Session 9A: Persistent data structures — Keep all cats in mind!

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

AsymNVM: An Efficient Framework for
Implementing Persistent Data Structures on

Asymmetric NVM Architecture

Teng Ma
mt16@mails.tsinghua.edu.cn
Tsinghua University
Beijing, China

Mingxing Zhang
zhang.mingxing@outlook.com
Tsinghua University & Sangfor

Shenzhen, China

Kang Chen"
chenkang@tsinghua.edu.cn
Tsinghua University
Beijing, China

Zhuo Song Yongwei Wu Xuehai Qian
songzhuo.sz@alibaba-inc.com wuyw@tsinghua.edu.cn xuehai.qian@usc.edu
Alibaba Tsinghua University University of Southern California

Beijing, China

Abstract

The byte-addressable non-volatile memory (NVM) is a promis-
ing technology since it simultaneously provides DRAM-like
performance, disk-like capacity, and persistency. The cur-
rent NVM deployment with byte-addressability is symmetric,
where NVM devices are directly attached to servers. Due to
the higher density, NVM provides much larger capacity and
should be shared among servers. Unfortunately, in the sym-
metric setting, the availability of NVM devices is affected by
the specific machine it is attached to. High availability can be
achieved by replicating data to NVM on a remote machine.
However, it requires full replication of data structure in local
memory — limiting the size of the working set.

This paper rethinks NVM deployment and makes a case
for the asymmetric byte-addressable non-volatile memory
architecture, which decouples servers from persistent data
storage. In the proposed AsymNVM architecture, NVM de-
vices (i.e., back-end nodes) can be shared by multiple servers
(i.e., front-end nodes) and provide recoverable persistent data
structures. The asymmetric architecture, which follows the
industry trend of resource disaggregation, is made possible
due to the high-performance network (e.g., RDMA). At the
same time, AsymNVM leads to a number of key problems
such as, still relatively long network latency, persistency bot-
tleneck, and simple interface of the back-end NVM nodes.

“Corresponding Author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ASPLOS 20, March 16-20, 2020, Lausanne, Switzerland

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7102-5/20/03...$15.00
https://doi.org/10.1145/3373376.3378511

Beijing, China

757

Los Angles, CA

We build AsymNVM framework based on AsymNVM ar-
chitecture that implements: 1) high performance persistent
data structure update; 2) NVM data management; 3) con-
currency control; and 4) crash-consistency and replication.
The key idea to remove persistency bottleneck is the use of
operation log that reduces stall time due to RDMA writes and
enables efficient batching and caching in front-end nodes.
To evaluate performance, we construct eight widely used
data structures and two transaction applications based on
AsymNVM framework. In a 10-node cluster equipped with
real NVM devices, results show that AsymNVM achieves
similar or better performance compared to the best possible
symmetric architecture while enjoying the benefits of disag-
gregation. We found the speedup brought by the proposed
optimizations is drastic, — 5~12X among all benchmarks.

CCS Concepts + Computer systems organization —
Processors and memory architectures; « Information
systems — Data centers; - Hardware — Non-volatile mem-

ory.
Keywords memory architectures; persistent memory; RDMA

ACM Reference Format:

Teng Ma, Mingxing Zhang, Kang Chen, Zhuo Song, Yongwei Wu,
and Xuehai Qian. 2020. AsymNVM: An Efficient Framework for Im-
plementing Persistent Data Structures on Asymmetric NVM Archi-
tecture. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’20), March 16-20, 2020, Lausanne, Switzerland.
ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/3373376.
3378511

1 Introduction

Emerging non-volatile memory (NVM) is blurring the line
between memory and storage. These kinds of memories, such
as Intel Optane DC persistent memory [43], phase change
memory (PCM) [9, 54, 103], spin-transfer torque magnetic
memory (STTM) [4], and memristor are byte-addressable,

https://doi.org/10.1145/3373376.3378511
https://doi.org/10.1145/3373376.3378511
https://doi.org/10.1145/3373376.3378511

Session 9A: Persistent data structures — Keep all cats in mind!

and provide DRAM-like performance (300ns/100ns latency
for read/write), high density (TB-scale), and persistency at
the same time [45, 99]. To unleash the potential of NVM, most
existing solutions attach NVM directly to processors [14, 28,
62, 92, 94], enabling high-performance implementations of
persistent data structures using load and store instructions
on local memory.

While accessing NVM via local memory provides promis-
ing performance, it is not the most suitable setting in the
context of data center due to the desire of sharing NVM. Due
to the higher density, NVM can provide much larger ca-
pacity [45, 64], which may exceed the need of a single ma-
chine [5]. In data center servers, the resources are often
under utilized [19, 23], — Google’s study [29] shows the re-
source utilization lower than 40% on average. We expect that
persistent resource utilization will follow the same trend.

To enable NVM sharing, recent work [81] builds a dis-
tributed shared persistent memory system, which provides
a global, shared, and persistent memory space for a pool of
machines with NVMs attached to each at the main memory
bus. This setting inherently affect availability: once an NVM
device is attached to a specific machine, its data become un-
available when the host machine goes down. One solution
to this problem is to replicate the data to a remote NVM [44].
However, it requires full replication of data structures in
local memory, limiting the size of the working set. To access
the replicated data, the lower-bound of network overhead is
at least one network round-trip for each operation.

In essence, these challenges are due to the symmetric na-
ture of most of the current NVM deployment [44, 81, 83]. To
fundamentally overcome the drawbacks, we rethink NVM
deployment and propose the byte-addressable asymmetric
NVM architecture, in which NVM devices are not associ-
ated with the individual machine and accessed at byte-level
only passively via fast network. In AsymNVM architecture,
the number of NVM devices, which can be provided as spe-
cialized “blades”, can be much smaller than the number of
machines.

AsymNVM architecture follows the recent trend of dis-
aggregation architecture, which was first proposed for ca-
pacity expansion and memory resource sharing by Lim et
al. [59, 60]. As described by Gao et al. [26], disaggregated
architecture is a paradigm shift from servers each tightly
integrated with a small amount of various resources (e.g.,
CPU, memory [30, 67, 68], storage [65]) to the disaggregated
data center built as a pool of standalone resource blades and
interconnected using a network fabric. In industry, Intel’s
RSD [39] and HP’s “The Machine” [74] are state-of-the-art
disaggregation architecture products. Such systems are not
limited by the capability of a single machine and can pro-
vide better resource utilization and the ease of hardware
deployment. Due to these advantages, disaggregation is con-
sidered to be the future of data centers [34, 37, 38, 40, 74].
In AsymNVM architecture, NVM devices are instances of

758

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

disaggregated resources that are not associated with any
server. It also improves the availability since the crash of a
server will not affect NVM devices.

The main principle of AsymNVM architecture is to use
high-performance network (RDMA) to access remote NVM
and local DRAM as cache to ensure high performance. The
concrete design poses several key challenges. First, directly
replacing local store and load instructions with RDMA_Write
and RDMA_Read still suffers from long network latency. Al-
though the throughput of RDMA over InfiniBand is compa-
rable to the throughput of NVM, NIC still cannot provide
enough IOPS for fine-grained data structure accesses. Second,
using local DRAM as cache should be carefully considered
with the persistency semantics. Third, we need to ensure that
the interface of back-end nodes is both simple and efficient.

Based on AsymNVM architecture, this paper builds Asym-
NVM framework that implements byte-level data structures
updates with high performance and availability. To efficiently
solve the three challenges, the framework efficiently imple-
ments four components: 1) to remove persistency bottleneck,
high performance byte-level persistent data structure update
is supported by operation log that reduces the stall due to
RDMA writes and enables efficient communication batch-
ing and DRAM caching (Section 4); 2) NVM data manage-
ment that handles non-volatile memory allocation and free,
and metadata storage (Section 5); 3) concurrency control that
supports both lock-free and lock-based data structures (Sec-
tion 6); and 4) crash-consistency and replication that ensures
correct recovery and availability (Section 7). Moreover, we
apply several data structure specific optimizations to further
improve performance (Section 8).

To evaluate the performance of AsymNVM framework,
we choose eight widely used data structures and two appli-
cations (TATP/SmallBank), and use traces of industry work-
loads. The data structures/applications are executed in a
10-node cluster, in which at most three machines are used as
the back-end node and mirror nodes. The results show that
AsymNVM achieves similar or better performance compared
to the best possible symmetric architecture while enjoying
benefits of disaggregation. Speedup brought by the proposed
optimizations is drastic, — 5~12x among all benchmarks.

2 Background

Single-Node Local NVM. In this setting, NVM device is
directly accessed via the processor-memory bus using load-
/store instructions. It avoids the overhead of legacy block-
oriented file-systems/databases. Instead, it allows persistent
data structure updates at byte level without the need for
serialization. Based on the byte-level accesses, many kinds
of persistent data structures are proposed [11, 56, 56, 73].
CDDS-Tree [92] uses multi-version to support atomic up-
dates without logging. NV-Tree [100] is a consistent and

Session: Session 9A: Persistent data structures — Keep all cats in mind!

cache-optimized B+Tree, which reduces cacheline flush op-
erations. HiKV [96] constructs a hybrid index strategy to
build a persistent key-value store.

Symmetric Distributed NVM. Symmetric architecture
is widely used in distributed systems, in which each ma-
chine has its own NVM device. To achieve good availabil-
ity on top of persistency, one needs to replicate its data
structures to multiple NVM devices. Mojim [44] implements
this mechanism by adding two more synchronization APIs
(msync/gmsync) in the Linux kernel. Specifically, it allows
users to set up a pair of primary node and the mirror node.
Once these synchronization APIs are invoked, Mojim effi-
ciently replicates fine-grained data from the primary node
to the mirror node using an optimized RDMA-based pro-
tocol. This synchronization is implemented by appending
primary node’s logs with end marks to the mirror node’s
log buffer, thereby tolerating a failure of the primary node.
Mojim also allows users to set up several backup nodes that
only perform the weakly-consistent replication of data in
the primary node.

With a similar interface, Hotpot [81] extends Mojim to
a distributed shared persistent memory system. It provides
a global, shared and persistent memory space for a pool of
machines with NVMs attached at the main memory bus.
Thus, applications can access both local and remote data
in the global memory space by performing native memory
load and store instructions. At the same time, the system
ensures data persistency and reliablity. To achieve this, when
a committed page is written, Hotpot creates a local Copy-
On-Write (COW) page and marks it as dirty.

The two systems are both designed for the symmetric us-
age of NVM. As a result, Mojim requires a full replication
of the data structure in local memory. Similarly, Hotpot as-
sumes that the dirty page can always be held in memory and
only uses simple LRU-like mechanism to evict redundant or
committed pages.

Network Attached Storage. Network Attached Storage
(NAS) [27] is designed based on the principle of decoupling
storage and computation. Compared to AsymNVM architec-
ture, the key distinction is that NAS heavily relies on file
system service in the storage node. It is based on the block ac-
cess interface, which suffers from the fundamental problem
of read/write amplification (e.g., LSMTree) when perform-
ing fine-grained access. Apart from the file system interface,
(de)-serialization and other transformation overhead also
significantly affect the performance of NAS.

Resource Disaggregation. The resource disaggregation
architecture [2, 30, 59] can largely extend the capability of
a single machine by considering the available resources in
dedicated blades as a sharing pool, thereby providing fine-
grained control over their resources. For instance, INFIN-
ISWAP [30] manages unused memory with the power of
many choices to perform slab placements/evictions, and thus
gain a high memory utilization. RackOut [67] mitigates load

759

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

DRAM (FastAccess/Volatile/SmaIl)i | DRAM I:i
® 1 ILRNC]g)!
J

Figure 1. AsymNVM Architecture

imbalance with rack-scale memory pooling. Disaggregation
architecture allows decoupled implementation of system
functionalities and naturally provides an efficient way to de-
ploy hardware as well as bringing down monetary cost [80].

3 AsymNVM Overview
3.1 AsymNVM Architecture

AsymNVM architecture is an asymmetric non-volatile mem-
ory architecture, in which the number of NVM devices can
be much smaller than the number of machines, and they can
be even attached to only a few specialized “blades”. Thus,
NVM devices/blades are shared by multiple client machines,
and the memory space of these client machines may be much
smaller than the capacity of the NVM devices.

As shown in Figure 1, back-end nodes have NVM attached
to their memory bus; and front-end nodes operate the data
structures on NVM. Front-end can only access back-end via
network. Specifically, the relationship between front-end
and back-end is “many-to-many” — a front-end node can
access multiple back-end nodes and a back-end node can
also be shared by multiple front-end nodes. Compared to the
symmetric architecture, AsymNVM architecture offers four
advantages: a) it enjoys the benefits of disaggregation; b) it
naturally matches the desire of sharing NVM; c) it ensures
availability with multiple back-end; and d) the back-end
nodes can be implemented in simple manner that leads to
better reliability [53].

Compared to NAS, AsymNVM architecture provides fine-
grained and variable size byte-addressable access with higher
I0PS/flexibility. Unlike previous NAS systems, AsymNVM is
deployed in RDMA-based rack-scale data-centers, releasing
the CPU resource in the back-end with one-sided commu-
nication. While recent works [63, 88] build file or object
access interface on asymmetric architecture, the block ac-
cess interface leads to the fundamental problem of read/write
amplification when NAS is used to perform fine-grained data
access.

3.2 Key Challenges

The first challenge is network latency. Although the band-
width of InfiniBand is comparable to NVM, the latency is not.
RDMA operation RTT is about 2 ps, much larger than the la-
tency of NVM (about 100/300 ns for read/write) [64, 99]. Sim-
ply replacing local read/write operations with RDMA_Read

Session 9A: Persistent data structures — Keep all cats in mind!

and RDMA_Write operations will significantly degrade per-
formance.

The second challenge is how to efficiently use the small
volatile space of the front-end nodes. Keeping a full copy of
the data structure in the front-end (like Mojim [102]) can
always offer the best performance. However, it contradicts
the original purpose of the asymmetric setting. The high
density of NVM devices makes it capable to hold terabytes
of data, but the memory space of a typical front-end node
is only tens of gigabytes. This asymmetry implies that only
the necessary data in the current work-set should be loaded
into the front-end nodes during execution.

The third challenge is the design of back-end interface that
is both effective and simple with good reliability. Specifically,
back-end nodes should be only responsible of performing
a small collection of simple APIs, such as remote memory
read/write/allocation/release, lock acquire/release, etc. We
also envision that the back-end nodes can be equipped with
specialized hardware to support the operations on NVM.
Indeed, a small set of fixed APIs makes it truly feasible.

3.3 AsymNVM Framework Overview

Based on AsymNVM architecture, we build the AsymNVM
framework, a general framework for implementing high-
performance data structures. The AsymNVM framework
assumes that all persistent data are hosted in the remote
back-end NVM devices, and can be much larger than the lim-
ited size of the local volatile memory in the front-end nodes.
Moreover, the accesses of back-end nodes are always passive:
they never initiates a communication with the front-end
nodes, but only passively response to the API invocations
from the front-end.

We assume the back-end nodes are equipped with ad-
vanced NIC that supports RDMA. The front-end nodes can di-
rectly access their data via one-sided operations (RDMA_Read/
RDMA_Write) as the basic APIs shown in Table 1 without no-
tifying the processing unit on the remote side. This leads to
better performance than two-sided operations [20] Although
it is possible to implement any kind of data structures using
only RDMA verbs, the performance will suffer due to long
network latency. Moreover, back-end nodes need to expose
methods to allow front-end nodes to manage NVM data. To
this end, AsymNVM framework implements three sets of
simple and fixed API functions in the back-end on top of
RDMA verbs as shown in Table 1.

The first set of APIs provides a transactional interface that
allows the front-end nodes to push a list of update logs to
the back-end to achieve persistency in an all-or-nothing
manner. The transactional interface is simple and has two
variants. Specifically, a transaction can include: 1) a collection
of memory logs, — {memory address, value} pairs; or 2) an
operation log, which includes the operation and parameters
applied to a certain data structure and is used to reduce the

760

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

Table 1. AsymNVM APIs (rnvm: remote_nvm)

Type API Explanation
. . rnvm_read read data from local cache or remote NVM
Basic (native) rnvm_write write data to remote NVM

write a memory log to front-end buffer
write a operation log to remote NVM
write a batch of memory logs to remote NVM

rnvm_mem_log
rnvm_op_log
rnvm_tx_write

Transaction

allocate NVM space in back-end
free NVM space in back-end

rnvm_malloc

Management
g rnvm_free

exclusive write lock

writer_(un)lock
concurrent read lock

Concurrency reader_(un)lock

stall due to remote persistency. The back-end nodes ensure
that all these addresses are updated atomically.

The second set of APIs handles memory management,
which includes remote memory allocation, releasing, and
global naming. The AsymNVM framework implements a
two-tier slab-based memory allocator [8]. The back-end runs
in the remote NVM to ensure persistency and provide the
fixed-size blocks. The front-end supports memory allocations
at a finer granularity. To support recovery, several specific
metadata are stored in the back-end global naming space.

The third set of APIs deals with concurrency control for
Single Writer Multiple Reader (SWMR) access model. This
means that if two front-end nodes perform writes on the
same address, they should be synchronized by locks. In ad-
dition, the framework assumes that reads and writes to the
same address are also properly synchronized by locks. They
are implemented by leveraging existing RDMA atomic verbs
and retry-based optimistic lock strategy.

In AsymNVM architecture, RDMA provides several atomic
verbs to guarantee that any update to a 64-bit data is atomic.
Thus, we can apply RDMA atomic operations to the criti-
cal metadata, e.g., root pointer of data structure, in order
to manage metadata consistently. Due to the non-volatile
nature of the remote NVM, the data may be corrupted if
the back-end crashes during a single RDMA_Write operation.
AsymNVM guarantees the data integrity via checksum. To
support recovery and replication, AsymNVM framework
adopts a consensus-based voting system to detect machine
failures.

As a complete example, Figure 2 shows the how to use
AsymNVM underlying APIs to implement the insert oper-
ation of skiplist (line 2~12). The program first locates the
insert position by using multiple rnvm_read operations. It
then allocates remote NVM resource (line 14) and flushes
one operation log to the back-end immediately for recovery
(line 15). Next, it appends memory log to front-end buffer
for each data modification (line 16~19). Finally, if a number
of operations get executed successfully or the buffer is full,
the buffered memory logs will be flushed to the back-end
NVM (line 20, 21).

Based on underlying APIs, AsymNVM framework imple-
ments eight lock-free and lock-based shared persistent data
structures, with several data structure specific optimizations

Session: Session 9A: Persistent data structures — Keep all cats in mind!

1 // A insert request is coming

2 node_ptr pre = rnvm_read(head);

3 for(int level = MAX_LEVEL to 0){

4 node_ptr cur = rnvm_read(pre.next[levell);

5 key = rnvm_read(cur->key);

6 suc = rnvm_read(cur->next[level]);

7 while (cur_key < key){

8 pre = cur; cur = suc;

9 cur_key = rnvm_read(cur->key);

10 suc = rnvm_read(cur->next[level]);

11 } // Traverse the List

12 if(1lFound == -1 && key == cur_key) lFound=1level;
13}

14 node_ptr new = rnvm_malloc(size); //new node

15 rnvm_op_log ({ INSERT_OP, key, value}); //recovery

16 for(int level = @ to MAX_LEVEL)

17 rnvm_mem_log ({new.next[level] = succs[levell});
18 for(int level = @ to MAX_LEVEL)

19 rnvm_mem_log ({preds[level].next[levell=new});
20 if(counter++ == batch_size || is_fulled())

21 rnvm_tx_write(backend_id);

Figure 2. Insert Operation for SkipList

applied to achieve even higher performance. With guidelines
discussed in this paper, users can build new data structures
using the defined underlying APIs.

4 Efficient Persistent Update
4.1 Basic Implementation

At low level, the persistent data structure implementation
supports read/write operations. A read can return data that is
not yet persisted, but if there is a persistent fence [51, 76] be-
fore the read, it should return the persisted data produced be-
fore the fence. When a write (update) returns, the data should
always be persisted in the back-end NVM. The straightfor-
ward implementation of the two operations is to perform
RDMA_Read/Write on the back-ends. To manage metadata
consistently, we can apply RDMA atomic operations (it guar-
antees that any update to a 64-bit data is atomic) to the
critical metadata, e.g., root pointer of data structure. How-
ever, the simple implementation incurs considerable rounds
of network communications, which is still much slower than
memory accesses.

4.2 Decoupled Memory Log Persistency

To reduce persistency overhead, DudeTM [62] uses redo log
and decouples the update of real data structure in NVM
and the persistency of redo log. A write can return after
the redo log is persisted and does not need to wait for the
actual data structure modification. In AsymNVM, we also use
memory log to improve performance. Unlike prior works, in
AsymNVM architecture, the front-end and back-end nodes
are distributed, so the only reasonable choice is to use redo
log.

In AsymNVM framework, each write (update) will gen-
erate several memory logs, and the back-end node provides
the transaction APIs to ensure that the memory logs are per-
sisted atomically in an all-or-nothing manner. When memory

761

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

Transaction Log| Entry [_..... | Entry [Commitflag] Checksum |
‘‘‘‘‘‘‘‘‘‘‘‘‘ 1Byte 4 Bytes
Memory Log Flag | Addr | Length | Value]
1Byte 8Bytes 4 Bytes Len Bytes
Operation Log [OperationType | Parameters | Checksum |
1 Byte M Bytes 4 Bytes

Figure 3. Memory Log vs. Operation Log

logs in a transaction is persisted, the back-end node sends
back an acknowledgement, so that the corresponding write
in front-end can return and is guaranteed to be durable. To
ensure correctness, the back-end node also guarantees that
the modifications to the real data structure are performed,
i.e., replaying the persisted logs, in the same order as the
sequential log writing.

Specifically, the transaction API is rnvm_tx_write. The
input parameter is a list of {address, value} pairs, each con-
sists of a memory address and a value that should be writ-
ten to this address. The back-end nodes keep two areas:
the data area holds the real data structures; the log area
records the transaction logs. The front-end can directly read
the data area, but any updates have to go through the log
area. To implement rnvm_tx_write, AsymNVM framework
library constructs a continuous set of memory logs and ap-
pends to the corresponding log area in remote NVM via a
single RDMA_Write operation. The format of these memory
logs is shown in Figure 3. Every log entry includes address,
length, data, and one-byte flag in the head. This flag indicates
whether the value is in the memory log, it is used by an
optimization related to batching, more details will be dis-
cussed in Section 4.3. A transaction will produce several log
entries, a commit flag, and a checksum value. Since the data
may be corrupted if the back-end crashes, the checksum of
a transaction is recorded as the end mark and can be used to
validate the integrity of the appended log. After the restart
of the back-end node, it needs to use the checksum of the
lastest transaction to validate the consistency.

Similar to DudeTM [62], the transactional API reduces the
persistency latency due to modification of real data structure
with decoupled log and data persistency. More importantly,
different from the single machine system, it also largely re-
duces the required rounds of RDMA operations. Without
the transaction API, multiple rounds of RDMA operations
are needed when writing to multiple non-continuous areas
of the NVM, or a continuous area with the size larger than
a cache-line. Other works [13, 70, 75, 87] propose to add
an additional flush operation to the RDMA standard. How-
ever, such solutions will at least add the additional latency
of invoking this flush operation. Moreover, the additional
operation itself does not make the other RDMA operation
crash-consistent. Moreover, our implementation based on
the transactional API is fixed and simple, providing better
reliability.

Session: Session 9A: Persistent data structures — Keep all cats in mind!

4.3 Batching and Caching with Operation Log

To further reduce the latency for data persistency, we pro-
pose the notion of operation log, which is shown in Figure 3.
Different from the memory logs, each write only incurs one
operation log, which contains operation type, parameters,
and checksum. A write can return after the operation log is
persisted in the back-end node. Persisting operation log can
be achieved by a single ROMA_Write to the back-end node.

The crucial benefit of operation log is that it enables batch-
ing and caching. Once the operation logs are recorded, the
modifications on the real data structure can be postponed
and batched to improve the performance while ensuring
crash consistency by asynchronous execution to remove
network latency from the critical path, and combining re-
dundant writes to reduce write operations. This is because,
even after a crash, the proper state can be restored by replay-
ing the operation logs that are not executed (i.e., have not yet
modified the data area).

It is important to understand the key difference between
the operation log and memory log. In short, memory log is
low-level log without data structure semantics and used by
back-end to re-apply updates on persistent data structures.
Operation log is high-level log with data structure operation
semantics. It is used by front-end to replay operations of
data structures. Intuitively, memory log can only realize
the “postpone” aspect — the real data structure modification
can be delayed as long as the memory log is persisted. The
key limitation of the decoupling is that the persistency of
a write (high level) is realized with the persistency of its
corresponding memory logs (low level). This is why it cannot
achieve the “batched” aspect because the memory logs of a
write are persisted anyway before executing the next write.
It is sufficient for single machine NVM system [62] but not
for remote NVM back-end nodes.

The essential benefit of operation log is making persis-
tency of a write realized at high level as well by persist-
ing operation log. The operation log achieves batching by
combining the memory logs of multiple writes into one
rnvm_tx_write. At lower level, operation log reduces the
number of RDMA_Write operations. With only memory log,
each write needs at least two RDMA_Write operations, — one
for the commit and the others for at least one memory log.
A write typically needs more than one memory log, thus the
number of RDMA_Write operations is normally larger than
two. With the operation log, each write needs exactly one
RDMA_Write — no commit is required, because the operation
log already serves the purpose of commit. The number of
RDMA_Write operations for the memory logs is less since
multiple writes can be coalesced into one RDMA_Write with
batching, depending on the addresses. In addition, the com-
mit for the batched memory logs (involving several writes)

762

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

} Apply Write @ }
I Memor i

| page o Y Page Page Read Cache @ DS operation }
! C-m"> z S !
| g R R ‘
L ’i"ﬂ‘i@!@{@},{w,"fl”,, NGB OIS
e § -
I I i | :

1| Replica (‘@} i Hot Data Apply Write@ | Memory| |Operation||
! i . === === Log Area| | Log Area |
1 i || Persistent DS In background I
| Mirror | | Back-end |

Figure 4. AsymNVM Framework Data Access Workflow

also needs an RDMA_Write. In summary, AsymNVM com-
bines the use of operation log and memory log to enable
batching and hence reduce the network round trips.

Figure 4 shows the workflow of AsymNVM framework
data accesses. We divide each operation into two parts: gath-
ering data and applying the modifications in a Gather-Apply
model. We use the terms gather and apply to explain the
holistic flow including batching and caching, which may
involve multiple reads/writes. Batching can execute multiple
operations together and coalesce memory logs to reduce the
number of both RDMA_Write and RDMA_Read operations. Be-
sides, caching reduces the number of RDMA_Read operations
during the gathering phase. They are applicable to all data
structures.

Gather Data. The data are fetched from the front-end
cache whenever possible (cache-hit, D). If not cache-hit, 1)
the data will either be read from the back-end directly by
using RDMA_Read () or, 2) its corresponding page will be
swap-in () via RDMA_Read and put to the cache in the front-
end memory. After finishing the page swapping, data is read
from front-end cache (). The choice between these two
strategies depends on specific data structures and follows
a principle that using swap-in () for hot data and direct
remote read () for cold data. Hot data (e.g., the root of a
B+Tree) are accessed frequently than cold data (e.g., the leaf
of a B+Tree). On a persistent fence, the read after the fence
needs to wait until memory logs before the fence persisted
in the back-end node.

Apply Modification. Each modification operation causes
one operation log to be flushed to the back-end for recovery
(®). The operation log with format {insert_op, key, value} as
shown in Figure 3 will be put in the operation log area. Then,
the memory logs of format {address, data} are be generated
afterward. They do not need to be flushed immediately. We
replace actual data in memory log with a pointer to the pre-
vious flushed operation log to reduce the size of data write,
the data/pointer is indicated by the “Flag” of memory log
in Figure 3. It is correct because, after the operation log is
stored in the back-end, the data structure modification is per-
sistent and recoverable. While flushing the logs, the cached
data (if exist) are modified accordingly (@). If a number of
operations get executed successfully, or the buffer is full, the
buffered memory logs, together with appended TX_COMMIT,
will also be flushed to the back-end NVM via rnvm_tx_write

Session 9A: Persistent data structures — Keep all cats in mind!

(®). These logs are then handled by the back-end (6)) and
replicated to the mirror-node () (Section 7 discusses de-
tails on replication). If the back-end fails, the front-end node
handles exceptions, aborts the transaction and clears the
cache.

To support a data structure larger than the capacity of the
NVM in a single back-end node, AsymNVM framework sup-
ports a distributed data structure partitioning across multiple
back-ends as described in Section 8.3. When the front-end
node executes a data structure operation, it first locates the
appropriate back-end with key-hashing and the processing
is similar to the single back-end scenario.

4.4 Data Cache in Front-end Nodes

Several recent works build NVM systems using DRAM as
cache [55, 62, 77, 96]. Bw-Tree [57] uses a cache layer to map
logical pages (Bw-Tree nodes) to physical pages. In Asym-
NVM, the front-end manages a similar data structure of hash
map to translate the address of data structure nodes in NVM
to address in DRAM. Each item in the hash map represents
the page cached. The page size is adjustable according to
different data structures.

Our cache replacement policy combines the methods of
LRU (Least Recently Used) and RR (Random Replacement).
LRU works well in choosing hot data, but its implemen-
tation is expensive. RR is easy to implement but does not
provide any guarantee of preserving hot data. We use a hy-
brid approach — first choosing a random set of pages for
replacement and then selecting a least used page from the
set to discard. No page flush is needed because the write
workflow already puts the memory logs in back-end node.
With Zipf distribution workload, the hybrid approach (29.2%)
can reduce the miss ratio by 33.5% compared to RR (62.7%)
when the size of choosing set is 32, and gain a similar miss
ratio as LRU with nearly 27.5% throughput improvement.

5 NVM Data Management
5.1 Back-end Interface and Metadata

At the back-end nodes, we implement NVM management
APIs since using only one-sided RDMA operations is ineffi-
cient. In addition, since this module provides the basic func-
tions needed by all applications, it is convenient to support
the functionalities directly in the back-end nodes to reduce
the network communication with one round for each RPC
invocation). In the AsymNVM framework, two memory man-
agement APIs are provided: rnvm_malloc and rnvm_free.
The front-end node can use them to allocate and release back-
end NVM memory. For back-end, to manage NVM resource,
we use the persistent memory pool in NVML library [41]
and interact with it via malloc/free. In the back-end, we
further use a persistent bitmap to record the usage of NVM,
with one bit indicating the allocation status of each block.

763

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

The two design decisions ensure fast recovery. Since front-
end nodes connect to the back-end via one-sided RDMA, we
use the RFP RPC [84, 95] to implement the interfaces. Back-
end provides two circular buffers for front-end allocator to
write the requests and fetch back the responses. Because
the front-end puts the requests via ROMA_Write and gets the
responses via RDMA_Read, the back-end is passive and does
not need to handle any network operation.

The back-end nodes also need to store metadata for recov-
ery since nothing will be left on the front-end after failure.
In AsymNVM frameworks, the metadata are stored in the
“well-known” locations to all front-end and back-end nodes.
This is the global naming space in the back-end NVM for
recovery [6]. After restarting, AsymNVM exploits NVM file
system to find the specific file whose location is in global
naming space. Both front-end and back-end nodes know the
location to find the needed information/data before recovery.
By using the meta-data, the back-end node can find the data
file and mmap the virtual memory address to the previous
NVM mapped regions [71]. With this mechanism, a pointer
to the back-end NVM is still valid after restarting.

The following metadata are stored in the global naming
space. 1) The NVM area address, including the data and log
area. It is needed for physical to virtual address translation
for the corresponding front-end node. 2) The location of
data structure and its auxiliary data. It is achieved by storing
the root reference of data structures, e.g., the address of
the root node for a tree. Additionally, other necessary data
such as exclusive lock (refer to Section 6.1) and mapping
table between key range and partition (refer to Section 8.3)
are stored next to the root reference. These metadata from
different data structure instance are persisted as a mapping
table. 3) The allocation bitmaps (indicating allocation status).
This information is used to reconstruct the memory usage
lists and soon recover the back-end allocator. 4) Addresses
of log areas, LPNs (Log Processing Number, indicating the
next entry in the memory log area) and the OPNs (Operation
Processing Number, indicating the last operation log whose
memory log is still not persistent) are used to find the logs
together with the location of the next logs. They can be
used to reproduce logs (memory log) and to recover the data
structure operations (operation log). Actually, the footprint
of metadata in the back-end NVM is negligible in most cases.
We use a hash table to index those meta-data, and each item
in the hash table contains type, name and physical address
which links to the related meta-data file.

5.2 Front-end Allocator

In general, the back-end allocator provides slabs (fixed size)
to the front-end allocator, and the front-end manages these
slabs in finer granularity. When allocation size is larger than
the size of a slab, the front-end node directly allocates mem-
ory in the back-end using RPC and back-end interface. The
slabs in the front-end are organized in three lists of full-,

Session: Session 9A: Persistent data structures — Keep all cats in mind!

Table 2. Comparison of Different Allocators.

Type/Tput(MOPS) Alloc Free
Glibe 21.0 57.0
Pmem 1.42 1.38
RPC allocator 0.33 0.88
Two-tier allocator (slab-size: 128 Bytes) 1.33 2.41
Two-tier allocator (slab-size: 1024 Bytes) 6.42 13.90

partial-, empty-list according to the capacity consuming in
the corresponding page. To support finer granularity allo-
cation, we use a simple best-fit mechanism for slabs in the
front-end. To improve the NVM utilization, a threshold is de-
fined as the maximum free blocks number, and the front-end
nodes will reclaim free blocks periodically. While reclaim-
ing, the front-end nodes send the request to the back-end
nodes to free the reclamation slabs via RPC. Note that, with
persistent bitmap in the global naming space, AsymNVM
can reconstruct the allocation status only in the slab level
while recovering.

Benchmark. We compare the two-tier allocator of Asym-
NVM framework with persistent allocator and Glibc allocator
(allocated size varies 32 bytes to 128 bytes). As table 2 shows,
Glibc achieves the highest throughput (21.0/57.0 MOPS) but
without persistent guarantee. Pmem allocator is a single-
node persistent allocator from NVML project [41], and can
reach 1.42 MOPS. With only the back-end (RPC) allocator,
the throughput is only 23% and 64% of Pmem allocator be-
cause of the network overhead. With two-tier allocator, the
throughput is similar or even better performance than Pmem
allocator.

6 Concurrency Control
6.1 Exclusive Write

Under SWMR mode, write operations are exclusive. There-
fore, while executing write operation, the writer should ac-
quire an exclusive lock first. The lock is created after initial-
izing the data structure, and its location is alongside the root
reference for recovery. If it succeeds, it fetches the LPN (Log
Processing Number, refer to Section 5.1 for its management),
and then executes the write operation. After finishing ap-
pending logs to the remote NVM based on LPN, it should
release this exclusive lock. While the exclusive writes are be-
ing performed, other write operations (if any) will be blocked
until the current writer has completed the current write op-
eration.

As shown in Algorithm 1, we leverage the RDMA atomic
verbs, RDMA_Compare_And_Swap [101] to implement it as a
writer lock. When releasing the lock, the writer resets it via
a RDMA_Write. In AsymNVM framework, to handle the fail-
ures while holding the lock, every write lock acquire/release
operation should write a record (lock-ahead log) to the back-
end node before appending the memory logs. Thus, if the

764

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

Insert(D,E F) R _
Node A Copy On ertem I:I

Figure 5. Overall Multi-version Data Structure

Algorithm 1 Writer Lock

1: procedure WRITER Lock(L)

2 while rdma_compare_and_swap(L, Locked) = Locked
3: procedure WRITER UNLOCK(L)

4 rdma_atomic_write(L, UnLocked)

front-end crashed before releasing the lock, we can identify
the lock need to be released during recovery.

6.2 Lock-Free Data Structure

Multi-version Data Structure. Our design of lock-free tree-
like data structure is inspired by append-only B-Tree [3, 32]
and persistent data structures [22, 69]. The data structures
will first make copies of the corresponding data if needed.
Then the data will be modified or new data items are inserted.
For example in Figure 5, the writer copies all the affected
nodes along the path to the root, a.k.a., path copying [78].
Then, the nodes in the path will update some of the pointers
pointing to the old data. Finally, the data will be inserted into
the new path. After finishing all these operations, the root
will be atomically changed to the new root by updating the
root pointer. Vector operation discussed in Section 8 can help
here to reduce the number of network round trips signifi-
cantly. Since the readers can always get consistent data, this
kind of concurrent control does not affect the performance
of readers.

Lightweight Recovery. In the multi-version data struc-
ture, the only in-place update is the root pointer. However,
the pointer changing is atomic. Therefore, it does not need a
recovery process as the discussion in [6]. While recovering,
the front-end can use the root pointer (which is well-known
via naming mechanism) to find out the whole data structure.

NVM Reclamation. The use of lock-free data structures
needs to ensure that memory is safely reclaimed, which fur-
ther complicates the garbage collection[25]. In AsymNVM
framework, this requirement is achieved by a lazy garbage
collection mechanism. After version changes, the front-end
should release the old version’s data. Back-end delays this op-
eration for n+1 ps and then reclaims corresponding memory.
It requires that the latency of each pending data structure
operation should be less than n us to avoid memory leak
(access the reclaimed memory). A smaller n cause frequent
retries of read operation, and a larger n causes lower NVM
utilization. We fixed n/I as 4000/1000 after pre-run the whole
system.

Session 9A: Persistent data structures — Keep all cats in mind!

Algorithm 2 Writer Preferred Reader Lock

: procedure WRITE BEGIN(SN)
gcc_atomic_increment(SN)

: procedure WRITE END(SN)
gce_atomic_increment(SN)

do
ret < rdma_atomic_read(SN)
while ret is odd
9: start_sn < ret

1
2
3
4
5: procedure READER Lock(SN)
6:
7
8

10: procedure READER UNLOCK(SN)
11: return start_sn # rdma_atomic_read(SN)

6.3 Lock Based Data Structure

Write-Preferred Read Lock. RDMA atomic operations are
appropriate APIs to implement distributed sequencer [48,
101] and lock [66, 101]. Algorithm 2 shows the implemen-
tation of retry-based optimistic read locks by using the se-
quence number (SN), an 8-byte integer variable. Distinct from
Algorithm 1, which is invoked by the front-end, Write_Begin
and Write_End is executed by the back-end. When a back-
end applies the persisted memory log to the real data struc-
ture in NVM, it atomically increases the SN twice before and
after the modification. Reader Lock and Reader Unlock
are invoked by front-ends before and after a sequence of
reads. To disallow reads when data are being updated, it
needs to wait until the current SN is odd. To ensure reads in
between get the consistent view, Reader Unlock needs to
check that SN is unchanged since Reader Lock. If the data
are inconsistent, the readers need to retry and fetch the data
again.

Lock Benchmark. We make a ping-point test about the
lock’s performance as in Frangipani [86]. Six readers and one
writer try to access the same data in the back-end and the
workload is 10% write and 90% read. The results show that
each reader’s average throughput is 260 KOPS (1.56 MOPS
in total) and writer’s throughput is 539 KOPS. The reader’s
failed ratio (i.e., a try for reading data is failed) is only 3%.
When setting the workload as 50% write, reader’s throughput
will drop to only 165 KOPS with a 26% fail ratio, and writer’s
throughput remains at 510 KOPS. The write-preferred lock
makes writers to gain a higher throughput than readers.

Discussion Lock-free data structures benefit the reader
but create multiple copies by writers. Lock-based data struc-
tures prioritize the writer without extra copies, but readers
have to read multiple times until consistent data are obtained.
The right choice depends on specific applications.

7 Recovery and Replication
7.1 Replication

The AsymNVM needs at least one mirror-node attached with
the non-volatile device like SSD, Disk or even NVM. To im-
prove fault tolerance, we deploy mirror-nodes to different

765

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

racks. The back-end nodes replicate the memory/operation
logs to mirror-nodes before committing the transaction and
acknowledging the front-end. If the mirror-node is equipped
with NVM, the mirror-node also implements a log replay
function to apply logs to the replicated data structure. Repli-
cated logs in mirror-nodes are read-only. When the back-end
crashes, if the mirror-node is equipped with NVM, it will be
voted as the new back-end. Otherwise, the front-end nodes
use the logs and data structures from the mirror-node to
recover the data structure to a new back-end.

In our implementation, the back-end is responsible for
ensuring that the replica is persistent in its mirror-node.
The front-end only needs to ensure that data is stored in
the back-end NVM, but does not wait for an acknowledge
after replication completes. Thus, the replication phase is
performed asynchronously. In our AsymNVM deployment,
two machines are used as mirror-nodes for each back-end.
Note that mirror nodes do not lead to low utilization: since
the mirror-node has no specific constrains (e.g., reproducing
logs), multiple back-ends can share one mirror-node. In fact,
one back-end can also become the mirror-node of another
back-end.

7.2 Data Structure Recovery

With the log mechanism, AsymNVM ensures crash consis-
tency with the non-volatile data and logs stored in the back-
end node. Similar to most distributed systems, we use a
consensus-based voting system, i.e., ZooKeeper [36] coor-
dination service, to detect machine failures. The replicated
Zookeeper instance can run on at least three other nodes.
Leases are used to identify whether a node is still alive or
not. If the lease expires and the node cannot renew its lease,
the node is considered to be crashed. We implement this
mechanism as keepAlive service. Next we discuss different
crash scenarios (assume the crashed front-end will always
reboot within a limited time).

Case 1: Front-end reader crash. If the front-end crashes
when performing a read, it needs to gain the meta-data via
naming mechanism and resume execution after rebooting.

Case 2: Front-end writer crash. If the front-end crashes
when performing a write, the back-end will know this in-
formation through keepAlive service. After the front-end
reboots, if there still exists memory logs not replayed from
the front-end, the back-end will validate whether all log en-
tries of the last transaction are flushed to the NVM or not
via checksum. If this transaction log is consistent (Case 2.a),
the back-end will notify the front-end to resume as normal,
same as (Case 1). Otherwise (Case 2.b), the back-end will
notify the front-end that the last transaction log is incon-
sistent. Thus, the front-end will fetch the LPN, OPN and
operation logs whose memory logs is not replayed, and then
re-executes the uncommitted transaction. (Case 2.c) In most
cases, there are several operation logs whose corresponding

Session 9A: Persistent data structures — Keep all cats in mind!

memory logs are not flushed to back-end yet. The front-end
will process as Case 2.b.

Case 3: Back-end transient failure. When the back-
end fails while executing RDMA_Read/Write, the front-end
can detect it through the feedback from RNIC. Then it will
wait for the notification for the back-end recovery or a new
voted back-end. After rebooting, the back-end will first re-
construct the mapping between the physical addresses and
virtual addresses. The mapping is stored in NVM and well-
known via global addressing scheme as described in Sec-
tion 5.1. After that, the back-end checks whether the last
transaction log is consistent. If there is no transaction/opera-
tion logs left, or the transaction log is consistent (Case 3.a),
the back-end can start its normal execution immediately, i.e.,
reproducing memory logs if any log has not been applied,
and then notify its liveness to the front-ends. If the transac-
tion log is inconsistent (Case 3.b), the back-end will notify
the corresponding front-end nodes, and they will flush the
memory logs again to redo this transaction. It is possible
since the front-end must have not received the persistent
acknowledgement. If existing operation logs are ahead of cur-
rent memory logs (Case 3.c), which means that the memory
logs have not been flushed from front-end due to batching,
the back-end will notify the front-end, and the front-end will
continue to execute the next operation.

Case 4: Back-end permanent failure. In this case, one
of the mirror-nodes will be voted as the new back-end and
provides service to the front-end. The new back-end will
broadcast to living front-ends to announce such event. After
that, the front-end will reconstruct the data structures to a
new back-end by using the data and logs in the mirror-nodes.

Case 5: Mirror node crash. The consensus-based ser-
vice will detect the failure and remove it out of the group.

If both front-end and back-end crash, the keepAlive service
coordinates front-end and back-end nodes, and lets the back-
end nodes to recover first. They will first check the status as
in Case 2. Then, the front-end will determine how to recover
according to the back-end’s failure cases in Case 1.

8 Data Structure Implementations

The underlying APIs of AsymNVM framework are general
to implement various persistent data structures with high
performance. In this section, we discuss the implementation
of several commonly-used data structures and propose data
structure specific optimizations.

8.1 List-Based Data Structure

We implement Stack and Queue by using the List data struc-
ture. Because the only data items that can be accessed in
Stack or Queue are headers or tails which are more fre-
quently accessed, the front-end only needs to cache each
nodes pointed by them to reduce the number of rnvm_read.
If there are not enough data items of headers and tails in

766

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

the cache, i.e., less than a threshold, the front-end will fetch
back corresponding data to the cache. Moreover, due to the
access pattern, the operations may be combined because the
operations are only allowed on stack header for Stack, and
on queue tail for Queue. Thus, the effective pushes will be
annulled by pops for Stacks, and the effective enqueues will
be annulled by dequeues for Queue. Such an opportunity can
be identified by checking the un-executed operation logs in
the front-end memory. For instance, for a pop operation to
the stack data structure, we first need to count the number
of un-executed push and pop operations in the operation
log. If the number of pushes is larger than the number of
pops, there is no need to access the data area. This optimiza-
tion based on operation log reduces the RDMA operations
significantly.

8.2 Hash Table

Key-value items in the hash table can be subdivided into
hot ones and cold ones, and the front-end can buffer items
with the hotkey. The caching granularity is each key-value
item. Since with batching optimization, hash table gains
no significant performance improvement, we do not enable

batching.

8.3 Tree-Like Data Structure

Tree-like data structures (e.g., binary search tree, B+Tree)
have the hierarchical organization. The nodes in higher (near
the root) level are more frequently accessed than lower level
nodes. Based on this observation, we choose to cache higher
level non-leaf nodes with higher priority. Specifically, the
front-end sets a threshold N and the nodes with level larger
than N will not be cached. They will be directly accessed
through RDMA_Read. N is dynamically adjusted according to
the cache miss ratio «, i.e., if « > 50%, N = N — 1 while if
a < 25%, N = N + 1. Otherwise, N stays unchanged. The
native LRU algorithm treats higher level nodes and lower
level nodes in the same way, and hence incurs frequently
cache misses. Compared to LRU, our mechanism gives a
“hint” to cache the hot nodes. In addition, due to the sorted
nature of tree-like data structures, the performance can be
improved when the operations are also sorted. Based on this
insight, we pack the sorted operations into a vector. The
operations are performed from the root of the tree down to
the leaf nodes. The vector can then be split accordingly. The
operations in vector segments can be executed in parallel.
Algorithm 3 shows vector_write, one vector operation,
in a binary search tree following the Gather-Apply paradigm.
It first reads the information to decide where to insert these
nodes and then applies these insert in the correct position.
Without batching, two read rounds are needed if the insert
operation A and B read the same node. When we execute A
and B with one vector_write operation, it only needs one
round read to access this node. Similarly, if several operations

Session 9A: Persistent data structures — Keep all cats in mind!

Algorithm 3 Vector Write

1: procedure VECTOR INSERT(kvs) > keys are sorted

2 queue.push(< 0, len, root >)

3 while queue is not empty do

4 begin, end, node «— queue.pop()

5: mid < binary_search(kvs.keys, begin, end, node.key)
6 if node.left = null then
7 create_sub_tree(kvs[begin : mid])
8 node.left « sub_tree
9 else

10: queue.push(< begin, mid, node >)

11: ...execute right node > the same as left

modify the same NVM memory, they will be compacted to
one NVM write in vector_write.

Data Structure Partition We use partitioning to elimi-
nate the potential bottleneck due to the lock, and achieve
both high throughput and better scalability [58, 89]. Simi-
lar to the support of large size data structure in Section 4.3,
AsymNVM framework adopts key-hashing partitioning to
improve the performance of various data structures. Each
partition has its own write lock and index data structure.
While the writer is executing write operation in one of
the partitions, multiple readers can still concurrently ac-
cess other partitions. These mapping tables between key
range and partition are stored in the global naming space
for recovery as describes in Section 5.1.

8.4 SkipList

The caching and batching optimization described for tree-
like data structure can also be applied to skip-list to reduce
the number of RDMA operations. In skiplist, we cache the
nodes with higher degree. Skiplist are naturally lock-free
and the only concern is to carefully choose the order of
operations [17, 24]. The writer first creates the new allocated
node and sets the successor pointers in this node accordingly.
After that, the predecessor pointers will be updated from the
bottom to the top. Readers can still get (potentially different)
consistent views of skiplist in such scenario, thus the lock is
not required [33].

9 Evaluation
9.1 Evaluation Setup

System Configuration. The experiment cluster contains
ten machines configured as seven front-ends, two mirror
nodes and one back-end. Each machine equips with one
Mellanox CX-3 InfiniBand (40Gbps) and runs Ubuntu 14.04
(Linux 4.4.0 kernel) and MLNX_OFED_LINUX-4.2 driver.
Each front-end or mirror node is equipped with an 8-cores
CPU (Intel Xeon E5-2640 v2, 2.0 GHz), 96 GB memory. The
back-end is a 4-sockets 72-cores (Intel Xeon Gold 5220, 2.2
GHz) server with four Intel Optane DC PM Module, totaly 3
TB (4 socket X 6 channel X 128 GB/DIMM) of NVMM. All

767

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

these data structures and applications where implemented
using C++11 and compiled using GCC 4.8.5.

Real NVM Devices. We set Intel Optane DC PM as NVM
running in App Direct Mode, and it is initialized as a char-
acter file to enable DAX mapping capabilities [42] via mmap.
We use one of the namespaces to be registered by RDMA for
remote access, which has a capacity of 718 GB (6 channels).

9.2 AsymNVM Performance

We implement eight widely-used data structures covering
different access time complexity (O(1) and O(log(n))): stack,
queue, hash-table, skip-list, binary search tree (BST), B+tree
(BPT), multi-version binary search tree (MV-BST), and multi-
version B+tree (MV-BPT). To simplify the evaluations, the
key and value of our data structure are 8 Bytes and 64 Bytes,
respectively. We set probability p of skiplist as 0.5 and fan-out
d of B+tree as 32. In the following evaluations, we implement
PUT with insert operations and GET with find operations,
respectively, and each IO means a PUT/GET operation. In
addition, we use two transaction applications: TATP [82]
and SmallBank [90]. Table 3! shows the overall performance,
breakdown and comparisons to symmetric/naive ones.
Compare to Naive Implementation. The naive imple-
mentation accesses remote NVM directly using RDMA reads
and writes without any optimizations. The complete imple-
mentation denoted as AsymNVM-RCB can provide nearly
5~12X improvements compared to naive implementation.
Compare to the Symmetric Setting. We implement the
symmetric NVM architecture by storing data structures in
local NVM and storing logs in remote NVM for fault toler-
ance. The logs are flushed asynchronously (without waiting
for the acknowledgement from remote nodes). It reaches the
upper-bound performance of symmetric NVM architecture,
but will obviously cause inconsistency. From the results, we
see that, AsymNVM-RCB still achieves comparable perfor-
mance to the optimistic performance of symmetric NVM data
structures without consistency. Especially, in a few cases (i.e.,
Queue, Stack, BST, MV-BST, MV-BPT), the performance of
AsymNVM-RCB is even better than symmetric NVM without
batching. This is mainly due to the small front-end cache.
End-to-end Performance. We evaluate application per-
formance by two transaction benchmarks: SmallBank [90]
and TATP [82]. We use HashTable and BPT as the index
data structure of SmallBank and TATP, separately. As shown
in Table 3, the results show AsymNVM can improve the
throughput to 1.39X in SmallBank and 7.20x in TATP.
Cost Comparison. We also make comparison about the
usage of NVM. In the symmetric setting with m machines,
it needs n; = max(3 1= [Si/s,], m) NVM devices (assuming
each NVM capacity is Sy, the real usage of each NVM is §;).

Reasons for empty cells: Data structure with time complexity O(1) (i.e.,
HashTable/SmallBank) cannot apply batching optimization. In Queue/Stack
implementation, batch and cache should be combined together.

Session 9A: Persistent data structures — Keep all cats in mind!

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

Table 3. Performance Comparison (R: using log reproducing, C: caching 10% NVM size in the front-end, B: batching with size
1024. The evaluation uses one(front-end)-to-one(back-end) setting with 100% write workloads harnessing all optimization.

KOPS TX(SmallBank) TX(TATP) Queue Stack HashTable SkipList BST BPT MV-BST MV-BPT

Symmetric 643 112.7 1187 1076 1148 117.6 77.1 1243 38.2 14.0

Symmetric-B 149.1 2459 2293 189.3 134.8 1742 126.6 62.7

AsymNVM-Naive 243 10.2 319 211 304 5.2 13.5 9.5 6.6 7.0

AsymNVM-R 278 12.4 615 589 344 6.8 15.7 11.7 11.5 9.7

AsymNVM-RC 338 37.1 439 36.4 44.4 50.9 19.4 14.5

AsymNVM-RCB 73.4 1392 1139 54.9 76.2 84.4 37.9 29.8

100 T T T T T 150 120 —— T

7 MV-BST —&— ® 150 | Uniform —— |
O g0l MV-BPT —x— 1 ~ 100 - [Skewed (.5) ==
g SkipList —e— . 100 L g gl] < Skewed (9) C——
g 60 3 5 oo | Back-end —+— | g 100 + Skewed (.99) — |
& 4}] g Front-end —><— 15
5 T 507 s 40 7 S 50t
g — > 2 g
= 0 0 oo

P S R SR
1.2 4 8 16 32 64 27 28 2° 210 2" ™2
Batch Size

(b) Lock Based Data Structure

PSS S S SR
1.2 4 8 16 32 64 27 28 29 210211512
Batch Size

(a) Lock-Free Data Structure

Figure 6. Throughput with different batch sizes

@
S

-3
=3

Throughput (KOPS)
N IS
S S

o

BPT BST SKIPLIST TATP MV-BPT MV-BST

HashTable SmallBank

Cache Size (%)

Cache Size (%)

Figure 7. Throughput with different cache sizes

600

MV-BPT(R) -~ +~ MV-BPT(W) —*— .-~ 400 BPT(R) - = - | BPT(W) —e—
& MV-BST(R) --x-- MV-BST(W) —s-="
o 300 | Skiplist(R) - - - Skiplist(W) —e—-|
Q 400 .
- <,"'x>‘> 200 L ’/,»"—.“ i
E e e b
=] “+ - P o
gaoop 1 100 L o et 1
= et S 1
£ - .
. 0 : : ° ¢
1 2 3 4 5 6 1 2 3 4 5 6

Reader Machine Number

(b) Lock Based Data Structure

Reader Machine Number

(a) Lock-Free Data Structure

Figure 8. Scalability of multiple readers.

500

120

—~ SKIPLIST —>*— — sKngg —%— W-Eg; —.—
@ L BST —8— @ - -BPT —6—
g 400 BPT —%— & gof BPT
< 300 | MV-BST —m— ¢ X
é_ MV-BPT —6— A é 60 L]
£ 200 - 5 %
= 2 . a— =
2 —o—-6—o o6 —6—4
£ 100 | g 30
F =
0 0
1 2 3 4 5 6 7 1 2 3 4 5 6 7

Data Structure Number Back-end Number

Figure 9. Multiple DS. Figure 10. Partitions.

Besides, AsymNVM needs n, = [/=" S;| NVM devices and
ny < ni. As we mentioned in Section 1, each back-end only
needs smaller capacity less than Sy, thereby the necessary
NVM n, will be fewer than n; (n; = m).

768

0 4 8 1‘2 1‘6 BPT BST SKIPLISMV-BPTMV-BST
Million Operations

20
Workload

Figure 11. CPU utilization. Figure 12. Throughput(Zipf)

9.3 CPU Utilization

Figure 11 shows CPU utilization of front-end and back-end
nodes. The workload is 10% put and 90% get in BST. The front-
end node keeps running with nearly 100% CPU utilization
but the request only incurs very small CPU usage (4%~10%
CPU utilization). It matches the intuition that, the back-end
has very little computing overhead. The major overhead
comes from replaying the persisted logs and managing slabs.

9.4 Effects of Batching and Caching

Batching. We measure the performance of batching with
vector operations under different batch sizes from 1 to 4096.
The results are in Figure 6. MV-BST can be improved by
2.76X (from 19.4 KOPS without batch to 53.6 KOPS with
batch size 4096). The improvement for MV-BPT is about
3.91X (from 14.5 KOPS to 56.7 KOPS with batch size 4096).
The improvements are 131%, 102%, and 88% for BST, BPT, and
SkipList, respectively. Multi-version data structures need to
perform path copying which incurs many write operations.
The batching can effectively reduce such overhead.

Caching. We measure the benefit of caching under dif-
ferent cache sizes. BST, B+Tree, hashtable, and skiplist are
used here (We do not consider queue and stack since they
need very small cache), and the results are shown in Figure 7.
Overall, the throughput increases with the increase of cache
sizes. Notice that MV-BPT and MV-BST do not get too much
improvement with catching. This is due to the fact that the
data modified are still kept in memory for multi-version data
structures. We also measure the improvement due to our
special optimizations of tree-like data structures. The results
show that, when using native LRU strategy (access any data
including the lower level nodes through the front-end cache),
the BPT can only reach 31.4 KOPS which is 38% lower than
AsymNVM.

Session 9A: Persistent data structures — Keep all cats in mind!

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

@ 80 _ @ 60 ® 120 — [
a Naive =mmEm — — o o a Naive =R
w0 R—]] Q80 RC—
< < 40 < g < RC 09
S0 5 5 5
2 F 3 24
= 20 5 40 5
55 5 5 5
S S S i
4 I <4 I 2
£, ; o | AN N £, B | | £ o B B £ o wl] @ 7 B
= T00% pul50% put 75% pul 10% pul 100% gel F T00% put50% put _ 75% put put F 5% pul 10% put 100% get = 700% put 50% put _ 75% put 10% put 100% gel
50% get 25% get 90% get 50% get 25% get 90% get 25% get 90% get 50% get 25% get 90% get
R (a) BST R (b) MV-BST R (c) BPT R (d) MV-BPT
@ 60 - — = @ 3000 - @ 3000 n @ 800 -
a Naive =z a Naive =z a Naive EzEEESE Q 700 | Naive
] R —— Q 2400 R == Q 2400 R == © 600 R——
< 40 < 4 4
= RC = 1800 RC —= = 1800 RC = 500 RC
5 5 5 S 400
25 & 1200 & 1200 £ 300
S S 2 2 200
g g« g o 8 100
£ 4 L L £ £ £ | |
= 100% put 50% put _ 75% put _ 10% put _100% get F 100% push 50% push 100% pop = 100% push 50% push 100% pop = 100% put 75%put 0% put 100% get
50%gel 25% gel 90% gel 50% pop 50% pop. 25%gel 90% gel
(e) SkipList (f) Queue (g) Stack (h) HashTable

Figure 13. Throughput with Different Workloads (100%put, 50%put+50%get, 25%put+75%get, 10%put+90%get, 100%get)

9.5 Multiple Front-end/Back-end Nodes

Since AsymNVM can support the operation in SWMR mode,
we also measure the scalability of AsymNVM by using mul-
tiple readers and one writer. The results are shown in Fig-
ure 8 (The workload of the writer is 100% insert, R/W repre-
sents reader/writer). Note that AsymNVM does not support
shared stack/queue since the write operation incurs a higher
contention than other data structures, leading to low per-
formance. We make comparisons between lock based and
lock-free data structures as we mentioned in Section 6.

The readers’ performance can scale well with the increas-
ing number of front-end nodes. We see that, the writer per-
formance of lock based data structure decreases more than
that of multi-version data structures. This is because there
are more RDMA rounds for lock based data structures that
can influence the performance. With different mechanisms
of concurrent control, the effects are different. With lock
based BST, the average throughput with 6 readers is 39%
lower than the value with only one reader. In the case of
MV-BST, performance degradation is about 10%. The results
confirm that the multi-version data structures do benefit the
readers.

From another aspect, the lock-free data structures scale
better than their lock-based counterparts. The readers in
Figure 8b have about 2.0~2.8% higher performance than the
readers in Figure 8a. Retries incurred by the failed read is
the main cause for the lower performance. The portion of
retry is about 8%~21% of total operations with 6 readers and
100% insert. Lower write workload will decrease the ratio of
retries.

We also measure the throughput of multiple front-ends
sharing one NVM, each accessing its own data structure.
Each front-end uses the same type of data structure but
with different instances. Figure 9 shows that the scalability is
almost linear. The performance degradation for a single client
is about 7%~19% compared to the one-to-one deployment.

As shown in Figure 10, we measure the performance af-
ter partitioning data structure to multiple back-ends. The
results show no significant performance degradation after
partitioning. The reason is that the partition in each back-end
is strictly isolated with other back-ends.

769

9.6 Different Workloads

We evaluate the performance of AsymNVM in different work-
loads in Figure 12. We use YCSB tool [15] to generate skewed
workloads. The keys are generated according to Zipf distri-
bution with parameter .5, .9 and .99. AsymNVM adapts well
to skewed workload, showing a comparable performance
even when the Zipf parameter is .99.

We also measure our data structure implementations us-
ing industry workloads from an online service of Alibaba.
The workloads trace of real world application behaviors
and satisfy the power-law distribution. In this workloads,
the key is hashed to 64 bytes and value is 64 Bytes~8 KB,
and operations are PUSH/POP (queue/stack) and PUT/GET
(other index data structures) respectively. Figure 13 shows
the throughput of using different read/write ratios from a
single writer front-end node. For simplicity, insert operation
is used as write and find operation is used as read. With fewer
read operations, the performance decreases due to more over-
head brought by write operations. Comparing BPT/BST to
their MV-counterparts, BPT/BST have relatively higher per-
formance. For instance, with the full write workload, there
are about 54%/71% performance gap. This is because, in the
MV-version, the write operations need to write more data
during path copying.

10 Related Work

Single-node NVM systems [10, 14, 28, 49, 50, 52, 61, 62, 77,
96, 100, 104] and management subsystems [7, 72, 79, 85, 91,
94, 97] provide direct access to NVM via memory bus but
cause lower utilization of NVM and inaccessible facing node
failures. To provide durability for transaction, ATOM [47]
uses synchronous undo logging with hardware support and
LB++ [46] supports lightweight epoch ordering by dynami-
cally tracking inter-thread dependencies. Distributed NVM
systems including Hotpot [81], Mojim [102], FaRM [20, 21],
and FlatStore [12] combine the NVM devices together with
RDMA, and they are all using symmetric deployment. With
the same architecture, Octopus [63] and Orion [98] are dis-
tributed file system built for RDMA and NVM. In the hard-
ware level, Hu et al [35] improve the persistence parallelism

Session 9A: Persistent data structures — Keep all cats in mind!

of flushing data from RDMA network to NVM. Currently,
the asymmetric deployments such as [63, 88] provide stor-
age interfaces including NVMe-oF [16] and Crail [83]. Es-
pecially, NVMe-oF is designed to work with any suitable
storage fabric technology. However, they neither support
byte addressable nor provides transaction interface, i.e., they
cannot implement persistent data structures. Different from
Aerie [93] which also uses transactional write logs, Asym-
NVM is a distributed system with suitable interfaces for
NVM. Prior works [7, 62, 98, 102] model the persist ordering
overhead by adding a fixed extra delay, and we choose the
real NVM device to evaluate AsymNVM.

Several projects aim to design the future disaggregation
data center, such as [1, 31, 38, 40, 65, 74, 80]. LegoOS [80]
proposes splitkernel, an OS model disseminates function-
alities into loosely-coupled monitors. Some of these works
focus on how to design remote memory. Aguilera et al. [2]
introduce benefits and challenges about applying remote
memory. RackOut [67] mitigates load imbalance of mem-
ory disaggregation. Some RDMA extensions such as atomic
object read [18] can further improve the access to remote
memory in the disaggregation architecture. AsymNVM is
an asymmetric architecture that can be used to organize the
disaggregated NVM resource.

11 Conclusion

This paper rethinks NVM deployment and makes a case for
the asymmetric NVM architecture, which decouples servers
from persistent data storage. We build AsymNVM frame-
work based on AsymNVM architecture that implements: 1)
high performance persistent data structure update; 2) NVM
data management; 3) concurrency control; and 4) crash-
consistency and replication. The central idea is to use opera-
tion logs to reduce the stall due to RDMA writes and enable
efficient batching and caching in front-end nodes. The results
show that AsymNVM achieves similar or better performance
compared to the best possible symmetric architecture while
avoiding all the drawbacks with disaggregation.

Acknowledgments

We thank our shepherd Prof. Steven Swanson and the anony-
mous reviewers (OSDI’ 18, ASPLOS’ 19, ISCA’ 19, MICRO’
19, ASPLOS’ 20) for their valuable feedbacks. Teng Ma, Kang
Chen and Yongwei Wu are with the Department of Computer
Science and Technology, Beijing National Research Center
for Information Science and Technology (BNRist), Tsinghua
University, China. This Work is supported by National Key
Research & Development Program of China (2016YFB1000504),
Natural Science Foundation of China (61877035, 61433008,
61373145, 61572280), China Postdoctoral Science Founda-
tion (2018M630162), Young Scientists Fund of the National
Natural Science Foundation of China (Grant No. 61802219)
National Science Foundation (CCF-1657333,1750656).

770

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

References

[1] 2012. SeaMicro Technology Overview. http://seamicro.com/sites/
default/files/SM_TO01_64_v2.5.pdf.
Marcos K Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard,
Jayneel Gandhi, Pratap Subrahmanyam, Lalith Suresh, Kiran Tati,
Rajesh Venkatasubramanian, and Michael Wei. 2017. Remote memory
in the age of fast networks. In Proceedings of the 2017 Symposium on
Cloud Computing. ACM, 121-127.
J Chris Anderson, Jan Lehnardt, and Noah Slater. 2010. CouchDB: The
Definitive Guide: Time to Relax. O’Reilly Media.
Dmytro Apalkov, Alexey Vasilyevitch Khvalkovskiy, Steven M Watts,
Vladimir Nikitin, Xueti Tang, Daniel Lottis, Kiseok Moon, Xiao Luo,
Eugene Chen, Adrian E Ong, et al. 2013. Spin-transfer torque mag-
netic random access memory (STT-MRAM). ACM Journal on Emerg-
ing Technologies in Computing Systems 9, 2 (2013), 13.
Joy Arulraj and Andrew Pavlo. 2017. How to build a non-volatile
memory database management system. In Proceedings of the 2017
ACM International Conference on Management of Data. ACM, 1753—
1758.
Joy Arulraj, Andrew Pavlo, and Subramanya R Dulloor. 2015. Let’s
talk about storage & recovery methods for non-volatile memory data-
base systems. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. ACM, 707-722.
Kumud Bhandari, Dhruva R Chakrabarti, and Hansjuergen Boehm.
2016. Makalu: fast recoverable allocation of non-volatile memory.
conference on object oriented programming systems languages and
applications 51, 10 (2016), 677-694.
Jeff Bonwick et al. 1994. The Slab Allocator: An Object-Caching
Kernel Memory Allocator.. In USENIX summer, Vol. 16. Boston, MA,
USA.
Geoffrey W Burr, Matthew] Breitwisch, Michele M Franceschini,
Davide Garetto, Kailash Gopalakrishnan, Bryan L Jackson, B N Kurdi,
Chung H Lam, Luis A Lastras, Alvaro Padilla, et al. 2010. Phase change
memory technology. Journal of Vacuum Science and Technology B 28,
2 (2010), 223-262.
Andreas Chatzistergiou, Marcelo Cintra, and Stratis D Viglas. 2015.
Rewind: Recovery write-ahead system for in-memory non-volatile
data-structures. Proceedings of the VLDB Endowment 8, 5 (2015),
497-508.
Shimin Chen and Qin Jin. 2015. Persistent b+-trees in non-volatile
main memory. Proceedings of the VLDB Endowment 8,7 (2015), 786—
797.
Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and
Jiwu Shu. 2020. FlatStore: an Efficient Log-Structured Key-Value Stor-
age Engine for Persistent Memory. In the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems. ACM.
Douglas Chet. 2015. RDMA with PMEM: Software mech-
anisms for enabling access to remote persistent memory.
http://www.snia.org/sites/default/files/SDC15_presentations/
persistant_mem/ChetDouglas_ RDMA_with_PM.pdf.
Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grupp, Ra-
jesh K Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps:
making persistent objects fast and safe with next-generation, non-
volatile memories. ACM Sigplan Notices 46, 3 (2011), 105-118.
Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.
ACM, 143-154.
[16] Patrice Couvert. 2016. High speed IO processor for NVMe over fabric
(NVMeoF). Flash Memory Summit (2016).
[17] Tyler Crain, Vincent Gramoli, and Michel Raynal. 2013. No hot
spot non-blocking skip list. In IEEE 33rd International Conference on
Distributed Computing Systems (ICDCS). IEEE, 196-205.

[2

=

— —
'y w
flan’ =

—
w
=

—
O
[

—
—
w

=

(15

=

http://seamicro.com/sites/default/files/SM_TO01_64_v2.5.pdf
http://seamicro.com/sites/default/files/SM_TO01_64_v2.5.pdf
http://www.snia.org/sites/default/files/SDC15_presentations/persistant_mem/ChetDouglas_RDMA_with_PM.pdf
http://www.snia.org/sites/default/files/SDC15_presentations/persistant_mem/ChetDouglas_RDMA_with_PM.pdf

Session 9A: Persistent data structures — Keep all cats in mind! ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

[18] Alexandres Daglis, Dmitrii Ustiugov, Stanko Novakovi¢, Edouard 51st Annual IEEE/ACM International Symposium on Microarchitecture
Bugnion, Babak Falsafi, and Boris Grot. 2016. SABRes: Atomic ob- (MICRO,).
ject reads for in-memory rack-scale computing. In The 49th Annual [36] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin

=

—

—

-

IEEE/ACM International Symposium on Microarchitecture. IEEE Press,
6.

Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: resource-
efficient and QoS-aware cluster management. ACM SIGPLAN Notices
49, 4 (2014), 127-144.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Orion Hodson, and
Miguel Castro. 2014. FaRM: Fast remote memory. In Proceedings
of the 11th USENIX Conference on Networked Systems Design and
Implementation. 401-414.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Edmund B Nightin-
gale, Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel
Castro. 2015. No compromises: distributed transactions with con-
sistency, availability, and performance. In Proceedings of the 25th
Symposium on Operating Systems Principles. ACM, 54-70.

James R Driscoll, Neil Sarnak, Daniel D Sleator, and Robert E Tarjan.
1989. Making data structures persistent. J. Comput. System Sci. 38, 1
(1989), 86-124.

Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe,
Siying Dong, Kim Hazelwood, Chris Petersen, Asaf Cidon, and Sachin
Katti. 2018. Reducing DRAM footprint with NVM in facebook. In
Proceedings of the Thirteenth EuroSys Conference. ACM, 42.

Mikhail Fomitchev and Eric Ruppert. 2004. Lock-free linked lists and
skip lists. In Proceedings of the Twenty-third annual ACM Symposium
on Principles of Distributed Computing. ACM, 50-59.

Keir Fraser. 2004. Practical lock-freedom. Technical Report. University
of Cambridge, Computer Laboratory.

Peter X Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira,
Sangjin Han, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
2016. Network requirements for resource disaggregation. In 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). 249-264.

Garth A Gibson and Rodney Van Meter. 2000. Network attached
storage architecture. Commun. ACM 43, 11 (2000), 37-37.

Ellis R Giles, Kshitij Doshi, and Peter Varman. 2015. SoftWrAP: A
lightweight framework for transactional support of storage class
memory. In Mass Storage Systems and Technologies (MSST), 2015 31st
Symposium on. IEEE, 1-14.

Google. 2018. ClusterData2011 2 traces. https://github.com/google/
cluster-data/blob/master/ClusterData2011_2.md.

Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G. Shin. 2017. Efficient Memory Disaggregation with
Infiniswap. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). USENIX Association, Boston, MA,
649-667.

Sangjin Han, Norbert Egi, Aurojit Panda, Sylvia Ratnasamy, Guangyu
Shi, and Scott Shenker. 2013. Network support for resource disaggre-
gation in next-generation datacenters. In Proceedings of the Twelfth
ACM Workshop on Hot Topics in Networks. ACM, 10.

Martin Hedenfalk. 2009. how the append-only btree works. http:
//www.bzero.se/ldapd/btree.html.

Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. 2006.
A provably correct scalable concurrent skip list. In Conference On
Principles of Distributed Systems (OPODIS). Citeseer.

Chang-Hong Hsu, Qingyuan Deng, Jason Mars, and Lingjia Tang.
2018. SmoothOperator: Reducing Power Fragmentation and Improv-
ing Power Utilization in Large-scale Datacenters. In Proceedings of
the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, 535-548.
Xing Hu, Matheus Ogleari, Jishen Zhao, Shuangchen Li, Abanti Basak,
and Yuan Xie. 2018. Persistence Parallelism Optimization: A Holistic
Approach from Memory Bus to RDMA Network. In Proceedings of the

—

=

[t

[l

—

[

[}

—

=

—

—

Reed. 2010. ZooKeeper: Wait-free Coordination for Internet-scale
Systems.. In USENIX Annual Technical Conference, Vol. 8. Boston, MA,
USA.

Intel. [n. d.]. Disaggregated Servers Drive Data Center Efficiency and
Innovation. https://www.intel.com/content/dam/www/public/us/
en/documents/best-practices/disaggregated-server-architecture-
\drives-data-center-efficiency-paper.pdf.

Intel. 2013. Intel, Facebook Collaborate on Future Data Center
Rack Technologies. https://newsroom.intel.com/news-releases/intel-
facebook-collaborate-on-future-\data-center-rack-technologies/.
Intel. 2017. Intel Rack Scale Design Architecture White Paper. https://
www.intel.com/content/dam/www/public/us/en/documents/white-
papers/rack-scale-design-architecture-white-paper.pdf.

Intel. 2018. Intel Rack Scale Design. https://www.intel.com/
content/www/us/en/architecture-and-technology/rack-scale-
design-overview.html.

Intel. 2018. NVM Library. https://github.com/pmem/nvml.

Intel. 2019. Configure, Manage, and Profile Intel® Optane™
DC Persistent Memory Modules. https://software.intel.com/en-
us/articles/configure-manage-and-profile-intel-optane-dc-
persistent-memory-modules.

Intel. 2019. What Is Intel Optane DC Persistent Mem-
ory? https://www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory.html.

Nusrat Sharmin Islam, Md Wasi-ur Rahman, Xiaoyi Lu, and Dha-
baleswar K Panda. 2016. High performance design for hdfs with
byte-addressability of nvm and rdma. In Proceedings of the 2016 Inter-
national Conference on Supercomputing. ACM, 8.

[45] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-

saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subra-
manya R Dulloor, et al. 2019. Basic Performance Measurements
of the Intel Optane DC Persistent Memory Module. arXiv preprint
arXiv:1903.05714 (2019).

Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. 2015.
Efficient persist barriers for multicores. In Proceedings of the 48th
International Symposium on Microarchitecture. ACM, 660-671.

Arpit Joshi, Vijay Nagarajan, Stratis Viglas, and Marcelo Cintra. 2017.
ATOM: Atomic durability in non-volatile memory through hardware
logging. In 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 361-372.

Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. De-
sign Guidelines for High Performance {RDMA} Systems. In 2016
{USENIX} Annual Technical Conference (USENIX ATC 16). 437-450.
Rajat Kateja, Anirudh Badam, Sriram Govindan, Bikash Sharma, and
Greg Ganger. 2017. Viyojit: Decoupling battery and DRAM capac-
ities for battery-backed DRAM. In Proceedings of the 44th Annual
International Symposium on Computer Architecture. ACM, 613-626.
Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M Chen, and Thomas F
Wenisch. 2016. High-performance transactions for persistent memo-
ries. ACM SIGPLAN Notices 51, 4 (2016), 399-411.

Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven
Pelley, Sihang Liu, Peter M Chen, and Thomas F Wenisch. 2016. Del-
egated persist ordering. In The 49th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Press, 58.

Kunal Korgaonkar, Ishwar Bhati, Huichu Liu, Jayesh Gaur, Sasikanth
Manipatruni, Sreenivas Subramoney, Tanay Karnik, Steven Swanson,
Ian Young, and Hong Wang. 2018. Density tradeoffs of non-volatile
memory as a replacement for SRAM based last level cache. In Pro-
ceedings of the 45th Annual International Symposium on Computer
Architecture. IEEE Press, 315-327.

https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md
https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md
http://www.bzero.se/ldapd/btree.html
http://www.bzero.se/ldapd/btree.html
https://www.intel.com/content/dam/www/public/us/en/documents/best-practices/disaggregated-server-architecture-\ drives-data -center-efficiency-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/best-practices/disaggregated-server-architecture-\ drives-data -center-efficiency-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/best-practices/disaggregated-server-architecture-\ drives-data -center-efficiency-paper.pdf
https://newsroom.intel.com/news-releases/intel-facebook-collaborate-on-future-\ data-center-rack-technologies/
https://newsroom.intel.com/news-releases/intel-facebook-collaborate-on-future-\ data-center-rack-technologies/
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rack-scale-design-architecture-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rack-scale-design-architecture-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rack-scale-design-architecture-white-paper.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://github.com/pmem/nvml
https://software.intel.com/en-us/articles/configure-manage-and-profile-intel-optane-dc-persistent-memory-modules
https://software.intel.com/en-us/articles/configure-manage-and-profile-intel-optane-dc-persistent-memory-modules
https://software.intel.com/en-us/articles/configure-manage-and-profile-intel-optane-dc-persistent-memory-modules
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

=

flan)

Session 9A: Persistent data structures — Keep all cats in mind!

[53] Butler W Lampson. 1983. Hints for computer system design. In ACM

SIGOPS Operating Systems Review, Vol. 17. ACM, 33-48.

Benjamin C Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009.
Architecting phase change memory as a scalable dram alternative.
International Symposium on Computer Architecture 37, 3 (2009), 2-13.
Hyung Gyu Lee, Seungcheol Baek, Chrysostomos Nicopoulos, and
Jongman Kim. 2011. An energy-and performance-aware DRAM cache
architecture for hybrid DRAM/PCM main memory systems. In 2011
IEEE 29th International Conference on Computer Design (ICCD). IEEE,
381-387.

Lucas Lersch, Ismail Oukid, Ivan Schreter, and Wolfgang Lehner. 2017.
Rethinking DRAM caching for LSMs in an NVRAM environment.
In European Conference on Advances in Databases and Information
Systems. Springer, 326-340.

Justin J Levandoski, David B Lomet, and Sudipta Sengupta. 2013. The
Bw-Tree: A B-tree for new hardware platforms. In 2013 IEEE 29th
International Conference on Data Engineering (ICDE). IEEE, 302-313.
Hyeontaek Lim, Dongsu Han, David G Andersen, and Michael Kamin-
sky. 2014. MICA: A Holistic Approach to Fast In-Memory Key-Value
Storage. In 11th USENLX Symposium on Networked Systems Design
and Implementation (NSDI 14). 429-444.

Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ran-
ganathan, Steven K Reinhardt, and Thomas F Wenisch. 2009. Dis-
aggregated memory for expansion and sharing in blade servers. In
ACM SIGARCH Computer Architecture News, Vol. 37. ACM, 267-278.
Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung,
Jichuan Chang, Parthasarathy Ranganathan, and Thomas F Wenisch.
2012. System-level implications of disaggregated memory. In 2012
IEEE 18th International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 1-12.

Mengxing Liu, Jiankai Xing, Kang Chen, and Yongwei Wu. 2019.
Building Scalable NVM-based B+ tree with HTM. In Proceedings of
the 48th International Conference on Parallel Processing. 1-10.
Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yong-
wei Wu, Weimin Zheng, and Jinglei Ren. 2017. DUDETM: Building
Durable Transactions with Decoupling for Persistent Memory. In
Proceedings of the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
ACM, 329-343.

Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus:
an rdma-enabled distributed persistent memory file system. In 2017
USENIX Annual Technical Conference (USENIX ATC 17). 773-785.
Sparsh Mittal and Jeffrey S Vetter. 2016. A Survey of Software Tech-
niques for Using Non-Volatile Memories for Storage and Main Mem-
ory Systems. IEEE Transactions on Parallel and Distributed Systems
27,5 (2016), 1537-1550.

Mihir Nanavati, Jake Wires, and Andrew Warfield. 2017. Decibel:
Isolation and Sharing in Disaggregated Rack-Scale Storage.. In NSDL
17-33.

Sundeep Narravula, A Marnidala, Abhinav Vishnu, Karthikeyan
Vaidyanathan, and Dhabaleswar K Panda. 2007. High performance
distributed lock management services using network-based remote
atomic operations. In Seventh IEEE International Symposium on Cluster
Computing and the Grid (CCGrid’07). IEEE, 583-590.

Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Fal-
safi, and Boris Grot. 2016. The case for RackOut: Scalable data serving
using rack-scale systems. In Proceedings of the Seventh ACM Sympo-
sium on Cloud Computing. ACM, 182-195.

Stanko Novakovic, Alexandros Daglis, Dmitrii Ustiugov, Edouard
Bugnion, Babak Falsafi, and Boris Grot. 2019. Mitigating load im-
balance in distributed data serving with rack-scale memory pooling.
ACM Transactions on Computer Systems (TOCS) 36, 2 (2019), 6.
Chris Okasaki. 1999. Purely functional data structures. Cambridge
University Press.

—

=

[l

=

—

—

=

[

[t

—

=

flans!

—_ =

—

=

—

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

[70] OpenFabric. 2015. RDMA and NVM Programming Model.

https://www.openfabrics.org/images/eventpresos/workshops2015/
DevWorkshop/Monday/monday_12.pdf.

Ismail Oukid, Daniel Booss, Wolfgang Lehner, Peter Bumbulis, and
Thomas Willhalm. 2014. SOFORT: A hybrid SCM-DRAM storage
engine for fast data recovery. In Proceedings of the Tenth International
Workshop on Data Management on New Hardware. ACM, 8.

Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolfgang Lehner,
Thomas Willhalm, and Grégoire Gomes. 2017. Memory manage-
ment techniques for large-scale persistent-main-memory systems.
Proceedings of the VLDB Endowment 10, 11 (2017), 1166-1177.

Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and
Wolfgang Lehner. 2016. FPTree: A hybrid SCM-DRAM persistent and
concurrent B-tree for storage class memory. In Proceedings of the 2016
International Conference on Management of Data. ACM, 371-386.
Hewlett Packard. 2018. The Machine. https://www.labs.hpe.com/the-
machine.

Grun Paul, Bates Stephen, and Rob Davis. 2018. Persistent Memory
over Fabric. https://www.snia.org/PM-Summit/2018/presentations/
05_PM_Summit_Grun_PM_Final_Post_CORRECTED.pdf.

Steven Pelley, Peter M Chen, and Thomas F Wenisch. 2014. Memory
persistency. In ACM SIGARCH Computer Architecture News, Vol. 42.
IEEE Press, 265-276.

Moinuddin K Qureshi, Vijayalakshmi Srinivasan, and Jude A Rivers.
2009. Scalable high performance main memory system using phase-
change memory technology. ACM SIGARCH Computer Architecture
News 37, 3 (2009), 24-33.

Ohad Rodeh. 2008. B-trees, shadowing, and clones. ACM Transactions
on Storage (TOS) 3, 4 (2008), 2.

David Schwalb, Tim Berning, Martin Faust, Markus Dreseler, and
Hasso Plattner. 2015. nvm malloc: Memory Allocation for NVRAM..
In ADMS@ VLDB. 61-72.

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018.
LegoOS: A Disseminated, Distributed OS for Hardware Resource
Disaggregation. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). 69-87.

Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. 2017. Distributed
shared persistent memory. In Proceedings of the 2017 Symposium on
Cloud Computing. ACM, 323-337.

Neuvonen Simo, Wolski Antoni, manner Markku, and Raatikka Vilho.
2011. TATP Benchmark. http://tatpbenchmark.sourceforge.net/.
Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Radu Stoica, Bernard
Metzler, Nikolas Ioannou, and Ioannis Koltsidas. 2017. Crail: A High-
Performance I/O Architecture for Distributed Data Processing. IEEE
Data Eng. Bull. 40, 1 (2017), 38-49.

Maomeng Su, Mingxing Zhang, Kang Chen, Zhenyu Guo, and Yong-
wei Wu. 2017. RFP: When RPC is Faster than Server-Bypass with
RDMA.. In EuroSys. 1-15.

Michael M Swift. 2017. Draft: Towards o (1) memory. In The 16th
Workshop on Hot Topics in Operating Systems (HotOS).
Chandramohan A Thekkath, Timothy Mann, and Edward K Lee. 1997.
Frangipani: a scalable distributed file system. symposium on operating
systems principles 31, 5 (1997), 224-237.

Talpey Tom. 2015. Remote Access to Ultra-Low-Latency Stor-
age. https://www.snia.org/sites/default/files/SDC15_presentations/
persistant_mem/Talpey-Remote_Access_Storage.pdf.

Shin-Yeh Tsai and Yiying Zhang. 2018. Mitsume: an Object-Based
Remote Memory System. In Workshop on Warehouse-scale Memory
Systems (WAMS). ACM.

Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and
Samuel Madden. 2013. Speedy transactions in multicore in-memory
databases. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles. ACM, 18-32.

https://www.openfabrics.org/images/eventpresos/workshops2015/DevWorkshop/Monday/monday_12.pdf
https://www.openfabrics.org/images/eventpresos/workshops2015/DevWorkshop/Monday/monday_12.pdf
https://www.labs.hpe.com/the-machine
https://www.labs.hpe.com/the-machine
https://www.snia.org/PM-Summit/2018/presentations/05_PM_Summit_Grun_PM_Final_Post_CORRECTED.pdf
https://www.snia.org/PM-Summit/2018/presentations/05_PM_Summit_Grun_PM_Final_Post_CORRECTED.pdf
http://tatpbenchmark.sourceforge.net/
https://www.snia.org/sites/default/files/SDC15_presentations/persistant_mem/Talpey-Remote_Access_Storage.pdf
https://www.snia.org/sites/default/files/SDC15_presentations/persistant_mem/Talpey-Remote_Access_Storage.pdf

Session 9A: Persistent data structures — Keep all cats in mind!

[90] Brown University. 2018. SmallBank Benchmark. http://hstore.cs.

brown.edu/documentation/deployment/benchmarks/smallbank/.
Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann,
Takushi Hashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and Mit-
suru Sato. 2018. Managing non-volatile memory in database systems.
In Proceedings of the 2018 International Conference on Management of
Data. ACM, 1541-1555.

Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan,
Roy H Campbell, et al. 2011. Consistent and Durable Data Struc-
tures for Non-Volatile Byte-Addressable Memory. In USENIX FAST
11, Vol. 11. 61-75.

Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena, and Michael M
Swift. 2014. Aerie: Flexible file-system interfaces to storage-class
memory. In Proceedings of the Ninth European Conference on
Computer Systems. ACM, 14.

Haris Volos, Andres Jaan Tack, and Michael M Swift. 2011.
Mnemosyne: Lightweight persistent memory. In ACM SIGARCH Com-
puter Architecture News, Vol. 39. ACM, 91-104.

Yongwei Wu, Teng Ma, Maomeng Su, Mingxing Zhang, CHEN Kang,
and Zhenyu Guo. 2019. RF-RPC: Remote Fetching RPC Paradigm for
RDMA-Enabled Network. IEEE Transactions on Parallel & Distributed
Systems 30, 7 (July 2019), 1657-1671. https://doi.org/10.1109/TPDS.
2018.2889718

Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A
Hybrid Index Key-Value Store for DRAM-NVM Memory Systems. In
2017 USENIX Annual Technical Conference (USENIX ATC 17). USENIX,
349-362.

[97] Jian Xu and Steven Swanson. 2016. NOVA: a log-structured file system

for hybrid volatile/non-volatile main memories. In Proceedings of the

—

flaa)

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

14th Usenix Conference on File and Storage Technologies. USENIX
Association, 323-338.

[98] Jian Yang, Joseph Izraelevitz, and Steven Swanson. 2019. Orion: A

Distributed File System for Non-Volatile Main Memory and RDMA-
Capable Networks. In 17th USENIX Conference on File and Storage
Technologies (FAST 19). 221-234.

[99] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and

Steven Swanson. 2019. An Empirical Guide to the Behavior and Use of
Scalable Persistent Memory. arXiv preprint arXiv:1908.03583 (2019).

[100] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong

Yong, and Bingsheng He. 2015. NV-Tree: Reducing Consistency Cost
for NVM-based Single Level Systems. In USENIX FAST 15, Vol. 15.
167-181.

Dong Young Yoon, Mosharaf Chowdhury, and Barzan Mozafari. 2018.
Distributed Lock Management with RDMA: Decentralization without
Starvation. In Proceedings of the 2018 International Conference on
Management of Data. ACM, 1571-1586.

Yiying Zhang, Jian Yang, Amirsaman Memaripour, and Steven Swan-
son. 2015. Mojim: A reliable and highly-available non-volatile mem-
ory system. In ACM SIGARCH Computer Architecture News, Vol. 43.
ACM, 3-18.

Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. A durable and
energy efficient main memory using phase change memory technol-
ogy. International Symposium on Computer Architecture 37, 3 (2009),
14-23.

Pengfei Zuo, Yu Hua, and Jie Wu. 2018. Write-optimized and high-
performance hashing index scheme for persistent memory. In 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). 461-476.

http://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
http://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
https://doi.org/10.1109/TPDS.2018.2889718
https://doi.org/10.1109/TPDS.2018.2889718

	Abstract
	1 Introduction
	2 Background
	3 AsymNVM Overview
	3.1 AsymNVM Architecture
	3.2 Key Challenges
	3.3 AsymNVM Framework Overview

	4 Efficient Persistent Update
	4.1 Basic Implementation
	4.2 Decoupled Memory Log Persistency
	4.3 Batching and Caching with Operation Log
	4.4 Data Cache in Front-end Nodes

	5 NVM Data Management
	5.1 Back-end Interface and Metadata
	5.2 Front-end Allocator

	6 Concurrency Control
	6.1 Exclusive Write
	6.2 Lock-Free Data Structure
	6.3 Lock Based Data Structure

	7 Recovery and Replication
	7.1 Replication
	7.2 Data Structure Recovery

	8 Data Structure Implementations
	8.1 List-Based Data Structure
	8.2 Hash Table
	8.3 Tree-Like Data Structure
	8.4 SkipList

	9 Evaluation
	9.1 Evaluation Setup
	9.2 AsymNVM Performance
	9.3 CPU Utilization
	9.4 Effects of Batching and Caching
	9.5 Multiple Front-end/Back-end Nodes
	9.6 Different Workloads

	10 Related Work
	11 Conclusion
	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 2 to page 15
 Mask co-ordinates: Horizontal, vertical offset 46.66, 727.96 Width 533.33 Height 26.53 points
 Origin: bottom left

 1
 0
 BL

 2
 SubDoc
 15

 CurrentAVDoc

 46.6553 727.9634 533.3336 26.5295

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 16
 17
 14
 14

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 2 to page 17
 Mask co-ordinates: Horizontal, vertical offset 42.08, 723.39 Width 529.67 Height 36.59 points
 Origin: bottom left

 1
 0
 BL

 2
 SubDoc
 17

 CurrentAVDoc

 42.0812 723.3893 529.6744 36.5923

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 16
 17
 16
 16

 1

 HistoryList_V1
 qi2base

