid Platforms

ChinaGrid integrates high-performance computers, data

resources and tools, and high-end experimental facilities

over 20 major universities in China [8]. Potentially, the

system can provide 20 Teraflops of aggregated computing

power over 200 terabytes of online archival data storage.

The ChinaGrid Super Vision (CGSV) gathers nodal load

data in every 60 seconds. The center records the point value

at the beginning of every 60 seconds as the measured load

shown by the solid line in Fig. 3.
We apply the test process method developed in [41] to

measure the nodal load as plotted by the dotted lines in Fig. 3.

The method reports CPU load in every 10 seconds. Fig. 3 plots

both CGSV results and test process measurements at one

ChinaGrid node at Tsinghua University in 2008. The mean

sampling error on the load index of this node was measured

as 6.9 percent, after comparing the two measured curves.
Based on Table 2, we define the absolute measurement error

of AuverGrid and Grid5000 as follows:

AbsoluteMeasurementError ¼
Rateerror job=2

ð1�Rateerror jobÞ þRateerror job=2
:

ð1Þ

By (1), the absolute measurement errors of AuverGrid and

Grid’5000 are calculated as 7.5 and 4.5 percent, respectively.
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Job Characteristics on AuverGrid and Grid’5000

TABLE 3
Load Trace Characteristics on AuverGrid

Fig. 2. Workload variation in two French grid systems from January to October 2006. AuverGrid is heavily loaded with an average load exceeding
70 percent and the Grid5000 is lightly loaded with an average load of 10 percent. (a) AuverGrid. (b) Grid’5000.



4 HYBRID PREDICTION METHOD

In this section, we introduce two filtering techniques by
Kalman [23] and Savitzky-Golay [33]. We first specify the
AR method for point value load prediction in Algorithm 1.
Then we specify the hybrid model (HModel) for load
prediction in confidence windows. The generation of
successive confidence windows is specified in Algorithm 2.

4.1 Kalman Filtering and Savitzky-Golay Filtering

Kalman filter is characterized by a time update process and a
measurement update process. The time update projects the
process state and estimates the error covariance. The
measurement update verifies the priori estimates and
generates a posterior estimate. We port the Matlab Kalman
filter packages into our prediction scheme. We compare the
MSE of HModel using Kalman filter with the case of no
Kalman filtering. The MSE difference is plotted in Fig. 4.

The difference lies between 0.1 and 0.3 percent. The MSE
difference raises significantly with the increase of the
lookahead span n. The MSE difference increases with
longer historical interval w. The spike near the origin is a
degenerate case, which should not be counted. These results
clearly demonstrate that Kalman filter works very well on
minimizing measurement errors.

Workload data are stable in large part of the time, but
sometimes, they fluctuate as seen in Fig. 2. These noises are
caused by monitoring sensor, process switching in the host
system kernel, or network communications, etc. The
purpose of data smoothing is to expose these errors. We
use Savitzky-Golay filter to smooth workload data in
several steps of our prediction model.

In the frequency domain, this filter is effective to
preserve high-frequency parts. This filter is capable of
preserving higher moments of the peak values. These
characteristics make the Savitzky-Golay filter effective to
smoothen the predicted workload. The filter coefficients are
derived by historical information. In our work, we set
Savitzky-Golay filter with a frame size f ¼ 51 and a
polynomial degree d ¼ 4. [33].

4.2 Autoregression Method

This AR method was well described in [10] and [32]. The
method applies a time sequence of load samples, XðtÞ. The
coefficients used in the AR method are estimated from past
load data sequences. These coefficients can be also used to
predict future load sequence.

In [40], the MSE of different prediction models was
reported. The AR method has been used to predict CPU
workload. We specify an AR(p) method by the following
load instance at time t in a polynomial format:

XðtÞ ¼
Xp
i¼1

’’iXðt� iÞ þ "t; ð2Þ

where p is the traceback span, called the order of the
prediction method. The first term gives an estimated value
of the current load index by a weighted sum of past p load
values. The p coefficients f’ig are trained from past
workload. The "t term covers the noise introduced at time t.

In essence, the ARðpÞ model predicts the load index
Xðtþ 1Þ at time t based on the past p load values
XðtÞ; Xðt� 1Þ; . . . ; Xðt� pþ 1Þf g using the coefficients
f’’1; ’’2; . . .’’pg. The larger is the order p of the AR(p)
method, the higher is the prediction accuracy expected.
However, the cost to generate the weighting coefficients
increases with the order p.

In theory, we should expect no errors if p approaches
infinite, which is totally cost prohibitive. The real difficulty
of this AR method lies in finding the accurate coefficients
’i, given a series of past load indices Xðt� iÞ. We will use
Burg’s algorithm [32] to compute these coefficients. Most
AR methods assume that the series Xðt� iÞ is linear and
stationary. The load series Xðt� iÞ should have a zero mean
value. Otherwise, the error term "t is needed to offset the
noises to achieve a zero mean. We specify the AR method in
Algorithm 1.
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Fig. 3. CPU load sampling errors measured at a ChinaGrid node at
Tsinghua University, Beijing, China, in 2008.

Fig. 4. Differences in mean square errors in workload prediction with and
without Kalman filtering.



An n-step lookahead prediction (n ¼ 1; 2; 3; . . . ;
30; 40; 50; . . . ) is desired to predict long execution workload.
Two conditions were observed below based on our
experiments.

a. The coefficients of AR(p) method vary very little
with the historical load data XðtÞ; Xðt� 1Þ; . . .Xðt�
pþ 1Þ on the same workload suite.

b. To predict the load Xðtþ nÞ, we use data series

fXðtþ n� 1Þ; Xðtþ n� 2Þ; . . . ; Xðt� 1Þ;
XðtÞ; Xðt� 1Þ; . . .g

:

Only XðtÞ, Xðt� 1Þ, and the earlier data points are

measured data. The remaining Xðtþ 1Þ; Xðtþ
2Þ; . . . ; Xðtþ n� 1Þ are predicted ones. The load

series {Xðt� 1Þ; XðtÞ; . . . ; Xðtþ n� 1Þ} is used to

predict the load Xðtþ nÞ.
This AR method was first reported by Akaike [1]. More

details can be found in [32], [33]. Our new methods in
Algorithms 2 and 3 will use AR method as a kernel
computation. The AR model is mostly applied to predict
lighter workload with at most a few minutes of execution
time. AR method is static with a fixed confidence window
that does not change with workload.

4.3 Confidence Window Generation

We use Kalman filters from the Matlab to reduce the
measurement errors in the load index XðtÞ at each time step
t. Kalman filter [23] applies feedback control to estimate a
process. First, the filter estimates the process state at a
future time. Second, it obtains feedback from the measure-
ments. Our work applies Kalman filter to minimize the
measurement errors at a series of the load indexes. The
purpose is to improve the prediction accuracy.

AR(p) model predicts the future workload status by

using point values measured in the past. In practice, point

value is accurate only for a short time frame. Another type

of load values is referred as interval values. The interval

values provide an estimate of the load variation in a given

time frame. The HModel for n-step-ahead workload

prediction is specified in Algorithm 2.

Two linear arrays AlðiÞ and AuðiÞ are used to represent
the lower bound and upper bound of confidence window
values. The confidence range is specified by a pair of two
point values fXlðtÞ; XuðtÞg. After we compute the n-step
lookahead confidence window, we use Savitzky-Golay filter
to smooth the confidence windows.

The detailed steps in Algorithms 2 are illustrated in Fig. 5.

Fig. 5a shows the load processing at time t. The confidence

windows estimated from beginning to n-step lookahead are

shown in Fig. 5b. The smoothing decides the final confidence

window illustrated in Fig. 5c.

5 MEAN-SQUARE ERROR ANALYSIS

To analyze the accuracy of a prediction method, we evaluate
below the HModel prediction accuracy under three work-
load traces. The evaluation is carried out by the impacts of
different trace time span p in the kernel AR(p) computation
(Algorithm 1) against the historical interval w used.

These two parameters fp; wg have major impact on
prediction accuracy of HModel. The optimal choice of the
widow size w varies with the workload. The track span p
has less impact on the prediction error. Fixed parameter
values in HModel may not predict accurately as we want.
We analyze the effects of historical interval w on the
confidence window.

5.1 Mean-Square Error in Prediction

In point value prediction, error means the difference
between true workload data and predicted point value.
We define the error function ErrorðtÞErrorðtÞ at time t for a
window-based prediction scheme in (3), where XðtÞXðtÞ is the
real load index. The error is zero if it is inside the confidence
window. Otherwise, the error is visible:
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Fig. 5. The process of hybrid AR prediction method (HModel in
Algorithm 2). (a) Workload processing at time t. (b) Confidence window
from step 1 to step n. (c) Smoothing process in the lookahead window.



ErrorðtÞErrorðtÞ ¼ 0 if XlðtÞXlðtÞ � XðtÞXðtÞ � XuðtÞXuðtÞ
MinfjXðtÞ �XlðtÞj; jXðtÞ �XuðtÞjg

�
ð3Þ

The MSE is defined by taking the average of the square
of the Error(i) function over t time steps from the beginning
of the measurement:

MSEMSE ¼ 1

tþ 1

Xt
1

½ErrorðiÞ�½ErrorðiÞ�2: ð4Þ

But the results will be plotted in absolute percentage of
error. For example, instead of showing an MSE of ð0:02Þ2,
we plot the absolute prediction error as 0.0004. This
reflects the average behavior of the entire time interval.
Different historical interval sizes w applied in the HModel
will impact the prediction MSE and the confidence
window used.

Unlike point value prediction, interval-based prediction
scheme has lower MSE using confidence window. Accord-
ing to an estimation by Schopf and Berman [34], large
sample size of load index XðtÞ is modeled by a normal
distribution. From our experience, for the small sample size
(n < 30) data, t-distribution is more appropriate. Let �X be
mean value, and � be standard deviation of these distributions.
The following equations can used to calculate these two
parameters, given the values of w and n:

X ¼ 1

wþ n
Xtþn

i¼t�wþ1

XðiÞ; ð5Þ

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

wþ n� 1

Xtþn
i¼t�wþ1

ðXðiÞ �XÞ2
vuut : ð6Þ

The confidence window Cðtþ nÞ is characterized as
X � L=2, where L is the length of the confidence window
predicted for time tþ n. Throughout our trace experiments,
we have applied a default value of " ¼ 5%. The following
theorem shows the existence of a confidence window Cðtþ
nÞ centered around the mean value �X, which is guaranteed
within the error tolerance threshold ":

Theorem 1. Given the Normal distribution or the t-distribution
of the load process XðtÞ being predicted with a historical

interval w and lookahead time span n and an error tolerance
threshold "". We can choose the window length L as follows,
which is always upper bounded by ":

L ¼ 2�q=ðwþ nÞ1=2 � "; ð7Þ

where q is the quantile of the Normal distribution for large
lookahead span n > 30 steps (150 minutes or greater) or for
the t-distribution within n � 30 steps. Recall that each time
step was 5 minutes in all of our trace experiments.

Proof. The confidence windowLhas a length calculated with
(7). What we need is to prove that it can be made less than
". By definition of standard deviation �, we must choose a
historical interval w that is lower bounded as follows:
w � ð2�q="Þ2�n. This implies that ðwþ nÞ1=2 � ð2�q="Þ.
Thus, the upper bound on L is proved by rearranging the
above inequality. tu

From Theorem 1, for any tolerance threshold "", there
always exists w that can make the confidence window
upper bounded by the threshold "". Therefore, we can
minimize the prediction MSE by choosing w as such to
satisfy Theorem 1.

In general, we should use smaller historical interval w,
when n has smaller or moderate value (say, below 30 time
steps). The smaller is the confidence window used, the
higher the chance to aid task scheduling or load balancing
in a production grid computing environment.

5.2 Impact of Historical Interval Size

In Fig. 6, we report the impact of changing the key
parameters w; n on the MSE using traces in Table 3. The
MSE increases with window size steadily for all five cases
shown. Trace 1 has the highest MSE for having sudden level
changes. Trace 3 has very small MSE for having only
gradual level changes. Trace 2 sits in the middle for having
sudden fluctuations around a steady level.

The MSE gaps among the three traces widen as the
historical interval increases. It is clear that HModel prefers
to apply smaller w on all load traces when lookahead span n
is smaller than 30 in Figs. 6a, 6b, and 6c. In using long
lookahead spans (n > 30) as shown in Figs. 6d and 6e, the
impact of w becomes flatter and the better choice of w is to
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Fig. 6. Impact of historical interval (w) and lookahead span (n) on the MSE measured in the HModel on the AuverGrid for three load traces in Table 3.
(a) n ¼ 10. (b) n ¼ 20. (c) n ¼ 30. (d) n ¼ 40. (e) n ¼ 50.



achieve least MSE, which may vary among different load
traces, as one sees the big gaps among the three traces in
Figs. 6d and 6e.

Fig. 7 reports the mean confidence window �X used in
three load traces using the HModel to predict workload. It
is obvious that when n is smaller or moderate value (e.g., 10
or less) as shown in Figs. 7a, 7b, and 7c, we set a small
tolerance threshold ("), such as 0.03 in Fig. 7a and 0.08 in
Fig. 7b. With fixed mean confidence window, the better
choice of w in using the HModel on the three traces is quite
different in magnitude as seen in Figs. 7a, 7b, and 7c.

On the contrary, the impacts of w on prediction MSE and
confidence window in HModel are reversed when n is
large. Figs. 7d and 7e demonstrate the mean confidence
window of HModel for large lookahead span, such as n
greater than 30. The variation of optimal w follows the same
trend in the three traces. Considering both prediction MSE
and confidence window, better choice of w varies with load
patterns, independent of the lookahead span n.

6 ADAPTIVE PREDICTION SCHEME (AHMODEL)

We propose an AHModel by implementing the HModel in
Algorithm 2 using a historical interval, which is dynami-
cally trained and validated from past workload series.
Two adaptations are integrated here. One is the mean
adaptation and the other is the historical interval adaptation.
This will capture the workload changes dynamically. For
simplicity, we assume white noises in the embedded AR(p)
kernel computations.

The mean value of historical workload is kept in AR(p) as
an internal state. We first compute the mean of load indices
fXðt� pÞ; Xðt� pþ 1Þ; . . .Xðt� 1Þ; XðtÞg. Then, we sub-
tract the mean from all input values. Finally, the future
workload value is predicted by adding the white noise with
predicted load state.

6.1 Adaptive Choice of Historical Interval

The historical interval w should be selected to correlate
future workload with historical workload. Large w means
that workload is stable for a long time, and it has more

possibility to keep the stable in future. The HModel method
predicts future workload effectively only if it has a stable
workload pattern. From traces on AvuerGrid [3] and
Grid5000 [18], we see the sharp variations on a daily basis.

HModel applies a fixed historical interval w, which
cannot capture the dynamic workload changes. Therefore,
we develop an adaptive method to adjust the historical
interval w, as workload fluctuates. We assume that the
workload is periodically stable. We apply both MSE
adaptation and window control to form the AHModel.

By periodical checking of prediction MSE and its
window under different historical intervals, the AHModel
applies a suboptimized historical interval value. This leads
to a minimum MSE with an acceptable mean confidence
window. We introduce a notion of tolerance threshold (") to
limit the confidence window. First, the historical interval w
must keep the mean of the confidence window below a
threshold ". Also we should choose w to achieve a
minimum MSE.

Fig. 8 shows the variation of the confidence window
selection in AuverGrid. At the upper part of the plotted
curves, we show the successive confidence widows, which
are upper bounded by the dashed curve and lower
bounded by the dotted curve. The actual workload is
shown by the solid curve in the middle.

The suboptimal historical interval varies in quantum
jumps shown by the thick flat lines at the lower part of the
plot. From time instances 61 to 120, the workload fluctuates
widely. The suboptimal historical interval is chosen rather
small. From time instances 121 to 180, the workload
becomes relatively stable. Thus, a longer historical interval
can be chosen without hurting the MSE.

6.2 Training and Validation of Historical Interval

From the results plotted in Figs. 6 and 7, we realize that the
proper choice of the historical interval w does make a big
difference in reducing the MSE under workload fluctuation.
To achieve an optimal choice of w is an NP-hard problem
because too many conflicting factors are involved. We pursue
for a suboptimal solution by historical interval training. We
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Fig. 7. Impact of historical interval (w) and lookahead span (n) on the mean confidence window used in HModel on the AuverGrid under three load
traces given in Table 3. (a) n ¼ 10. (b) n ¼ 20. (c) n ¼ 30. (d) n ¼ 40. (e) n ¼ 50.



introduce below a training process in Algorithm 3. The
purpose is to choose a suboptimal historical interval w.

The training period u can be simply set equal to the
lookahead span n. This means that we use the past u input
load indices fXðt� u� vþ 1Þ; . . . ; Xðt� 1Þ; XðtÞg from the
past steps to predict n future indices {Xðtþ 1Þ; Xðtþ 2Þ; . . . ;
Xðtþ nÞ} with n steps ahead of the current time t.
Algorithm 3 shows the training process steps of the
AHModel method. This is a pseudocode aided by inline
comments to illustrate the training process.

Let D ¼ fwi for i ¼ 1; 2; . . . ; kg be a given set of prese-
lected historical interval sizes. These candidate historical
intervals are obtained from past prediction experiences on a
given grid platform. Thus, the set may vary from platform to
platform. LetS be the load seriesfXðt� u� vþ 1Þ; . . . ; Xðt�
u� 1Þ; Xðt� uÞgused for historical interval training andH be
the load series fXðt� vþ 1Þ . . . ; Xðt� 1Þ; XðtÞg used for
window validation.

The training and validation process is specified in
Algorithm 3. The AHModel is implemented with simulta-
neous application of Algorithms 2 and 3. In other words, the
AHModel is built on top of the HModel, which is, in turn,

built with AR(p) model as the kernel computation at the
innermost loop.

The AHModel prediction process is illustrated in Fig. 9a.
We validate the choices of historical interval w in every v
step, where v is the validation period. We apply the
HModel with a different w over past load indices fXðt �
u� vþ 1Þ; . . . ; Xðt� uÞg. The process of the AHModel is
shown in Figs. 9a, 9b, and 9c. The prediction is validated
using load indices fXðt� vþ 1Þ; . . . ; XðtÞg. To implement
n-step lookahead prediction, we apply HModel to the next
u load indices as shown in Fig. 9c.

6.3 Suboptimality of Trained Historical Interval

The historical interval w predicts the future workload from
checking the historical workload. If the workload is unstable
and fluctuates widely, w should be chosen small. This is
reasonable because when workload varies rapidly, future
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Fig. 8. Successive confidence widows are upper bounded by dashed curve and lower bounded by dotted curve. The actual workload is shown by
solid curve. The suboptimal choice of the historical interval is shown by thick flat line that quantum jumps from time to time as the workload
fluctuates.

Fig. 9. The process of adaptive hybrid AR prediction method (AHModel
using Algorithms 2 and 3). (a) Prediction by using HModel. Update at
time t� uþ 1. (b) Adaptation triggered at time t. (c) Prediction by using
HModel. Next update at time t.



workload is not likely to rely on past historical workload.
The MSE of HModel increases with the increase of w.

Narrower confidence window like 5 percent produces
larger MSE than the wider ones. If we set a larger threshold "
on the confidence window, we may find a suboptimal
historical interval size to minimize the MSE in using the
HModel. This relaxation enables the AHModel method to
cover wider load variations. The following theorem proves
the suboptimality of the historical interval w generated by
Algorithm 3:

Theorem 2. The historical interval w generated in Algorithm 3 is
suboptimal in that it results in minimal MSE in minimized
confidence windows, among all admissible historical window
sizes D ¼ fwi for i ¼ 1; 2; . . . ; kg.

Proof. Algorithm 3 leads to two possible choices of the
historical intervalw from setDD. The first choice is when we
succeed to find aww in the forfor loop (Steps 3-6) that leads to a
acceptable mean �X of confidence window and minimized
MSE. The second choice is to choose the minimum among
all possible choices fwi for i ¼ 1; 2; . . . ; kg. Either choice
will lead to a minimal mean �X of the confidence window.
Thus, the interval size w so obtained becomes suboptimal
in this sense. tu

7 PREDICTION TRACE RESULTS ON THE

AUVERGRID AND GRID5000

HModel implements only the AR(p) adaptation. AHModel
adjusts the historical intervalwperiodically. We report below
the experimental results in using the HModel and AHModel.

7.1 Performance Results on Using HModel

We evaluate HModel using workload traces from the
AuverGrid and Grid’5000. The results are plotted in Fig. 10.
The HModel results are obtained using two different value
types: one is governed by the confidence window and the
other is selected by the median of the confidence window. We
compare their MSE results with the best AR(p) model by
choosing the best case out of different values of the traceback
span p ¼ 4; 8; 12; . . . ; 64.

We applied 12 traces from AuverGrid and 10 traces from
Grid5000. As shown in Fig. 10, the HModel outperforms the
best AR(p) model with the lowest MSE on both AuverGrid
and Grid5000 load traces. The MSE of HModel is 98.5 and
98.9 percent lower than that of the best AR results on both
grid platforms. The MSE in using the median of the
confidence window is 88.7 and 79.9 percent lower than
that of the best AR results in these experiments.

7.2 Validation Period in AHModel Experiments

To predict n future workload values, the AHModel uses
u ¼ n historical load to yield a suboptimal historical
interval w. We introduce a validation mechanism to make
sure that the modified historical interval is sufficient to
trace back. The time span v needed to validate the
suboptimality of w is called the validation period. AHModel
applies the latest v historical workload indices to validate
the prediction accuracy. The idea is to train from different
historical interval sizes.

Fig. 11 shows the impacts of validation period v on the
accuracy (MSE) and the mean confidence applied with a
lookahead span of n ¼ 50 steps. The workload traces cover
8,000 samples from AuverGrid and Grid’5000. As the
validation period v increases, Fig. 11a shows that the MSE
drops steadily from 0.92 to 0.82 percent on the AuverGrid.
The Grid5000 achieves the lowest MSE of 0.56 percent as v
increases to 50 steps in Fig. 11b. When v equals nþ 60, the
AHModel results in the highest accuracy on both grid
platforms. So we set v ¼ nþ 60 in all load prediction
experiments.

In Figs. 11c and 11d, we plot the mean confidence
window size as a function of the validation period. On the
AuverGrid, the mean window size drops to the lowest
value of 12.25 percent as v increases to 25 steps. The mean
confidence then increases steadily to 13 percent as v
increases to 150 steps. On the Grid5000, the mean window
is lowered to 11.85 percent as v approaches 50 steps. Then
the mean value stays at this level with almost no increase as
v goes beyond 50 steps.

7.3 Performance of Using AHModel for Prediction

We report experimental results on implementing the
AHModel in both AuverGrid and Grid5000. The average
MSEs of AHModel in two implementations are compared
with the best AR model in Fig. 12. The AR method leads to
MSE in the range 2-30 percent on both machines. The
window-based AHModel has the lowest MSEs between 0.1
and 0.7 percent.

The median window has MSE in 0.2-0.9 percent. In the
best case, the AHModel outperforms the best AR method by
a factor of 300 times. For n ¼ 10 steps, the window-based
AHModel performs 50 percent better than the median-
based scheme on the AuverGrid, while 20 percent better on
the Grid5000. For a 50-step lookahead, the window-based
scheme has MSE below 1 percent, while the best AR method
may introduce 30 percent MSE
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Fig. 10. Average prediction MSE in using the HModel, compared with the best results in using the AR model. (a) AuverGrid. (b) Grid’5000.



Every n-step lookahead prediction in using the AHMo-
del requires few hundreds of input load values. The
execution time of one prediction is done in a few
milliseconds. This computational cost is rather low, and
thus, applicable in real practices.

7.4 Relative Performance of AHModel and HModel

In this section, we reveal the relative performance of the
adaptive prediction scheme AHModel, compared with the
hybrid prediction scheme HModel. To simplify the compar-
ison, both schemes apply the median of the confidence
window in making predictions. The results are shown in
Figs. 13a and 13b, based on trace experiments on the
AuverGrid and Grid5000, respectively.

We use the first 1,000 sample loads of each month to
train the historical interval w. The suboptimal w becomes
the initial input of the HModel to process the rest of the
data trace. Overall, the AHModel outperforms the HModel
by a factor in the range 20-700 percent. On the AuverGrid,
the MSE of AHModel is below 1.2 percent, compared with
4 percent in using the HModel for a long lookahead span of
50 steps (250 minutes). On the Grid5000, the same MSE gap
is even greater. The AHModel has an MSE 0.8 percent,

while the HModel leads to an MSE of 5.9 percent, about
7 times greater.

This clearly shows that the adaptive model predicts
much more accurately when large workload with long
execution time is expected. For short time workload with
10 lookahead steps (50 minutes), the two prediction models
perform about the same. Overall, we declare that the
adaptive AHModel is more suitable for use in predicting
large workload on a computational grid with more than
20 lookahead steps (from 100 to 250 minutes). The HModel
is cheaper to implement and more suitable for predicting
smaller workload in fewer lookahead steps.

7.5 Confidence Window Distribution

In this section, we reveal the distribution of the confidence
window, when the HModel and AHModel were implemen-
ted on AuverGrid and Grid5000. The confidence window
can be characterized by a mean confidence and a standard
deviation (STD). Based on our load tracing experiments, we
report in Fig. 14 the mean and STD for five lookahead spans
from n ¼ 10 steps with less than 50 minutes to 50 steps with
more than 4 hours.

Figs. 14a and 14b compare the mean confidence
windows used in HModel and AHModel over the two

WU ET AL.: ADAPTIVE WORKLOAD PREDICTION OF GRID PERFORMANCE IN CONFIDENCE WINDOWS 935

Fig. 11. Variation of the prediction MSE and mean confidence windows used in implementing the AHModel on the AuverGrid and Grid5000
platforms. (a) AuverGrid. n ¼ 50. (b) Grid5000. n ¼ 50 (c) AuverGrid. n ¼ 50 (d) Grid5000. n ¼ 50.

Fig. 12. Mean-square errors of two implementations of AHModel, compared with the best MSE by using the AR model. (a) AuverGrid. (b) Grid’5000.



French grid platforms. The mean confidence used in
AHModel was a constant 7 percent for all lookahead spans.
On the AuverGrid, the AHModel always applies shorter
mean confidence than that used by HModel as shown in

Fig. 14a. On the Grid5000, the mean confidence converges
for both AHModel and HModel as n increases to 30 steps or
greater as shown in Fig. 14b.

The standard deviation of the confidence window be-

comes rather small (about 2 percent) for both models, when
large lookahead span is applied as shown in Figs. 14c and 14d.
In summary, we see a mean confidence around 7 percent with
a STD of less than 2 percent when n ¼ 50-step lookahead

prediction scheme is applied.

8 CONCLUSIONS AND FURTHER WORK

The traditional point value prediction strategy, such as
the AR method, is inadequate to predict workload in

computational grids because they cannot cover load varia-

tions in a long execution environment. We developed two

new lookahead workload prediction schemes for assessing

long-term grid performance under fluctuating loads.
We obtained encouraging results to demonstrate the

effectiveness of our new prediction schemes. The main idea
is to extend the point value to a confidence window, which
is dynamically adjusted against load variations. We make
adaptation by adjusting the historical interval w used. This
is the key to enable adaptive workload prediction to match
with historical load variations.

As the lookahead span increases from 10 to 50 steps

(5 minutes per step), AHModel predicts the grid workload

with an MSE of 0.04-0.73 percent, compared with a much

greater MSE of 2.54-30.2 percent in using the point value AR

prediction method.
The significant gain in prediction accuracy makes the

new AHModel model very attractive to predict Grid

936 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 7, JULY 2010

Fig. 13. Mean-square error of using AHModel and HModel with median of the confidence window for workload prediction. (a) AuverGrid.
(b) Grid’5000.

Fig. 14. Variation of the confidence window in using the HModel and AHModel for workload prediction on two French grid platforms: (a) and (b) Mean
confidence window. (c) and (d) Standard deviation (STD) of the confidence window applied in Grid trace experiments. (a) AuverGrid. (b) Grid’5000.
(c) AuverGrid. (d) Grid’5000.



performance. The model was proved especially effective to
large workload that demands very long execution time,
such as exceeding 4 hours on the Grid5000 with more than
5,000 processors. With minor changes of some key system
parameters, the AHModel can be applied to other computa-
tional grids as well.

8.1 Summary of Research Contributions

Our research contributions are summarized in five technical
aspects as follows:

1. Introduction of the confidence window approach:
The confidence window allows the workload pre-
diction to be conducted within a tolerable range of
load index values. This interval-based prediction
scheme leads to higher accuracy and enables the
adaptive prediction method.

2. Kalmam filter and Savitzky-Golay filter are proved
effective tools for Grid workload prediction: For the
first time, these two Matlab tools are used to reduce
measured load index errors and smooth the pre-
dicted load indexes. The effectiveness was proved
by CPU load trace experiments on the AuverGrid
and Grid5000.

3. A hybrid prediction method (HModel): This predic-
tion scheme extends the static AR method to work in
a confidence window, dynamically.

4. An adaptive prediction method (AHModel): This
scheme solves the load fluctuation problem in
large-scale grids. When the grid load changes
rapidly, the prediction confidence window also
changes. The adaptive scheme improves the pre-
diction accuracy significantly.

5. Benchmark trace programs tested on AuverGrid and
Grid5000: The prediction results are obtained from
trace experiments on AuverGrid and Grid’5000 in
France. These trace experiments can be extended to
evaluate other computational grids with only minor
modification in system and workload parameters.

8.2 Suggestions for Further Work

In the future, we plan to apply the AHModel to larger
infrastructure like EGEE. We suggest to extend the above
work in three aspects. These will generate useful tools for grid
performance assessment over real benchmark applications.

1. Extending the adaptive prediction scheme to multi-
ple levels of adaptation: A multilevel adaptation
scheme can predict the performance of very large-
scale grids that are hierarchically constructed. This
must address the grid scalability and reliability
issues: When a grid platform grows hierarchically
by merging with other grids, one can consider
adding another level of adaptation. This opens up
a wide open area for further research.

2. Developing benchmarks for grid performance eva-
luation: The grid community needs to develop a
standard set of application programs for perfor-
mance evaluation or workload prediction purposes.
The trace programs we have experimented are not
representative to cover the kernel Grid applications.

3. Building production systems based on the HModel
and AHModel in real-life grid applications: Our

experimental software could be prototyped toward
this end. We suggest to perfect the Matlab tools
(Kalman filter and Savitzky-Golay filter) for the
Grid community to use in specific grid workload
prediction.
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