
ALR-MIN: A Replacement Strategy to Reduce Overhead during Dynamic
Deployment of Applications in Grid

Chen Gang, Yongwei Wu, Jia Liu, Rui Fang, Guangwen Yang, Weimin Zheng
Department of Computer Science and Technology;

Tsinghua National Laboratory for Information Science and Technology
Tsinghua University Beijing 100084, China

c-g05@mails.tsinghua.edu.cn, wuyw@tsinghua.edu.cn, liu-jia04@mails.tsinghua.edu.cn,
fangr06@mails.tsinghua.edu.cn, ygw@tsinghua.edu.cn, zwm-dcs@tsinghua.edu.cn

Abstract—Many applications of existing grid systems are
usually deployed on grid nodes in a static manner. Grid
computing nodes with highly demanded applications deployed
on are always busy; while the others are idle. If these
applications could be dynamically deployed on idle nodes, the
system performance would be greatly improved. However, the
overhead (e.g., package download) caused by dynamic
deployment in existing studies may be so much that the system
performance is seriously degraded. It is because existing
studies on dynamic deployment of applications do not exploit
an application replacement strategy to deploy or undeploy
applications. In this paper, we propose an application
replacement strategy, the Average Latency Ratio Minimum
(ALR-MIN) strategy. With this strategy, an application is
either deployed or evicted, considering the minimum ALR of a
Node (NALR). A series of simulations have been performed
and their results demonstrate that the ALR-MIN strategy
results in 17% less relative delay-time of jobs than the well-
known Least Recently Used based (LRU-based) strategies with
a typical setting.

Keywords-Grid Computing; Resource management; Dynamic
deployment; Replacement strategy; System performance

I. INTRODUCTION

Grid computing [1] is to build a computational
infrastructure through resource sharing and coordinating
among Virtual Organization (VO) participants. Many
applications (e.g., services and software) and resources (e.g.,
computer nodes and storage devices) have already been
integrated into various grid projects such as TeraGrid,
EGEE, NorduGrid, and ChinaGrid [2]. Normally an
application is statically deployed to a pre-selected subset of
computing nodes. This kind of strategy is referred to as
Static Deployment of Application (SDA). Nodes with
highly demanded applications may receive requests over
their capability to handle, in which case it is very easy to
encounter the situation that some nodes are always busy,
while the others are unoccupied. Therefore the overall
performance (e.g., throughput and load balancing) of a grid
with the SDA strategy would be seriously degraded. If
highly demanded applications could be dynamically
deployed on idle nodes, the system’s performance would be
greatly improved.

The following aspects may influence the design of an
application replacement strategy. 1) The overhead caused by

dynamic deployment of applications is perhaps too
significant so that the overall performance of the system
may be seriously degraded because of this. 2) The capacity
of a computing node is normally limited. 3) It is impossible
to keep all the applications in the local system consistently.
4) Some of applications have to be replaced to make room
for a new application and therefore applications may be
deployed or undeployed repeatedly. 5) In the case of
applications with big size, the overhead of dynamic
deployment may be too much to be acceptable. For example,
Blast, the well-known bioinformatics application, always
needs a protein or nucleotide database whose size is
normally several million bytes; therefore it takes long time
to transfer and install the database and software packages of
Blast.

Most of the existing studies (e.g., [3], [4], [5], [6], [7],
and [8]), addressing the problem of dynamic application
deployment in grid, do not focus on application replacement
strategies. [3] proposes an integrated framework, named
CINWEGS, for dynamically deployment. [4] presents an
architecture to deploy visualization services dynamically.
However, they both do not include an application
replacement strategy. The approaches proposed in [5], [6],
and [7] dynamically deploy Web Services to containers
without using a replacement strategy. An on-demand
deployment strategy for scientific applications is proposed
in [8] in order to reduce administrators’ workload.
DynaGrid [9] does not require a replacement strategy since
the approach cannot undeploy older services when capacity
limitation is reached. DAG-Condor [10] exploits a
LRFU(Least Recently/Frequently Used)-based replacement
strategy, which does not address the problem of multi-cache
problem. In multi-cache problem, one of the catches has to
be selected before a cache object is placed or evicted.

The Application Contents Service Working Group
(ACS-WG) in Open Grid Forum has proposed a
specification [11] to standardize application management in
a grid environment, which makes it possible to combine
ACS-WG and the specifications (e.g., CDDLM-FND,
CDDLM-SF and CDDLM-CDL) from the CDDLM-WG to
realize dynamic deployment of applications. However, these
specifications do not take into account of application
replacement strategies.

2009 Eighth IEEE International Conference on Embedded Computing; IEEE International Conference on Scalable Computing and Communications

978-0-7695-3825-9/09 $26.00 © 2009 IEEE

DOI 10.1109/EmbeddedCom-ScalCom.2009.65

325

2009 Eighth IEEE International Conference on Embedded Computing; IEEE International Conference on Scalable Computing and Communications

978-0-7695-3825-9/09 $26.00 © 2009 IEEE

DOI 10.1109/EmbeddedCom-ScalCom.2009.65

325

2009 Eighth IEEE International Conference on Embedded Computing; IEEE International Conference on Scalable Computing and Communications

978-0-7695-3825-9/09 $26.00 © 2009 IEEE

DOI 10.1109/EmbeddedCom-ScalCom.2009.65

325

International Conference on Scalable Computing and Communications; The Eighth International Conference on Embedded Computing

978-0-7695-3825-9/09 $26.00 © 2009 IEEE

DOI 10.1109/EmbeddedCom-ScalCom.2009.65

325

In this paper, we propose a replacement strategy, called
ALR-MIN, to reduce the overhead of dynamic deployment.
With this strategy, the node to deploy an application on and
the applications to be evicted for the node are carefully
chosen to reduce the Average Latency Ratio (ALR). The
strategy contains a set of evaluation functions to predict and
compare the increment of the ALR. The node with the
minimum predicted ALR is chosen to hold a new
application and the old applications with the minimum
predicted ALR on this node may be chosen to be swapped
out to make room for the new application.

Followings are two differences between ALR-MIN
strategy and LRU-based strategy. First, ALR-MIN strategy
is capable of identifying both the applications which should
be evicted and the node where the new application should
be placed. However, LRU-based strategies can only identify
the applications to be evicted. Second, ALR-MIN strategy
can select node and application according to the information
including application access frequency, application
packages size, application replicas number and average
execution time of application jobs. However, LRU-based
strategy does not take these information into account.

More specifically, the following contributions are
achieved in this paper:

The application replacement problem is formalized.
Based on that, two ALR-MIN replacement strategies
are proposed to reduce the ALR for both Heavy
Workload and Light Workload respectively.
The ALR-MIN strategy is evaluated and our
simulation results show that the jobs with ALR-MIN
strategy took the least relative delay-time to
complete, compared with other two LRU-based
strategies.

The rest of the paper is organized as follows. In Section
2, we briefly introduce the dynamic deployment of
applications, followed by the formalization of the
application replacement problem in the context of dynamic
deployment (Section 3). Section 4 presents two ALR-MIN
strategies for heavy load and light load systems respectively.
Section 5 examines the performance of the ALR-MIN and
two traditional LRU-based strategies. Related work is
discussed in Section 6. Last, we draw a conclusion in
Section 7.

II. DYNAMIC DEPLOYMENT OF APPLICATIONS

An overview of the dynamic deployment of applications
is presented in Figure 1, in which the Application
Repository of the local grid domain and its Computing
Nodes play key roles. The Application Repository
stores application packages available to users in its storage
devices. Its contained application packages (e.g., A, B, and C)
are composed of either binary or source files, which can be
transferred to and installed on the computing nodes. As
shown in Figure 1, there are seven application packages (i.e.,
A-F) in the storage devices of the Application
Repository. The width of an application’s block (e.g.,
block ‘A’) roughly indicates the size and access frequency
of the application. Each computing node has fixed space to

be occupied by the application packages. For example, in
Figure 1, the applications A and B have been installed in the
Computing Node 1 (two grey blocks), which still have
some space unoccupied (i.e., the white area). Using Figure 1
as an example, we describe the procedure of our proposed
dynamic deployment as follows:

Figure 1. Dynamic deployment of applications.

When a request for the application F comes, the
scheduler of the system fails to find any replica of the
application F on all available nodes (not deploying the
requested application) termed as raw node in this paper.
This situation is referred to as invoking miss, in which case,
the scheduler suspends the request for the application F. As
shown in Figure 1, the computing node 1 has sufficient
space to place application F, the Deployment Manager is
then invoked to transfer the application package of F and
install it on the node 1. When the transfer and installation
are completed, the scheduler resumes the suspended request
for the application F and schedules it to the node 1.

When a request for the application G comes, none of the
nodes have enough space to install it since none of the nodes
have sufficient space. In such case, the system takes the
following actions: first, it selects an appropriate node from
all available nodes by following the application replacement
strategy (Section 4); second, some of the deployed
applications on the selected node are undeployed to release
resource of the node. For example, if the node 3 is chosen as
the node to deploy application G, then the system undeploys
the applications A and D to make room for the application G.
These two actions are the major steps of our application
replacement strategy.

III. REPLACEMENT PROBLEM

As previously discussed, when a request comes and none
of the nodes have enough space to install the requested
application, then a strategy should be applied to determine
which node is selected to install the application and which
installed applications of the selected node should be
undeployed in order to make enough space for the newly
requested application. The application replacement strategy
has a significant impact on the overhead of the system. In
this section, we formalize the application replacement
problem by formally specify the preliminaries of the
strategy (Section 3.A) and the optimization objective
(Section 3.B).

326326326326

A. Preliminaries
Notations used through this paper are defined as follows:
n = number of computing nodes.
m = number of applications.
K = the total number of requests.

1 2 nS: {S ,S , ,S } = a set of computing nodes.

1 2 mA:{A ,A , ,A } = a set of applications.
1 2

jR :{ , , , }jk
j j jR R R = a set of requests for the jth

application. The number of requests for the jth application is
.jk

iV = the size of ith application package.
D = the available size of disk space on a node.
B = the bandwidth.

jE = the average execution time of requests for the jth

application.
jW = be the time cost of the deployment of the jth

application.
jP = the probability of the jth application is requested.

jM = the probability of invoking miss, when a request
for the jth application comes.

jI = the average interval time of user requests for the jth

application.
jL = the ALR of all requests for the jth application.

The following matrix is defined to denote the
distribution of applications on the nodes:

1 2

1 2
1 1 1 1

1 2
2 2 2 2

1 2

m

m

m

m
n n n n

A A A

S c c c
C S c c c

S c c c (1)

0
1

j ij
i

j i

A has not been deployed on S
c

A has been deployed on S
The ith row in the matrix means the array of the

deployment status for all applications on the i
C

th node, and
the jth column in the matrix C means the array of the
deployment status of the jth application on all nodes. Since
there is no reason to have more than one copy of the same
application on a single node, the value of the entry must
be either 0 or 1. The number of replicas of the j

j
ic

th application

on all nodes can be obtained by
1

n
j j

i
i

c c .

B. Optimization Objective
It is not desirable for grid users to wait long time before

their requested applications to be deployed; therefore the
optimization objective of dynamic deployment is to
minimize the time cost of deployment. To formalize the
optimization problem, we define the latency ratio of a

request as w
e

, where is the time taken for the completion

of the deployment of an application and e is the time cost
of the execution of the application. The average latency
ratio of all jobs is then defined as

w

1

1

m
j

j mj j
j j

j

W
k

E
ALR L P

K (2)
where jL is the ALR of all requests for the jth application;

is the execution time of the kk
je th request for the jth

application. The optimization objective is therefore
formulated as:

: (Objective Minimize ALR)

1
1

:
m

j
i j

j

Strict To c V D i n (3)

IV. ALR-MIN REPLACEMENT STRATEGIES

Most traditional replacement strategies are LRU-based
and they can hardly minimize the ALR of jobs. In this
section, we propose two strategies to minimize the ALR for
heavy workload systems and light workload systems
respectively, named as ALR-MIN for Heavy Workload and
ALR-MIN for Light Workload.

A. Two Steps of ALT-MIN
As shown in Figure 2, four periods of processing the kth

request in the system with dynamic deployment are:
Suspended, UnDepoyment, Deployment, and Execution,
among which UnDeployment and Deployment are related
to application replacement containing two steps: 1) selecting
an appropriate node to deploy a requested application and 2)
undeploying the selected applications to make room for the
requested application (Section 2).

Figure 2. Lifetime of the kth request.

For the first step, the node with minimum average
latency ratio of node (NALR) is chosen to place the
requested application. is defined as the increment of
ALR, caused by the undeployment of all applications on the
i

iNALR

th node. The node with minimum NALR is probably the
node where the least useful applications deployed. Let iL
be the latency ratio at the time of t2(k) and iL the latency
ratio at the time of t3(k). Suppose all applications on the ith
node are undeployed during the time from t2(k) to t3(k).
Then can then be obtained by iNALR i iL L .

327327327327

For the second step, the application(s) with the minimum
increment of ALR on the selected node are chosen to be
evicted. Let denote the ALR just before the

undeployment of the j
jl

th application, and let jl denote the
ALR after the undeployment of the jth application. The
increment of the ALR caused by evicting the jth application
is .j jl l

According to the above definitions and calculations, the
following equation can be obtained to formulate the
increment of the ALR for evicting the jth application:

1

m

i i i j j j
j

NALR L L l l P (4)

Let J be the set of applications that have been deployed
on the ith node. For j J , the number of application
replicas in the system does not change during the time from
t2(k) to t3(k). So, it can be considered that j jl l is
approximately true. Then the following equation can be
derived from (4):

i i j j j
j J

L L l l P { | 1}j
iJ j c

1

1

1

j
j m

j
j

I
P

I

 (5)

where has been defined in equation (1). So, the key
problem to get the predicted value of

j
ic

i iL L is how to
calculate the value of (described in section 4.B and
4.C). The estimated ALR of the j

jl l j

th application is determined
by

()j j
j j j

j j

W V
l M M

E E
B

 (6)

Here, we assume that the time to transfer the application
package is the major part of . Otherwise, jW jV B can be

replaced with () (jV B deployment time of application)

j

.
Note that The probability of invoking miss is generally

determined by matrix C , the sequence of requests, and the
workload of the system. In section 4.B and 4.C, the method
to obtain will be given. jl l

B. ALT-MIN for Heavy Workload
In the case of a heavy workload, jM (the probability of

invoking miss of the jth application) is considered

approximately proportional to 1
jc

n
, when a request for

the jth application comes. Since the system is busy, it is
common that a request is suspended for a period of time
before being scheduled to a node. Obviously, it is a small
probability event that two nodes would become idle at the
same time. In most cases, a request can only obtain at the
most idle node, after waiting for a certain time. Here, the
node that becomes idle is referred to as a released node. So,

the value of jM is approximately the probability of the
released node being a raw node. This probability depends
on the workload of each node. Based on the fact of a heavy
workload, we assume that each node has a similar workload.
So, a busy node is considered to be randomly released. The
probability of the released node being a raw node is

approximately 1
jc

n
. The latency ratio of the current

request is
(1) ()

j

j

j
j

c V B
nl

E
. If the jth application is

selected and replaced, the new latency ratio is
1(1) ()

j

j

j
j

c V B
nl

E
. The increment of the latency ratio

of the jth application is
1 ()j

j j
j

V B
nl l

E (7)

C. ALT-MIN for Light Workload
In the case of a light workload, jM here is considered

approximately proportional to 1
jc

idlen
n

. is the

number of idle nodes when a request comes. We assume
that the workload is randomly scattered on the nodes. The
probability of each node being busy is approximately equal

to

idlen

1 idlen
n

. For the jth application with jc replicas, the

probability of all nodes installed with the jth application

being busy at the same time is 1
jc

idlen
n

. The latency

ratio of the current request is
1 (

jc

idle
j

j
j

n
V B

n
l

E

)
. If the

jth application is selected and replaced, the new latency ratio

is

(1)

1 (

jc

idle
j

j
j

n
V B

n
l

E

)
. The increment of the latency

ratio of the jth application is
1

1 (
jc

idle idle
j

j j
j

n n V B
n n

l l
E

)
 (8)

If the workload is extremely heavy, is then
approximately 1. Considering , we can obtain:

idlen
1jn c

11 1 11 () ()

jc

j j

j j
j j

V B V Bn n nl l
E E

(9)

328328328328

which is the value of in equation (7). So, the heavy
workload can be considered as a special case of a light
workload.

jl l j

j

V. EVALUATING TWO ALR-MIN STRATEGIES

We evaluate our ALR-MIN strategies for application
replacement by performing a series of simulations on a well-
designed simulator. Our two ALR-MIN strategies (for
heavy and light workload systems respectively) are
compared to each other and also with other two commonly
used LRU-based strategies: Random-LRU and Cooperative-
LRU.

In the rest of the section, the two LRU-based strategies
to be compared with our strategies are described in Section
5.A. Our simulation methodology is discussed in Section
5.B, including the design of the simulator and the simulation
settings. Last, in Section 5.C, the detailed simulation results
are discussed.

A. Two LRU-based Strategies
As mentioned in Section 2, when a request comes and

none of the nodes have enough space to install the requested
application, a application replacement strategy should take
the following steps: 1) determine which node is selected to
install the new application, 2) determine which installed
applications of the selected node should be undeployed in
order to make enough space for the new requested
application. To study the performance improvement of
applying our ALR-MIN strategies, Random-LRU and
Cooperative-LRU are two LRU-based strategies to be
compared with our ALR-MIN strategies.

The Random-LRU strategy exploits a simple
approach of randomness to select a node in the first
step. When an invoking miss occurs, a node is
chosen randomly from the pool of idle nodes to

place the new application. In the second step, LRU is
called to choose applications to be evicted.
Applications with the oldest (i.e., minimum) Last
Access Time (LAT) are chosen to be evicted.
Cooperative-LRU selects an appropriate node to put
the new application on in the first step. The node
with the minimum Last Access Time of Node
(NLAT) is chosen to deploy the new application.
NLAT is defined as the weighted arithmetic mean of
application LATs on the node:

1

m
j

i i j
j

NLAT c V LAT

where j is the identifier of the application, and i
is the identifier of the specified node to deploy the
new application. In the second step, the
Cooperative-LRU employs the method of LRU,
which is similar to Random-LRU.

B. Simulation Methodology
A simulator has been developed to evaluate the ALR-

MIN strategies, which is composed of four components:
Workload Generator, Virtual Resource, Job Scheduler, and
Deployment Manager. The Workload Generator generates a
sequence of synthetic requests. The Virtual Resource
records the status of virtual resources: providing the
information of where an application has been deployed and
whether a job is running on a specified resource. Since the
study of scheduling strategy is beyond the scope of this
paper, the Job Scheduler of the simulator always randomly
schedules the current job to resources and the requests are
invariably processed with the order of their arrival times. If
the requested application is not deployed on any idle nodes,
the Deployment Manager then applies the ALR-MIN
strategies.

TABLE I. DETAILED SETTING IN SIMULATIONS

PARAMETERS ABBR. VALUES
Application Number M 128
Total Job Number - 27000
Node Number N 32
Workload(idle ratio) - Heavy[0-0.1] medium (0.1-0.9) Light[0.9-1]
Mean Interval of requests for the Most Popular
Application

MIMPA 10 200 2000

Disk Space Ratio DSR [0.016:0.008:0.64] [0.016:0.008:0.32] [0.016:0.008:0.16]
Application Average Request Interval I [MIMPA : MIMPA : MIMPA*M]
Application Arrival Rate AAR Followed a Zipf-like distribution
Average Ratio of Deployment time to Execution time ARDE [0.05:0.05:1]
Application Size - Followed a random distribution with mean 500
Application Average Execution Time E Followed a random distribution with mean 500
Job interval distribution of the same application - Followed an exponential distribution with mean Ii, which is the average request

interval of requests for the ith application.
Job execution time distribution of the same application - Followed an exponential distribution with mean Ei, which is the average

execution time of requests for the ith application.

Our simulator is highly configurable. First, the workload
of the simulator is synthetic and configurable. The Idle ratio
of the system is defined to be the average ratio of idle nodes

over all the nodes, which is then used to classify the
system’s workload into three levels: heavy, medium, and
light. By adjusting the application arrival rate (AAR), all

329329329329

three workload levels can be achieved. AAR is the mean
arrival rate of requests for an application and it should be
integer times of the Mean Interval of requests for the Most
Popular Application (MIMPA). Second, the disk space ratio
(DSR) of the nodes is configurable. It equals the ratio of
space available on each node to the total size of all
applications. Third, the Average Ratio of Deployment time
to Execution time (ARDE) of all applications is configurable.
It represents the relative overhead of application deployment.
The combination of AAR, DSR and ARDE can
approximately represent the setting of the simulations. So,
we define the triple set of [AAR, DSR, ARDE] to represent
the simulation setting.

Table 1 shows the detailed settings of the important
system parameters of the simulations. The expression of
[X:Y:Z] in Column 3, Table 1 indicates that values of a
parameter varies from X to Z with the interval of Y. The
values of the parameters were selected according to the

following principles. First, some are from our experiences
on actual research environments, including Application
Number, MIMPA, Workload(idle ratio), Application Size,
Application Average Execution Time and Node Number.
Second, some of them (e.g., Total Job Number) are
maximized to the tolerable limit in the simulation. Third,
some numbers are set to vary within a certain range to show
the scalability of proposed policies, such as DSR,
Application Average Request Interval and ARDE. Fourth,
some parameters are assumed to follow a specific
distribution. For example, the Application Arrival Rate is
assumed to follow Zipf-like distribution, because the access
frequency of an entity is usually considered to be inversely
proportional to its rank in the frequency table. Finally, the
Mean interval time and mean execution time of the requests
is obtained by calculating the weighted arithmetic mean of
the last ten requests for a specified application.

0.05 0.2 0.4 0.6 0.8 1

1.64

1.66

1.68

1.7

1.72

1.74

1.76

1.78

1.8

1.82

ARDE

W
or

kl
oa

d
(Id

le
 R

at
io

)

Random-LRU
Cooperative-LRU
ALR-MIN for Heavy Workload
ALR-MIN for Light Workload

%

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

ARDE

A
ve

ra
ge

 L
at

en
cy

 R
at

io

Random-LRU
Cooperative-LRU
ALR-MIN for Heavy Workload
ALR-MIN for Light Workload

0.016 0.172 0.328 0.484 0.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Disk Space Ratio

A
ve

ra
ge

 L
at

en
cy

 R
at

io

Random-LRU
Cooperative-LRU
ALR-MIN for Heavy Workload
ALR-MIN for Light Workload

(a) Workload (Idle Ratio) (b) ALR of various ARDE (c) ALR of various DSR

Figure 3. Performance of heavy workload.

C. Simulation Results
Figure 3 shows the performance of the four strategies

(i.e., Random-LRU, Cooperative-LRU, ALR-MIN for
Heavy Workload, and ALR-MIN for Light Workload) in the
situation of heavy workload with the MIMPA being 10.
Figure 3(a) and Figure 3(b) have the same setting of [10,
0.16, *], where * means that the ARDE varies from 0 to 1.
The idle ratio of the four strategies is presented in Figure
3(a) with ARDE as the horizontal axis. For four strategies,
we can observe that the percentages of idle nodes are all
about 1.7%. Figure 3(b) shows the average latency ratio
(ALR) with the same setting in Figure 3(a). The vertical axis
is the ALR. We can observe from this figure that the
performance of Random-LRU and Cooperative-LRU are
similar and consistently and significantly worse than that of
ALR-MIN for Heavy Workload and Light Workload. Figure
3(c) presents the ALR of various DSR with the setting of
[10, *, 0.2], where * means that the DSR varies from 0.016
to 0.64 (the range is specified in Table 1). When the space
becomes more sufficient and therefore less replacement is

required, the performances of the four strategies are closer
to each other.

Random-LRU only takes the access frequency of
applications into account and Cooperative-LRU neglects the
number of replicas and the average execution time of
applications. Different sizes produce different time costs of
deployment. The number of replicas affects the probability
of deployment for an application. The average execution
time of an application is one of the major factors that
determine the ALR. ALR-MIN can evaluate the result of
choosing different nodes and applications during
deployment and undeployment according to the access
frequency, size, number of replicas, and average execution
time. Thus, the ALR-MIN strategy is able to select the node
or application that can minimize the increment of ALR.

Figure 4 shows the performance of the four strategies in
the situation of a medium workload with the MIMPA being
200. Figures 4(a) and 4(b) have the same setting of [200,
0.064, *]. As shown in Figure 4(a), the percentage of idle
nodes is within the range from 35% to 50%. It can be
observed from Figure 4(b) that the ALR of ALR-MIN for
Light Workload has the lowest percentage. In Figure 4(c),

330330330330

the details of the ALR of the medium workload are
presented with the setting of [200, *, 0.2]. When the disk
space ratio is less than 0.244, ALR-MIN for Light

Workload always outperform other three strategies. For a
medium workload, the ALR-MIN for Light Workload is
better than LRU-based strategies.

0.05 0.2 0.4 0.6 0.8 1

36

38

40

42

44

46

48

ARDE

W
or

kl
oa

d
(Id

le
 R

at
io

)

Random-LRU
Cooperative-LRU
ALR-MIN for Heavy Workload
ALR-MIN for Light Workload

%

0.05 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

ARDE

A
ve

ra
ge

 L
at

en
cy

 R
at

io

Random-LRU
Cooperative-LRU
ALR-MIN for Heavy Workload
ALR-MIN for Light Workload

0.016 0.092 0.168 0.244 0.3
0

0.2

0.4

0.6

0.8

1

1.2

Disk Space Ratio

A
ve

ra
ge

 L
at

en
cy

 R
at

io

Random-LRU
Cooperative-LRU
ALR-MIN for Heavy Workload
ALR-MIN for Light Workload

(a) Workload (Idle Ratio) (b) ALR of various ARDE (c) ALR of various DSR

Figure 4. Performance of medium workload.

Figure 5 shows the performance of the four strategies in
the situation of a light workload with the MIMPA being
2000. Figures. 5(a) and 5(b) have the setting of [2000, 0.04,
*]. As shown in Figure 5(a), the percentage of idle nodes is
more than 90%. Figure 5(b) shows that ALR-MIN for Light
Workload yields the lowest ALR, and Random-LRU gives
the highest. Figure 5(c) presents the detailed ALR with a
setting of [2000, *, 0.2]. It can also be seen from Figure 5(c)
that the ALR-MIN for Light Workload is the best.

Based on the results presented in Figure 3, Figure 4, and
Figure 5, we can conclude that our ALR-MIN strategies can

result in a shorter average delay-time of jobs than the two
LRU-based strategies in most cases. ALR-MIN for Heavy
Workload is suitable for heavy workload systems. ALR-
MIN for Light Workload can always give the best or near-
best average latency ratio among the four strategies. With a
typical setting of ARDE being 0.4 and DSR being 0.04, the
ALR-MIN can reduce the ALR by 18% (light workload),
14% (heavy workload) and 19% (medium workload),
compared with LRU-based strategies. Thus, the average
ALR improvement of all workloads can be 17%.

0.05 0.2 0.4 0.6 0.8 1

93.5

94

94.5

95

95.5

ARDE

W
or

kl
oa

d
(Id

le
 R

at
io

)

Random-LRU
Cooperative-LRU
ALR-MIN for Heavy Workload
ALR-MIN for Light Workload

%

0.05 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

ARDE

A
ve

ra
ge

 L
at

en
cy

 R
at

io

Random-LRU
Cooperative-LRU
ALR-MIN for Heavy Workload
ALR-MIN for Light Workload

0.016 0.052 0.088 0.124 0.1
0

0.2

0.4

0.6

0.8

1

Disk Space Ratio

A
ve

ra
ge

 L
at

en
cy

 R
at

io

Random-LRU
Cooperative-LRU
ALR-MIN for Heavy Workload
ALR-MIN for Light Workload

(a) Workload (Idle Ratio) (b) ALR of various ARDE (c) ALR of various DSR

Figure 5. Performance of light workload.

VI. RELATED WORKS

Existing studies about dynamic deployment of
applications in grid have been discussed in Section 1. In this
section, we discuss what the existing studies have done in
term of application replacement.

A LRFU-based replacement strategy is exploited in
DAG-Condor [10] to keep useful files in disk. However,
LRFU is not good enough since it does not address the
multi-cache problem.

Local cache replacement strategies have been
investigated for a long time, especially in virtual storage.
Traditionally and frequently used schemes include ARC
[12], FIFO, LRU, LFU, LRU-2, 2Q, LIRS, FBR and MQ.

331331331331

The main drawback of these strategies is that they cannot
deal with the case where sizes and miss costs of cache
objects are nonuniform. Nonuniform-cost local replacement
has also been addressed by some strategies, such as BCL,
DCL and ACL proposed by Jaeheon [13], and Lowest-
latency-first [14]. Their main drawback is that two cache
objects with the same miss cost but different size are treated
equally. For applications in this paper, the miss cost of an
application is not always proportional to its size. The miss
cost of an application may be determined by not only its size
but also the deployment or installation time cost. So, for
applications with same miss cost, those applications with
bigger size should be swapped out first. Thus, more space
can be freed for new applications.

Other nonuniform-cost schemes (e.g., LRU-Threshold
[15]) neglect the fetch cost of a block. GreedDual-Size [16]
is only helpful in the case of single cache space.

Some other studies (e.g., [17], [18]) exploit cooperative
strategy to solve multi-cache problems. However, they do
not address the problem of where to put the requested data.

The data replication strategies (e.g., [19], [20]) in P2P
Networks is similar to the application replication in our
work. However, the optimization objective in our study is to
decrease the miss rate, which is different from their
objective.

VII. CONCLUSION

The traditional way of deploying applications - statically
deploying applications to a pre-selected subset of computing
nodes, in some cases, may utilize resources unbalancedly
and lead to the overall performance of the system very low.
Dynamic deployment is therefore a desirable way to handle
this problem. In this paper, we propose two ALR-MIN
replacement strategies, for heavy workload and light
workload respectively to reduce the overhead caused by
such a dynamic deployment approach. These two strategies
select the node with the least estimated NALR to deploy a
new application and select the old applications with the least
estimated increment of ALR to be evicted for the node to
make room for the new application.

A configurable simulator was developed and a set of
simulations were conducted to evaluate our ALR-MIN
application replacement strategies by comparing them with
two commonly applied LRU-based strategies. The
simulation results show that our ALR-MIN strategies (both
for heavy and light workload) can result in a lower relative
delay-time of jobs, compared with two traditional LRU-
based strategies. ALR-MIN results in 17% less delay-time
of jobs than the two LRU-based strategies with a typical
setting of ARDE being 0.4 and DSR being 0.04.

ACKNOWLEDGMENT

This Work is supported by ChinaGrid project of
Ministry of Education of China, Natural Science Foundation
of China (90412006, 90412011, 60573110, 90612016,
60673152), National Key Basic Research Project of China
(2004CB318000, 2003CB317007), and National High

Technology Development Program of China
(2006AA01A108 2006AA01A111 2006AA01A101).

REFERENCES

[1] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid:
Enabling Scalable Virtual Organizations," International Journal of
High Performance Computing Applications, vol. 15, p. 200, 2001.

[2] Y. W. Wu, S. Wu, H. S. Yu, and C. M. Hu, "Introduction to
ChinaGrid support platform," in Parallel and Distributed Processing
and Applications - Ispa 2005 Workshops. vol. 3759 Berlin: Springer-
Verlag Berlin, 2005, pp. 232-240.

[3] D. Diwakar and S. Diwakar, "CINWEGS-an integrated Web and grid
services framework for collaborative solutions," 2008 4th
International Conference on Next Generation Web Services Practices,
pp. 21-7, 2008.

[4] L. FuQiang, G. Bin, X. Cheng, and M. Yan, "Dynamic visualization
service deployment in grid scientific workflow," 2008 Seventh
International Conference on Grid and Cooperative Computing, pp.
201-5, 2008.

[5] L. Qi, H. Jin, I. Foster, and J. Gawor, "HAND: Highly Available
Dynamic Deployment Infrastructure for Globus Toolkit 4," in Parallel,
Distributed and Network-Based Processing, 2007. PDP '07. 15th
EUROMICRO International Conference on, 2007, pp. 155-162.

[6] L. Pu and M. J. Lewis, "Uniform Dynamic Deployment of Web and
Grid Services," in Web Services, 2007. ICWS 2007. IEEE
International Conference on, 2007, pp. 26-34.

[7] P. Watson, C. Fowler, C. Kubicek, A. Mukherjee, J. Colquhoun, M.
Hewitt, and S. Parastatidis, "Dynamically deploying Web services on
a grid using Dynasoar," in Object and Component-Oriented Real-
Time Distributed Computing, 2006. ISORC 2006. Ninth IEEE
International Symposium on, 2006, p. 8 pp.

[8] M. Siddiqui, A. Villazon, J. Hofer, and T. Fahringer, "GLARE: A
Grid Activity Registration, Deployment and Provisioning
Framework," in Supercomputing, 2005. Proceedings of the
ACM/IEEE SC 2005 Conference, 2005, pp. 52-52.

[9] E. K. Byun and J. S. Kim, "DynaGrid: A dynamic service deployment
and resource migration framework for WSRF-compliant
applications," Parallel Computing, vol. 33, pp. 328-338, 2007.

[10] S. Shankar and D. J. DeWitt, "Data Driven Workflow Planning in
Cluster Management Systems," in Proceedings of the 16th IEEE
International Symposium on High Performance Distributed
Computing Monterey, California, USA, 2007.

[11] "Application Contents Service Specification 1.0,"
http://www.ogf.org/documents/GFD.73.pdf

[12] N. Megiddo and D. S. Modha, "Outperforming LRU with an adaptive
replacement cache algorithm," Computer, vol. 37, pp. 58-+, 2004.

[13] J. H. Jeong and M. Dubois, "Cache replacement algorithms with
nonuniform miss costs," Ieee Transactions on Computers, vol. 55, pp.
353-365, 2006.

[14] R. P. Wooster and M. Abrams, "Proxy caching that estimates page
load delays," Computer Networks and Isdn Systems, vol. 29, pp. 977-
986, 1997.

[15] M. Abrams, S. Dept. of Computer, I. Virginia Polytechnic, and U.
State, "Caching Proxies: Limitations and Potentials," in Proc. of 4th
International World Wide Web Conference, 1995.

[16] P. Cao and S. Irani, "Cost-aware WWW proxy caching algorithms,"
in Proceedings of the USENIX Symposium on Internet Technologies
and Systems Monterey, CA,: USENIX Assoc, 1997, pp. 193-206.

[17] H. P. Hung and M. S. Chen, "On designing a shortest-path-based
cache replacement in a transcoding proxy," Multimedia Systems, vol.
15, pp. 49-62, 2009.

[18] Y. W. Zhu and Y. M. Hu, "Exploiting client caches to build large
Web caches," Journal of Supercomputing, vol. 39, pp. 149-175, 2007.

[19] E.Cohen and S.Shenker, "Replication strategies in unstructured peer-
to-peer networks," in In Proceedings of ACM SIGCOMM'02, 2002.

[20] S. Tewari and L. Kleinrock, "Proportional Replication in Peer-to-Peer
Networks," in INFOCOM 2006. 25th IEEE International Conference
on Computer Communications. Proceedings, 2006, pp. 1-12.

332332332332

