
CLIP: A Disk I/O Focused Parallel Out-of-Core
Graph Processing System

Zhiyuan Ai , Mingxing Zhang, Yongwei Wu , Senior Member, IEEE,

Xuehai Qian, Kang Chen , and Weimin Zheng, Senior Member, IEEE

Abstract—Existing parallel out-of-core graph processing systems focus on improving disk I/O locality, which leads to restrictions on

their programming models. Although improving the locality, these constraints also restrict the expressiveness and hence only sub-

optimal algorithms are supported. These sub-optimal algorithms typically incur sequential, butmuch larger, amount of disk I/O. In this

paper, we explore a fundamentally different tradeoff: less total amount of I/O rather than better locality. We show that out-of-core graph

processing systems uniquely provide the opportunities to lift the restrictions of the programming model in a feasible manner. To

demonstrate the ideas, we build CLIP, which enables more efficient algorithms that require much less amount of total disk I/O. Our

experiments show that the algorithms that can be only implemented in CLIPare much faster than the original disk-locality-optimized

algorithms. We also further extend our technique’s scope of application by providing a semi-external mode. Our analysis and evaluation

demonstrate that semi-external is not only feasible for many cases, but also be able to deliver a significant speedup for important graph

applications. Moreover, we further improve the performance of originally supported applications by designing more optimizations and

evaluate our system on NVMe SSD.

Index Terms—Graph processing, parallelization, big data, disk I/O

Ç

1 INTRODUCTION

AS an alternative to distributed graph processing, single-
machine parallel out-of-core graph processing systems

can largely eliminate all the challenges of using a distrib-
uted framework. Since the ease of use, several out-of-core
systems have been developed recently [2], [3], [4], [5]. These
systems make practical large-scale graph processing avail-
able to anyone with a modern PC. It is also demonstrated
that the performance of a single ordinary PC running Grid-
Graph is competitive with a distributed graph processing
framework using hundreds of cores [4].

The major performance bottleneck of out-of-core systems
is disk I/O. Therefore, improving the locality of disk I/O
has been the main optimization goal. The current sys-
tems [2], [3], [4], [5] use two requirements to achieve this
goal. First, the execution engine defines a specific

processing order for the graph data and only iterates the
edges/vertices according to such order, which means that
each edge/vertex is processed at most once in an iteration.
By avoiding fully asynchronous execution, this technique
naturally reduces the tremendous amount of random disk
I/O. The second is the neighborhood constraint that requires
the user-defined function to only access neighborhood of its
corresponding input vertex/edge. This requirement
improves the locality of disk I/O and also makes automatic
parallelization of in-memory processing practical.

According to our investigation, almost all existing out-of-
core systems enforce the above two requirements in their
programming and execution model, which assure the good
disk I/O locality for their supported algorithms. However,
these restrictions (e.g., process each loaded block at most
once, neighborhood constraint) also affect the models’
expressiveness and flexibility and lead to the sub-optimal
algorithms. As a result, the execution incurs sequential, but
excessive, the amount of disk I/O, compared with more effi-
cient algorithms which require drastically less iterations.

In fact, the “at most once” requirement wastes the pre-
cious disk bandwidth. Many graph algorithms (e.g., SSSP,
BFS) are based on iterative improvement methods and can
benefit from iterating multiple times on a loaded data block.
Moreover, many important graph problems (e.g., WCC,
MIS) can be solved with much less iterations (typically only
one pass is enough) by changing algorithms. However, these
algorithms require the removal of “neighborhood con-
straint”. In essence, we argue that the current systems fol-
low a wrong trade-off: they improve the disk I/O locality at
the expense of less efficient algorithms with the larger
amount of disk I/O, wasting the precious disk bandwidth.

� Z. Ai, Y. Wu, K. Chen, and W. Zheng are with the Department of Com-
puter Science and Technology, Tsinghua University, Beijing 100084,
China, and also with Graduate School at Shenzhen, , Tsinghua University,
Shenzhen 518055, China. E-mail: azy13@mails.tsinghua.edu.cn, {wuyw,
chenkang, zwm-dcs}@tsinghua.edu.cn.

� M. Zhang is with the Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China, and also with Graduate
School at Shenzhen, , Tsinghua University, Shenzhen 518055, China and
also with Sangfor Inc, Shenzhen 518055, China.
E-mail: zhang.mingxing@outlook.com.

� X. Qian is with the University of Southern California, Los Angeles 90089,
CA. E-mail: xuehai.qian@usc.edu.

Manuscript received 22 Feb. 2018; revised 12 June 2018; accepted 13 July
2018. Date of publication 20 July 2018; date of current version 12 Dec. 2018.
(Corresponding authors: Yongwei Wu and Kang Chen.)
Recommended for acceptance by W. Yu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2018.2858250

1045-9219� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

AI ETAL.: CLIP: A DISK I/O FOCUSED PARALLELOUT-OF-CORE GRAPH PROCESSING SYSTEM 45

Authorized licensed use limited to: Tsinghua University. Downloaded on March 28,2024 at 11:10:36 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4354-6700
https://orcid.org/0000-0003-4354-6700
https://orcid.org/0000-0003-4354-6700
https://orcid.org/0000-0003-4354-6700
https://orcid.org/0000-0003-4354-6700
https://orcid.org/0000-0002-6651-7032
https://orcid.org/0000-0002-6651-7032
https://orcid.org/0000-0002-6651-7032
https://orcid.org/0000-0002-6651-7032
https://orcid.org/0000-0002-6651-7032
https://orcid.org/0000-0002-8368-1109
https://orcid.org/0000-0002-8368-1109
https://orcid.org/0000-0002-8368-1109
https://orcid.org/0000-0002-8368-1109
https://orcid.org/0000-0002-8368-1109
mailto:
mailto:
mailto:
mailto:
mailto:

As a consequence, current out-of-core systems only achieve
sub-optimal performance.

In this paper, we propose CLIP, a novel parallel out-
of-core graph processing system, in which supporting more
efficient algorithms is the primary concern. We argue that
the out-of-core systems uniquely provide the opportunities
to lift the restrictions of the programming and execution
model (process each loaded block at most once, neighbor-
hood constraint) in a feasible manner. Specifically, CLIP is
designed with the principle of “squeezing out all the value
of loaded data”. It defines a programming model that sup-
ports 1) loaded data reentry by allowing more flexible process-
ing order; and 2) beyond-neighborhood by allowing an “edge
function” to update vertex properties that do not belong to
the edge’s neighborhood.

Essentially, CLIP chooses an alternative trade-off by
enabling more efficient algorithms and more flexible execu-
tions at the expense of accessing vertices beyond the neigh-
borhood. Obviously, randomly accessing vertices in disk
incurs random disk I/O that is detrimental to performance.
To mitigate this issue, CLIP simply mmap all the vertex data
into memory. Using this method, although the vertex data
could reside in either memory or disk, Lin et al. [6] showed
that the built-in caching mechanism of mmap is particularly
desirable for processing real-world graphs, which often
exhibit power-law degree distributions [7].

Moreover, we further explore CLIPs scope of applicability
and design some more optimizing techniques and applica-
tion algorithms. Specifically, we first show that CLIP can
give full play to the advantages of semi-external mode for
some complex graph applications which require a random
accesses of vertices to achieve their best performance. Sec-
ond, we propose a novel diagonal-based partitioning and
scheduling mechanism, which can further reduce the num-
ber of iterations.

Meanwhile, we further consider a new environment of
faster storage media (NVMe SSD). Our experiment results
demonstrate that, if NVMe SSD (2.88 GB/s for sequential
read) is used, the CPU consumption of CLIP can become the
new bottleneck. Therefore, to meet this new challenge we
first new-design the parallel algorithms for beyond-
neighborhood applications by using the flexible program-
ming model of CLIP. Second, we propose two efficient and
novel selective scheduling mechanisms, which significantly
improve the performance of loaded data reentry applica-
tions in memory mode.

The evaluation of our system consists of three parts. First,
we evaluate the effectiveness of loaded data reentry and
beyond-neighborhood. According to our experiments, both
of these two technologies can significantly reduce the num-
ber of required iterations(even reduced to one iteration).
Therefore, CLIP can achieve up to 14:06� speedup for intrin-
sically iterative algorithms(like SSSP, BFS) and 3:25�-4264�
speedup for WCC and MIS algorithms.

Second, we evaluate our semi-external mode and diago-
nal-based partitioning and scheduling mechanism. Results
show that, the performance of CLIP’s semi-external mode
can largely surpass (12:63 � -195:1 �) existing works on
MCST and Coloring algorithms. And the diagonal-based
partitioning and scheduling mechanism can further achieve
1:17�-1:5� speedup on SSSP algorithm.

Finally, we evaluate our new-designed parallel algo-
rithms and the novel selective scheduling mechanism.
Without considering loading time, the new-designed paral-
lel algorithms can achieve up to 8:91� speedup for WCC
and MIS algorithms (16 threads) and the novel selective
scheduling mechanism can achieve up to 43:4� speedup for
BFS algorithm. Furthermore, we evaluate our system on
NVMe SSD and compare it with the state-of-the art system
MOSAIC [8]. Results show that, thanks to the significant
reduction in the number of iterations, CLIP can also achieve
a significant speedup over MOSAIC on WCC (up to 1514�)
and BFS (up to 7:21�). Moreover, our optimization strate-
gies can further improve the performance of our original
system(up to 2:88� speedup).

2 OUT-OF-CORE GRAPH PROCESSING

GraphChi [2] is the first large-scale out-of-core graph proc-
essing system that supports vertex programs. In GraphChi,
the whole set of vertices are partitioned into “intervals”,
and the system only processes the related sub-graph of an
interval at a time (i.e., only the edges related to vertices in
this interval are accessed). This computation locality of ver-
tex program (i.e., access only the neighborhood of input ver-
tex) makes it easy for GraphChi to reduce random disk
accesses. As a result, GraphChi requires a small number of
non-sequential disk accesses and provides competitive per-
formance compared to a distributed graph system [2].

Some successor systems (e.g., X-Stream [3], GridGraph [4])
propose an edge-centric programming model to replace the
vertex-centric model used in GraphChi. A user-defined func-
tion in the edge-centric model is only allowed to access the
data of an edge and the related source and destination verti-
ces. This requirement also enforces a similar neighborhood
constraint as the vertex-centric models, and hence ensures the
systems to incur only limited amount of randomdisk I/O.

However, although these existing out-of-core graph
processing systems differ vastly in detailed implementation,
they share two common design patterns: 1). Graph data (i.e.,
edges/vertices) is always (selectively) loaded in specific
order and each of the loaded data block is processed at most
once in an iteration; 2). They all require that the user-defined
functions should only access the neighborhood of the corre-
sponding edge/vertex.

3 REDUCING DISK I/O

According to our investigation, these two shared patterns
could potentially prohibit programmers from constructing
more efficient algorithms, and therefore increase the total
amount of disk I/O. Motivated by this observation, our
approach lifts the restrictions in the current programming
and execution model by: 1) providing more flexible proc-
essing order; and 2) allowing the user-defined function to
access an arbitrary vertex’s property. This section discuss
the rationale behind these two common patterns, and why
they are not always necessary in an out-of-core system.
More importantly, with the restrictions removed, how our
approach could enable more efficient algorithms that
require less number of iterations and less amount of disk
I/O. In essence, our approach squeezes out all the values of
loaded data.

46 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

Authorized licensed use limited to: Tsinghua University. Downloaded on March 28,2024 at 11:10:36 UTC from IEEE Xplore. Restrictions apply.

3.1 Reentry of Loaded Data

Out-of-core systems typically define a specific processing
order for the graph data and only iterate the edges/vertices
according to such order. This is because a fully asynchro-
nous graph processing would incur a lot of random accesses
to the graph data, drastically reducing disk I/O perfor-
mance. However, this strategy could potentially increase
the number of required iterations of many iterative
improvement algorithms (e.g., SSSP, BFS).

Fig. 1 shows an example that calculates single source
shortest path (SSSP) on a graph of 6 vertices. In SSSP, the ver-
tex property dist½v� is initialized to 0 for vertex 1 and 1 for
the others (Fig. 1a). The edge function applied to each edge
ðu; vÞ checks whether dist½v� is larger than dist½u� þ 1, If it is
true, dist½v� is immediately updated as dist½u� þ 1. Fig. 1b
shows the execution, where each iteration sequentially loads
one edge at a time, processes it and updates dist½v� if necessary.
As a result, 4 iterations are needed. The number of iterations
is determined by the diameter of the graph. To mitigate this
issue, some prior systems (e.g., GraphChi, GridGraph) 1)
allows an update function to use the most recent values of
the edges/vertices; and 2) provides selective scheduling
mechanisms that skip certain data blocks if they are not
needed. Although these optimizations enable “asynchronous
execution”, the essential workflow is not changed as each
block loaded is still processed at most once in every iteration.

However, the current approaches fail to exhaust the value
of loaded data, because a block of edges rather than only one
edge is loaded at a time. While the edges in a block are inde-
pendent, they constitute a sub-graph in which information
could be propagated by processing it multiple times. In
another word, the system could squeeze more value of the
loaded data. This approach is a mid-point between fully
synchronous and asynchronous processing and achieves
the best of both: ensuring sequential disk I/O by synchro-
nously processing between blocks and, at the same time,
enabling asynchronous processing within each block.

The idea is illustrated in the example in Fig. 1c. Here, we
partition the edges into blocks that each contains two edges,
and we apply two computation passes to every loaded
block. As a result, the number of iterations is reduced to 2.
We call the proposed simple optimization technique loaded
data reentry. As we see from the SSSP example in Fig. 1,
loaded data reentry could effectively reduce the number of
iterations, reduce the amount of disk I/O and eventually
reduce the whole execution time. For each loaded data
block, more CPU computation is required. Considering the
relative speed of CPU and disk I/O, trading CPU computa-
tion for less disk I/O is certainly a sensible choice.

3.2 Beyond the Neighborhood

“Loaded data reentry” is simple and requires only moderate
modifications to be applied to existing systems (e.g., Grid-
Graph). However, to apply the principle of “squeezing all the
values of loaded data” to more applications, we found that
the neighborhood constraint imposed by existing systems pro-
hibits the possibility of optimizing inmany cases. This neigh-
borhood constraint is enforced by almost all single-machine
graph processing systems because in this way one can easily
infer the region of data that will be modified by the inputs,
which is necessary for disk I/O optimizations. Despite the
rationale behind, neighborhood constraint limits the expres-
siveness of programming model in a way that certain algo-
rithms cannot be implemented in themost efficient manner.

We use weakly connected component (WCC) to explain
the problem. WCC is a popular graph problem that calcu-
lates whether two arbitrary vertices in a graph are weakly
connected (i.e., connected after replacing all the directed
edges with undirected edges). With the existing program-
ming models, this problem can only be solved by a label-
propagation-based algorithm, in which each node repeat-
edly propagates its current label to its neighbors and update
itself if it receives a lower label. The intrinsic property of this
algorithm (i.e., the label information only propagates one
hop in each iteration) inevitably causes the large number of
required iterations to coverage, especially for graphs with
large diameters. However, if the user-defined function is
allowed to update the property of an arbitrary vertex, a dis-
joint-set [9], [10] data structure can be built in memory.
Based on the disjoint-set, WCC problem for any graph can
be solved with only one pass of the edges.

In general, this method is used in a class of graph algo-
rithms termed Graph Stream Algorithms [11], where a graph
G ¼ ðV;EÞ is represented as a stream of edges, the storage
space of an algorithm is bounded by OðjV jÞ. Graph Stream
Algorithms has been studied by the theoretical community
for about twenty years [11], [12], and it has been shown that
if a randomly accessible OðjV jÞ space is given, many impor-
tant graph algorithms can be solved by reading only one (or
a few) pass(es) of the graph stream [13]. Unfortunately, the
whole class of Graph Stream Algorithms cannot be imple-
mented by the programming model of current disk-based
out-of-core systems (or only in a very inefficient manner).

4 CLIP

To support the loaded data reentry and beyond-neighbor-
hood optimization, we design and implement a C++-based
novel out-of-core graph processing system, CLIP. CLIP allows

Fig. 1. SSSP example. All the edges of this graph have the same distance set to 1.

AI ETAL.: CLIP: A DISK I/O FOCUSED PARALLELOUT-OF-CORE GRAPH PROCESSING SYSTEM 47

Authorized licensed use limited to: Tsinghua University. Downloaded on March 28,2024 at 11:10:36 UTC from IEEE Xplore. Restrictions apply.

users to flexibly write more efficient algorithms that require
less number of iterations (and less disk I/O) than algorithms
based on previous programming models. The flexibility of
our system is achieved due to 1) its unique execution work-
flow; and 2) the ability to break neighborhood constraint.
The kernel programming API of CLIP is still “edge function”,
which is very similar to X-Stream and GridGraph and hence
will not much affect the programmability.

4.1 Workflow

CLIP uses the same data model as X-Stream and GridGraph,
where the data is modeled as a directed graph and only the
property of vertices can be modified. Fig. 2 illuminates the
main workflow of CLIP in detail. Its procedure is split into
two phases. The first phase sorting is a pre-processing proce-
dure that sorts all the edges according to a specific order
defined by users. We provide a simple interface to allow the
assignment of the user-defined identifier for each edge. The
system will sort edges according to the identifiers. With this
flexible API, users can not only achieve the grid-based parti-
tion(similar to GridGraph), but also can deal with more
complex sorting requirements. In our experiments, we
observe that other orders (e.g., sorting by source only) may
be helpful in certain cases (e.g., memory size is enough for
caching all the vertices).

The second phase execution is an iterative procedure that
circularly reads edges until the property of vertices are con-
verged. Within each iteration, CLIP loads and processes each
of the data block by executing the user-defined “edge
function” on every edge. Traditional graph processing sys-
tems restrict that each data block is processed with only one
execution pass in an iteration. In CLIP, each loaded data
block is processed by multiple execution passes until all the
vertices/edges become inactive. Moreover, we allow users
to specify a maximum reentry times (MRT), which is the
maximum number of passes that will be executed for every
loaded data block. MRT is useful (5-10 is usually enough)
when most further local updating will be invalidated by
global updating. Moreover, CLIP also uses asynchronous I/
O to further improve the performance by overlapping the
computation and disk I/O.

4.2 APIs

The programming interface of CLIP is defined in Table 1.
This simple API is similar to those provided by existing
edge-centric out-of-core systems [3], [4]. Sort() and Exec()

are used to execute one iteration of the sorting and execution
phase, respectively. To facilitate the users, we also provide a
VMap() function that iterates every vertex and applies the
user-defined input function. Table 1 also defines the type of
input parameters and return value of each API function.
The input parameter of user-defined function F e and F v

both contain v list with type Vertices. Vertices is a container
by which we can access the property of an arbitrary vertex
(mmap-ed into the address space).

Specifically, the input of Sort() is a user-defined func-
tion F s that accepts an edge as input and returns a double as
the edge’s identifier. After the sorting phase, users of CLIP

may repeatedly call the function Exec() to perform the
execution phase for updating the property of vertices. Dur-
ing an iteration, the user-defined function F e is applied to
edges (potentially multiple times) and can update the prop-
erty of arbitrary vertices.

Our system also supports vertex-based and edge-based
selective scheduling, which enable us to skip an edge or
even a whole block if it is not needed (more detailed in
Section 4.3). Specifically, through the v list argument, F e

can both modify the property of an arbitrary vertex and set
its activity. Moreover, F e can return a bool to specify the
state of an edge. We define that 1) an edge is inactive if its
source vertex is inactive (vertex-based) or itself is inactive
(edge-based); and 2) an entire block is inactive if all the
edges it contains are inactive. CLIP automatically maintains
the activity of every edge/block and uses this information
to avoid the unnecessary execution.

4.3 Selective Scheduling

Selective scheduling is a very useful mechanism to avoid
unnecessary CPU consumption and disk I/O. Compared to
the prior systems, CLIP provides a richer and more efficient
selective scheduling mechanism. Fig. 3 shows in detail the
execution flow and CPU consumption of the four different
mechanisms. For the convenience of explanation, we use M
to denote the cost of executing the user-defined function
(UDF) on active edges, u to represent the cost of executing
Bits() once, and I to indicate the total cost of CPU consump-
tion. As we can see, the mechanisms fall into two categories:
1) vertex-based selective scheduling mechanism and 2)
edge-based selective scheduling mechanism. CLIP supports
both selective scheduling mechanisms and can be selected
at initialization. For each application, in order to achieve the
correctness and efficiency, the user use either “vertex-
based” or “edge-based” selective scheduling, which can’t be
automatically selected by CLIP.

The vertex-based selective scheduling is implemented by
maintaining the current activity of vertices with a bit-array.
In other words, each element of the bit array represents the
state of its corresponding vertex. The vertex-based(I)
(Fig. 3a) is supported by the existing out-of-core systems
(e.g., GridGraph). Although this mechanism allows the user

Fig. 2. Main workflow of CLIP.

TABLE 1
Programming Model of CLIP

Sort(F s) — F s :¼ double function(Vertices &v list; Edge &e)

Exec(F e) — F e :¼ bool function(Vertices &v list; Edge &e)

VMap(F v) — F v :¼ void function(Vertices &v list; VertexID &vid)

48 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

Authorized licensed use limited to: Tsinghua University. Downloaded on March 28,2024 at 11:10:36 UTC from IEEE Xplore. Restrictions apply.

to skip a whole block which doesn’t contain any active
edges, it has to check the state of each edge in the block that
can’t be skipped. Therefore, the CPU consumption is
I ¼Mþ E � u. According to our evaluation, this mechanism
significantly affects performance when using fast storage
media or running in all-in-memory mode (more detailed in
Section 9). In contrast, thanks to the provided Sort(), CLIP

supports relatively fine-grained skipping (skip edges). One
can use Sort() to sort the input edges according to their
source vertex. Therefore, edges that have the same source
vertex will be placed continuously and hence can be
skipped at once if the source is inactive (no need of checking
the source ID for every edge, Fig. 3b). Obviously, the
CPU consumption is I ¼MþV � u. Moreover, we further
improve this mechanism (Fig. 3c) by iterating vertices rather
than iterating edges. Since we use a variable of type long to
represent the state of 64 vertices, we can skip these 64 verti-
ces if the value of this variable is 0. As a result, the CPU con-
sumption is reduced to I ¼Mþ b �V � u; 0 < b � 1. In
addition to the reduction in CPU consumption, this mecha-
nism can help CLIP to only load the active edges which can
further reduce the disk I/O for each iteration.

However, the vertex-based selective scheduling is not use-
ful if the user only wants to ignore an edge in next iteration.
Therefore, CLIP also provides edge-based selective schedul-
ing (Fig. 3 D). Similar to the vertex-based method, the edge-
based selective scheduling alsomaintains the current activity
of edges with a bit-array. The difference is that it is stored on
the disk. The user can specify the state of an edge by using
the return value of Exec(). Before an edge block is loaded,
CLIP will load and check its corresponding bit-array first. If
there aren’t any active edges, this block will be ignored.
Meanwhile, this mechanism also provides fine-grained skip-
ping in 64-edge units similar to vertex-based(III). Therefore,
the CPU consumption is only I ¼Mþ b � E � u; 0 < b � 1.

It is worthmentioning that the edge-based selective sched-
uling also supports user to permanently delete edges. The
user can enable this function at program initialization. At the
beginning of the computation, all edges will be stored in disk
and CLIP executes the out-of-core processing. When the mem-
ory can hold all the remaining edges, CLIP will place these
edges in memory and regenerate a new bit-array for the
remaining edges. After it, CLIP will execute the in-memory
processingwhich can significantly speed up the computation.

4.4 Sorting

External sorting is a classical problem that has been studied
for many years [14], [15]. However, traditional algorithms

based on merge sort is complex and require OðlognÞ itera-
tions. Therefore, prior out-of-core graph processing systems
usually use a bucket sort based implementation. Different
from prior systems that only sorting edges by vertices ID,
our system allows users to define a custom comparator by
setting the identifier of each edge. Without prior knowledge
of the distribution of these identifiers (we even do not know
the maximum/minimum value of these identifiers), it is
hard to set the bucket boundary.

To solve this problem, we design and implement an algo-
rithm that costs at most 3 iterations to sort edges and parti-
tion them into blocks that can be held in memory. In the rest
of this section, we will use M to denote the maximum num-
ber of edges that can be held in memory; N to denote the
total number of edges; F s to denote the user-defined func-
tion that assigns an identifier to each edge. Then, the proce-
dure of our sorting algorithm is:

Step 1. In the first iteration, CLIP reads all the edges once and
determines the bucket boundaries. During this itera-
tion, unsorted edges are first equally divided into
P ¼ dN=Me blocks (logical division, no need to read/
write disk). Each block is 1) loaded into memory; and
then 2) sorted according to edges’ identifier; finally 3)
divided into P equal divisions. The demarcations of
these divisions, namely d0 � dP , are extracted and
recorded for further usages (d0 is the smallest identifier
of an edge block; and dP is the largest; di � diþ1 contains
about 1=P edges between them).

Step 2. After step 1, a total of P � ðP þ 1Þ demarcations are
collected and they will be used as bucket boundaries in
step 2. As a result, the second iteration simply reads the
edges and splits them into P � ðP þ 1Þ � 1 buckets.

Step 3. Finally, CLIP loads each bucket again, sorts the
edges in memory and writes the result to disk. Two
successive blocks are merged if their total size is less
than M.

It is obvious that our algorithm is correct, as all the edges
are finally sorted by their identifiers. But, in order to verify
the feasibility of our algorithm, we also need to prove that
at most M edges are dispatched to each bucket. This is nec-
essary because, in Step 3, each bucket must be entirely
loaded into memory for in-memory sorting. To be more
explicit, in the rest of this section, we will use di and diþ1 to
represent two successive demarcations in the final merged
and sorted demarcation list (e.g., d1 ¼ b0 and d2 ¼ a1 in the
above example). Then, the above conjecture can be formal-
ized as proving: (1) j½eje 2 edges; di � F sðeÞ < diþ1�j < M.

Fig. 3. Selective Scheduling. M denotes the cost of executing user defined function(UDF) on active edges, u represents the cost of executing Bits()
once, I means the total cost of CPU consumption.

AI ETAL.: CLIP: A DISK I/O FOCUSED PARALLELOUT-OF-CORE GRAPH PROCESSING SYSTEM 49

Authorized licensed use limited to: Tsinghua University. Downloaded on March 28,2024 at 11:10:36 UTC from IEEE Xplore. Restrictions apply.

To prove (1), we can first prove that: for each of the P
blocks loaded in Step 1, there are at most N=P 2 edges have
identifiers within ½di; diþ1Þ, i.e., (2) j½eje 2 one block; di �
F sðeÞ < diþ1�j < N=P 2. This is because that, with (2), the
number of edges in each bucket is less than
N=P 2 � P ¼ N=P , which is less than M. Then, in order to
prove (2), we can use “proof by contradiction”. If there are
more than N=P 2 edges in a block that has identifiers within
½di; diþ1Þ, there must be another demarcation dx that
di < dx < diþ1, because two successive demarcations in the
same block have only N=P 2 edges in between. However,
this is a contradiction of our prior assumption that “di and
diþ1 are two successive demarcations in the final merged
and sorted demarcation list”.

4.5 Examples

To illustrate the usages of CLIP’s API, this section presents
the implementation of SSSP and WCC, which benefit from
loaded data reentry and beyond-neighborhood optimiza-
tion, respectively.

SSSP In SSSP, a property “distance” is attached to each
edge and the shortest path is defined as the lowest aggregat-
ing distance of all the edges along the path. Similar to other
systems, we use a relaxing-based algorithm to solve this
problem [16]. Algorithm 1 illustrates the pseudo-code of
this algorithm. The VMap function is called in the beginning
for initialization, which is followed by a series of execution
iterations. Each of these iterations executes the same edge
function F e on every edge, which modifies the distance
property of the edge’s destination vertex and sets it to
active. Note that this SSSP implementation is almost the
same as original ones, because the trade-off between execu-
tion time and disk time is modulated only by MRT.

Algorithm 1. SSSP Algorithm in CLIP

Functions:
F vðv list; vidÞ :— {
if vid ¼¼ start do
v list½vid�:dist 0;
v list:setActiveðvid; trueÞ;

else v list½vid�:dist INF ;
v list:setActiveðvid; falseÞ; }

F eðv list; eÞ :— {
dist v list½e:src�:distþ e:weight
if v list½e:dst�:dist > dist do
v list½e:dst�:dist dist;
v list:setActiveðe:dst; trueÞ;

else v list:setActiveðe:dst; falseÞ; }
Computation:
VMap(F v);
Until convergence:
Exec(F e);

WCC Different from the label-propagation based algo-
rithm used by prior systems, our algorithm builds a dis-
joint-set over the property of vertices and uses it to solve
WCC for an arbitrary graph with only one iteration. Dis-
joint-set, also named union-find set, is a data structure that
keeps track of a set of elements partitioned into a number of
disjoint subsets. It supports two useful operations: 1) find(v),
which returns an item from v’s subset that serves as this

subset’s representative; and 2) union(u, v), which joins the
subsets of u and v into a single subset. Typically, one can
check whether two items u and v belong to the same subset
by comparing the results of find(u) and find(v). It is guaran-
teed that if u and v are from the same subset then find(u) ==
find(v). Otherwise, one can invoke a union(u, v) to merge
these two subsets.

Algorithm 2.WCC Algorithm in CLIP

Functions:
F findðv list; vidÞ :— {
if v list½vid�:pa ¼¼ vid do return vid;
else return v list½vid�:pa ¼
F findðv list; v list½vid�:paÞ; }

F unionðv list; src; dstÞ :— {
s F findðv list; srcÞ;
d F findðv list; dstÞ;
if s < d do v list½d�:pa v list½s�:pa;
else if s > d do v list½s�:pa v list½d�:pa; }
F eðv list; eÞ :— { F unionðv list; e:src; e:dstÞ; }
F vðv list; vidÞ :— {
v list½vid�:pa vid;
v list:setActiveðvid; trueÞ; }

Computation:
VMap(F v);
Exec(F e);

Algorithm 2 presents the code of our disjoint-set based
WCC algorithm. Fig. 4 gives an example. In our implemen-
tation, each vertex maintains a property pa that stores the
ID of a vertex. If pa½u� ¼ v, we name that the “parent” of ver-
tex u is v. Vertex u is the representative of its subset if and
only if pa½u� ¼ u. Otherwise, if pa½u� 6¼ u, the representative
of u’s subset can only be found by going upstream along the
pa property until finding a vertex that satisfies the above
restriction (i.e., function find in Algorithm 2). For example, if
pa½3� ¼ 2, pa½2� ¼ 1, pa½1� ¼ 1, the subset representative of
all these three vertices is 1. The union function is imple-
mented by finding the representative of the two input verti-
ces’ subset and setting one’s pa to another. Therefore, the
whole procedure of our WCC algorithm can be simply
implemented by applying the union function to every edge.

In Fig. 4a, the graph has 4 vertices and 3 edges, the pa of
every vertex is illustrated by arrows in Fig. 4b. At the begin-
ning of our algorithm, each vertex belongs to a unique dis-
joint subset. Hence, all arrows point to itself (1 in Fig. 4b).
During the execution, the first edge read is ð1; 2Þ, so their sub-
sets are union-ed by pointing vertex 2’s arrow to 1 (2 in
Fig. 4b). In the second step, edge ð2; 3Þ is read and their

Fig. 4. WCC example.

50 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

Authorized licensed use limited to: Tsinghua University. Downloaded on March 28,2024 at 11:10:36 UTC from IEEE Xplore. Restrictions apply.

subsets are also union-ed. By going toward upstream of ver-
tex 2’s arrow, we can find that its representative is 1. As a
result, the union is performed by pointing vertex 3’s arrow to
vertex 1 (3 in Fig. 4b). Similarly, the arrow of vertex 4 is redir-
ected to vertex 1 after reading edge ð3; 4Þ (4 in Fig. 4b). Even-
tually, all arrows point to vertex 1 and hence we found that
there is only oneweak connected component in the graph.

As one can imagine, this disjoint-set based algorithm
always requires only one iteration to calculate WCC for an
arbitrary graph. However, when accessing the property of a
vertex, it also needs to access its parent’s property (breaking
the neighborhood constraint). Thus, in an extreme case that
the property of vertices cannot be all cached and the accesses
to parents show great randomness, which may lead to very
bad performance. However, this problem can be avoided by
two simple optimizations: 1)when calling union on two verti-
ces, always uses the vertex that has smaller ID as the parent;
and 2) iterate the edge grids by row, which means that the
grids are read in the order of “(0, 0), (0, 1), ..., (0, P-1), (1, 0),
...”(partitioned into P � P grids). According to our evalua-
tion, these two simple optimizations can make sure that
most of the parents are stored in the first several pages of ver-
tex property and hence show good locality.

5 SEMI-EXTERNAL MODE

As we have mentioned before, there are certain kinds of
applications require the ability of randomly accessing verti-
ces to achieve their best performance especially for the
beyond-neighborhood applications. By holding all vertex
data in memory, the semi-external mode provides a better
way to deal with this requirement.

This mode is used by existing systems such as Flash-
Graph [17] and Graphene [18]. Many out-of-core systems,
like GraphChi [2] and X-Stream [3], also support an optional
semi-external mode to provide better performance. How-
ever, they can’t fully play the advantages of semi-external
mode due to their neighborhood constraint. In contrast, CLIP

provides more expressive programming model, which can
make this mode more effective. Evaluation results of CLIP

reveal that CLIP achieves a drastic speedup over the other
state-of-art systems that support semi-external mode, up to
two orders of magnitude for certain cases.

In the rest of this section, we will 1) present an analysis of
why this mode is feasible for many important real-world
use cases, 2) describe how CLIP play the advantages of this
mode more effectively by using Minimum Cost Spanning
Tree (MCST) as an example, 3) explain what efforts we do
to further improve our original semi-external mode.

5.1 Semi-External Mode

Although semi-external is a natural solution for handling
random vertex accesses, a natural question is: whether it is
practical to put all vertices in memory for real-world
graphs? Our investigation shows that, due to the sparsity of
natural graphs, the answer is YES. Take the largest openly-
available dataset Yahoo Web as an example, it contains only
1.4B vertices but 6.6B edges. Table 2 shows the actual prop-
erty size for various algorithms. As we can see from this
table, a typical setting of 16 GB memory is enough for hold-
ing all the vertices. According to recent market prices, an
ordinary set of 16 GB (2*8 GB) DDR3 chips costs only
$68 [19] and is affordable to most people. In contrast, the
edge data is too large for an ordinary user.

This estimation is even valid for industry workloads.
Researchers in Facebook declared in their paper “One Tril-
lion Edges: Graph Processing at Facebook Scale” [21] that
industry graphs “can be two orders of magnitude larger”
than popular benchmark graphs, which means “hundreds
of billions or up to one trillion edges”. But, even for such
huge graphs, the number of vertices is only about one bil-
lion (288M vertices and 60B edges for Twitter, 1.39B vertices
and 400B edges for Facebook). OðjV jÞ space complexity is
still practical for those datasets, as even 32 GB memory is
prevalent now. However, the edge data (> 100 GB�TB-
level) is too large for memory, which can’t be held in mem-
ory. In a sense, we argue that semi-external is not only prac-
tical but should be a preferable model given the current
memory cost and graph data size.

5.2 Supporting Semi-External in CLIP

As we have mentioned above, we use mmap to directly map
vertices into the virtual memory space. This mechanism
makes that the semi-external mode is naturally supported
by CLIP. One needs to do nothing but simply writing an
application that issues random accesses to the vertices.
Then, the built-in caching mechanism of mmap will auto-
matically reserve the properties of vertices in memory if
space is enough. To demonstrate this capability, in the fol-
lowing of this section, we will use Minimum Cost Spanning
Tree as an example.

MCST Minimum Cost Spanning Tree is an important
graph application that calculates a special spanning tree for a
connected, undirected graph. This spanning tree connects all
the vertices of the graph together with the minimal total
weighting of edges. However, due to the neighborhood con-
straint, the existing out-of-core graph systems usually solve
this problem by using GHS algorithm [22]. GHS algorithm is
a parallel algorithm which starts by letting each individual
node be a fragment and joining fragments in a certain way
to form new fragments. This process of joining fragments
repeats until there is only one fragment left and a minimum
cost spanning tree is formed eventually. Although the GHS
algorithm can benefit from using more threads, its perfor-
mance is not comparable with the sequential Kruskal’s algo-
rithm [23] in an out-of-core environment.

In graph theory, the Kruskal’s algorithm is a greedy algo-
rithm for finding MCST of a connected weighted graph. It
works sequentially by 1) first assuming that each node con-
stitutes a single tree in the forest; then 2) iterating the edges
from the least-weight edge to the highest-weight one); 3) for

TABLE 2
Data Size for Yahoo Graph [20]

Size of each Total size of

Algorithms Vertex Edge Vertices Edges

BFS 4B 8B 5.3 GB 49.4 GB
SSSP 4B 12B 5.3 GB 74.2 GB
WCC 4B 8B 5.3 GB 98.9 GB
MIS 1B 8B 1.3 GB 98.9 GB
MCST 8B 24B 10.5 GB 297 GB
Coloring 5B 8B 6.58 GB 98.9 GB

AI ETAL.: CLIP: A DISK I/O FOCUSED PARALLELOUT-OF-CORE GRAPH PROCESSING SYSTEM 51

Authorized licensed use limited to: Tsinghua University. Downloaded on March 28,2024 at 11:10:36 UTC from IEEE Xplore. Restrictions apply.

each edge, adding it to the MCST if it connects any two trees
in the forest. This algorithm is not supported by existing
out-of-core graph processing systems because 1) its imple-
mentation needs to break the neighborhood constraint; and
2) it requires a special processing order of the edges
(ascendingly ordered by their weight). These two require-
ments are not met by existing works, even those that also
supports semi-external mode. In contrast, CLIP provides
both the “beyond neighborhood” optimization and a
sophisticated sorting method.

Algorithm 3 presents the code of Kruskal’s algorithm
implemented by CLIP, and Fig. 5 gives an example of the
algorithm’s execution process. At first, the program uses
Sort() function of CLIP to sort all the input edges accord-
ing to the weight of edge and then loads the edges in an
ascending order. Similar to the implementation of WCC
algorithm, we also use union-find set to judge whether an
edge can be added to the minimum cost spanning tree.

As we can see from Fig. 5a, the example graph has 6 ver-
tices and 8 edges (each edge is represented as (source, tar-
get, weight)) hence these 6 vertices are initially assigned to
its own tree (a tree contains only one vertex). Then, the
edges are iterated by the defined order. At the beginning,
edge (A,C,2) is read because it has the smallest weight. The
algorithm finds vertex A and vertex C belong to different
trees so that it connects them by adding edge (A,C,2) to the
MCST (sub-figure 1 of Fig. 5b). In the following two steps,
edge (C,E,2) and edge (C,D,3) are read in order and both
these two edges are added to the MCST as they can also
connect two trees. However, in the next step, edge (D,E,3) is
read but only dropped because vertex D and vertex E
already belong to the same subset (sub-figure 3 in Fig. 5b).
This kind of steps is repeated until all the edges are read. In
the following steps, only edge (B,D,4) is added to MCST
and the other edges are simply dropped. As we can see, the
MCST can be produced by only one iteration.

Since the vertex accessing sequence of the Kruskal’s algo-
rithm is determined by the weight of edges, it leads to
completely random access to the vertex property. Therefore,
only the semi-external mode is suitable for the Kruskal’s
algorithm. Based on the traditional programming model,
GraphChi (and FlashGraph) failed to fully leverage the nice
property of semi-external. CLIP demonstrates how to do it
and its huge potential. The significant performance improve-
ment is not due to incremental techniques but is achieved by
the reduced number of iterations (and therefore the reduced
total amount of disk I/O) that is only possible in our new pro-
grammingmodel.

Algorithm 3.MCST Algorithm in CLIP

Functions:
F findðv list; vidÞ :— {
if v list½vid�:pa ¼¼ vid do return vid;
else return F findðv list; v list½vid�:paÞ; }
F unionðv list; src; dstÞ :— {
s F findðv list; srcÞ;
d F findðv list; dstÞ;
if s < d do v list½d�:pa v list½s�:pa;
else if s > d do v list½s�:pa v list½d�:pa;}
F eðv list; eÞ :— { F unionðv list; e:src; e:dstÞ; }
F vðv list; vidÞ :— {
v list½vid�:pa vid;
v list:setActiveðvid; trueÞ; }
F sðv list; eÞ :— { return e.weight; }

Computation:
Sort(F s);
VMap(F v);
Exec(F e);

6 EVALUATION

In this section, we present our evaluation results on CLIP and
compare it with the state-of-art systems X-Stream and Grid-
Graph. We split all the benchmarks we tested into two cate-
gories by their properties and discuss the reason of our
speedup respectively.

6.1 Setup

6.1.1 Environment

All our experiments are performed on a singlemachine that is
equipped with two Intel(R) Xeon(R) CPU E5-2640 v2 @
2.00 GHz (each has 8-cores), 32 GB DRAM (20 MB L3 Cache),
and a standard 1TB SSD. According to our evaluation, the
average throughput of our SSD is about 450MB/s for sequen-
tial read.We use a servermachine rather than an ordinary PC
for the testing because we want to test CLIP more comprehen-
sively includingmulti-threaded and differentmemory limits.

6.1.2 Benchmarks

We consider two categories of benchmarks. The first cate-
gory is asynchronous applications, which includes SSSP, BFS
and other algorithms like delta-based PageRank [28], diam-
eter approximation [29], transitive closures [30], between-
ness centrality [31], etc. For this kind of applications, the
same relaxation based algorithms can be implemented with
CLIP as in X-Stream and GridGraph. The only difference is
that the user of CLIP can inform the system to enable loaded
data reentry by setting MRT. The second category is beyond-
neighborhood applications (e.g., WCC, MIS, Graph Stream
Algorithms [11], [13]), which require users to develop new
algorithms to achieve the best performance.

6.1.3 Methodology

The main performance improvement of CLIP is achieved by
reducing the number of iterations with more efficient algo-
rithms. Thus, if all the disk data is cached in memory (which
is possible as we have a total of 32 GB memory), we cannot
observe the impact of disk I/O on overall performance. In
order to demonstrate our optimizations in a realistic setting

Fig. 5. MCSTexample.

52 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

Authorized licensed use limited to: Tsinghua University. Downloaded on March 28,2024 at 11:10:36 UTC from IEEE Xplore. Restrictions apply.

with disk I/O, we use cgroup to set various memory limits
(from 16 MB to 32 GB).

Specifically, for every combination of (system, applica-
tion, dataset), we test three different scenarios: 1) all-in-mem-
ory, i.e., limit is set to 32 GB so that most of the tested
datasets can be fully contained in memory; 2) semi-external,
where the memory limit is enough for holding all the verti-
ces but not all the edges; and 3) external, where the memory
limit is extremely small so that even vertices cannot be fully
held in memory. As the number of vertices and edges are
different for different datasets, the thresholds used for
semi-external and external are also dataset-specific. The
exact numbers are presented in Table 3, from which we can
see that the limit is down to only 16 MB as the vertex num-
ber of LiveJournal is less than 5M.

Moreover, for the clarity of presentation, if not specified
explicitly, we always attempt all the possible number of
threads and report the best performance. This means that we
use at most 16 threads for testing X-Stream and GridGraph.
In contrast, we test CLIP with 16 threads for asynchronous
applications but only one thread for beyond-neighborhood
algorithms.

6.2 Loaded Data Reentry

We use two applications, SSSP and BFS, to evaluate the
effect of loaded data reentry technique. All of them can be
solved by relaxation based algorithms.

6.2.1 Comparison

The results are presented in Table 4, in which all the three
different scenarios are included. In this table, ‘-’ means that
we cannot achieve all-in-memory even when the limit is set
to 32 GB. and ‘1’ means that the application does not finish
after running 24 hours. As we can see, CLIP can achieve a

significant speedup (1.8�-14.06�) under the semi-external
scenario. In contrast, the speedup on external scenario is less
(only up to 6.16�). This is reasonable because, with a
smaller limit, the number of edges that can be held in mem-
ory is less, therefore, the diameter of the sub-graph loaded
into memory is smaller. As a result, the effect of reentry is
also weaker. Moreover, even for all-in-memory settings,
CLIP still outperforms the others if the diameter of the graph
is large (e.g., we achieve a 2.7� speedup on Dimacs), which
is because that CLIP allows the information to be propagated
faster within a sub-graph and eventually makes the conver-
gence faster.

In order to justify the above argument, we compare the
number of iterations that is needed for converge on CLIP

and the other systems. Results show that our loaded data
reentry technique can greatly reduce this number. This
improvement is especially significant for large-diameter
graphs, like Dimacs, where more than 90 percent of the iter-
ations can be reduced.

6.2.2 Scalability

Since we use the same algorithm as X-Stream and Grid-
Graph, our implementation of SSSP and BFS follow the
neighborhood constraint. Following neighborhood con-
straint makes it easy to enable the multi-thread model of
CLIP to leverage the multi-core architecture. However, since
disk I/O is the real bottleneck, there is actually not a big dif-
ference between using multi-thread or not.

Fig. 6 illustrates our experiments results on scalability.
As we can see, GridGraph has the best scalability as it can
achieve a 1.55x speedup by using 4 threads. However, it is
large because the single-threaded baseline of GridGraph is
inefficient. In fact, the single-threaded CLIP is already faster
than multi-thread version of GridGraph.

TABLE 3
The Real-World Graph Datasets

Graph Vertices Edges Type Threshold

external semi

LiveJournal [24] 4.85M 69.0M Directed 16 MB 256 MB
Dimacs [25] 23.9M 58.3M Undir. 64 MB 256 MB
Twitter [26] 41.7M 1.47B Directed 128 MB 4 GB
Friendster [27] 65.6M 1.8B Directed 128 MB 4 GB
Yahoo [20] 1.4B 6.64B Directed 4 GB 8 GB

A random weight is assigned for unweighted graphs.

TABLE 4
Execution Time (in seconds) On SSSP/BFS

LiveJournal Dimacs Friendster Twitter Yahoo

SSSP
X-Stream 357.9/ 118.4/ 8.45 77212/ 22647/ 853.2 6352/ 3346/ - 4065/ 2255/ - 1/ 1/ -
GridGraph 66.42/ 48.1/ 6.97 14618/ 13480/ 889.9 1086/ 784.6/ 85.31 1639/ 1083/ 83.51 77298/ 17432/ -

CLIP 30.14/ 11.23/ 5.09 3202/ 1981/ 316.1 176.2/ 55.79/ 55.85 1353/ 600.6/ 91.82 18160/ 6932/ -

BFS
X-Stream 91.50/ 22.94/ 4.06 8934/ 6538/ 114.9 2526/ 1084/ - 1421/ 627.4/ - 1/ 1/ -
GridGraph 13.20/ 15.4/ 2.49 5199/ 5239/ 406.2 499.6/ 493.7/ 61.54 220.5/ 209.6/ 32.16 35572/ 7403/ -

CLIP 10.01/ 5.46/ 2.53 1768/ 1059/ 96.12 98.87/ 38.55/ 38.72 141.2/ 110.4/ 44.7 10533/ 3297/ -

For each case, we report the results of all three scenarios in the format of “external / semi-external / all-in-memory”. ‘-’ is used if we cannot achieve all-in-memory
even when the limit is set to 32 GB. Since X-Stream requires extra memory for shuffling the messages, 32 GB is not enough even for smaller datasets like Friend-
ster and Twitter. ‘1’ means that the application does not finish after running 24 hours.

Fig. 6. The scalability for SSSP on Twitter graph, evaluated in semi-
external scenario.

AI ETAL.: CLIP: A DISK I/O FOCUSED PARALLELOUT-OF-CORE GRAPH PROCESSING SYSTEM 53

Authorized licensed use limited to: Tsinghua University. Downloaded on March 28,2024 at 11:10:36 UTC from IEEE Xplore. Restrictions apply.

6.3 Beyond-neighborhood

6.3.1 Applications

For some problems, new algorithms need to be imple-
mented to leverage beyond-neighborhood strategy. Besides
WCC that described in Section 4.2, we introduce one more
example named MIS in our evaluation.

MIS is an application that finds an arbitrary maximal
independent set for a graph. In graph theory, a set of verti-
ces constitutes an independent set if and only if any two of
these vertices do not have an edge in between. We define
that a maximal independent set as a set of vertices that 1)
constitutes an independent set; and 2) is not a proper subset
of any other independent sets. Note that there may be multi-
ple maximal independent sets in a graphs, and MIS only
requires to find one arbitrary maximal independent set
from them. To solve this problem, X-Stream and GridGraph
implement the same parallel algorithm that is based on
Monte Carlo algorithm [32]. In contrast, we use a simple
greedy algorithm to solve this problem, which consists of
three steps: 1) a Sort() is invoked to sort all the edges by their
source IDs; 2) a VMap() is called to set the property of all the
vertices to true; and 3) an Exec() is executed which iterates
all the edges in order and set the property in mis of the
input edge e’s source vertex to false if and only if
“e:dst < e:src && v list½e:dst�:in mis ¼¼ true”. After exe-
cuting only one time of the Exec(), the final results can be
obtained by extracting all the vertices whose property
in mis are true.

Our MIS algorithm is not only beyond-neighborhood but
also requires that the edges are processed in a specific order.
Thus, it is essentially a sequential algorithm that requires
users to use the Sort() function provided by CLIP to define
a specify pre-processing procedure. However, our algo-
rithm is much faster than the parallel algorithm used by X-
Stream and GridGraph, because it requires only one itera-
tion for arbitrary graphs.

6.3.2 Comparison

Table 5 shows the evaluation results on beyond neighborhood
applications. We see that CLIP can achieve a significant speed
up over the existing systems on all the three scenarios: up to
2508� on external, up to 4264� on semi-external, and up to
139� on all-in-memory. Same as the asynchronous algorithms,
the main reason of the speedup in CLIP is that the algorithms
require much less iterations to calculate the results. The origi-
nal algorithms can only converge after using tens or even
thousands of iterations. In contrast, our algorithms require

only one iteration for all the graphs. As a result, even if we can
only use a single thread to execute our beyond-neighborhood
algorithms, the large amount of disk I/O and computation
avoided by this iteration reduction is enough to offer better
performance than other parallel algorithms.

Moreover, as we can see from the table, even though that
the algorithms used by CLIP do not follow the neighborhood
constraint, they are still much faster than the other systems
in the external scenario, where the vertices are not fully
cached in memory. This is because that the caching mecha-
nism of mmap is particularly suitable for processing power-
law graphs. Hence, the number of pages swapping needed
for vertices are moderate, at least far less from offsetting the
benefit we gain from reducing redundant read of edges.

6.4 Semi-External

6.4.1 Applications

Besides MCST that we have described in Section 5.2, here
we introduce another example named coloring for our eval-
uation of semi-external mode. In graph theory, finding the
chromatic number of a graph (hereinafter coloring) means
finding the smallest number of colors needed to color the
vertices of a graph so that no two adjacent vertices share the
same color [33]. Since this is an NP-complete problem, the
current practical solutions are all approximation algorithms
that try their best to find the smallest number.

However, due to the neighborhood constraint of prior
systems, their implementation of coloring is typically an
MIS-based algorithm that executing MIS for several times
and assign a new color for the result arbitrary maximal
independent set. According to our evaluation, this algo-
rithm not only has an expensive cost but also leads to the
bad result (i.e., output larger chromatic number).

In contrast, CLIP supports theWelch-Powell algorithm [34]
which is a simple sequential greedy algorithm that produces
the smaller chromatic number and less disk I/O. This algo-
rithm can be implemented in CLIP with five steps: 1) calling
an Exec() method to calculate the out-degree of each vertex
and set the property degree of the corresponding vertex to
this value. 2) calling a Sort() method to sort all the edges by
v list½e:src�:degree in descending order. 3) calling a VMap()
method to set each vertex’s property coloring to true and its
state to active. 4) calling an Exec() to iterate all the edges in
order and set the property coloring of the input edge e’s
source vertex to false if and only if “v list½e:dst�:degree >
v list½e:src�:degree && v list½e:dst�:coloring ¼¼ true”. 5) call-
ing aVMap()method to set vertex state to inactive if and only
if “v:coloring ¼¼ true”. Meanwhile, the vertex will set its

TABLE 5
Execution Time (in seconds) on WCC and MIS

LiveJournal Dimacs Friendster Twitter Yahoo

WCC
X-Stream 179.5/ 57.77/ 10.25 16633/ 6751/ 185.3 4521/ 2341/ - 1904/ 1194/ - 1/ 1/ -
GridGraph 22.32/ 13.8/ 3.57 6547/ 5757/ 422.5 967.5/ 466.6/ 82.95 431.5/ 272.3/ 62.3 19445/ 2916/ -
CLIP 3.73/ 2.40/ 2.43 2.61/ 1.35/ 1.33 186/ 65.48/ 64.56 132.7/ 49.03/ 48.85 310.6/ 220.9/ -

MIS
X-Stream 422.1/ 152.6/ 13.06 103.4/ 41.42/ 5.95 9880/ 4867/ - 5513/ 3042/ - 1/ 1/ -
GridGraph 166.6/ 122.1/ 2.98 46.32/ 39.19/ 14.46 3945/ 3777/ 253.7 2510/ 2473/ 156.1 1/ 1/ -
CLIP 6.7/ 2.57/ 2.58 1.6/ 1.17/ 1.21 188.8/ 62.49/ 62.18 90.44/ 49.08/ 49.13 321.5/ 220.2/ -

Format of this table is the same as Table 4. As the size of vertex property is only 1/4 of other applications in MIS, its corresponding thresholds for external and
semi-external execution is also only 1/4 of the given number in Table 3, e.g., only 4 MB for executing MIS with LiveJournal in external scenario.

54 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

Authorized licensed use limited to: Tsinghua University. Downloaded on March 28,2024 at 11:10:36 UTC from IEEE Xplore. Restrictions apply.

state to active and its property coloring to true if
“v:coloring ¼¼ false”. Eventually, the algorithm will termi-
nate if all vertices are in the inactive state. Otherwise, the pro-
gramwill jump to the fourth step and continue to execute.

Although edges with the same source vertex are contigu-
ously stored, it’s difficult to know where the outgoing edges
of a vertex are located in the input graph. Obviously, it is
also a completely random access to the vertex property.
Therefore, the semi-external model is more suitable for this
algorithm.

6.4.2 Comparison

Table 6 shows the evaluation results on semi-external mode.
As we can see, CLIP can achieve a significant speedup over
the existing systems: up to 28:46� for MCST and up to
195:1� for Coloring. Same as the beyond-neighborhood
applications, the main reason for the speedup in CLIP is that
the algorithms require much less iteration to calculate the
results. For MCST application, the original algorithms will
only terminate after using tens of iterations. However, our
algorithm requires only one iteration for all the graphs. For
Coloring, the result chromatic number is equal to the num-
ber of iterations. As we mentioned above, our algorithm
produces the fewer chromatic number and hence needs less
iteration, which means it is better in both performance and
result. Meanwhile, we only have to iterate all the edges
once for each coloring iteration, while the original MIS-
based algorithms’ each coloring iteration is an MIS-finding
procedure that requires multiple sub-iterations. Obviously,
the amount of disk I/O and computation of CLIP are signifi-
cantly less than the prior systems. As a result, CLIP offer bet-
ter performance even we only use a single thread.

It is worthmentioning that the performance of GridGraph
is not better than X-Stream for MCST application, even if
they use the same parallel algorithm. The reason is that Grid-
Graph does not allow users to dynamically delete edges.
Moreover, the GHS algorithm needs to propagate the mini-
mum cost to its connected component for each iteration.
GridGraph has to iterate all the edges. However, X-Stream
only needs to iterate the edges whose state are unknown.
Meanwhile, the number of these edges will be less and less.

Coloring Result. Table 7 presents the result approximate
chromatic number of executing coloring algorithmwith each
system. Since X-Stream and GridGraph cannot finish their
computation within 24 hours on many large graphs (Friend-
ster, Twitter, Yahoo), in order to get the result, we use a
machine with 1TB DRAM to execute them in a full-memory

mode. We can see that the algorithm implemented by CLIP

can usually achieve the smaller chromatic number. In other
words, CLIP can get more accurate result. It is worthmention-
ing that we can still achieve significant speedup even if the
chromatic number required is not significantly reduced. As
we mentioned in Section 6.4.2, the reason is that we only
have to iterate all the edges once for each coloring while the
original algorithms require multiple sub-iterations as each of
their coloring iterations is an MIS-finding procedure. For
example, the number of sub-iterations on Livejournal is 2744
for X-Stream and GridGraph. In contrast, the number of sub-
iteration is only 325 (equal to the chromatic number) for CLIP.
Moreover, due to our edge-based selective scheduling men-
tioned in section 4.3, all remaining edges will be cached in
memory after several iterations. Therefore, the execution
time of each iterationwill become less and less as the number
of iterations increases.

7 DISCUSSION

7.1 Compared with In-Memory System

Since the memory size of the single machine is getting big-
ger and bigger, most of the input graph can be held in mem-
ory [35], why can’t we use in-memory system [35], [36], [37]
instead of out-of-core system? In fact, compared with in-
memory system, CLIP has the advantage of low cost, good per-
formance and better scalability.

The first advantage of CLIP is low cost. According to recent
market prices [19], the price of 2 Terabytes of memory is
$16512(requires 128 16 GB-DDR3 DRAM, each $129). In con-
trast, the price of 2 Terabytes of HDD is only $59.99 and
SATA SSD is only $472.16. Besides, a common PC can be
equipped with a standard 2 Terabytes of HDD or SSD.
However, 2 Terabytes of memory require a dedicated
server.

Second, CLIP has a good performance. Table 8 presents the
comparison between CLIP (semi-external mode) and
Galois [36] (a state-of-art in-memory graph processing sys-
tem). Since the time of loading data dominates the execution
time, the performance of CLIP is indeed comparable to

TABLE 6
Execution Time (in seconds) for Semi-External Mode

LiveJournal Dimacs Friendster Twitter Yahoo

MCST
X-Stream 75.3 26.62 2648 946.3 1
GridGraph 230.4 5856 6654 3318 1
CLIP 3.69 1.59 93.05 74.92 686.2

Coloring
X-Stream 8953 83.21 1 1 1
GridGraph 6250 72.49 1 1 1
CLIP 32.03 5.04 1682 2273 6302

‘1’ means that the application does not finish after running 24 hours.

TABLE 7
Chromatic Number

LiveJournal Dimacs Friendster Twitter Yahoo

X-Stream 334 5 156 1101 -
GridGraph 334 5 156 1101 -
CLIP 325 5 130 1082 984

Some of the exact numbers are not presented, as they do not terminate after
running 24 hours.

TABLE 8
Execution Time (in seconds) for CLIP and Galois

systems LiveJournal Dimacs Friendster Twitter Yahoo

WCC
Galois 2.58 1.81 49.75 42.36 -
CLIP 2.4 1.35 65.48 49.03 220.9

MIS
Galois 2.01 1.36 40.14 34.15 -
CLIP 2.57 1.17 62.49 49.08 220.2

‘-’ designates out of memory.

AI ETAL.: CLIP: A DISK I/O FOCUSED PARALLELOUT-OF-CORE GRAPH PROCESSING SYSTEM 55

Authorized licensed use limited to: Tsinghua University. Downloaded on March 28,2024 at 11:10:36 UTC from IEEE Xplore. Restrictions apply.

Galois. CLIP is slower than Galois on large datasets (Friend-
ster, Twitter) because we use different encoding formats for
the binary graph file on disk. Take “Twitter” as an example,
the input edges size of WCC is 11.25 GB for Galois but
21.88 GB for CLIP. In summary, it is very worthwhile to get
the maximum performance with the least cost.

Finally, CLIP has a better scalability. The memory size pro-
vided by a single machine is limited. As we mentioned
above, the Facebook graph benchmark [21] has about 400B
edges. This huge graph requires tens of Terabytes of mem-
ory, which is a big challenge for single machine. In contrast,
the out-of-core systems can easily deal with such challenge.
For example, 32 Gigabytes of memory and 48 Terabytes of
disk is a prevalent configuration for a server.

7.2 Preprocessing Time

Since our algorithms of MIS, MCST and Coloring require
that the input edges should be sorted in a specific order (by
source ID for MIS, by weight for MCST and by degree for
Coloring), we evaluate the cost of this preprocessing proce-
dure and compare it to GridGraph (which is not included in
the time reported in Table 5). Table 9 illustrates our evalua-
tion results, which shows that we have almost the same pre-
processing time as GridGraph. This is because that, even we
do not have any prior knowledge of the user-defined sorting
metrics, our novel external sorting algorithm can finish by
reading edges for only three times. What needs further
explanation is that GridGraph and CLIP (by source and by
weight) are evaluated on unweighted graph and CLIP (by
weight) are evaluated on the weighted graph, so their pre-
processing time is different. Meanwhile, sorting by degree
needs to calculate the out-degree of the vertices first, there-
fore it requires an extra iteration.

Moreover, although sometimes the preprocessing time is
longer than the execution time, the total execution time is
still less. For example, the total execution time (preprocess-
ing+execution) of computing MIS on Friendster is 4867s for
X-Stream and 3962.5s for GridGraph. In contrast, the total
execution time of CLIP only is 145.3 + 62.49 = 207.79s, which
is 19.07x less than GridGraph and 23.42x less than X-Stream,
not to mention that the preprocessing cost can be amortized
by reusing the sorting results.

8 MORE OPTIMIZATIONS

As we have mentioned before, CLIP provides a more flexible
programming model than existing out-of-core graph proc-
essing systems. In former sections, we describe the capability
of this expressiveness by presenting two general optimiza-
tion techniques that can benefit many applications with the

same data accessing pattern. In this section, we further dem-
onstrate the possibility of this expressiveness by designing
and evaluating somemore optimizations.

8.1 Diagonal-First Partitioning

According to the evaluation results in Section 6.2, loaded
data reentry leads to a huge reduction in the number of iter-
ations and hence reduces the execution time. To further
increase the possible speedup, in this section, we explore
the impact of different graph partition strategies. Moreover,
we propose a series of optimization strategies to further
improve the performance of loaded data reentry both on
semi-external and external mode.

In order to analyze which data blocks affect performance,
we partition graph as grid format. Fig. 7a illustrates a 6 � 6
grid partition. We find that only the diagonal blocks (gray
block) need to be processed multiple times, which really
affects the number of iterations. The reason is that, for con-
sideration of I/O locality, CLIP only loads the correspond-
ing source and target intervals of each loaded data block
(each grid) into memory. Then it processes each edge of this
data block in memory and updates the value of target vertex
by using the value of source vertex and the weight of edge if
the state of source vertex is active. Therefore, a loaded data
block will be processed multiple times if and only if the
value of its source vertices is updated. And the data blocks
on the diagonal just meet this requirement.

Meanwhile, theoretically, the greater the number of
edges in these diagonal blocks, the more vertices will be
updated during the reentry, which will lead to more verti-
ces to get the final value as soon as possible. In other words,
a higher proportion of edges in the diagonal data block will
reduce the number of iterations more. However, the previ-
ously used naive regular grid partition usually leads to
small proportion diagonal edges, which limit the effect of
the reentry optimization.

Therefore, we propose a diagonal-based partitioning
strategy that tries to enlarge the proportion of diagonal
edges as much as possible. Specifically, it contains three
steps: 1) partitioning the graph into many blocks as the grid
format and counting the number of edges of each block; 2)
Using a greedy strategy that merges the small blocks near
the diagonal into big ones (under the memory limit); 3) Par-
titioning the graph as the new partition scheme. Fig. 7b is
the result of the merger. It’s clear that, after merging, more
edges are included in the diagonal blocks.

Table 10 illustrates the comparison between the regular
grid partitioning strategy (GridGraph) and diagonal-based
partitioning strategy (CLIP-OPT) on preprocessing Twitter
graph. Threshold represents the limit of memory size. P

TABLE 9
Preprocessing Time (in seconds)

GridGraph
CLIP

(By source)
CLIP

(By weight)
CLIP

(By degree)

LiveJournal 4.57 5.06 11.42 8.04
Dimacs 4.09 5.12 6.81 6.53
Friendster 185.5 145.3 302.2 264.3
Twitter 160.3 126.2 241.1 205.5
Yahoo 1616 1410 2111 1502 Fig. 7. Partition and iterating order.

56 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

Authorized licensed use limited to: Tsinghua University. Downloaded on March 28,2024 at 11:10:36 UTC from IEEE Xplore. Restrictions apply.

indicates the maximum number of partitions to ensure that
each data block can be held into memory. Proportion means
the proportion of diagonal edges. Time shows the prepro-
cessing time for each strategy. As we can see, the diagonal-
based partitioning strategy can achieve a bigger proportion
(2.6�-3.17�). Meanwhile, the preprocessing time of diago-
nal-based partitioning is very close to or even shorter than
the regular grid partitioning.

8.2 Diagonal-First Scheduling

After the input graph is divided into grids, what needs to be
determined next is the scheduling order of these data
blocks. GridGraph supports two simple scheduling orders,
in the order of the rows and in the order of the columns.
Fig. 7 shows an example of scheduling by rows. In fact,
the scheduling order does not have any effect on the
synchronous execution, but it will affect the convergence
speed of asynchronous execution. Although GridGraph
also provides asynchronous execution, its simple schedul-
ing order does not fully exploit the efficiency of asynchro-
nous execution.

According to our analysis, we find that the scheduling
order of diagonal blocks is the key to affect the number of
iterations. For example, after block 6 in Fig. 7b is processed,
the value of its source vertices will be updated. Therefore,
the edges whose source vertex belong to this interval need
to be processed next. Clearly, these edges are in the same
row of block 6 (block 5, 7, and 8). However, if a naive
”iterate by row order” is used, block 5 can only be influ-
enced by the updates in the next iteration as block 6 is proc-
essed after it. Therefore, this order does not further reduce
the number of iterations.

To alleviate this problem, we propose a diagonal-first
scheduling order that all the diagonal blocks are scheduled
first before any other blocks in the same row. Fig. 7c is the
result order, where the number in each block represents the
order. Fig. 8 illustrates the number of iterations and execu-
tion time for SSSP on Twitter graph under different parti-
tioning and scheduling strategies. CLIP-O represents the
optimization version of CLIP, which uses the diagonal-based
partitioning and scheduling strategy. CLIP means our origi-
nal simple partitioning and scheduling strategy. As we can
see, this optimization strategy can achieve a 1.17 � -1.5�
speedup compared with our previous work, which can be
reflected by the reduction in the number of iterations. This
performance improvement is mainly due to the fact that our
optimization strategy can spread the updated information
faster, thus speeding up the convergence of the algorithm.

9 TO MEET FAST STORAGE MEDIA

Since the slow storage media (HDD, SATA SSD) is the major
performance bottleneck of out-of-core graph processing sys-
tems, it is worthwhile to sacrifice parallelization as long as
we can reduce the disk I/O. This fact leads to our claim of
using a single-threaded or an unoptimized in-memory exe-
cution manner is enough to be better than the existing out-
of-core graph processing systems.

However, thanks to CLIP reduces disk I/O by adding
more computations, the proportion of computation cost and
I/O cost of CLIP is much more balanced than the existed
graph processing systems. This result opens the opportu-
nity of further increase CLIP’s performance by extending it
to a more efficient parallel system.

Even more, we further consider a new environment of
faster storage media (NVMe SSD). Our experiment results
demonstrate that, if NVMe SSD (2.88 GB/s for sequential
read) is used, the CPU consumption of CLIP can become the
new bottleneck. Take executing WCC on NVMe SSD as an
example, for the Twitter graph (with size 21.88 GB), our sin-
gle-threaded algorithm requires 23.37 s to complete while
the IO time is only 8.81s. In fact, this phenomenon is also
widely existing in other out-of-core graph processing sys-
tems (e.g., GraphChi).

In this section, to meet this challenge, we further improve
our in-memory implementation by 1) providing more effi-
ciently in-memory execution manner for load data reentry
and 2) supporting parallelization for the single-threaded
algorithms which further perfects CLIP to make it a more
efficient parallel out-of-core graph processing system.

9.1 Improvement

9.1.1 In-Memory Optimization for Loaded Data Reentry

As we can see from Table 4, the execution time of CLIP on
all-in-memory mode is close to the existing systems. How-
ever, compared with Galois, CLIP is much slower for asyn-
chronous applications, especially on a large diameter graph.
Take Dimacs Graph as an example, although it has only
58.3 million edges, the execution of BFS/SSSP are up to
96.12s/316.1s respectively. In order to maximize the perfor-
mance of all-in-memory mode, we propose two optimiza-
tion techniques for asynchronous applications on in-
memory mode, which are used to increase the iterating
speed over the edges and reduce the memory usage.

Fast Iterating. In order to analyze this problem, we count
the proportion of active edges in each iteration for BFS on
Dimacs graph. Fig. 9 illustrates our evaluation results. As
we can see that the largest proportion is only about 0.04

Fig. 8. Iterations and Execution Time For SSSP on Twitter.

TABLE 10
The Comparison between Grid Partition and Diagonal-Based

Partition on Preprocessing Twitter Graph

Threshold System P Proportion Time(s)

64 MB
GridGraph 128 0.04 84.84
CLIP-OPT 20 0.11 72.93

256 MB
GridGraph 64 0.06 77.37
CLIP-OPT 9 0.19 72.77

512 MB
GridGraph 32 0.1 77.1
CLIP-OPT 6 0.26 72.31

AI ETAL.: CLIP: A DISK I/O FOCUSED PARALLELOUT-OF-CORE GRAPH PROCESSING SYSTEM 57

Authorized licensed use limited to: Tsinghua University. Downloaded on March 28,2024 at 11:10:36 UTC from IEEE Xplore. Restrictions apply.

percent and the average proportion is less than 0.02 percent.
Unfortunately, existing edge-centric out-of-core systems
(e.g., X-Stream, GridGraph) don’t know the location of a
vertex’s outgoing edges. Therefore, for each iteration, they
need to iterate all edges and determine whether an edge can
be executed via the state of its source vertex. Although Grid-
Graph supports a block-level selective scheduling, it needs
to iterate the whole block even if it contains only one active
vertex. This means that they spent most of the time iterating
the useless edges.

However, by using the more efficient selective schedul-
ing mechanism vertex-based(III) (Fig. 3c) we propose (more
detail in Section 4.3), CLIP can solve this problem easily. For
each iteration, we first iterate our bit-array and then only
iterate the active edges. This optimization strategy can
greatly reduce the execution time, especially for the large
diameter graph. Moreover, as the number of iterations
increases, the number of active vertices will become less
and less. CLIP will switch to using worklist (a container) to
store the ID of all active vertices(the proportion of active
edges is less than 5 percent), which completely avoids the
CPU consumption for inactive edges.

Besides, our original semi-external mode distribute data
blocks to different threads in units of 24MB. This static setting
will lead to serious imbalances among different threads as the
number of iterations increases. Thanks to our vertex-based
(III) selective schedulingmechanism,we can clearly know the
distribution of active edges. Therefore, we can implement
dynamic block size settings to balance computation.

Data Compression. It is worth mentioning that CLIP can
organize outgoing edges in the Compressed Sparse Row
(CSR) format in memory while loading data. Although this
strategy does not speed up the iterating speed, it can greatly
reduce the use of memory. Take Yahoo graph as an example,
its edge size can be compressed from 49.4 GB to 30.09 GB,
which reduces the amount of memory use by 40 percent.

9.1.2 Parallelization for Beyond-Neighborhood

As described above, our single-threaded implementation
for beyond-neighborhood applications will become the new
bottleneck when using faster storage media. In order to
solve this problem, we new-design the parallel algorithms
for beyond-neighborhood applications by using the flexible
programming model of CLIP. Parallelization is an effective
manner to accelerate in-memory computing performance
by using multiple cores. There have been a lot of works try-
ing to convert efficient single-threaded graph algorithms
into parallel algorithms [36], [38], such as parallel disjoint-

set, parallel Kruskal’ algorithm and so on. The main princi-
ple of these conversions is to try their best to process the
edges that have no conflicts with each other in parallel.
However, these conversions are mainly for in-memory exe-
cution which leads to random access to the edges. There-
fore, the parallel algorithms can’t be directly applied to our
out-of-core scenario (need to access the edges sequentially).

Fortunately, due to the flexible programming model of
CLIP, one can easily new-design the parallel algorithms for
beyond-neighborhood applications by limiting the scope of
parallelism to the loaded data block (CLIP has helped the
user to complete this limitation). According to our evalua-
tion, although this limitation will reduce the performance of
parallel, the parallel algorithms can still achieve significant
speedup compared to their single-threaded version(more
detailed evaluation in Section 9.2.2). Fig. 10 shows the prin-
ciple of the parallelization for the beyond-neighborhood
applications. For our original single-threaded version, CLIP

processes the graph with the granularity of the edges. How-
ever, we can process the graph with the granularity of the
loaded data blocks. In this way, we can perform parallel
algorithms on the loaded data in memory. Meanwhile, we
also guarantee the original processing order of the graph.
Therefore, the parallel execution does not increase the num-
ber of iterations.

According to our investigation, these parallel algorithms
in memory require that 1) the program can access the prop-
erty of an arbitrary vertex and 2) the loaded data block
needs to be processed multiple times to ensure correct-
ness [36]. Obviously, the flexible programming model of
CLIP just to meet this two requirements. In order to more
clearly illustrate, we use the WCC and MIS algorithms as
examples to guide users how to convert these single-
threaded algorithms into their parallel version.

Parallel WCC. Algorithm 4 illustrates the pseudo-code of
the parallel WCC algorithm in CLIP. Different from the sin-
gle-threaded algorithm (Algorithm 2), we simply use com-
pare-and-swap(CAS) to avoid updating the property of a
vertex at the same time. In this way, subsets that do not con-
flict with each other are first merged in parallel. It is worth
noting that, with the formation of the larger subset, the
available parallelism decreases. However, because these
algorithms require only very few iterations (even only one
iteration), it is worthwhile to use less disk I/O (only one
iteration) in exchange for slightly worse parallel perfor-
mance for the semi-external mode.

Parallel MIS. The parallelization of MIS also follows the
principle of parallel processing the edges that have no

Fig. 10. The Principle of New-designed Parallel Algorithms.
Fig. 9. The proportion of the number of active edges in each iteration for
BFS on Dimacs graph.

58 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

Authorized licensed use limited to: Tsinghua University. Downloaded on March 28,2024 at 11:10:36 UTC from IEEE Xplore. Restrictions apply.

conflicts. Unlike parallel WCC, the conflict is mainly due to
the fact that the greedy algorithm requires the vertices with
the smaller ID to determine their state first. In other words, a
vertex will be processed as long as all the neighbors of a ver-
tex (ID is smaller than its own) have already determined
their state. However, since all edges have been sorted by
their source ID, we can easily guarantee that the data blocks
with smaller IDs will be processed first. For loaded data
block, the parallelism can be achieved in three simple ways:
1) Processing all the outgoing edges of a vertex in parallel; 2)
If the state of the neighbors of a vertex(ID is smaller than its
own) have already determined their state, the outgoing
edges of this vertex can begin to be processed immediately;
3) The loaded data block needs to be processed multiple
times until the state of all the source vertices in this blockwill
be determined. Fortunately, the selective scheduling mecha-
nism and loaded data reentry exactlymeet this requirement.

Algorithm 4. Parallel WCC Algorithm in CLIP

Functions:
F findðv list; vidÞ :— {
if v list½vid�:pa ¼¼ vid do return vid;
else return v list½vid�:pa ¼
F findðv list; v list½vid�:paÞ; }

F unionðv list; src; dstÞ :— {
while Ture do
s F findðv list; srcÞ;
d F findðv list; dstÞ;
if s ¼¼ d do break;
if s > d do swap(s; d);
if CAS(v list½d�:pa, d, s) == True do break;
F eðv list; eÞ :— { F unionðv list; e:src; e:dstÞ; }
F vðv list; vidÞ :— {
v list½vid�:pa vid;
v list:setActiveðvid; trueÞ; }

Computation:
VMap(F v);
Exec(F e);

It is worth mentioning that, similar to parallel WCC and
MIS algorithms, most of the single-threaded graph algo-
rithms can be parallelized by using the flexible programming
model of CLIP, and so on.Moreover, according to our evalua-
tion, the performance of these restricted parallel algorithms
implemented in CLIP is indeed comparable to the in-memory
systems (not include the loading time), such as Galois [36].

9.2 Evaluation in Memory Mode

In order to demonstrate the improvement of memory per-
formance, we use the machine which is described in Section

6.1.1. It is worth noting that we don’t consider the time of
loading data into memory.

9.2.1 In-Memory Optimization for Loaded Data Reentry

Table 11 presents the comparison on semi-external mode
(CLIP-OPT is the optimized version). In order not to lose jus-
tice, the execution time does not include the loading data
time. As we can see, the performance of CLIP is indeed com-
parable to the existing out-of-core systems. However, thanks
to the optimization of in-memory execution manner, CLIP-
OPT achieve a significant speedup (up to 43.4�) on large
diameter compared to our original system. Even for small
diameter graph, CLIP-OPT can still achieve 2:21 � -5:19�
speedup. The improvement of the performance mainly
comes from the fact that CLIP try to avoid checking the state
of the useless edges.

9.2.2 Parallelization for Beyond-Neighborhood

As mentioned in Section 9.1.2, it’s very easy to convert the
sequential algorithms into parallel implementation by using
the flexible programming model of CLIP. In this Section, we
evaluate the scalability of our new-designed parallel WCC
and MIS algorithms (The parallelization of MCST and Col-
oring is similar to WCC and MIS respectively).

Fig. 11 illustrates our evaluation results on scalability for
WCC and MIS on Twitter graph. As we can see, when using
16 threads, the parallel WCC and MIS algorithms can
achieve significant speedup (8.49� for WCC and 8.91� for
MIS) compared to our single-threaded version.

The reason for the significant improvement in performance
is that most of the real-world graph satisfy power-law distri-
bution. Therefore, processing the outgoing edges of a vertex
in parallel is very effective. Moreover, the distribution of the
edges in the input graph is relatively random, so most of the
merges do not create conflicts. As we use the similar parallel
algorithms with Galois [36], our in-memory execution perfor-
mance is even faster than some all-in-memory graph process-
ing systems. Hence, the improved semi-external mode can
meet the requirement of faster storage media or even all-in-
memory scenario.

9.3 Evaluation on NVMe SSD

As we mentioned above, CLIP reduces the execution time by
reducing the number of iterations and providing faster in-
memory execution manner. Therefore, the performance of
CLIP will be further promoted on faster storage media. In
this section, we present evaluation on CLIP, the optimized
version CLIP-OPT and MOSAIC [8] on NVMe SSD.

TABLE 11
Execution Time (in seconds) On BFS in Semi-External

Mode, not Include the Reading Time

LiveJournal Dimacs Friendster Twitter

X-Stream 3.95 113.7 - -
GridGraph 1.61 405.3 23.43 10.58
CLIP 1.72 95.2 20.12 13.23
CLIP-OPT 0.31 2.19 6.54 6.11

‘-’ designates out of memory. Fig. 11. The scalability for WCC and MIS on Twitter graph, evaluated in
semi-external scenario, not include the reading time.

AI ETAL.: CLIP: A DISK I/O FOCUSED PARALLELOUT-OF-CORE GRAPH PROCESSING SYSTEM 59

Authorized licensed use limited to: Tsinghua University. Downloaded on March 28,2024 at 11:10:36 UTC from IEEE Xplore. Restrictions apply.

MOSAIC is a trillion-scale single heterogeneous machine
out-of-core graph processing system for fast storage media
(e.g., NVMe SSD) and massively parallel coprocessors (e.g.,
Xeon Phi) [8]. According to our evaluation, thanks to our in-
memory optimization strategy, CLIP-OPT can also achieve
further performance speedup (up to 2:88�) compared with
CLIP. Moreover, CLIP-OPT can also achieve a significant
speedup compared with MOSAIC (up to 8.01� for BFS and
up to 4364� for WCC).

9.3.1 Experiment Setup

Due to the limitations of the experimental conditions, the
experiments are performed on a common PC that is
equipped with one Intel(R) Core(TM) i7-6700K CPU @
4.00GHz (8-cores), 32 GBDRAM (8MBL3Cache) and a stan-
dard 256 GB NVMe SSD. According to our evaluation, the
average throughput of our NVMe SSD is about 2.88 GB/s for
sequential read and 1.42 GB/s for sequential write. Although
our machine does not equip the Xeon Phi, MOSAIC declares
that it supports such a running environment. Because of the
limited disk space, we only evaluate MOSAIC and CLIP on
two datasets (Dimacs and Twitter). Moreover, we use BFS
and WCC as representatives of asynchronous applications
and beyond-neighborhood applications.

9.3.2 Comparison

The results are presented in Table 12, in which only the semi-
external scenario is included. We see that CLIP can achieve a
significant speedup over MOSAIC on WCC (up to 1514�)
and BFS (up to 7.21�). Meanwhile, CLIP-OPT can further
increase the speedup compared with MOSAIC (up to 8.01�
for BFS and up to 4364� for WCC). Same as the previous
explanation, the main reason for the speedup in CLIP is that
the algorithms used by CLIP require much fewer iterations to
calculate the results. TakeWCC as an example, MOSAIC use
the same algorithm similar to GridGraph which can only
converge after using tens or even thousands of iterations.
Although the execution time of each iteration of MOSAIC
has become shorter, the huge number of iterations leads to
its long execution time. However, as we can see, since the
computing time has exceeded the loading time, CPU con-
sumption of CLIP becomes themajor performance bottleneck.
As we mentioned above, CLIP-OPT focuses on further
improving the in-memory computation performance and
achieves a significant speedup, so CLIP-OPT once again
pushes the performance bottleneck to the disk I/O. Evalua-
tion result in Table 12 shows that CLIP-OPT is much faster

than CLIP (up to 2.88� speedup for WCC and up to 1.11�
speedup for BFS). The reason why the BFS algorithm is not
obviously improved is that our previous implementation is
already very close to the loading time. Obviously, if the stor-
agemedia becomes faster, the speedupwill be larger.

9.3.3 Discussion

It is worth mentioning that MOSAIC is actually an orthogo-
nal optimization with our efforts of reducing the number of
iterations. The factors that influence the execution time of
out-of-core graph processing system is

Time /MAXðLoad; ProcÞ � Iters: (1)

”Load” is the time that loading edges into memory for each
iteration. ”Proc” means the execution time in memory for
this iteration. ”Iters” represents the number of iterations.
MOSAIC mainly optimizes the two aspects of ”Load” and
”Proc”. 1) Load: it provides an effective data compression
format which can reduce the loading time of the edge data.
This optimization is at the cost of increasing the preprocess-
ing time. As we can see from Table 12, the amount of graph
size in MOSAIC is less than CLIP. 2) Proc: using coprocessor
to speed up the execution time in memory. The aim of these
optimizations is to reduce the execution time of each itera-
tion. Moreover, the performance improvements caused by
these optimizations will be more significant as the disk
bandwidth increases.

Different from MOSAIC, CLIP focuses on reducing the
number of iterations (Iters). At the same time, we also make
the effort to further reduce the execution time in memory
(Proc). We believe that if it can combine with the optimiza-
tion methods proposed by MOSAIC and CLIP, the perfor-
mance of the single machine out-of-core graph processing
system will be further improved.

10 RELATED WORK

There are also many distributed graph processing systems.
Pregel [39] is the earliest distributed graph processing sys-
tem that proposes a vertex-centric programming model,
which is later inherited by many other graph processing
systems [3], [7]. Some existing works [40], [41], such as Gir-
aph++ [30], have suggested to replace “think as vertex”
with “think as sub-grapg/partition/embedding”. They can
take advantage of the fact that each machine contains a sub-
set of data rather than only one vertex/edge and hence are
much faster than prior works. However, none of these exist-
ing works could support the beyond-neighborhood algo-
rithms used by CLIP.

Similarly, in addition to GraphChi, X-Stream and Grid-
Graph, there are other out-of-core graph processing systems
using alternative approaches [6], [17], [42], [43]. However,
most of them only focus on maximizing the locality of disk
I/O and still use neighborhood-constraint programming
model. As a counter example, MMap [6] leverages the mem-
ory mapping capability found on operating systems by
mapping edge and vertex data files in memory, which
inspires the design of CLIP. But, MMap only demonstrates
that mmap’s caching mechanism is naturally suitable for
processing power-law graphs. It does not consider the

TABLE 12
Execution Time(in seconds) on NVMe SSD

Algorithms System Dimacs Twitter

Size(GB) Time(s) Size(GB) Time(s)

BFS
MOSAIC 0.41 713 8 34.41

CLIP 0.43 98.87 10.9 19.82
CLIP-OPT 0.43 88.97 10.9 18.89

WCC
MOSAIC 0.41 742 15 74.07

CLIP 0.43 0.49 21.88 23.37
CLIP-OPT 0.43 0.17 21.88 8.85

60 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

Authorized licensed use limited to: Tsinghua University. Downloaded on March 28,2024 at 11:10:36 UTC from IEEE Xplore. Restrictions apply.

limitations of the original out-of-core systems’ restrictions,
which is the key contribution of this work.

There are some works [17], [18], [44] that aim to load only
necessary data in an iteration, which can also reduce disk I/
O. Besides, the works [45], [46], [47], [48] focus on using
GPU to speed up in-memory execution. However, these
methods are actually an orthogonal optimization with our
efforts of reducing the number of iterations. According to
our evaluation, our simple selective scheduling and in-
memory optimization strategies are enough for our case.

11 CONCLUSION

In this paper, we propose CLIP, a novel out-of-core graph
processing system designedwith the principle of “squeezing
out all the value of loaded data”. With the more expressive
programming model and more flexible execution, CLIP ena-
bles more efficient algorithms that require much less amount
of total disk I/O. Our experiment results show that CLIP is up
to tens or sometimes even thousands times faster than exist-
ingworks X-Stream andGridGraph.

ACKNOWLEDGMENTS

This work is supported byNational Key Research&Develop-
ment Program of China (2016YFB1000504), Natural Science
Foundation of China (61433008, 61373145, 61572280,
61133004, 61502019, U1435216), National Basic Research (973)
Program of China (2014CB340402), Intel Labs China (Funding
No.20160520). This work is also supported by NSF CRII-
1657333, NSF SHF-1717754, NSF CSR-1717984, Spanish Gov.
& European ERDF under TIN2010-21291-C02-01 and Consol-
ider CSD2007-00050. Contact: Yongwei Wu (wuyw@tsing-
hua.edu.cn) and Kang Chen (chenkang@tsinghua.edu.cn).
An earlier version of this work [1] appeared in ATC 2017.
Z. Ai andM. Zhang equally contributed to this work.

REFERENCES

[1] Z. Ai, M. Zhang, Y. Wu, X. Qian, K. Chen, and W. Zheng,
“Squeezing out all the value of loaded data: An out-of-core graph
processing system with reduced disk i/o,” in Proc. USENIX Annu.
Tech. Conf., 2017, pp. 125–137.

[2] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: large-scale
graph computation on just a PC,” in Proc. 10th USENIX Symp.
Operating Syst. Des. Implementation, 2012, pp. 31–46.

[3] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-Stream: edge-
centric graph processing using streaming partitions,” in Proc. 24th
ACM Symp. Operating Syst. Principles, 2013, pp. 472–488.

[4] X. Zhu, W. Han, and W. Chen, “GridGraph: Large-scale graph
processing on a single machine using 2-level hierarchical parti-
tioning,” in Proc. USENIX Annu. Tech. Conf., 2015, pp. 375–386.

[5] P. Yuan, C. Xie, L. Liu, and H. Jin, “Pathgraph: A path centric
graph processing system,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 10, pp. 2998–3012, Oct. 2016.

[6] Z. Lin, M. Kahng, K. M. Sabrin, D. H. P. Chau, H. Lee, and U. Kang,
“Mmap: Fast billion-scale graph computation on a pc via memory
mapping,” in Proc. IEEE Int. Conf. Big Data, 2014, pp. 159–164.

[7] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“Powergraph: Distributed graph-parallel computation on natural
graphs,” in Proc. 10th USENIX Symp. Operating Syst. Des. Imple-
mentation, 2012, pp. 17–30.

[8] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and T. Kim,
“Mosaic: Processing a Trillion-Edge Graph on a Single Machine,”
in Proc. 12th Eur. Conf. Comput. Syst., Apr. 2017, pp. 527–543.

[9] H. N. Gabow and R. E. Tarjan, “A linear-time algorithm for a spe-
cial case of disjoint set union,” J. Comput. Syst. Sci., vol. 30, no. 2,
pp. 209–221, 1985.

[10] R. E. Tajan and J. Van Leeuwen, “Worst-case analysis of set union
algorithms,” J. ACM, vol. 31, no. 2, pp. 245–281, 1984.

[11] A. McGregor, “Graph stream algorithms: A survey,” ACM SIG-
MOD Record, vol. 43, no. 1, pp. 9–20, 2014.

[12] S. Muthukrishnan, Data Streams: Algorithms and Applications.
Breda, Netherlands: Now Publishers Inc, 2005.

[13] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang,
“On graph problems in a semi-streaming model,” in Proc. Int. Col-
loquium Automata Lang. Program., 2004, pp. 531–543.

[14] D. E. Knuth, The Art of Computer Programming: Sorting and Search-
ing, vol. 3. London, United Kingdom: Pearson Education, 1998.

[15] J. S. Vitter, “Algorithms and data structures for external memory,”
Found. Trends Theoretical Comput. Sci., vol. 2, no. 4, pp. 305–474, 2008.

[16] R. Bellman, “On a routing problem,” Quarterly of Applied Mathe-
matics, vol. 16, pp. 87–90, 1958.

[17] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe, and
A. S. Szalay, “FlashGraph: Processing billion-node graphs on an
array of commodity SSDs,” in Proc. 13th USENIX Conf. File Storage
Technol., 2015, pp. 45–58.

[18] H. Liu and H. H. Huang, “Graphene: Fine-grained io manage-
ment for graph computing,” in Proc. 15th Usenix Conf. File Storage
Technol., 2017, pp. 285–300.

[19] (2018). [Online]. Avaiable: https://www.amazon.com.
[20] G2 - Yahoo! AltaVista Web Page Hyperlink Connectivity Graph,

circa 2002. [Online]. Available: http://webscope. sandbox.yahoo.
com/

[21] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and
S. Muthukrishnan, “One trillion edges: graph processing at Face-
book-scale,” Proc. VLDB Endowment, vol. 8, no. 12, pp. 1804–1815,
2015.

[22] R. G. Gallager, P. A. Humblet, and P. M. Spira, “A distributed
algorithm for minimum-weight spanning trees,” ACM Trans. Pro-
gram. Lang. Syst., vol. 5, no. 1, pp. 66–77, 1983.

[23] J. B. Kruskal, “On the shortest spanning subtree of a graph and the
traveling salesman problem,” Proc. Amer. Math. Soc., vol. 7, no. 1,
pp. 48–50, 1956.

[24] J. Leskovec and A. Krevl, LiveJournal social network: Stanfor-
dLarge Network Dataset Collection. [Online]. Available: http://
snap.stanford.edu/data/soc-LiveJournal1.html, Jun. 2014.

[25] USA road networks: The Center for Discrete Mathematicsand
Theoretical Computer Science Collection. 2010. [Online]. Avail-
able: http://www.dis.uniroma1.it/challenge9/download.shtml

[26] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social
network or a news media?” in Proc. 19th Int. Conf. World Wide
Web, 2010, pp. 591–600.

[27] J. Leskovec and A. Krevl, “Friendster social network: Stanfor-
dLarge Network Dataset Collection” [Online]. Available: http://
snap.stanford.edu/data/com-Friendster.html, Jun. 2014

[28] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Accelerate large-scale
iterative computation through asynchronous accumulative
updates,” in Proc. 3rd Workshop Sci. Cloud Comput. Date, 2012,
pp. 13–22.

[29] L. Roditty and V. VassilevskaWilliams, “Fast approximation algo-
rithms for the diameter and radius of sparse graphs,” in Proc. 45th
Annu. ACM Symp. Theory Comput., 2013, pp. 515–524.

[30] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson,
“From think like a vertex to think like a graph,” Proc. VLDB
Endowment, vol. 7, no. 3, pp. 193–204, 2013.

[31] U. Brandes, “A faster algorithm for betweenness centrality*,” J.
Math. Soc., vol. 25, no. 2, pp. 163–177, 2001.

[32] M. Luby, “A simple parallel algorithm for the maximal indepen-
dent set problem,” SIAM J. Comput., vol. 15, no. 4, pp. 1036–1053,
1986.

[33] 2018. [Online]. Available: https://en.wikipedia.org/wiki/
Graph_coloring

[34] D. J. Welsh and M. B. Powell, “An upper bound for the chromatic
number of a graph and its application to timetabling problems,”
Comput. J., vol. 10, no. 1, pp. 85–86, 1967.

[35] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” ACM Sigplan Notices, vol. 48,
no. 8, pp. 135–146, 2013.

[36] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infra-
structure for graph analytics,” in Proc. 24th ACM Symp. Operating
Syst. Principles, 2013, pp. 456–471.

[37] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor,
M. J. Anderson, S. G. Vadlamudi, D. Das, and P. Dubey,
“GraphMat: High performance graph analytics made productive,”
Proc. VLDBEndowment, vol. 8, no. 11, pp. 1214–1225, 2015.

AI ETAL.: CLIP: A DISK I/O FOCUSED PARALLELOUT-OF-CORE GRAPH PROCESSING SYSTEM 61

Authorized licensed use limited to: Tsinghua University. Downloaded on March 28,2024 at 11:10:36 UTC from IEEE Xplore. Restrictions apply.

https://www.amazon.com
http://webscope. sandbox.yahoo.com/
http://webscope. sandbox.yahoo.com/
http://snap.stanford.edu/data/soc-LiveJournal1.html
http://snap.stanford.edu/data/soc-LiveJournal1.html
http://www.dis.uniroma1.it/challenge9/download.shtml
http://snap.stanford.edu/data/com-Friendster.html
http://snap.stanford.edu/data/com-Friendster.html
https://en.wikipedia.org/wiki/Graph_coloring
https://en.wikipedia.org/wiki/Graph_coloring

[38] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun,
“Internally deterministic parallel algorithms can be fast,” Proc.
17th ACM SIGPLAN Symp. Principles Practice Parallel Program.,
2012, pp. 181–192.

[39] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale
graph processing,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data., 2010, pp. 135–146.

[40] Y. Simmhan, A. Kumbhare, C. Wickramaarachchi, S. Nagarkar,
S. Ravi, C. Raghavendra, and V. Prasanna, “Goffish: A sub-graph
centric framework for large-scale graph analytics,” in Proc. Eur.
Conf. Parallel Process., 2014, pp. 451–462.

[41] C. H. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J. Zaki,
and A. Aboulnaga, “Arabesque: a system for distributed graph
mining,” in Proc. 25th Symp. Operating Syst. Principles, 2015,
pp. 425–440.

[42] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim, J. Kim, and H. Yu,
“TurboGraph: A fast parallel graph engine handling billion-scale
graphs in a single PC,” in Proc. 19th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2013, pp. 77–85.

[43] Y. Zhang, V. Kiriansky, C. Mendis, S. Amarasinghe, and M. Za-
haria, “Making caches work for graph analytics,” in IEEE Int.
Conf. Big Data (BigData), 2017, pp. 293–302.

[44] K. Vora, G. Xu, and R. Gupta, “Load the edges you need: A
generic I/O optimization for disk-based graph processing,” in
Proc. USENIX Conf. Usenix Annu. Tech. Conf., 2016, pp. 507–522.

[45] M.-S. Kim, K. An, H. Park, H. Seo, and J. Kim, “Gts: A fast and
scalable graph processing method based on streaming topology to
gpus,” in Proc. Int. Conf. Manage. Data, 2016, pp. 447–461.

[46] L. Ma, Z. Yang, H. Chen, J. Xue, and Y. Dai, “Garaph: Efficient
gpu-accelerated graph processing on a single machine with bal-
anced replication,” in Proc. USENIX Annu. Tech. Conf., 2017,
pp. 195–207.

[47] J. Zhong and B. He, “Medusa: Simplified graph processing on
gpus,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 6,
pp. 1543–1552, Jun. 2014.

[48] W. Zhong, J. Sun, H. Chen, J. Xiao, Z. Chen, C. Cheng, and X. Shi,
“Optimizing graph processing on gpus,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 28, no. 4, pp. 1149–1162, Apr. 2017.

Zhiyuan Ai received the BE degree from Harbin
Institute of Technology, China, in 2013. He is work-
ing toward the PhD degree in the Department of
Computer Science and Technology, Tsinghua Uni-
versity, China. His research interests include
graph processing and cloud computing.

Mingxing Zhang received the BE degree from
Beijing University of Posts and Telecommunica-
tions, China, in 2012, and the PhD degree in
computer science and technology from Tsinghua
University, Beijing, China, in 2017. His research
interests include parallel and distributed systems.
He can be reached at: zhang.mingxing@outlook.
com.

Yongwei Wu received the PhD degree in applied
mathematics from theChinese Academy of Scien-
ces, in 2002. He is currently a professor in com-
puter science and technology with Tsinghua
University of China. His research interests include
parallel and distributed processing, and cloud
storage. He has published more than 80 research
publications and has received two Best Paper
Awards. He is a senior member of the IEEE.

Xuehai qian received the PhD degree from the
Computer Science Department, University of
Illinois at Urbana-Champaig. Currently, he is an
assistant professor with the Ming Hsieh Depart-
ment of Electrical Engineering and the Department
of Computer Science, University of Southern Cali-
fornia. His interests lie in the fields of computer
architecture, architectural support for programming
productivity and correctness of parallel programs.

Kang Chen received the PhD degree in computer
science and technology from Tsinghua University,
Beijing, China, in 2004. Currently, he is an associ-
ate professor of computer science and technology
with Tsinghua University. His research interests
include parallel computing, distributed processing,
and cloud computing.

Weimin Zheng received the BS and MS degrees
from Tsinghua University, China, in 1970 and
1982, respectively, where he is currently a profes-
sor of computer science and technology. He is
the managing director of the Chinese Computer
Society. His research interests include computer
architecture, operating system, storage networks,
and distributed computing. He is a senior mem-
ber of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

62 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019

Authorized licensed use limited to: Tsinghua University. Downloaded on March 28,2024 at 11:10:36 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

