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Abstract—Many applications of existing grid systems are 
usually deployed on grid nodes in a static manner. Grid 
computing nodes with highly demanded applications deployed 
on are always busy; while the others are idle. If these 
applications could be dynamically deployed on idle nodes, the 
system performance would be greatly improved. However, the 
overhead (e.g., package download) caused by dynamic 
deployment in existing studies may be so much that the system 
performance is seriously degraded. It is because existing 
studies on dynamic deployment of applications do not exploit 
an application replacement strategy to deploy or undeploy 
applications. In this paper, we propose an application 
replacement strategy, the Average Latency Ratio Minimum 
(ALR-MIN) strategy. With this strategy, an application is 
either deployed or evicted, considering the minimum ALR of a 
Node (NALR). A series of simulations have been performed 
and their results demonstrate that the ALR-MIN strategy 
results in 17% less relative delay-time of jobs than the well-
known Least Recently Used based (LRU-based) strategies with 
a typical setting. 

Keywords-Grid Computing; Resource management; Dynamic 
deployment; Replacement strategy; System performance 

I. INTRODUCTION

Grid computing [1] is to build a computational 
infrastructure through resource sharing and coordinating 
among Virtual Organization (VO) participants. Many 
applications (e.g., services and software) and resources (e.g., 
computer nodes and storage devices) have already been 
integrated into various grid projects such as TeraGrid, 
EGEE, NorduGrid, and ChinaGrid [2]. Normally an 
application is statically deployed to a pre-selected subset of 
computing nodes. This kind of strategy is referred to as 
Static Deployment of Application (SDA). Nodes with 
highly demanded applications may receive requests over 
their capability to handle, in which case it is very easy to 
encounter the situation that some nodes are always busy, 
while the others are unoccupied. Therefore the overall 
performance (e.g., throughput and load balancing) of a grid 
with the SDA strategy would be seriously degraded. If 
highly demanded applications could be dynamically 
deployed on idle nodes, the system’s performance would be 
greatly improved. 

The following aspects may influence the design of an 
application replacement strategy. 1) The overhead caused by 

dynamic deployment of applications is perhaps too 
significant so that the overall performance of the system 
may be seriously degraded because of this. 2) The capacity 
of a computing node is normally limited. 3) It is impossible 
to keep all the applications in the local system consistently. 
4) Some of applications have to be replaced to make room 
for a new application and therefore applications may be 
deployed or undeployed repeatedly. 5) In the case of 
applications with big size, the overhead of dynamic 
deployment may be too much to be acceptable. For example, 
Blast, the well-known bioinformatics application, always 
needs a protein or nucleotide database whose size is 
normally several million bytes; therefore it takes long time 
to transfer and install the database and software packages of 
Blast.

Most of the existing studies (e.g., [3], [4], [5], [6], [7], 
and [8]), addressing the problem of dynamic application 
deployment in grid, do not focus on application replacement 
strategies. [3] proposes an integrated framework, named 
CINWEGS, for dynamically deployment. [4] presents an 
architecture to deploy visualization services dynamically. 
However, they both do not include an application 
replacement strategy. The approaches proposed in [5], [6], 
and [7] dynamically deploy Web Services to containers 
without using a replacement strategy. An on-demand 
deployment strategy for scientific applications is proposed 
in [8] in order to reduce administrators’ workload. 
DynaGrid [9] does not require a replacement strategy since 
the approach cannot undeploy older services when capacity 
limitation is reached. DAG-Condor [10] exploits a 
LRFU(Least Recently/Frequently Used)-based replacement 
strategy, which does not address the problem of multi-cache 
problem. In multi-cache problem, one of the catches has to 
be selected before a cache object is placed or evicted. 

The Application Contents Service Working Group 
(ACS-WG) in Open Grid Forum has proposed a 
specification [11] to standardize application management in 
a grid environment, which makes it possible to combine 
ACS-WG and the specifications (e.g., CDDLM-FND, 
CDDLM-SF and CDDLM-CDL) from the CDDLM-WG to 
realize dynamic deployment of applications. However, these 
specifications do not take into account of application 
replacement strategies. 
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In this paper, we propose a replacement strategy, called 
ALR-MIN, to reduce the overhead of dynamic deployment. 
With this strategy, the node to deploy an application on and 
the applications to be evicted for the node are carefully 
chosen to reduce the Average Latency Ratio (ALR). The 
strategy contains a set of evaluation functions to predict and 
compare the increment of the ALR. The node with the 
minimum predicted ALR is chosen to hold a new 
application and the old applications with the minimum 
predicted ALR on this node may be chosen to be swapped 
out to make room for the new application. 

Followings are two differences between ALR-MIN 
strategy and LRU-based strategy. First, ALR-MIN strategy 
is capable of identifying both the applications which should 
be evicted and the node where the new application should 
be placed. However, LRU-based strategies can only identify 
the applications to be evicted. Second, ALR-MIN strategy 
can select node and application according to the information 
including application access frequency, application 
packages size, application replicas number and average 
execution time of application jobs. However, LRU-based 
strategy does not take these information into account. 

More specifically, the following contributions are 
achieved in this paper: 

The application replacement problem is formalized. 
Based on that, two ALR-MIN replacement strategies 
are proposed to reduce the ALR for both Heavy 
Workload and Light Workload respectively. 
The ALR-MIN strategy is evaluated and our 
simulation results show that the jobs with ALR-MIN 
strategy took the least relative delay-time to 
complete, compared with other two LRU-based 
strategies.

The rest of the paper is organized as follows. In Section 
2, we briefly introduce the dynamic deployment of 
applications, followed by the formalization of the 
application replacement problem in the context of dynamic 
deployment (Section 3). Section 4 presents two ALR-MIN 
strategies for heavy load and light load systems respectively. 
Section 5 examines the performance of the ALR-MIN and 
two traditional LRU-based strategies. Related work is 
discussed in Section 6. Last, we draw a conclusion in 
Section 7. 

II. DYNAMIC DEPLOYMENT OF APPLICATIONS

An overview of the dynamic deployment of applications 
is presented in Figure 1, in which the Application
Repository of the local grid domain and its Computing 
Nodes play key roles. The Application Repository
stores application packages available to users in its storage 
devices. Its contained application packages (e.g., A, B, and C)
are composed of either binary or source files, which can be 
transferred to and installed on the computing nodes. As 
shown in Figure 1, there are seven application packages (i.e., 
A-F) in the storage devices of the Application
Repository. The width of an application’s block (e.g., 
block ‘A’) roughly indicates the size and access frequency 
of the application. Each computing node has fixed space to 

be occupied by the application packages. For example, in 
Figure 1, the applications A and B have been installed in the 
Computing Node 1 (two grey blocks), which still have 
some space unoccupied (i.e., the white area). Using Figure 1 
as an example, we describe the procedure of our proposed 
dynamic deployment as follows: 

Figure 1. Dynamic deployment of applications. 

When a request for the application F comes, the 
scheduler of the system fails to find any replica of the 
application F on all available nodes (not deploying the 
requested application) termed as raw node in this paper. 
This situation is referred to as invoking miss, in which case, 
the scheduler suspends the request for the application F. As 
shown in Figure 1, the computing node 1 has sufficient 
space to place application F, the Deployment Manager is 
then invoked to transfer the application package of F and 
install it on the node 1. When the transfer and installation 
are completed, the scheduler resumes the suspended request 
for the application F and schedules it to the node 1. 

When a request for the application G comes, none of the 
nodes have enough space to install it since none of the nodes 
have sufficient space. In such case, the system takes the 
following actions: first, it selects an appropriate node from 
all available nodes by following the application replacement 
strategy (Section 4); second, some of the deployed 
applications on the selected node are undeployed to release 
resource of the node. For example, if the node 3 is chosen as 
the node to deploy application G, then the system undeploys 
the applications A and D to make room for the application G.
These two actions are the major steps of our application 
replacement strategy. 

III. REPLACEMENT PROBLEM

As previously discussed, when a request comes and none 
of the nodes have enough space to install the requested 
application, then a strategy should be applied to determine 
which node is selected to install the application and which 
installed applications of the selected node should be 
undeployed in order to make enough space for the newly 
requested application. The application replacement strategy 
has a significant impact on the overhead of the system. In 
this section, we formalize the application replacement 
problem by formally specify the preliminaries of the 
strategy (Section 3.A) and the optimization objective 
(Section 3.B). 
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A. Preliminaries 
Notations used through this paper are defined as follows: 
n = number of computing nodes. 
m = number of applications. 
K = the total number of requests. 

1 2 nS: {S ,S , ,S }  = a set of computing nodes. 

1 2 mA:{A ,A , ,A }  = a set of applications. 
1 2

jR :{ , , , }jk
j j jR R R  = a set of requests for the jth

application. The number of requests for the jth application is 
.jk

iV  = the size of ith application package. 
D  = the available size of disk space on a node. 
B = the bandwidth. 

jE = the average execution time of requests for the jth

application.
jW = be the time cost of the deployment of the jth

application.
jP = the probability of the jth application is requested. 

jM = the probability of invoking miss, when a request 
for the jth application comes. 

jI = the average interval time of user requests for the jth

application.
jL = the ALR of all requests for the jth application. 

The following matrix is defined to denote the 
distribution of applications on the nodes: 

1 2

1 2
1 1 1 1

1 2
2 2 2 2

1 2

m

m

m

m
n n n n

A A A

S c c c
C S c c c

S c c c    (1) 

0
1

j ij
i

j i

A has not been deployed on S
c

A has been deployed on S
The ith row in the matrix  means the array of the 

deployment status for all applications on the i
C

th node, and 
the jth column in the matrix C  means the array of the 
deployment status of the jth application on all nodes. Since 
there is no reason to have more than one copy of the same 
application on a single node, the value of the entry  must 
be either 0 or 1. The number of replicas of the j

j
ic

th application 

on all nodes can be obtained by
1

n
j j

i
i

c c .

B. Optimization Objective 
It is not desirable for grid users to wait long time before 

their requested applications to be deployed; therefore the 
optimization objective of dynamic deployment is to 
minimize the time cost of deployment. To formalize the 
optimization problem, we define the latency ratio of a 

request as w
e

, where  is the time taken for the completion 

of the deployment of an application and e  is the time cost 
of the execution of the application. The average latency 
ratio of all jobs is then defined as 

w

1

1

m
j

j mj j
j j

j

W
k

E
ALR L P

K    (2) 
where jL is the ALR of all requests for the jth application; 

is the execution time of the kk
je th request for the jth

application. The optimization objective is therefore 
formulated as: 

: (Objective Minimize ALR)

1
1

:
m

j
i j

j

Strict To c V D i n  (3) 

IV. ALR-MIN REPLACEMENT STRATEGIES

Most traditional replacement strategies are LRU-based 
and they can hardly minimize the ALR of jobs. In this 
section, we propose two strategies to minimize the ALR for 
heavy workload systems and light workload systems 
respectively, named as ALR-MIN for Heavy Workload and 
ALR-MIN for Light Workload. 

A. Two Steps of ALT-MIN 
As shown in Figure 2, four periods of processing the kth

request in the system with dynamic deployment are: 
Suspended, UnDepoyment, Deployment, and Execution,
among which UnDeployment and Deployment are related 
to application replacement containing two steps: 1) selecting 
an appropriate node to deploy a requested application and 2) 
undeploying the selected applications to make room for the 
requested application (Section 2). 

Figure 2. Lifetime of the kth request. 

For the first step, the node with minimum average 
latency ratio of node (NALR) is chosen to place the 
requested application. is defined as the increment of 
ALR, caused by the undeployment of all applications on the 
i

iNALR

th node. The node with minimum NALR is probably the 
node where the least useful applications deployed. Let iL
be the latency ratio at the time of t2(k) and iL the latency 
ratio at the time of t3(k). Suppose all applications on the ith
node are undeployed during the time from t2(k) to t3(k). 
Then  can then be obtained by iNALR i iL L .

327327327327



For the second step, the application(s) with the minimum 
increment of ALR on the selected node are chosen to be 
evicted. Let  denote the ALR just before the 

undeployment of the j
jl

th application, and let jl denote the 
ALR after the undeployment of the jth application. The 
increment of the ALR caused by evicting the jth application
is .j jl l

According to the above definitions and calculations, the 
following equation can be obtained to formulate the 
increment of the ALR for evicting the jth application: 

1

m

i i i j j j
j

NALR L L l l P   (4) 

Let J  be the set of applications that have been deployed 
on the ith node. For j J , the number of application 
replicas in the system does not change during the time from 
t2(k) to t3(k). So, it can be considered that j jl l is
approximately true. Then the following equation can be 
derived from (4): 

i i j j j
j J

L L l l P { | 1}j
iJ j c

1

1

1

j
j m

j
j

I
P

I

      (5) 

where has been defined in equation (1). So, the key 
problem to get the predicted value of 

j
ic

i iL L  is how to 
calculate the value of (described in section 4.B and 
4.C).  The estimated ALR of the j

jl l j

th application is determined 
by 

( )j j
j j j

j j

W V
l M M

E E
B

   (6) 

Here, we assume that the time to transfer the application 
package is the major part of . Otherwise, jW jV B  can be 

replaced with ( ) (jV B deployment time of application)

j

.
Note that The probability of invoking miss is generally 

determined by matrix C , the sequence of requests, and the 
workload of the system. In section 4.B and 4.C, the method 
to obtain will be given. jl l

B. ALT-MIN for Heavy Workload 
In the case of a heavy workload, jM (the probability of 

invoking miss of the jth application) is considered 

approximately proportional to 1
jc

n
, when a request for 

the jth application comes. Since the system is busy, it is 
common that a request is suspended for a period of time 
before being scheduled to a node. Obviously, it is a small 
probability event that two nodes would become idle at the 
same time. In most cases, a request can only obtain at the 
most idle node, after waiting for a certain time. Here, the 
node that becomes idle is referred to as a released node. So, 

the value of jM is approximately the probability of the 
released node being a raw node. This probability depends 
on the workload of each node. Based on the fact of a heavy 
workload, we assume that each node has a similar workload. 
So, a busy node is considered to be randomly released. The 
probability of the released node being a raw node is 

approximately 1
jc

n
. The latency ratio of the current 

request is 
(1 ) ( )

j

j

j
j

c V B
nl

E
. If the jth application is 

selected and replaced, the new latency ratio is 
1(1 ) ( )

j

j

j
j

c V B
nl

E
. The increment of the latency ratio 

of the jth application is 
1 ( )j

j j
j

V B
nl l

E     (7) 

C. ALT-MIN for Light Workload 
In the case of a light workload, jM here is considered 

approximately proportional to 1
jc

idlen
n

. is the 

number of idle nodes when a request comes. We assume 
that the workload is randomly scattered on the nodes. The 
probability of each node being busy is approximately equal 

to

idlen

1 idlen
n

. For the jth application with jc replicas, the 

probability of all nodes installed with the jth application

being busy at the same time is 1
jc

idlen
n

. The latency 

ratio of the current request is 
1 (

jc

idle
j

j
j

n
V B

n
l

E

)
. If the 

jth application is selected and replaced, the new latency ratio 

is

( 1)

1 (

jc

idle
j

j
j

n
V B

n
l

E

)
. The increment of the latency 

ratio of the jth application is 
1

1 (
jc

idle idle
j

j j
j

n n V B
n n

l l
E

)
  (8) 

If the workload is extremely heavy, is then 
approximately 1. Considering , we can obtain: 

idlen
1jn c

11 1 11 ( ) ( )

jc

j j

j j
j j

V B V Bn n nl l
E E      

(9) 
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which is the value of in equation (7). So, the heavy 
workload can be considered as a special case of a light 
workload. 

jl l j

j

V. EVALUATING TWO ALR-MIN STRATEGIES

We evaluate our ALR-MIN strategies for application 
replacement by performing a series of simulations on a well-
designed simulator. Our two ALR-MIN strategies (for 
heavy and light workload systems respectively) are 
compared to each other and also with other two commonly 
used LRU-based strategies: Random-LRU and Cooperative-
LRU.

In the rest of the section, the two LRU-based strategies 
to be compared with our strategies are described in Section 
5.A. Our simulation methodology is discussed in Section 
5.B, including the design of the simulator and the simulation 
settings. Last, in Section 5.C, the detailed simulation results 
are discussed. 

A. Two LRU-based Strategies 
As mentioned in Section 2, when a request comes and 

none of the nodes have enough space to install the requested 
application, a application replacement strategy should take 
the following steps: 1) determine which node is selected to 
install the new application, 2) determine which installed 
applications of the selected node should be undeployed in 
order to make enough space for the new requested 
application. To study the performance improvement of 
applying our ALR-MIN strategies, Random-LRU and 
Cooperative-LRU are two LRU-based strategies to be 
compared with our ALR-MIN strategies.  

The Random-LRU strategy exploits a simple 
approach of randomness to select a node in the first 
step. When an invoking miss occurs, a node is 
chosen randomly from the pool of idle nodes to 

place the new application. In the second step, LRU is 
called to choose applications to be evicted. 
Applications with the oldest (i.e., minimum) Last 
Access Time (LAT) are chosen to be evicted. 
Cooperative-LRU selects an appropriate node to put 
the new application on in the first step. The node 
with the minimum Last Access Time of Node 
(NLAT) is chosen to deploy the new application. 
NLAT is defined as the weighted arithmetic mean of 
application LATs on the node: 

1

m
j

i i j
j

NLAT c V LAT

where j  is the identifier of the application, and i
is the identifier of the specified node to deploy the 
new application. In the second step, the 
Cooperative-LRU employs the method of LRU, 
which is similar to Random-LRU. 

B. Simulation Methodology 
A simulator has been developed to evaluate the ALR-

MIN strategies, which is composed of four components: 
Workload Generator, Virtual Resource, Job Scheduler, and 
Deployment Manager. The Workload Generator generates a 
sequence of synthetic requests. The Virtual Resource 
records the status of virtual resources: providing the 
information of where an application has been deployed and 
whether a job is running on a specified resource. Since the 
study of scheduling strategy is beyond the scope of this 
paper, the Job Scheduler of the simulator always randomly 
schedules the current job to resources and the requests are 
invariably processed with the order of their arrival times. If 
the requested application is not deployed on any idle nodes, 
the Deployment Manager then applies the ALR-MIN 
strategies.

TABLE I. DETAILED SETTING IN SIMULATIONS

PARAMETERS ABBR. VALUES
Application Number M 128
Total Job Number - 27000 
Node Number N 32
Workload(idle ratio) - Heavy[0-0.1] medium (0.1-0.9) Light[0.9-1] 
Mean Interval of requests for the Most Popular 
Application

MIMPA 10 200 2000

Disk Space Ratio DSR [0.016:0.008:0.64] [0.016:0.008:0.32] [0.016:0.008:0.16] 
Application Average Request Interval I [MIMPA : MIMPA : MIMPA*M] 
Application Arrival Rate  AAR Followed a Zipf-like distribution 
Average Ratio of Deployment time to Execution time ARDE [0.05:0.05:1] 
Application Size - Followed a random distribution with mean 500 
Application Average Execution Time  E Followed a random distribution with mean 500 
Job interval distribution of the same application - Followed an exponential distribution with mean Ii, which is the average request 

interval of requests for the ith application. 
Job execution time distribution of the same application - Followed an exponential distribution with mean Ei, which is the average 

execution time of requests for the ith application. 

Our simulator is highly configurable. First, the workload 
of the simulator is synthetic and configurable. The Idle ratio
of the system is defined to be the average ratio of idle nodes 

over all the nodes, which is then used to classify the 
system’s workload into three levels: heavy, medium, and 
light. By adjusting the application arrival rate (AAR), all 
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three workload levels can be achieved. AAR is the mean 
arrival rate of requests for an application and it should be 
integer times of the Mean Interval of requests for the Most 
Popular Application (MIMPA). Second, the disk space ratio
(DSR) of the nodes is configurable. It equals the ratio of 
space available on each node to the total size of all 
applications. Third, the Average Ratio of Deployment time 
to Execution time (ARDE) of all applications is configurable. 
It represents the relative overhead of application deployment. 
The combination of AAR, DSR and ARDE can 
approximately represent the setting of the simulations. So, 
we define the triple set of [AAR, DSR, ARDE] to represent 
the simulation setting. 

Table 1 shows the detailed settings of the important 
system parameters of the simulations. The expression of 
[X:Y:Z] in Column 3, Table 1 indicates that values of a 
parameter varies from X to Z with the interval of Y. The 
values of the parameters were selected according to the 

following principles. First, some are from our experiences 
on actual research environments, including Application 
Number, MIMPA, Workload(idle ratio), Application Size, 
Application Average Execution Time and Node Number. 
Second, some of them (e.g., Total Job Number) are 
maximized to the tolerable limit in the simulation. Third, 
some numbers are set to vary within a certain range to show 
the scalability of proposed policies, such as DSR, 
Application Average Request Interval and ARDE. Fourth, 
some parameters are assumed to follow a specific 
distribution. For example, the Application Arrival Rate is 
assumed to follow Zipf-like distribution, because the access 
frequency of an entity is usually considered to be inversely 
proportional to its rank in the frequency table. Finally, the 
Mean interval time and mean execution time of the requests 
is obtained by calculating the weighted arithmetic mean of 
the last ten requests for a specified application. 
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Figure 3. Performance of heavy workload. 

C. Simulation Results 
Figure 3 shows the performance of the four strategies 

(i.e., Random-LRU, Cooperative-LRU, ALR-MIN for 
Heavy Workload, and ALR-MIN for Light Workload) in the 
situation of heavy workload with the MIMPA being 10. 
Figure 3(a) and Figure 3(b) have the same setting of [10, 
0.16, *], where * means that the ARDE varies from 0 to 1. 
The idle ratio of the four strategies is presented in Figure 
3(a) with ARDE as the horizontal axis. For four strategies, 
we can observe that the percentages of idle nodes are all 
about 1.7%. Figure 3(b) shows the average latency ratio
(ALR) with the same setting in Figure 3(a). The vertical axis 
is the ALR. We can observe from this figure that the 
performance of Random-LRU and Cooperative-LRU are 
similar and consistently and significantly worse than that of 
ALR-MIN for Heavy Workload and Light Workload. Figure 
3(c) presents the ALR of various DSR with the setting of 
[10, *, 0.2], where * means that the DSR varies from 0.016 
to 0.64 (the range is specified in Table 1). When the space 
becomes more sufficient and therefore less replacement is 

required, the performances of the four strategies are closer 
to each other. 

Random-LRU only takes the access frequency of 
applications into account and Cooperative-LRU neglects the 
number of replicas and the average execution time of 
applications. Different sizes produce different time costs of 
deployment. The number of replicas affects the probability 
of deployment for an application. The average execution 
time of an application is one of the major factors that 
determine the ALR. ALR-MIN can evaluate the result of 
choosing different nodes and applications during 
deployment and undeployment according to the access 
frequency, size, number of replicas, and average execution 
time. Thus, the ALR-MIN strategy is able to select the node 
or application that can minimize the increment of ALR. 

Figure 4 shows the performance of the four strategies in 
the situation of a medium workload with the MIMPA being 
200. Figures 4(a) and 4(b) have the same setting of [200, 
0.064, *]. As shown in Figure 4(a), the percentage of idle 
nodes is within the range from 35% to 50%. It can be 
observed from Figure 4(b) that the ALR of ALR-MIN for 
Light Workload has the lowest percentage. In Figure 4(c), 
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the details of the ALR of the medium workload are 
presented with the setting of [200, *, 0.2]. When the disk 
space ratio is less than 0.244, ALR-MIN for Light 

Workload always outperform other three strategies. For a 
medium workload, the ALR-MIN for Light Workload is 
better than LRU-based strategies. 
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Figure 4. Performance of medium workload. 

Figure 5 shows the performance of the four strategies in 
the situation of a light workload with the MIMPA being 
2000. Figures. 5(a) and 5(b) have the setting of [2000, 0.04, 
*]. As shown in Figure 5(a), the percentage of idle nodes is 
more than 90%. Figure 5(b) shows that ALR-MIN for Light 
Workload yields the lowest ALR, and Random-LRU gives 
the highest. Figure 5(c) presents the detailed ALR with a 
setting of [2000, *, 0.2]. It can also be seen from Figure 5(c) 
that the ALR-MIN for Light Workload is the best. 

Based on the results presented in Figure 3, Figure 4, and 
Figure 5, we can conclude that our ALR-MIN strategies can 

result in a shorter average delay-time of jobs than the two 
LRU-based strategies in most cases. ALR-MIN for Heavy 
Workload is suitable for heavy workload systems. ALR-
MIN for Light Workload can always give the best or near-
best average latency ratio among the four strategies. With a 
typical setting of ARDE being 0.4 and DSR being 0.04, the 
ALR-MIN can reduce the ALR by 18% (light workload), 
14% (heavy workload) and 19% (medium workload), 
compared with LRU-based strategies. Thus, the average 
ALR improvement of all workloads can be 17%. 
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Figure 5. Performance of light workload. 

VI. RELATED WORKS

Existing studies about dynamic deployment of 
applications in grid have been discussed in Section 1. In this 
section, we discuss what the existing studies have done in 
term of application replacement. 

A LRFU-based replacement strategy is exploited in 
DAG-Condor [10] to keep useful files in disk. However, 
LRFU is not good enough since it does not address the 
multi-cache problem.  

Local cache replacement strategies have been 
investigated for a long time, especially in virtual storage. 
Traditionally and frequently used schemes include ARC 
[12], FIFO, LRU, LFU, LRU-2, 2Q, LIRS, FBR and MQ. 
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The main drawback of these strategies is that they cannot 
deal with the case where sizes and miss costs of cache 
objects are nonuniform. Nonuniform-cost local replacement 
has also been addressed by some strategies, such as BCL, 
DCL and ACL proposed by Jaeheon [13], and Lowest-
latency-first [14]. Their main drawback is that two cache 
objects with the same miss cost but different size are treated 
equally. For applications in this paper, the miss cost of an 
application is not always proportional to its size. The miss 
cost of an application may be determined by not only its size 
but also the deployment or installation time cost. So, for 
applications with same miss cost, those applications with 
bigger size should be swapped out first. Thus, more space 
can be freed for new applications. 

Other nonuniform-cost schemes (e.g., LRU-Threshold 
[15]) neglect the fetch cost of a block. GreedDual-Size [16] 
is only helpful in the case of single cache space. 

Some other studies (e.g., [17], [18]) exploit cooperative 
strategy to solve multi-cache problems. However, they do 
not address the problem of where to put the requested data. 

The data replication strategies (e.g., [19], [20]) in P2P 
Networks is similar to the application replication in our 
work. However, the optimization objective in our study is to 
decrease the miss rate, which is different from their 
objective. 

VII. CONCLUSION

The traditional way of deploying applications - statically 
deploying applications to a pre-selected subset of computing 
nodes, in some cases, may utilize resources unbalancedly 
and lead to the overall performance of the system very low. 
Dynamic deployment is therefore a desirable way to handle 
this problem. In this paper, we propose two ALR-MIN 
replacement strategies, for heavy workload and light 
workload respectively to reduce the overhead caused by 
such a dynamic deployment approach. These two strategies 
select the node with the least estimated NALR to deploy a 
new application and select the old applications with the least 
estimated increment of ALR to be evicted for the node to 
make room for the new application. 

A configurable simulator was developed and a set of 
simulations were conducted to evaluate our ALR-MIN 
application replacement strategies by comparing them with 
two commonly applied LRU-based strategies. The 
simulation results show that our ALR-MIN strategies (both 
for heavy and light workload) can result in a lower relative 
delay-time of jobs, compared with two traditional LRU-
based strategies. ALR-MIN results in 17% less delay-time 
of jobs than the two LRU-based strategies with a typical 
setting of ARDE being 0.4 and DSR being 0.04. 
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