Al: A Lightweight System for Tolerating Concurrency Bugs

Mingxing Zhang' Yongwei Wu!

Shan Lu** Shanxiang Qi*f

Jinglei Ren' Weimin Zheng!

'Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, China
2University of Wisconsin-Madison, USA ®University of lllinois at Urbana-Champaign, USA

ABSTRACT

Concurrency bugs are notoriously difficult to eradicate during
software testing because of their non-deterministic nature. More-
over, fixing concurrency bugs is time-consuming and error-prone.
Thus, tolerating concurrency bugs during production runs is an at-
tractive complementary approach to bug detection and testing. Un-
fortunately, existing bug-tolerating tools are usually either /) con-
strained in types of bugs they can handle or 2) requiring roll-back
mechanism, which can hitherto not be fully achieved efficiently
without hardware supports.

This paper presents a novel program invariant, called Anticipat-
ing Invariant (A1), which can help anticipate bugs before any irre-
versible changes are made. Benefiting from this ability of anticipat-
ing bugs beforehand, our software-only system is able to forestall
the failures with a simple thread stalling technique, which does not
rely on execution roll-back and hence has good performance

Experiments with 35 real-world concurrency bugs demonstrate
that Al is capable of detecting and tolerating most types of con-
currency bugs, including both atomicity and order violations. Two
new bugs have been detected and confirmed by the corresponding
developers. Performance evaluation with 6 representative parallel
programs shows that AT incurs negligible overhead (< 1%) for
many nontrivial desktop and server applications.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification—
Reliability; D.2.5 [Software Engineering]: Testing and Debug-
ging—Diagnostics

General Terms
Reliability

Keywords
Concurrency Bugs, Software Reliability, Bug Tolerating

*Shan is now with University of Chicago.
tShanxiang is now with Google Inc., Mountain View.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FSE 14, November 16-22, 2014, Hong Kong, China

Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

1. INTRODUCTION
1.1 Motivation

Unlike sequential bugs, the manifestation of concurrency bugs
depends not only on inputs, but also on thread interleavings and
other timing-related events. Thus it is hard to expose all the con-
currency bugs during in-house testing, and it is also difficult to fix
concurrency bugs quickly [2] and correctly [6]. Consequently, tools
that can not only detect concurrency bugs during in-house testing
but also tolerate them during production runs are highly desired.

An ideal production-run bug-tolerating tool should satisfy re-
quirements from two aspects: /) bug-tolerating coverage. The tool
should be able to handle a wide variety of concurrency bugs that
are hidden in deployed applications, including both atomicity vio-
lations and order violationsﬂ and 2) run-time performance. The
tool should only incur small overhead on commodity machines.

Existing techniques that tolerate concurrency bugs can be cate-
gorized into three types, depending on when bug-tolerating takes
effect (Figure [I). But none of them can satisfy the above two re-
quirements simultaneously.

Oy, wo (2/ oy, b (3/ pe) Os.
k.) m,
o b, ” Ck s Ory,
€ an,. €co, €m
h hc/'p Ve @ry oy 73 e

M_;& >§<_>

turning point failure (more failures) Vhot -patch

Figure 1: Categorization of bug-tolerating tools. The arrow in the
figure represents the time-line during production runs.

1) Always-on approach. This approach constrains program ex-
ecution all the time to prevent potential manifestations of some
concurrency bugs. For example, Atomtracker [21]] and AtomAid
[17] group instructions into chunks and execute every chunk atom-
ically. This approach constrains interleavings even during correct
runs and relies on transactional memory or other custom hardware
to achieve good performance. In addition, it often only probabilis-
tically tolerates concurrency bugs with a specific root cause pattern
(e.g., atomicity violations), and unable to handle bugs with other
types of root causes (e.g., order violations).

2) Failure-recovery approach. This approach [35,|30] rolls back
program execution to a recent checkpoint when failures or errors
occur, and relies on re-execution for automated recovery. Unfortu-
nately, low-overhead checkpoint and roll-back cannot be achieved

!These are the two most common types of concurrency bugs in real
world based on a previous empirical study [12].

on existing machines without significantly sacrificing the bug-tolerating

coverage [37].

3) Post-mortem approach. This approach [14, 34] aims to pre-
vent future manifestations of a concurrency bug, after triaging ear-
lier manifestations of the bug. It can ease the pain of lengthy patch
releasing period, but cannot prevent failures caused by unknown
bugs (i.e., losing coverage).

1.2 Our New Approach

This paper proposes a new approach to tolerating concurrency
bugs in production runs. Different from all the previous techniques,
this new approach achieves both the coverage and the performance
requirement by anticipating the manifestation of concurrency bugs
at run time and preventing bug manifestation through temporarily
stalling the execution of one thread, which incurs much smaller
overhead than checkpointing and rollback.

The key observation behind our approach is that there exists a
turning point t during the manifestation of a concurrency bug: be-
fore t, the manifestation is non-deterministic; after ¢, the manifes-
tation becomes deterministic. Thus if a concurrency bug can be an-
ticipated before its turning point, its manifestation can be prevented
by temporarily stalling a thread, which incurs little overhead.

Anticipating bugs right before the turning point is critical to bug
tolerating. Anticipating too early will inevitably encounter many
false positives, causing unnecessary thread stalling and performance
losses. Anticipating too late will miss the chance of lightweight
bug toleration — only heavy weight checkpoint-rollback can re-
store correct states after the turning points.

Anticipating bugs right before the turning point is also challeng-
ing. Previous concurrency-bug detection tools did not consider bug
anticipation and would indeed detect many bugs after the turning
points, which we will discuss in more details in Section@ Below,
we simply demonstrate how two straw-man ideas do not work for
bug anticipation.

Thread 1 | Thread 2 Thread 1 | Thread 2

Read X Read X | _._._

Write X ‘Read Xi
Read X Write X T
Write X Write X

Correct Run Incorrect Run

(a)

Thread 2 Thread 1 | Thread 2

Thread 1
Write X

Read X Write X

Correct Run Incorrect Run

(b)

s % The turning point of the bug's manifestation.

Figure 2: Illustrations of bugs’ turning points.

Straw-man 1: Detecting a bug before the execution of buggy
writes. Intuitively, one might think that it should be early enough to
prevent a bug, if no buggy write has happened. Unfortunately, this
is not true. Figure[2](a) shows a typical atomicity violation pattern,
where the expected atomicity of write-after-read is violated. Many
real-world concurrency bugs follow this pattern [[12]. Here, the
turning point is actually right before the second read instruction, as
circled in Figure 2] (a). Once that read happens, although no bug-
related write has executed, the atomicity violation is inevitable.

Straw-man 2: Detecting a bug before the execution of the second

buggy thread. Suppose a bug involves two threads. Even if only
one thread’s buggy code region has executed, it could still be too
late. Figure[2](b) illustrates a typical order violation pattern, where
a read in thread 2 unexpectedly executes before a write in thread
1. Many real-world concurrency bugs follow this pattern and lead
to problems like un-initialized reads [12]]. The turning point in this
example is right before the read in Thread 2, as circled in Figure[2]
(b). Once that read is executed, although the buggy code region in
thread 1 has not executed yet, the order violation is inevitable.

1.3 Contributions

This paper makes the following contributions.

i) A new approach to tolerating production-run concurrency bugs.
This new approach complements existing bug tolerating approaches
by anticipating concurrency bugs right before their turning points
and leveraging lightweight thread-stalling, instead of heavyweight
checkpoint-rollback, to get around the bugs’ manifestation.

ii) A novel invariant, named Anticipating Invariant (AI), that
is suitable for effective and efficient concurrency-bug toleration.
Roughly speaking, for an instruction I that accesses variable V,
Al captures which instructions are allowed to access V' right be-
fore I from a different thread. What distinguishes Al from pre-
viously proposed interleaving invariants 13| 28] |7} 35| is that A1
can help achieve both the coverage goal and the performance goal
of concurrency-bug toleration. In terms of coverage, it reflects pro-
grammers’ intentions about the correct order of concurrent memory
accesses, and its violation can be used to detect both atomicity and
order violations. In terms of performance, the violation of Al oc-
curs at exactly the turning point of most concurrency bugs, not too
early and not too late. More details are presented in Section

iii) A low-overhead software-only bug-tolerating systen% de-
signed and implemented based on AI . Our system includes sev-
eral steps: it first automatically learns Al during in-house testing;
it then monitors violations to AI during production runs; finally,
it automatically and temporarily stalls a thread right before an A1
violation to prevent the manifestation of concurrency bugs. To the
best of our knowledge, this is the first attempt to efficiently toler-
ate previously unknown atomicity and order violations at run time
without rollbacks. Our system also includes optional bias instru-
mentation scheme and APIs to allow easy performance tuning for
memory-access intensive applications. More details are presented
in Section[3l

iv) An evaluation based on 35 representatives real-world concur-
rency bugs. The evaluation shows that our system can tolerate all
of the 35 concurrency bugs, which is more than each of the ex-
isting techniques that we have evaluated. Our system also incurs
low overhead — smaller than 1% overhead for many non-trivial
desktop and server applications. Furthermore, our system detected
two previously unknown concurrency bugs from widely used open-
source software.

2. ANTICIPATING INVARIANT

Program invariants are predicates that should always be true at
certain points of the execution; they reflect programmers’ inten-
tions. Many recent works pay close attention to learn “likely invari-
ants” from testing runs and use them to detect or tolerate software
bugs [5} 28, [7]. These invariants are supposed to be held in all the
correct runs. If one of them is violated at run time, a bug probably
has manifested. Although these invariants all differ vastly in their

2We have made the source code of our tool publicly available at
http://jamesOzan.github.io/AlLhtml. Related documentations and
demos are also presented there.

details, many of them are constrained in types of bugs they can han-
dle. More importantly, they are designed for detecting bugs instead
of anticipating bugs, which makes them unsuitable for lightweight
bug-tolerating.

In this section, we first introduce the Anticipating Invariant (AI).
Then, we present some case studies to demonstrate AI’s ability of
anticipating concurrency bugs right before the turning points. Fi-
nally, we discuss why and how Al is different from prior works.

2.1 Definition

Through investigating many real-world bugs, we find that the
manifestations of most concurrency bugs involve an instruction /;
preceded by an unexpected instruction /2 from a different thread,
where I and I> access the same variable. In addition, postponing
the execution of I> can often prevent the bug (i.e., the execution of
15 is the turning point).

For example, most order violations occur when an instruction
I, from Thread 1 unexpectedly executes after instruction /2 from
Thread 2, causing I> to be preceded by a different instruction that
accesses the same variable as I». Postponing I» can effectively
make I; execute before I>. As another example, most atomicity
violations occur when instruction I2 from Thread 2 unexpectedly
interleaves instruction /; and I3 from Thread 1, causing I to be
unexpectedly preceded by ;. Similar to the order violations, post-
poning I can effectively prevent this kind of atomicity violations.

Following this observation, we propose the Anticipating Invari-
ant, which can satisfy both of the two requirements listed in Section
E Specifically, in the rest of this paper we will use S, to indicate
a static instruction in the source code (a line of code that can be
differentiated by its program counter), and ISy to represent that
the dynamic instruction I, observed at run time is derived from
static instruction Sy. Here, the “dynamic instruction” means an ex-
ecution instance of a static instruction, thus a static instruction in
loops or recursions can have many dynamic instructions that are
derived from it. We also define a remote predecessor, expressed
as RPre(l;), for every dynamic instruction I, in the execution
traces. RPre(I;) is a static instruction, which has at least one dy-
namic instruction derived from it that /) accesses the same memory
address as I; 2) comes from another thread (besides I..’s thread);
and 3) accesses the same address immediately before I,,. We con-
sider I from Thread 2 to be immediately before /1 from Thread 1
if and only if, except instructions from Thread 1, there is no instruc-
tion that accesses the same address of I; between the execution of
Iy and I;. And RPre(I;) = nil if there is no such dynamic in-
struction. For example, Figure [3] shows an interleaving and each
instruction’s corresponding remote predecessor. Although 14 exe-
cutes between I and I, RPre(Is) = S2, because I is executed
by the same thread as I¢.

Thread 1 Thread 2 RPre(l;) = RPre(l,) = nil
RPre(l;) = S,
1:S:Write X RPre(ly) =S,
4 AI'ZSZ:Write Y RPre(ls) =S,
13S;:Read X p RPre(lg) = S,
1,S4:Read Y A RPre(l;) = S,
¥ | lsSsiRead X
leSe:Read Y .1+ 1,S, means that dynamic
I7S7:Read X instruction I, is derived
from static instruction S,.
Testrun e > Remote Predecessor

Figure 3: Demonstration of remote predecessors.

To be more explicit, the remote predecessor has the following
characteristics:

1) 1t is defined for every dynamic instruction. Thus if one static
instruction is executed more than once in an execution, there will
be multiple dynamic instructions and different remote predecessors
that are needed to be calculated;

2) nil is specially defined to describe the state that the instruc-
tion can be executed before any instructions from other threads that
access the same address. As we will discuss later in Section 2.2
nil is very useful for anticipating bugs in practice;

3) Whether the instruction is a read or a write operation does not
matter in calculating remote predecessors.

Thread 1 Thread 2 RPre(l;) = nil
" BSet(S,) = {nil}

A 1SeWrite X ppre(,) = S,, RPre(ly) = S,
I;SyRead X.| BSet(S,) = RPre(l;) U RPre(l,) = {S;, Sa}

. N1SsRead X ppre(i) = RPre(l) = S,
1sS,Read X BSet(S;) = RPre(l;) U RPre(l;) = {S

A SReadx ESCS) = RPre() (15 = (52
Testrun e > Remote Predecessor

Figure 4: Demonstration of belonging sets.

Figure E| shows another interleaving, in which all the memory
operations access the same address. Note that /;’s remote prede-
cessor is nil, because no instruction has accessed the variable X
before it. And, as there are two dynamic instructions derived from
the same static instruction S in this test run, their remote prede-
cessors are 57 and Ss respectively.

After investigating many concurrency bugs, we observe that: In
all the correct runs, the remote predecessor of the same static in-
struction’s dynamic instructions has fixed candidates. And once a
dynamic instruction’s remote predecessor does not belong to this
set, it implies the occurrence of a concurrency bug. Hence we cal-
culate a Belonging Set, expressed as BSet(Sy), for every static
instruction, which is the union of all the remote predecessors of its
dynamic instructions that have been seen in verified interleavings.
And we define the Anticipating Invariant to be:

RPre(I;Sy) € BSet(Sy), ISy is derived from Sy

As an illustration, BSet of S in Figure[]is calculated as BSet(S2) =
RP’I‘@(IQ) @] RP’I‘@(I4) = {517 Sg}

2.2 Case Studies

2.2.1 Atomicity Violation

Thread 1
void innobase_mysq|_print_th(..) {

Thread 2
bool do_command(...){

(S if (thd->proc_info) { ~ ____

putc(' ', f); BRES
~ U @ thd->proc_info = 0;
@ fputs(thd->proc_info, f); 2
} }

ha_innodb.cc
— — > Incorrect Interleaving

sql_parse.cc
<« Correct Interleaving i

S1 and S2 are assumed to be executed atomically.
Wrong interleaving will lead to crash.

Figure 5: A real-world atomicity violation in MySQL.

FigureE] shows areal-world atomicity violation from the MySQL
database server, while Figure[f]is the corresponding simplified code
of this bug. Two interleavings that can be found in correct test runs
and one found in incorrect runs are given in Figure[f]

Thread 1 Thread 2 Thread 1 Thread 2 Thread 1 Thread 2
1;S;:Read X 1,:S5:Write X 1;S4:Read X
1,S,:Read X I,.S;Read X4 el LS Wite X
CUaisaWite X (T8, Read X b 1:SyRead X+
Correct run 1 Correct run 2 Incorrect run
RPre;(l;) = RPrey(l,) = nil RPrey(l;) = nil RPre(l;) =S4
RPrey(l3) =S, RPrey(l,) = S; & BSet(S;)

BSet(S;) = RPre;(l;) U RPrey(l,) = {nil, Ss}
BSet(S,) = RPre;(l,) = {nil}
BSet(S;) = RPre;(l3) U RPrey(l;) = {nil, S,}

RPre; means the remote predecessor
obtained from run Z.

---> Remote Predecessor 1S, in Correct run 2 is enclosed with dotted line,
because that it will be bypassed by an if-condition

in this interleaving.

Figure 6: The simplified code of Figure 5]

After observing the correct test runs, we can calculate that BSet(S3)

is {nil, S2}. Then in the incorrect case, when I2S3 in Thread
2 wants to be executed before I3S> in Thread 1 after ;S1 has
already been executed, its remote predecessor will be Si. Since
S1 & BSet(S3), a violation is reported. Note that this bug can be
anticipated before S3’s execution, at which point, the run-time en-
vironment still can prevent the bug from happening by temporarily
stalling the execution of Thread 2. There is no need to roll back
any executed instruction here.

Another example of the atomicity violations is shown in Fig-
ure [2| (a). In the incorrect run, AI can anticipate the bug before
Readrhread 2, because Readrhreqad 1 does not belong to its BSet.

Previous works have proposed different types of invariants to
detect atomicity violations ultimately [13] 28| |7, |35]. However,
they cannot predict many atomicity violations before their turning
points. We will discuss this in more details in Section

2.2.2 Order Violation

Thread 1a Thread 2a Thread 1a Thread 2a

1;S4,:Read X
UM),S,.Write X
Correct Run

BSet(S;,) = RPre(l;) = {nil}
BSet(S,,) = RPre(ly) = {S1a}

11S,:Write X
,S,,;Read X 4"

Incorrect Run
RPre;(I;) = nil & BSet(S,,)

(a)

Thread 1b Thread 2b Thread 1b Thread 2b
11S4p:Write X 11S,,:Write X
A 1,8, Write X 1,81, Write X 4

Correct Run Incorrect Run
BSet(S;,) = RPre(ly) = {nil} RPre;(11) = nil & BSet(Sy,)

BSet(S,,) = RPre(ly) = {Syy}
(b)

........ > Remote Predecessor

Figure 7: Interleavings of two typical order violations.

Figure[7] shows two representative interleavings obtained from a
R-W order violation and a W-W order violation respectively. The
remote predecessor of 1152, in subfigure (a) and 11 S2p in subfigure
(b) are both nil in the incorrect run. In this case, a violation will be
reported because neither BSet(S2,) nor BSet(Sa) contains nil.
Similar to atomicity violations, the bug is detected right before its
turning point and hence can be avoided without using roll-back.

Unlike the Anticipating Invariant, previous works’ [28] (7, |35]]
ability of anticipating order violations will be influenced by other
conditions like whether there is another leading instruction access-
ing the same address. A formal discussion will be given later in

Section4.2]
2.3 Rationales

It’s true that most of the invariant-based techniques share the
same formation of learning some invariants from testing runs and
checking/guarding them later. But Al can be distinguished from the
others by its ability of avoiding roll-back, which shifts the invariant
designer’s perspective from “how to detect the bug ultimately” to
“how to anticipate the bug right before its turning point". Owing to
this unique perspective, many special decisions are made:

1) Many previous works record some states in a former instruc-
tion and check them at later instructions. Then they learn invariants
about how these states will be preserved or altered. But when the
invariant is violated at the later instruction, one can do nothing but
roll-back to tolerate the bug. Instead, Al does not wait for the last
instruction in a buggy region to detect the invariant violation. It
constrains the instant state of each instruction not a continued state
of an instruction region; 2) Al does not differentiate read and write
instructions, and it explicitly defines nil to represent the initial
state. This helps to avoid the first and the second misconceptions
listed in Section [T.1] respectively. 3) Al tries to make minimal as-
sumptions about where a bug may hide. For example, instructions
involved in an Anticipating Invariant do not need to constitute the
unserializable interleaving like AVIO [[13]], the read-write depen-
dence like DUI [28]], or the memory-dependent like PSet [35], etc.
Thus, as shown in Section[.2] Al can detect more bugs than each
of the previous works can do.

3. IMPLEMENTATION

In order to utilize the Anticipating Invariant for tolerating con-
currency bugs, we implement a software-only system by using the
LLVM compiler framework [10]. In this section, we first give an
overview of our system. Then, we describe how to automatically
extract AI and use it to tolerate concurrency bugs. Finally, we dis-
cuss the usages of custom instrumentation strategies and the pro-
vided APIs.

3.1 Overview

In our implementation, we built a system mainly consisting of
three LLVM passes, namely AlPrepare, AlTrace, and AlTolerate.
Each of them will perform a corresponding transformation to the
input source code.

Specifically, the input of AIPrepare pass is the original source
code. It will assign an universally unique access ID to each load/store
instruction in the LLVM IR (by adding a metadata node). The
marked code is stored in bitcode format for further usages. If the
user also designs a custom instrumentation strategy with our API,
a corresponding white list file will also be generated (elaborated in
Section[3.3).

Then, the AlTrace pass reads the marked code and adds a logging
function before each memory access, which will output a triplet of
access ID, thread ID, and the accessed memory address to the trace
file. This instrumented code is used in the in-house testing phase to
gather enough traces for computing BSets.

Finally, the AlTolerate pass uses all the data generated before
(white list and traces) to transform the marked code to an Al-guarded
version of code. The generated code is compiled to executable ob-
jects and used in production runs.

Original
Source

Code

load !ID 1

store !ID 2

Testing Phase

log(1, ...)

load !ID 1 Access

In-house
10g(2, ...) Testing
store !ID 2

|
|
|
|
b

Traces

Production Phase

guard(1, ...)
AlTolerate load D1

Pass guard(2, ...)
store !ID 2

White List & Marked Source Code

Figure 8: Overview of the whole system.

3.2 Training & Tolerating

In order to infer AT automatically without any programmers’ an-
notation, we rely on correct runs observed during the in-house test-
ing phase. As pointed out by prior work [35], programmers can
assert whether a test run is correct or not by verifying the outputs.
Generally, the programmers should both run the application un-
der different inputs to cover all the feasible paths, and run mul-
tiple times with every input to explore different interleavings. A
systematic concurrency testing framework such as CHESS [19] or
CTrigger [24] can also be used to systematically explore different
interleavings for each input.

As described above, the trace files consist of triplets of (Access
ID y, Thread ID tid, Accessed Memory Address addr). Each of
these triplets represents a dynamic instruction defined in Section
2] By scanning the trace files chronologically, we can calculate
the remote predecessor of each dynamic instruction as stated be-
fore. In the meantime, the belonging sets are updated as below:

BSet(y) = BSet(y) U RPre(Triplety) if Triplety = (y,..,..)

After scanning all the traces the AlTolerate pass will encode the
synthesized BSets (the union of the results of each trace file) into
the application by adding an initialization function to the program’s
llvm.global_ctors array which is the list of constructor functions.
It will also add a guarding function before every shared-memory
accessesﬂ to perform bug tolerating.

Specifically, the guarding functions will maintain a data struc-
ture Recorder[M] to record the last two instructions that access
memory M and are from different threads. This is enough for cal-
culating the remote predecessors, because R Pre of the current op-
eration is the last access (before updating) if the access is from a
different thread, or it must be the second last one. Then after ob-
taining R Pre, the guarding function will check whether the corre-
sponding Anticipating Invariant is held. An Anticipating Invariant
Violation is reported if it does not, i.e. RPre(l;) ¢ BSet(Sy) al-
though I, is derived from S,. As analyzed in Section[2.2] thanks to
ATs capability of anticipating bugs before their occurrence, we can
tolerate this violation by stalling the violating thread until the viola-
tion gets resolved. The violated A1 will be checked again and again,
in order to determine whether the accesses from other threads have
resolved it. If the check passes, the stalled thread will resume its
execution.

Although it is rare, not all Anticipating Invariant Violations can
be tolerated by just perturbing the thread schedule. It is possible
that the only correct interleaving for an input is untested. If such
“fake" violation (i.e. false positive) is not properly treated, it may
cause an indefinite stall. Thus, in order to ensure forward progress,

3A shared variable will be accessed by at least one static instruc-
tion S that satisfies the property: BSet(S) — {nil} # 0. Thus
we can identify shared-memory accesses during the training while
inferring A1 .

we set the maximum stall time to a threshold. Once the threshold
is reached, the system will log the violation and resume the stalled
thread’s execution. The log is sent back to developers to determine
whether this violation is a bug. If it is not, we can update the rel-
evant Al to green-light this new interleaving in future runs. Our
algorithm ensures that stalling does not occur during the tested in-
terleavings

Thread 1 Thread 2

int smallserver(...) {
webhttrack_main((char*)adr + p); [*created by webhttrack_main*/

void back_launch_cmd(void* pP){

® hts_cancel_fiIe_push(global_opt,,..);‘*

~ @ global_opt=hts_create_opt();
} }

htsserver.c htsweb.c

— — —> |Incorrect Interleaving -«——— Correct Interleaving
global_opt should be initialized before being read.
Wrong order will lead to crash.

Figure 9: A real-world W-R order violation in HT Track, which
cannot be detected by PSet.

Thread 1 Thread 2 Thread 1 Thread 2 Thread 1 Thread 2
1,S1:Write X 1;S4:Write X 11S1:Write X
"alpSxWrite X |,S;:Read X 1,S5Read X | |
1;S3:Read X 4" T 158 Write X 27 S,:Read X[X
1,S4:Read X 1,S4Read X 47 U@L | 1S Write X
15S;:Read X 15S;:Read X 4 15S4:Read X«| -
1¢S3:Read X 4

Correct run 1 Correct run 2 Incorrect run

BSet(S) = {nil} RPre;(15S,) = nil & BSet(S,)
BSet(S,) = {Sy, S}
BSet(S;) = {nil, S5} RPrey(1sSs)=S, € BSet(S,)

BSet(Ss) = {S2}

> Remote Predecessor The first S, (15S,4) in Incorrect run is enclosed

with dotted line, because it will be stalled
before its execution until the second one.

Figure 10: The simplified code of Figure[9]

Figure[10]shows the simplified version of Figure[J] a real-world
W-R order violation in HTTrack. The order assumed by developers
is that S4 should always be executed after S2. As pointed out by
Shi et al. [28]], since S2 may inject between S and S3’s execution
in some cases (like correct run 2), PSet cannot detect this bug. But
the remote predecessor of S4 is always S2 in both two correct test
runs. Thus BSet(Ss) = {S2}, which makes S; impossible to
be executed before S2 in production runs. More details about this
violation in the incorrect run can be found in Figure [I0}

In summary, the pseudocode of guarding function is given in Al-
gorithm [T] It should be noted that, since we implement Al with

Table 1: Evaluated real-world bugs.

Category Pattern Number of bugs Bugs
RR | W s MySQLA644; MySQLE3596; MySQLA12228;
Mozillaf341323; Mozillaf224911
W-R | W 2 pigzi9ef658babd’; MySQL$#19938
. MySQLE791; MySQL12848; Mozillag52111;
éltgl‘:tlf;;y W-WIR > Morzilla$73761; Morzilla#622691
MySQL756324; MySQL759464; Apachef48735;
R-W | R-W 7 Apachefi21287; Mozilla342577; Mozillaf270689;
Mozillaf225525;
R-R-W [R-R-W 3 Apache{25520; Apacheff46215; Cherokeef326
Axelf313564"; Httrack#20247; Transmissionf{1660;
Transmissionf1827; ZSNES#10918; Mozilla61369;
W-R 10
Order MySQL bug from paper Bugaboo [15];
Violation FFT, LU, Barnes bug from paper LOOM [34]
R-W 1 Pbzip2 bug from Yu’s Homepage [|1]]
MySQL48930;
W-W 2 Mozilla bug from paper Lu2008 [[12]

Algorithm 1 Pseudocode of the Guarding Function.

Global Variable:
recorder[M]: The map that maps a memory address M to
the last two instructions that operate address M
and are from different threads
BSet[I]: The map that maps an instruction I to its
Belonging Set

function Guard(Dynamic Instruction ins, Memory Address m)
iter := 0; id := GetAccessID(ins)
tid ;== GetCurrentThreadl D()
while iter < threshold do

RPre := GetRPre(ins)
if RPre ¢ BSetlid] then
Report an violation
Stall this Thread for a while
else
Break
iter 1= iter + 1
if iter = threshold then
Report an unresolved violation

UpdateRecorder(recorder[m], id, tid)

per-variable synchronization, the horizontal scalability of the orig-
inal program will likely not to be constrained by AI .

3.3 Custom Instrumentation Strategy

Since only shared-variable accesses have to be instrumented and
there is not need to roll back, AI incurs low overhead for many
nontrivial desktop and server programs and is promising for pro-
duction deployment. But for some applications, such as the high-
performance computing (HPC) programs that have intensive heap
accesses, the default instrumentation scheme may still incur very
high overhead. To alleviate this problem, Al also provides users
the ability to design custom instrumentation strategies that can de-
crease the overhead with little damage to AI’s ability of detecting
and tolerating bugs. For example, Lu et. al. [9] shows that a quarter
of concurrency bugs in filesystem arise on failure paths. A custom
strategy that preferentially covers these regions will definitely be
very useful.

Moreover, we propose an optional bias instrumentation scheme,
which is effective for the aforementioned HPC programs. The
scheme is based on a key observation that, in a well-tested pro-

gram, bugs usually occur in cold (less-executed) regions. Thus if
an access is deemed to be very “hot", we chose to not instrument
it. We expect this scheme to miss few harmful bugs in practice,
because, if a bug is lurking in these instructions, it will probably
be found by the in-house testing (or is benign). Similar approaches
have been used in several sampling-based race detecting methods
[[18]], and achieve a good result in Google’s practice [27].

As for implementation, we first group all the static instructions
into maximal number of groups that: if instruction S, and S be-
long to different groups, they will never access the same address.
(This can be achieved by using a greedy algorithm that merges two
instructions that have accessed a same address into the same group
with a disjoint-set [[11]].) Then we compute an ins-proportion (I P)
for each group, which is the proportion of dynamic instructions
generated by members of this group to all the shared memory ac-
cesses (by counting the trace files). Finally, if a specific flag is
set when applying the AlTolerate pass, those groups whose I P is
larger than a threshold (30% is used in our experiments) will not be
instrumented. Other metrics, such as I P of each instruction, can
also be used to identify the “hot" instructions.

Additionally, There is another usage of custom instrumentation
strategies. Once a bug is detected or reported by others, the users
can choose to only instrument the bug related instructions to pre-
vent all the future failures. This can help to ease the pain caused by
lengthy patch releasing period, just like Aviso [[14] and Loom [34].

Generally speaking, the users can implement their own instru-
mentation strategies very conveniently by directly modifying the
generated BSets. But we also provide several APIs to further facil-
itate this procedure. By default the AlTolerate pass will instrument
all the shared variable accesses, but if a specific flag is set, it will
only instrument the instructions declared by the following annota-
tions: 1)the AI_INS THIS FUNCand AI_INS THIS_BB
macros are used to tell AT that all the shared memory accesses be-
long to this function (or basic block) should be instrumented; and
2)the AI_INS_THIS_ADDR(void % addr) function is given
to state that AT should instrument all the accesses to addr, which is
implemented by using a dynamic analysis technique. Specifically,
when applying the AlTrace pass, this function will be replaced by a
function that outputs the actual value of addr to the trace file. Then,
combining this information with the former mentioned triplets, all
the related instructions (that have been observed during the test-

ing phase) can be identified. The users only need to posit these
annotations in the proper positions of the code and set the corre-
sponding flags. Then the whole procedure, such as the recompu-
tation of BSets (because the omitted instructions should not affect
Recorder) and selective instrumentation, will all be automatically
handled.

4. EXPERIMENTAL EVALUATION
4.1 Test Platform, Applications and Bugs

We analyzed AT’s capability of detecting and tolerating concur-
rency bugs by using 35 representative real-world bugs from 11
multi-threaded applications. These applications include three widely
used servers (Apache Httpd , Cherokee and MySQL), seven desk-
top/client applications (Mozilla, Axel, Pigz, HTTrack, Transmis-
sion, PBZip2, ZSNES) and the SPLASH-2 benchmarks [33]. As
shown in Table[I] we group the found bugs into eight patterns: 1)
for atomicity violations, symbols on each side of the vertical line
represent the assumed atomicity region in that thread. Thus a R-R
| W Atomicity Violation is a bug in which two consecutive read op-
erations in one thread are assumed to be executed atomically, but
in fact they can be interleaved by a write operation from another
thread. And a R-R-W | R-R-W Atomicity Violation occurs when
two threads concurrently execute an atomic region of two read op-
erations followed by a write operation without acquiring a lock; 2)
for order violations, the symbols represent the assumed order. For
example, in a W-R Order Violation, the programmer intends that
a write operation should always be executed before another read
operation, but this intention is not guaranteed.

According to their particular conditions, we identify these bugs
by a bug report ID in the software’s bug database, a forum post ID,
a paper/web page that describes them, or a commit ID that fixes
them. Moreover, two of these bugs were never reported before but
detected by our system.

We also evaluated the overhead of our software implementation
with several real-world applications and the kernel programs from
SPLASH-2. All these experiments were conducted on a 12-core
Intel Xeon machine (2.67GHz, 24GB of memory) running Ubuntu-
12.04.3-amd64 and using the LLVM 3.3 compileﬂ

4.2 Detecting and Anticipating Capability

In order to evaluate whether each kind of bug can be detected or
tolerated (without using roll-back) by AT and several other existing
invariants (AVIO [13], DUI [28]], CCI [7]], and PSet [35]]), we exe-
cute the corresponding buggy programg’| under the bug-triggering
input for 1, 000 times and check whether the bug is detected or tol-
erated (random sleeps are added to increase the bug manifestation
probability, following the methodology used by previous works 7}
35,36]). Table gives our results, in which v'represents that all the
manifestations from this kind of bug are detected/tolerated in our
experiments; vimeans that the bugs can only be detected/tolerated
on particular interleavings; and the rest blank cells represent the
corresponding invariant is not violated in all executions even when
the bug is triggered.

Overall, AT can detect all the patterns of bugs we have found,
which is more than each prior invariant. Moreover, it has a superior

*Since the compilation of MySQL requires the -fno-implicit-
templates flag, which is not supported in clang++. We use llvm-
g++ from LLVM 2.9 in that case.

3> Among all the 35 bugs we used, 13 of them (mainly from Mozilla)
are bug kernels, which contain all bug-related code snippets ex-
tracted from the original buggy programs. We use the original pro-
grams for the experiments of the remaining 22 bugs.

anticipating ability and thus can tolerate more bugs without using
roll-back. In the rest of this section, we will compare ATl with the
prior invariants one by one.

4.2.1 AVIO

AVIO [13] invariant is consisting of two static instructions from
one thread that should not be interleaved by an unserializable mem-
ory operation from a different thread. In which, an interleaving is
unserializable if the remote operation cannot be reordered out of
the atomicity region without changing the result (two read oper-
ations or operations that access different locations can exchange
their place without changing the result, but if they access the same
variable and at least one of them is write, they cannot do this). It is
an effective invariant for detecting atomicity violations.

Thread 1
nsFileTransport::Process() {

Thread 2
nHandleEvent() {
1

@ mStatus = N

mOutputStream->WriteFrom(); ~

>
- - - - RD)if(mStatus = NS_OK)
N -

A return;

(RD) \{f(mStatus == STREAM_WOULD_BLOCK){ ,
@ mStatus = NS_OK; _/
return;

}
- -

nsFileTransport.cpp
— — 3 Incorrect Interleaving < — Correct Interleaving i
W1, R1 and W2 are assumed to be executed atomically.
Wrong interleaving will lead to crash.

Figure 11: An atomicity violation bug in Mozilla, which will
not raise an AVIO invariant violation.

However, 1) as a representative of those tools that focus on de-
tecting atomicity violations, AVIO cannot handle order violations
at all; 2) AVIO can only detect a subset of atomicity violations,
because it only checks whether two consecutive memory accesses
are unserializably interleaved. As an illustration, Figure[IT|shows a
W-W | R Atomicity Violation given by Yu et al. [35] that will be ig-
nored by AVIO. In this bug, R>’s interleaving between W1 — R; or
Ry — W5 are both serializable; 3) since AVIO invariant is checked
when the second instruction is about to be executed, it can hardly
anticipate the bugs, hence is not able to be used for preventing them
without using roll-back.

4.2.2 DUI

As stated by Shi et al. [28]], DUI is a set of Definition-Use Invari-
ants, which can be used to detect a large variety of software bugs
including concurrency bugs (both order and atomicity violations)
and sequential bugs. Specifically, /) DUI-LR describes the prop-
erty that a local read should always read a value defined by a local
or remote writer; 2) DUI-Follower checks whether two consecutive
reads from one thread must read the same value; and 3) DUI-DSet
defines a “definition set” for every read instruction, which encloses
all the write instructions that the read instruction can read from.

However, since DUI concentrates on definition-use data flows
which can only be undermined by unexpected write operations be-
fore reads, it cannot detect R-W | R-W Atomicity Violations (e.g.
Figure [J] a). In that kind of bugs, the write operation is following
the read operation, not antedating it. And it also cannot handle W-
W Order Violations as shown in Figure[I2] because it is the order
within write operations not the order between read and write that
matters. As for R-W | R-W Atomicity Violations, although DUI

Table 2: Evaluation results on different invariants’ bug detecting and tolerating (without using roll-back) capability. Due to space
constraints, we aggregate the evaluation results of the 35 bugs into 8 patterns. All results of Al in this table are obtained through experiments. And the
results for other detectors are obtained based on our understanding of their algorithms.

Category Pattern Al AVIO DUI CCI PSet
Detect Tolerate Detect Tolerate Detect Tolerate Detect Tolerate = Detect Tolerate
RR|W v v v v v v v
Atomicity W-R | W v v v v v v v
Violation W-W | R v v S v v v v v
R-W | R-W v v VS NS v
R-R-W | R-R-W v v Vs S v v
Order W-R v v S A S S v S
Violation R-W v v v v v v
W-W v v v v v v
Thread 1 Thread 2 Thread 1 Thread 2 Thread 1 Thread 2
int ReadWriteProc (...) {
N)
I;éF.{eadAsync(&p); / ;g:{égg;gy:gz;tlon of Write1 X Write1 X
@ ioTpendir)g = TRllJE; ~ void DoneWaiting (...) { Writ92 X Read X
(®vhite (io_pending) {. 3i Read X Write, X

- @iofpending = FALSE;

} }

macio.c macthr.c

— — > Incorrect Interleaving -«—— Correct Interleaving

W1l is assumed to be executed before W2.
Wrong order will lead to hang.

Figure 12: A real-world W-W order violation in Mozilla nspr
that cannot be detected by DUI.

can detect the most probable incorrect run shown in Figure [T3] (b)
by its DUI-Follower, it will miss the other probable incorrect inter-
leaving (Figure[T3]c).

Moreover, like AVIO, DUI-LR and DUI-Follower are checked
at the last instruction of the buggy regions, thus they cannot be
used to anticipate bugs. And DUI-DSet can only predict W-W | R
Atomicity Violations and a subset of W-R Order Violation if there
exists another leading write operation that is executed before the
buggy region.

Thread 1 Thread 2 Thread 1 Thread 2 Thread 1 Thread 2
1;S;:Read X 11S1:Read X. | 1;S;:Read X
1,S,:Read X wI~l,8;Read X |,5,:Read X .
1,S5:Write X 1.21;8,:Read X | ~1;S4:Read X
= al,84:Read X 1,85 Write X *1,8;:Read X
131s8;:Read X |.5,:Read X <[.* 15S3:Write X< |
WeSz:Write X |.5,:Write X ' 2S5 Write X

Correct run Incorrect run 1 Incorrect run 2

(a) (b) (c)

> Remote Predecessor

Figure 13: The simplified code of a R-R-W | R-R-W Atomicity
Violation

4.2.3 CCI

CCI [[7], which tracks properties like “whether the last access
was from the same thread" and “whether a variable has changed be-
tween two consecutive accesses from one thread", can detect both
atomicity and order violations.

But limitation still remains. Since CCI does not record the ex-

Correct Run Incorrect Run

Figure 14: A W-R Order Violation that CCI will ignore.

act program counters, it is relatively simpler than our Anticipating
Invariant. As a double-edged sword, this simplification both pro-
motes its efficiency and restricts its capability. For example, Figure
[[4] gives a complex version of the W-R Order Violation shown in
Figure |Z| (b). In which the programmer’s accurate intention is that
the read operation in Thread 2 should be executed after the second
write operation in Thread 1. But CCI cannot tell different write
operations apart and will ignore this kind of bugs. CCI may also
miss the bug shown in Figure 2] (a), because it cannot differentiate
it from a common benign race, where a single read operation in-
terleaves the R-W atomicity region. In contrast, Al can correctly
distinguish them by checking program counters.

Then, once again, CCI is similar to AVIO, DUI-LR and DUI-
Follower in the respect that it is about whether some properties will
be preserved until a later instruction. This kind of invariants is
unsuitable for anticipating bugs.

4.2.4 PSet

Different from the above 3 invariants, PSet [[35] was proposed to
prevent undetected concurrency bugs from happening at the pro-
duction phase, which is the same as our Anticipating Invariant.
During the production runs, PSet will ensure that a memory op-
eration M can only “immediately depend on” an instruction P that
belongs to a specific set named PSet, which is established during
the testing phase. Here, “immediately depend on” means that /) P
and M should access the same memory location and at least one
of them is a write operation; 2) there is no instruction from either
remote or local thread that accesses the same memory location be-
tween P and M.

Although similar to our belonging set in the format, PSet is still
an invariant about data dependencies like DUI-DSet, thus it con-
strains that at least one of P and M should be write. As a result, it
can only detect the bug after its turning point in many cases, which
makes the heavy-weight roll-back mechanism indispensable. Take
the R-W atomicity bug shown in Figure 2] (a) as an example, since

PSet assumes that two consecutive read instructions do not con-
struct any “depend on” relationship, it can only detect the bug at
Writerhread 1, Which is too late to prevent the bug without roll-
back. According to their experiments [35]], only 6 out of 15 bugs
they have tested can be resolved by PSet without using roll-back,
which are consistent with our evaluation results.

In contrast, AI does not differentiate read and write instructions.
And it explicitly defines the state nil to represent the initial state,
which is critical in anticipating W-R Order Violations. Therefore,
as shown in Table[2] AI can prevent all the bugs we have found by
merely temporarily stalling the thread.

Additionally, Shi et al. [28] pointed out that PSet cannot detect
the bug if it is similar to the W-R Order Violation Httrackf20247
(Figure), because the influence of a remote operation will be
blocked by local operations in PSet (caused by the second condition
of PSet). This is not the case in AI .

4.2.5 Discussion

The 35 bugs we used have covered 7 out of 8 order and atomic-
ity violation patterns concluded by Park et al. [25]], which demon-
strates a good representativeness. And the neglected one, W; —
Wo — W4, is semantically akin to our W-W | R Atomicity Viola-
tion since we can predict the bug before IW5’s execution in Al (right
before its turning point). But AI’s ability of detecting and tolerating
bugs can still be enhanced by integrating with other techniques.

For example, AI can be easily extended to handle multi-variable
bugs by leveraging the coloring technique proposed by ColorSafe
[16]. Since ColorSafe is able to assign the same color to related
variables, the only modification needed in Al is replacing the mem-
ory address with the color assigned to it. The bugs can be detected
and tolerated without using roll-back, if the corresponding related
variables are correctly colored.

And, AT cannot detect a synthetic bug described in Bugaboo
[15]: in which two threads’ repeated accesses to a shared variable
must be interleaved. But no code constraint enforces the interleav-
ing. This is caused by that fact that, without recording any context
information, Al cannot tell different dynamic instructions apart if
they are derived from the same static instruction. However, 1) Pro-
grammers usually pay more attentions on these kinds of complicate
synchronizations (as a matter of fact, we do not find any real-world
example belongs to this type); and 2) Al can integrate with Buga-
boo easily by adding context information to RPre.

4.3 New Bugs

Although Axel Download Accelerator and Pigz compressing tool
(T in Table |1) are both widely used, we detected two new bugs in
them. Since they are both dangerous bugs that may lead to infinite
loop and assertion failed respectively, both of them were confirmed
by the developers and fixed in the nightly build.

Figure [T3] shows the detected order violation in Axel, in which
the last_transfer should be updated before it is read in Thread 2.
If this order is flipped, Thread 1 will be unnecessarily canceled,
although it has already downloaded the current chunk. Moreover, if
this order is always flipped, there will be an infinite loop. This bug
has been confirmed by the developer, and fixed in the developing
version by using unblocked asynchronous I/O model instead of the
previous block one.

We have also detected an atomicity violation in Pigz. It is a
data race in pigz.c, where an instruction reads a shared variable
pool—made in free_pool() after releasing the corresponding mutex
lock pool—have. This bug has also been confirmed by the devel-
oper and fixed in the developing version 2.2.5.

4.4 Performance

Thread 1

void *setup_thread(void *c){

Thread 2

void axel_do(...{

if(gettime() >
(R) axel->conn[i].last_transfer
+axel->conf->reconnect_delay){
pthread_cancel(...);

if(conn_exec(conn) }
W) conn->last_transfer=gettime();

}
axel.c

— — —> Incorrect Interleaving -<«—— Correct Interleaving

last_transfer should be updated by W before being read by R.
Wrong order will lead to unnecessary thread canceling.

Figure 15: A detected Order Violation in Axel.

Table [3] gives the evaluation result of the performance for our
current Al implementatio Since we want our benchmark suit
to cover different types of multi-threaded applications, we select
two representatives from each categoy (desktop applications, server
applications, and the scientific-computing kernels). These applica-
tions are chosed because they are also the choices of many previous
bug detection papers [7} [38]]. We compute the overhead by count-
ing the “Total time" or “Wall Clock" field of output for the kernel
programs and desktop applications, and the throughput output by
testing benchmarks (httperf, super-smack) for server applications.

Table 3: Run-time overheads. In this table, the “Bias' column
and the “Default" column give the overhead with and without
bias instrumentation respectively.

Applications Overhead
Default Bias
Desktop PBZip2 0.38% -
Application Pigz 0.20% -
Server Apache 0.34% -
Application MySQL 0.57% -
SPLASH-2 FFT 1345% 115%
Benchmarks LU 1613% 127%

The applications shown in Table[3|can be roughly split into three
categories. The first category includes desktop applications like
PBZip2 and Pigz, which do not have many instructions that access
shared variables. Hence only a little run-time overhead is imposed.
The second category includes those server applications. Although
they may have relatively more heap accesses, the overheads are still
low, because it is usually other factors, such as the I/O latencies,
that obstructs these applications’ performance. Applications from
the SPLASH-2 benchmark suites belong to the third category, they
have extremely intensive heap accesses and loops. In this case, a
proper custom instrumentation scheme is critical for low overhead.
As shown in the table, our general bias instrumentation scheme
(with threshold 30%) can reduce the overhead to about 100%. And
it will not ignore the bug listed in Table[T] As an illustration, in FFT,
two groups of instruction are omitted by the bias instrumentation.
Each of them contains only 19 instructions but has an I P of 37.8%.
Since they are the updating operations to the result array, it is hard

®Since the overhead for desktop and server applications are low
enough even when instrumenting all the shared-memory accesses,
their overheads after applying bias instrumentation are omitted.

to imagine that the program can pass a comprehensive stress testing
with a bug hiding in them. We also expect that the programmers can
use the APIs provided by us to design even more effective custom
instrumenting strategies that further lower the overhead for these
CPU-intensive programs.

Overall, since only shared-variable accesses have to be instru-
mented and there is not need to roll back, AI is much faster than
those existing software-only concurrency bug tolerating tools, which
usually impose an impractical overhead. For example, even in
terms of 1/O intensive applications, the software implementation
of PSet incurs more than 100x overhead, which is caused by its
heavyweight software roll-back implementation [35]]. And, thanks
to the use of static instrumentation, Al is also much more lightweight
than those dynamic instrumentation based bug detection tools, such
as AVIO’s [13] software implementation and DUI [28]], which incur
15 x —40x and 5 x —20x overhead respectively.

Contrary to our method, ConAir [37]] takes a different approach
to achieve low run-time overhead. It only aims to tolerate bugs
that can be recovered by rolling back an idempotent region in one
thread, which can be reexecuted for any number of times without
changing the program’s semantics. This policy allows ConAir to
eschew the time-consuming memory-state checkpoint in general
roll-back. Nevertheless, it also restricts ConAir’s ability. First,
ConAir cannot handle concurrency bugs that have I/O operations.
A study [31] shows that about 15% of concurrency bugs belong to
this kind. Second, an idempotent region should not contain any
shared variable write. Thus ConAir is not able to tolerate W-R |
W Atomicity Violations and some of R(-R)-W | R(-R)-W Atom-
icity Violations. Third, even some local variable writes are not
idempotent, which constrains an idempotent region’s length. But in
ConAir, the idempotent region should both cover the whole error-
propagation region to tolerate a bug, since ConAir can only affirm
a bug after it has incurred some kinds of program failures.

Frost [30] is a novel technique to tolerate races. It is efficient
in terms of overhead (12%). But it gains this efficiency on the
cost of high CPU utilization (3x), because it needs to run three
independent instances of the program simultaneously. And it can
only process data races.

4.5 Sufficient Training

Similar to all the other invariant-based techniques, Al needs suf-
ficient tested execution traces to achieve a good coverage. There
may be false negatives (i.e., fail to predict some bugs) if some
shared-memory accesses are not identified during training; and there
may be false positives (i.e., unnecessary stallings) if some impor-
tant correct interleavings are not covered during training. In gen-
eral, this requires that the programmers should both run the ap-
plication under different inputs and configurations to cover all the
feasible paths, and run multiple times with every input to explore
different interleavings. And since the logging function added by
the AlTrace pass and the guarding function added by the AlToler-
ate pass impose a different overhead, there may exist some inter-
leavings that are less likely to happen in the testing phase. Thus
we also provide a tool to automatically relax the BSets (i.e. reduce
the false positives). It simply run the Al-guarded application and
verifies the output. If the outcome is correct, the tool will relax
the BSets with the generated violation report. The programmers
can also use a systematic concurrency testing framework such as
CTrigger [24] to systematically explore different interleavings for
different inputs.

In our evaluation, the numbers of execution needed for sufficient
training (i.e. all the bugs are detected/tolerated and no more false
positive or unnecessary stalling arises) are about 200 for PBZip2,

Pigz, FFT, LU; about 1,000 for MySQL; and about 5,000 for
Apache. Even for Apache, the training can be completed within
half a day. Comparing to the release cycle of large software (usu-
ally several months) and the fixing period of every bug (more than
a month on average [3]]), we think the cost is acceptable.
Moreover, although the possibility of false positives cannot be
eradicated, it will only incur a stalling timeout in our work. And the
corresponding invariants can be updated immediately, in order to
green-light all the future runs. These stallings will never affect the
program’s correctness. Since the threads are randomly scheduled,
a correctly synchronized program will not depend on time delays.

S. RELATED WORK

The most closely related work of Al is PSet [35] that also pro-
poses an invariant-based technique to tolerate both atomicity and
order violations at run time. However, as shown in Section [{.2.4]
PSet’s ability of tolerating bugs relies heavily on roll-back, which
makes it hard to be applied in production environments. Although
one can substitute roll-back with the idempotent reexecution tech-
nique introduced by ConAuir [37] to reduce the overhead, there will
be a consequent decrease in comprehensiveness as a side-effect.
As we have discussed in Section[4.4] ConAir is incapable of toler-
ating many kinds of bugs. And the other concurrency bug tolerating
methods like Frost [[30]], LifeTx [36]] and AtomAid [17]] are all con-
strained in type of bugs that they can handle, such as data races or
atomicity violations. In contrast, Al can tolerate both atomicity and
order violations without roll-back and incurs moderate overhead.

As a complementary approach to concurrency bug detecting and
tolerating, several methods have recently been proposed to expose
concurrency bugs during software testing [20, 23} 22| 29, (3, [32]].
These interleaving testing papers use different “heuristics" to insert
delays and enhance the chance of bugs’ exposedness. For exam-
ple, RaceFuzzer [26] and CTrigger [24] try to exercise a suspicious
buggy interleaving in a real execution to verify whether it is really a
bug or merely a false positive. There also exist approaches, such as
PCT [4], that randomly insert delays or assign priority of threads to
improve stress testing. Apart from them, AI targets on bug avoid-
ance, which is not part of these works. And these works can be
used to complement Al by producing new thread interleavings for
training.

6. CONCLUSION

This paper presents Anticipating Invariant, whose violations can
anticipate bugs right before their turning points. Based on it, we
implement a software-only tool that can tolerate both atomicity and
order violations with a lightweight stalling strategy, instead of roll-
back mechanism or chunk based execution used in prior works. Our
experiment results with 35 real-world bugs of different types have
shown that Al is capable of detecting and tolerating all the eight
patterns of bugs we have found. In addition, ATl only incurs negli-
gible overhead (< 1%) for many nontrivial desktop and server ap-
plications. And its slowdown on computation-intensive programs
can be reduced to about 2 after using the bias instrumentation.

7. ACKNOWLEDGMENTS

The authors from Tsinghua University are sponsored by the Na-
tional Basic Research (973) Program of China (2011CB302505),
Natural Science Foundation of China (61373145, 61170210), Na-
tional High-Tech R&D (863) Program of China (2012AA012600),
Chinese Special Project of Science and Technology (2013zx01039-
002002). Shan Lu’s research is partly supported by NSF grant
CCF-1217582.

8. REFERENCES

[1] http://web.eecs.umich.edu/~jieyu/bugs.html.

[2] MySQL. Bug report time to close stats.
http://bugs.mysql.com/bugstats.php.

[3] Mysql bugs: Statistics. http://bugs.mysql.com/bugstats.php.

[4] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte.
A randomized scheduler with probabilistic guarantees of
finding bugs. ASPLOS ’10.

[5] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,

C. Pacheco, M. S. Tschantz, and C. Xiao. The daikon system
for dynamic detection of likely invariants. Sci. Comput.
Program., 69(1-3), Dec. 2007.

[6] Z. Gu, E. T. Barr, D. J. Hamilton, and Z. Su. Has the bug
really been fixed? ICSE *10.

[7] G. Jin, A. Thakur, B. Liblit, and S. Lu. Instrumentation and
sampling strategies for cooperative concurrency bug
isolation. OOPSLA ’10.

[8] S. Kundu, M. K. Ganai, and C. Wang. Contessa:
Concurrency testing augmented with symbolic analysis.
CAV’10.

[9] R.H. A.-D. S. L. Lanyue Lu, Andrea C. Arpaci-Dusseau. A
study of linux file system evolution. FAST ’04.

[10] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. CGO ’04.

[11] C.E. Leiserson, R. L. Rivest, C. Stein, and T. H. Cormen.
Introduction to algorithms. The MIT press, 2001.

[12] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes:
a comprehensive study on real world concurrency bug
characteristics. ASPLOS °08.

[13] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting
atomicity violations via access interleaving invariants.
ASPLOS ’06, 2006.

[14] B. Lucia and L. Ceze. Cooperative empirical failure
avoidance for multithreaded programs. ASPLOS *13.

[15] B. Lucia and L. Ceze. Finding concurrency bugs with
context-aware communication graphs. MICRO 42, 2009.

[16] B. Lucia, L. Ceze, and K. Strauss. ColorSafe: architectural
support for debugging and dynamically avoiding
multi-variable atomicity violations. ISCA ’10, 2010.

[17] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-Aid:
Detecting and surviving atomicity violations. ISCA 08,
2008.

[18] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace:
effective sampling for lightweight data-race detection. PLDI
*09.

[19] M. Musuvathi and S. Qadeer. Iterative context bounding for
systematic testing of multithreaded programs. PLDI *07,
2007.

[20] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. Nainar, and
I. Neamtiu. Finding and reproducing heisenbugs in

concurrent programs. OSDI *08.

[21] A. Muzahid, N. Otsuki, and J. Torrellas. AtomTracker: A
comprehensive approach to atomic region inference and
violation detection. MICRO 43, 2010.

[22] S. Nagarakatte, S. Burckhardt, M. M. Martin, and
M. Musuvathi. Multicore acceleration of priority-based
schedulers for concurrency bug detection. PLDI 12, 2012.

[23] C.-S. Park and K. Sen. Randomized active atomicity
violation detection in concurrent programs. SIGSOFT
"08/FSE-16, 2008.

[24] S. Park, S. Lu, and Y. Zhou. CTrigger: exposing atomicity
violation bugs from their hiding places. ASPLOS ’09, 2009.

[25] S. Park, R. W. Vuduc, and M. J. Harrold. Falcon: fault
localization in concurrent programs. ICSE *10.

[26] K. Sen. Race directed random testing of concurrent
programs. PLDI "08.

[27] K. Serebryany, A. Potapenko, T. Iskhodzhanov, and
D. Vyukov. Dynamic race detection with llvm compiler. In
Runtime Verification, pages 110-114. Springer, 2012.

[28] Y. Shi, S. Park, Z. Yin, S. Lu, Y. Zhou, W. Chen, and
W. Zheng. Do I use the wrong definition?: Defuse:
definition-use invariants for detecting concurrency and
sequential bugs. OOPSLA ’10, 2010.

[29] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and
C. Flanagan. Sound predictive race detection in polynomial
time. POPL *12.

[30] K. Veeraraghavan, P. M. Chen, J. Flinn, and
S. Narayanasamy. Detecting and surviving data races using
complementary schedules. SOSP ’11.

[31] H. Volos, A. Tack, M. Swift, and S. Lu. Applying
transactional memory to concurrency bugs. ASPLOS ’12.

[32] C. Wang, M. Said, and A. Gupta. Coverage guided
systematic concurrency testing. ICSE "11.

[33] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: characterization and
methodological considerations. ISCA °95, 1995.

[34] J. Wu, H. Cui, and J. Yang. Bypassing races in live
applications with execution filters. OSDI " 10, pages 1-13,
2010.

[35] J. Yu and S. Narayanasamy. A case for an interleaving
constrained shared-memory multi-processor. ISCA *09,
20009.

[36] J. Yu and S. Narayanasamy. Tolerating concurrency bugs
using transactions as lifeguards. MICRO 43, 2010.

[37] W. Zhang, M. de Kruijf, A. Li, S. Lu, and K. Sankaralingam.
ConAir: Featherweight concurrency bug recovery via
single-threaded idempotent execution. ASPLOS *13.

[38] W. Zhang, C. Sun, and S. Lu. ConMem: detecting severe
concurrency bugs through an effect-oriented approach.
ASPLOS ’10, 2010.

	Introduction
	Motivation
	Our New Approach
	Contributions

	Anticipating Invariant
	Definition
	Case Studies
	Atomicity Violation
	Order Violation

	Rationales

	Implementation
	Overview
	Training & Tolerating
	Custom Instrumentation Strategy

	Experimental Evaluation
	Test Platform, Applications and Bugs
	Detecting and Anticipating Capability
	AVIO
	DUI
	CCI
	PSet
	Discussion

	New Bugs
	Performance
	Sufficient Training

	Related Work
	Conclusion
	Acknowledgments
	References

