
CUBIST: High-Quality 360-Degree Video
Streaming Services via Tile-based Edge Caching

and FoV-Adaptive Prefetching

Dongbiao He∗†¶, Jinlei Jiang∗‡‡, Teng Ma∗‖, Guangwen Yang∗, Cedric Westphal§,
JJ Garcia-Luna-Aceves‡, Shu-Tao Xia¶

∗Beijing National Research Center for Information Science and Technology

Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
†Sangfor Inc., Shenzhen, China ‖Alibaba Inc., Beijing, China

‡‡Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
¶Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

§Futurewei Technologies, Inc., 2330 Central Expressway, Santa Clara, CA 95050, USA
‡Computer Science and Engineering Department, University of California, Santa Cruz, Santa Cruz, CA 95064, USA

Abstract—360-degree video streaming, which is becoming more
and more popular as the fast development of VR/AR applications
nowadays due to the immersive viewing experience it can offer,
poses enormous challenges to the current network infrastructure
in terms of high bandwidth and low latency requirements. To ad-
dress this problem and to ensure the QoE (quality of experience)
of end-users, this paper presents CUBIST, a method and system
for high-quality 360-degree video streaming in networks with
cache nodes at the edge. To the best of our knowledge, it is the
first tile-based edge caching solution that incorporates proactive
tile prefetching and hierarchical cache organization into reactive
caching to maximize the caching benefit while reducing the cost
of 360-degree video streaming. Experimental results show that
CUBIST can achieve a cache hit ratio of 87% and improve the
effective video bitrate by 12.9% with most rate transitions being
small when compared with the latest FoV-aware edge caching
scheme.

Index Terms—360-degree video, edge caching, FoV-adaptive
prefetching, QoE

I. INTRODUCTION

360-degree videos (a.k.a. immersive videos, panoramic

videos, and spherical videos) are becoming more and more

popular due to the fast development of virtual/augmented

reality (VR/AR) applications in recent years. It is believed

that the use of 360-degree video will go beyond gaming and

entertainment into our daily lives, enhancing education, busi-

ness and medicine [3], [28]. Also, nowadays, more and more

360-degree videos are delivered over the Internet. For example,

YouTube, Facebook, and Vimeo have already provided 360-

degree video service and still more are coming. Because the

size of a 360-degree video can be up to 4-5 times larger

than that of a traditional video with the same resolution [45],

streaming 360-degree videos imposes stringent requirements

on the network in terms of bandwidth and latency.

Two approaches have been suggested that try to address the

bandwidth and latency requirements of 360-degree videos. The

Corresponding author: Jinlei Jiang (jjlei@tsinghua.edu.cn)

first one is called FoV-adaptive (a.k.a FoV-aware) streaming

that tries to reduce network bandwidth consumption by, instead

of transferring the whole video, only transferring parts of the

video within users’ field of view (FoV). Examples can be seen

in [7], [9], [13], [16], [18], [37], [40], [47], [46], to name but

just a few. The second one tries to reduce network access

latency by in-network caching, which has been deployed in

content delivery networks (CDNs) for many years and is

becoming more and more popular with the rapid development

of mobile edge computing. For example, the work in [25]

discussed the impact of caching on adaptive video streaming.

The work in [8] provided a model for video content providers

to make better caching decision so as to improve cache

performance. The work in [12], [28], [29] suggested caching

videos at the edge so as to improve user’s quality of experience

(QoE).

In spite of the above work, due to so many factors involved

in streaming and caching, the goal is far from reached to

stream 360-degree videos in high-quality while with low

bandwidth consumption and access latency. The challenges

facing are as follows.

First, caching space is limited and there is a trade-off

between caching efficiency and the end user’s QoE. For

example, caching the whole video may lead to poor cache

utilization because parts of the cached video may never be

viewed by any user. On the other hand, caching only parts of

the video might lead to cache misses, causing frequent video

quality switches and rebuffering [14] that harm end-user QoE.

Also, cache organization matters, for there are multiple storage

media available, each with its own character (e.g., capacity,

performance and price).

Second, 360-degree video streaming happens in a dynamic

environment. Both the available network bandwidth and the

end-user behavior change from time to time, making it hard to

determine the rate for video streaming and to do effective FoV-

adaptive prefetching. Given the limited cache space and the

208

2021 IEEE International Conference on Web Services (ICWS)

978-1-6654-1681-8/21/$31.00 ©2021 IEEE
DOI 10.1109/ICWS53863.2021.00039

diverse preferences of different users, it becomes even harder

to design a caching solution to reach the goal of 360-degree

video streaming.

Finally, application-specific factors must be taken into ac-

count. For example, 360-degree video playing is usually con-

trolled by the client via such techniques as DASH (Dynamic

Adaptive Streaming over HTTP). Since each video segment

can be stored in various resolutions, the cache node must

select the most proper resolution to cache and the end-users

must be served with the right resolution so as to avoid bitrate

oscillations and sudden rate changes [25]. Moreover, this must

be done transparently.

To deal with the above challenges, this paper presents CU-

BIST, a 360-degree video streaming solution in edge-enabled

networks. CUBIST achieves its goal through cost-effective

edge cache design on the basis of FoV-adaptive streaming. By

cost-effective, we mean that CUBIST (a) reduces the network

bandwidth consumption and access latency facing 360-degree

videos streaming, and (b) organizes the cache with high cost

performance ratio.

Our contributions in this paper are as follows:

• We present a series of mechanisms (§III) to estimate

video popularity, to predict tile requirement, and to mea-

sure the network bandwidth and select the right bitrate.

They not only form a solid foundation for CUBIST but

also set up some reference to other related work.

• We present CUBIST (§IV), a method and system for

high-quality 360-degree video streaming with low band-

width consumption and access latency. CUBIST fulfills

the task via a cost-effective edge caching solution on

the basis of FoV-adaptive streaming. To the best of our

knowledge, it is the first caching solution that incorpo-

rates both proactive tile pre-fetching and reactive video

caching while considering hierarchical cache organization

to improve QoE of 360-degree video streaming.

• We evaluate CUBIST against a wide range of benchmarks

(§V). The experimental results show that CUBIST can

achieve a cache hit ratio of 87% and improve the video

quality, or more precisely the effective video transmission

bitrate by 12.9% compared with the latest tile-based

caching [28].

The rest of this paper is organized as follows. Section II

presents some background of 360-degree video streaming

and provides an overview of CUBIST. Section III and IV

describes the key mechanisms behind CUBIST and the cache

system design and implementation respectively. Section V

discusses the methodology for performance evaluation and the

evaluation results. Section VI lists some related works. The

paper ends in Section VII with some conclusions.

II. BACKGROUND AND CUBIST OVERVIEW

A. 360-Degree Video Streaming

A 360-degree video is usually encoded with tile parti-

tions [11] in a time-space way. In the time domain, a 360-

degree video consists of multiple partitions (or segments)

and each of them again consists of many frames. In the space

domain, each frame of a 360-degree video consists of many

tiles, each of which records a scene at a certain direction.

A viewport describes the gaze direction of a user, which

may change as the user navigates the contents over space

and time. Corresponding to each viewport there is an FoV

containing all visible tiles in that direction. FoV-adaptive

streaming [13] saves bandwidth by delivering only the tiles

within an FoV (sometimes tiles outside of the FoV are deliv-

ered in low resolution). The working basis of FoV-adaptation is

the predictability of the user head movement at least to a short

period of time (e.g., 1 to 2 seconds). Please note, viewport-

adaptive shares the same meaning as FoV-adaptive and the

scope of FoV is jointly determined by the limit of eyes and

the display device (e.g., headset and mobile phones).

B. Issues in Caching System Design

Caching improves system throughput or reduces access

latency by prefetching the required content in advance so

as to hide the overhead in searching and transmission. For

360-degree video caching, the purpose is to ease the network

burden and guarantee low access latency, and it could be

divided into the following two procedures.

Video popularity prediction: This is also called the

caching admission policy. It predicts the video request pattern

so as to identify items to be cached to get maximum reward.

Since the concept tiling is introduced in the 360-degree video,

most recent work [18], [28], [45], [47], [26], [34], [6], [17]

made prediction directly on tiles.

Segment selection: It selects the best resolution for the

video segment to be cached within the network and storage

constraints. In the real world, there are multiple resolutions

available for the same segment and users can make selection

freely based on the network condition. For caching, this must

be done automatically.

From another aspect, storage organization of the edge node

is very important. If not dealt properly, it would become a

bottleneck in WAN (wide area network) optimization, 5G and

so on. However, it is often ignored by the video caching

solutions.

C. Key Idea and Components of CUBIST

Fig. 1 shows the architecture of the CUBIST system. It

mainly consists of three kinds of components, namely client,

cache node at the edge, and the video server. The client

performs video display and viewport capture. The cache node

is responsible for content serving by efficient tiles caching and

prefetching. The video server serves video contents, performs

video popularity and static tile requirement estimation, and

instructs the cache node according to the result for efficient

caching.

The key idea behind CUBIST is straightforward: by com-

bining reactive caching and proactive prefetching in the edge

to reduce not only bandwidth consumption but also access

latency in FoV-adaptive 360-degree video streaming. Though

the idea is straightforward, the journey to deliver such a

209

system is full of challenges as pointed out previously in

Section I and also discussed in other work [38], [45], [36],

[26], [28], [34]. We contribute to the literature with a cost-

effective hierarchical cache design and the corresponding pol-

icy for reactive caching and proactive prefetching, including

the period-by-period network bandwidth estimation method

and the updated mechanisms for video popularity estimation

and tile requirement prediction.

Video
Storage

Video Popularity
Estimation

Tile Requirement
Estimation

Tile Requirement
Estimation

Video Cache

Tile Pre-fetch

Send

Pull

Video
Cache

Server Edge Cache

Clinet

Video Request

Video Display
Rate Measurement

Fig. 1: The architecture of CUBIST system. Three roles are

involved in the system, namely the client for video display

and request, the edge cache for tiles caching and serving, and

the server for video storage and serving.

III. KEY MECHANISMS BEHIND CUBIST

A. Video Popularity Estimation

In CUBIST, popularity is calculated once at the beginning

and updated as new requests occur. In detail, we treat every

video segment as a basic unit for analysis and use the first

segment of a video to represent the request of the whole video.

The request is serialized into segments with a pre-allocated

video name and increasing segment numbers. Formally, for

a system with K videos, the incoming requests are denoted

by a vector {R1, R2, ..., Ri, ..., RK}, where Ri is the request

for video i. Ri is defined as a tuple Ri =< Ni, Ti >, where

Ni = {ni(1), ni(2), ..., ni(k)} is the historical information of

the request for the video i, and Ti = {t1, t2, ..., tk} is the

timestamp of the request.

Besides that past access information can provide some

positive influence on future popularity, the interval between

two successive accesses for a video is also an indicator for

the future request. These two features are the widely-used

and so-called “Frequency” and “Recency” in existing caching

systems. Based on the principles discussed above, we adopt

the self-exciting point process [15] for popularity estimation,

where the event that occurred in the past is more likely to occur

in the future. Below is the equation for estimating request of

video i at time t:

ni(t) = λ

t∑

t′=1

ni(t
′)φ(t− t′). (1)

where φ(t− t′) is the kernel function describing the influence

of “Recency”,
∑t

t′=1 ni(t
′) represents the access frequency,

and λ is an adjustment parameter. The kernel function φ(t−t′)
is non-increasing with the variable t− t′, indicating the video

demand would decrease as it is getting “old” (large age).

The performance of the estimation varies with the deployed

kernel functions. We test the exponential function (λ = 2,

φ(t − t′) = exp(t′ − t)) and power-law function (λ = 0.25,

φ(t−t′) = pow(t−t′,−1)) in predicting the future access with

the workload generated with GlobeTraff [22]. As illustrated in

Fig. 2, both functions could track the access change well. In

detail, the exponential function is good at handling dynamic

workloads, achieving 18% better accuracy than the power-law

function. On the contrary, the power-law function can produce

a smoother estimation curve. In the real world, users can select

the right function according to the application scenario.

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700 800

V
id

eo
 A

cc
es

s

Time Series

Real-access
Predict-access

(a) exponential functions

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700 800

V
id

eo
 A

cc
es

s

Time Series

Real-access
Predict-access

(b) power-law functions

Fig. 2: The results of video popularity estimation with different

kernel functions.

B. Tile Requirement Estimation
Tile requirement estimation is necessary for caching and

prefetching. Corresponding to the two purposes, it is divided

into two parts, namely static estimation for caching based on

the historical behavior of many users and dynamic estimation

for tile prefetching based on the current behavior of a user.

The former is fulfilled on the video server, for it possesses full

behavior information needed for analysis. The latter is done

on the cache node, with the information collected from the

client. The purpose of static estimation is to find out the most

popular regions of interest (ROIs). Since it has been discussed

thoroughly in the literature [23], [42], here we focus only on

dynamic estimation.
Dynamic estimation follows the locality principle as most

FoV-adaptive streaming methods do. That is, it prefetches

210

video segments based on the predicted variation of the user’s

viewport as well as the network latency. As the cache node

serves videos for multiple users, it is unfeasible to run a

complex model online each time a tile miss occurs. To

make the estimation efficient, a simple function describing the

variation of viewport as the time is needed to determine the

tiles to be fetched. Since 360-degree video is mapped to a unit

sphere, we use the distance that the center of a user’s field of

view covers to measure the viewport variation. The distance

here can be the orthodromic, haversine or great-circle distance.

For any given period of time, the longest distance that a user’s

gaze can move is π.

xt0

xt

xt

xt0 xt

x Viewport variation in duration θ

distance d

Fig. 3: An illustration of viewport variation.

Fig. 3 illustrates how to use the distance to predict viewport

variation. Given a distance d (0 ≤ d ≤ π) and a period θ
starting at t0, the probability p that a user’s gaze will stay

within the circle of radius d at time t satisfies the following

relationship:

P (argmaxt0<t<t0+θ||xt − xt0 || < d)) ≥ p (2)

where xt is the center of FoV at time t.

0

0.2

0.4

0.6

0.8

1

C
D
F

100 ms
250 ms
500 ms
750 ms
1000 ms

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

Fig. 4: An illustration of the relationship between distance d,

the probability p that the user’s gaze will stay within d, and

the time t; generated according to the data in [16]

.

According to the previous work [7], [16], the user’s viewport

does not vary drastically in most cases, and a linear-regression

method can predict user’s future FoV for up to 2s. This

lays a good basis for prefetching relevant FoV tiles so as to

smooth video playback. For the instance shown in Fig. 4, the

probability is as high as 85% that the user’s FoV will remain

within a distance of less than π after 1000ms from the initial

FoV. Therefore, the required video content can be transmitted

without any complex predictions of the user head movement.

The above result indicates a locality property when the users

watch 360-degree videos, which is leveraged in our design.

This property also makes prefetching of future data based

upon the current viewport very attractive. For simplicity, we

compute the mapping to the viewport movement d as:

d← f(p, θ), θ < 2s (3)

C. Rate Measurement

Rate measurement is critical to select a proper resolution

for the video segment to be cached. From the perspective

of QoE (e.g., high bitrate, short stall duration, and fewer

bitrate transitions), users want to watch a video in the highest

resolution that could be supported by the available bandwidth.

However, the available bandwidth may change from time to

time, making it complicated to select the right resolution for

the video segments to be cached.

Consider an example that a user requests a specific FoV

of a 360-degree video, which is lucky in the cache node. To

ensure QoE, the cache node should serve the content without

adapting the resolution to the network bandwidth. In the real

world, users’ requests arrive at the cache node continuously,

and CUBIST makes decisions for caching and prefetching

accordingly with the requests. Therefore, we need to determine

the video quality (i.e., bitrate) to be cached in both the caching

phase and the prefetching phase.

1) Network Bandwidth Estimation: : Bandwidth estimation

is critical in the video caching system. It is not economic

for the edge cache node to store multiple resolutions of a

single video at the same time. Either, caching videos with high

resolution might be not effective when the bandwidth between

the client and cache is very low, for the client will suffer great

packet loss and cause many video stalls for rebuffering. In a

word, the cache node must reduce the storage consumption

while ensure better QoE by fully utilizing the bandwidth.

To fully utilize the bandwidth, first of all the cache node

should have enough bandwidth to transfer the data smoothly

to the user. In addition, given that the 360-degree video is

large and the entire content may not be totally cached, the

cache node needs to obtain the video in advance from the

video server if the user request is predicted to cause a miss

at the cache. This also consumes the bandwidth between the

cache node and the server.

Calculating the end-to-end delay is still an open problem

since the bandwidth is shared by many nodes and the traffic

of these nodes might change dynamically. In CUBIST, the

caching node triggers delay estimation process once there is a

new group of video segments to be cached. CUBIST estimates

the end-to-end bandwidth with the following two equations via

the packet dispersion techniques.

C = median(Ci) = median(
L

ti,e − ti,s
)i∈{1,2,...,n} (4)

R =
m× L∑m

i=1(ti,e − ti,s)
(5)

211

where L is the packet size, ti,e, ti,s are the arrival time of the

packet pair i, n and m are the probe number set for estimating

path capacity C and bandwidth R respectively.

The above equations give two steps to estimate the end-to-

end bandwidth: (i) Use continuous packet pairs to detect the

path capacity. To guarantee the efficiency and responsiveness,

a small n (n = 30) is adopted by CUBIST. (ii) Calculate

the available throughput by sending packets with the rate

obtained in the first step and here the cross traffic is taken

into considerations. For the sake of accuracy, the parameter

m is set to 150.

2) Reactive Caching: For caching, because the quality of

the link between the client and the edge is relatively stable, in

order to save the cache space, the edge cache does not need

to store multiple resolutions of the same video segment for

network-adaptive streaming. However, the network bandwidth

does vary. Therefore, it is crucial for the cache node to choose

the most appropriate quality (or more precisely, bitrate) for the

segment to be cached.

Unlike traditional ways that try to make the estimated bitrate

closer to the real value, CUBIST determines the video quality

for caching with average available bandwidth over a period.

The process is triggered once a new video is inserted into

the cache in the caching phase. CUBIST maintains a list of

bandwidth levels Bw between the users and the cache node.

The bandwidth change rate at time t is calculated by:

δ(t) =
|Bwt −Bwt−1|

min{Bwt, Bwt−1}
(6)

At the same time, a network state indicator ϑ is given to

adjust the length of the period. When δ(t) > ϑ, the period

is reset to 0. Otherwise, the period keeps increasing. In

other words, the period is adjusted according to the change

rate of network bandwidth and the given threshold ϑ. With

the period determined, the cache node then calculates the

average bandwidth B̂w for choosing the right video quality

for caching.

Fig. 5 illustrates how the rate determination procedure

works with the real-world trace of network throughput [43],

where ϑ = 1. By following the bandwidth change rate, the

network is divided into multiple periods of different lengths,

each of which has a relatively stable change rate.

3) Proactive Prefetching: Prefetching is triggered after a

cache miss. Given that the end-to-end delay between the cache

node and the video server is known (for example, by some

delay measurement method), CUBIST can predict and prefetch

tiles (identified by id) to be accessed soon but not in the cache

yet. As opposed to the caching phase, the resolution of the

prefetched tiles is adapted to the real-time end-to-end delay. Of

course, such an adaptation is only feasible when the allocated

bandwidth between the video server and the cache node is

larger than that between the server and the client. Details of

efficient prefetching are as follows.

Given a tile τ0 and suppose a request to it triggers a prefetch

task. Let tb be the timestamp when τ0 is buffered at the client,

and Δt = τ0.te − tb be the time taken to transfer τ0 from the

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 0 10 20 30 40 50 60 70 80 90

B
an

dw
id

th
, R

at
e

(M
bp

s)

Time (s)

Real Trace
Rate

Fig. 5: The rate measurement procedure, where the network

is divided into multiple periods of different lengths and each

period has a bandwidth change rate less than a given threshold.

SSD

HDD

DRAM

20-50MBps, TB level

100-800MBps, 320GB

2000-50000MBps, 32GB

High

low

NIC

HDD

SSD

DRAM
L1 Storage

L2 Storage

C
os
t/P
er
fo
rm
an
ce

Fig. 6: A reference design of the edge cache system.

video server to the client. In order to make the prefetching

efficient, the user viewport during Δt should remain within

the scope of the prefetched tiles. The maximum amount of

data that could be transmitted from the server to the cache

node during the time is Bw × Δt. According to Eq.(3), for

a given probability p, the distance to the required view is

d = εf(p,Δt), where ε = 2 if there is no prediction for

the direction, and ε = 1 otherwise. Therefore, the tiles within

the area |d| ∗ |π| should be prefetched.

Since the playback length of each segment is fixed, the

bitrates of the tiles to be prefetched are calculated as follows:

bitrates(τ) =
Bw × τ.t

|d| ∗ |π| (7)

Once a prefetched tile is no longer within the scope of the next

request, it will be deleted or moved to L2 storage according to

the caching policy, which will be detailed in the next section.

IV. CUBIST DESIGN AND IMPLEMENTATION

Given the vast volume of 360-degree videos and the diver-

sity of users, it is not an easy task to design a cache system

with a high throughput and low cost so as to provide users

with a good QoE. This section details our solution.

A. Hierarchical Cache System Design

The cache system we design is illustrated in Fig. 6. It adopts

a hierarchical design to balance the cost and performance,

consisting of L1 storage of high speed but small volume

212

52

HDDM
B

ps

54

SSDM
B

ps

55

56

20 21 22 23 24 25 26

DRAMM
B

ps

Cache Size (GB)

Fig. 7: The throughput of different storage media.

DRAM (dynamic random-access memory) and L2 storage of

low speed but large volume SSD (solid-state drive) and/or

HDD (hard-disk drive). Fig. 7 displays the throughput of HDD,

SSD and DRAM on a server with the same configuration

shown in Section V-A, where the size of each required packet

is set to 64Kb and the requests are issued with full network

speed. It can be seen from the figure that: 1) the gap between

DRAM, SSD and HDD is large, and 2) the cache volume

matters to throughput. On account of this and the prices of

different storage media, obviously it is a good choice to adopt a

hierarchical design. To the best of our knowledge, it is the first

hierarchical caching solution for 360-degree video streaming.

Given that the bandwidth between the edge node and end users

would reach 10-20Gbps [1], [35] in the future and larger cache

capacity would do help, it is especially necessary to do so.

In CUBIST, the L1 cache is used to store the most fre-

quently accessed as well as prefetched tiles, which might be

probably accessed soon after, and the L2 cache is used to store

other popular but less frequently accessed tiles (e.g., those

within ROIs). It is also the duty of the cache system to prefetch

tiles from the source server on behalf of users when a cache

miss happens. In other words, CUBIST not only does caching

reactively, but also prefetches missing tiles proactively. In the

following section, we will detail how CUBIST works as the

caching policy.

To get the most from caching, CUBIST uses a pipelined

thread model to handle users’ requests. In detail, a dedicated

thread is used to handle NIC (network interface controller)

operations. When a request arrives, it checks the request

identifier. If the required tile is not found in the cache, the

prefetching procedure is triggered to forward the request to

the source server. Otherwise, the request is dispatched to

the corresponding I/O threads to read and return the desired

tile. Meanwhile, the location of tiles may be changed to get

better performance. Besides, some other optimizations such as

batching, content indexing, and parallel read/write could also

be applied to this process to improve performance further.

B. Caching Policy Driven by Video Reward

Caching policy is at the core of any cache system. Least

Frequently Used (LFU), Least Recently Used (LRU), and First

In First Out (FIFO) are all the well-known and widely-used

caching policies. The caching policy of CUBIST is illustrated

Algorithm 1: CUBIST Caching Policy All in One

1 (1) cache initialization and update:
2 begin
3 Get the list of popular tiles from the Video Server;
4 Fetch popular tiles from the Video Server accordingly;
5 end
6 (2) request handling:/* main loop of user serving */
7 foreach τ requested by a user do
8 Search τ in the cache;
9 if τ is found then /* cache hit */

10 Send τ to the user;
11 Update the record of τ ;
12 else /* cache miss */
13 Forward the request to the Video Server;
14 Estimate future tiles requirement (refer to §III-B);
15 Prefetch the missing tiles from the Video Server;
16 end
17 end
18 (3) event handling: /* handle tile-related events */
19 switch τ .event do
20 case τ is accessed do /* ignore prefetched tiles here */
21 Re-rank τ according to Equation 9;
22 Relocate τ if necessary;
23 end
24 case τ expires do /* prefetched tile is replaceable now

*/
25 Rank τ with Equation 9;
26 end
27 case τ is prefetched do
28 if L1 has enough space then
29 Assign τ a lifetime and put it into L1;
30 else /* do cache replacement */
31 Move the last ranked tiles to L2;
32 Put τ into L1 with a lifetime;
33 end
34 end
35 end

in Algorithm 1. It mainly consists of three procedures, namely

cache initialization and update, request handling, and event

handling. The details of them are as follows.

The cache initialization and update procedure is called when

the cache node starts or the cache hit ratio drops. After the

node starts and the cache is initialized with popular tiles, the

node is ready to handle users’ requests. At the same time, a

daemon is run (not shown in the algorithm) to monitor the

cache hit ratio. The caching policy of CUBIST works around

the cache hit ratio Φ within a given period θ, which is defined

below.

Φ =

∑
t hit(t)∑
t req(t)

, t ∈ (max{t1, tl − θ}, tl) (8)

where
∑

t req(t) and
∑

t hit(t) are the number of requests

and the number of cache hits respectively within the period

(max{t1, tl − θ}, tl) and t1 and tl are the start and end time

of the given observation window, which is used to update the

previously recorded cache hit ratio. The decrease of Φ (i.e.,
dΦ
dt < 0) means the newly got cache hit ratio is less than the

recorded one, so the procedure is re-executed once again to

213

update the cache and to ensure high cache hit ratio. Of course,

no request, no update.

The request handling procedure is used to serve users’

request. If the cache hits, the requested tile is sent back

directly. Otherwise, the request is forwarded to the source

video server and at the same time, the prefetching function

is triggered that estimates and fetches the missing tiles in

advance.

CUBIST works in an event-driven manner. The event han-

dling procedure is used to handle various events generated dur-

ing user serving. Two key operations involved are prefetched

tiles processing and tiles (re-)ranking. The prefetched tiles

will be put into the L1 cache as aforementioned to maximize

the benefit. In the case that there is no enough space in

L1, tiles ranked last will be flushed to L2 for space, which

may trigger further cache replacement there. To avoid the

prefetched tiles being evicted before access, each of them is

assigned a lifetime, during which no replacement is allowed.

Tiles ranking are based on the potential caching gain shown

below.

The potential gain of caching a tile τ is jointly determined

by the estimated future access of each video, the size of the

tile and the performance of the cache. Formally, it is defined

as:

Gi(τ) = ri
∑

τ∈i

(size(τ)× τ.f [T (u, si)− T (u, cache)]) (9)

where ri is the popularity (detailed in Section III) of video

i, u, si and cache are the client, the video server for video

i and the cache node respectively, T (u, si) and T (u, cache)
are the latency to get the content from the video server and

the cache respectively, and τ.f (
∑

τ∈i τ.f = 1) is the ratio τ
is accessed.

With Gi(τ) defined, CUBIST determines the optimal

caching choice for each video i by calculating argmax{Gi(τ)}.
As for the whole system, it ranks the selected tiles of each

video and gets a list of videos for caching according to the

available cache space. During cache replacements, those tiles

with least Gi(τ) will be evicted.

V. PERFORMANCE EVALUATION

We have implemented CUBIST and evaluated it against a

wide range of benchmarks. This section reports the results.

A. Methodology and Experiment Setup

The testbed. Our testbed consists of two parts, namely the

lab testbed and the simulated testbed. The lab testbed consists

of two physical servers, each of which runs CentOS 7.2, with

two eight-core Xeon E5-2640 v2 CPUs running at 2.0 GHz,

20 MB Intel Smart Cache, 32 GB DDR3 RAM, a set of

2 TB SATA hard disks and two 160 GB SATA Intel SSDs

configured as RAID 0. Each server is equipped with a Gigabit

Ethernet NIC connecting to a Gigabit Ethernet switch. We use

the Linux Traffic Control (tc [20]) tool to adapt the bandwidth.

The simulated testbed ships an HTTP server for 360-degree

video streaming based on the DASH-enabled platform [24].

The GlobeTraff [22] is used to generate large-scale workloads

with more requests.

By default, the average link rate between users and the

video server is 10Mbps, and the link rate between users and

the cache node is 50Mbps. In addition, the bandwidth of the

cache node and the server is 25Mbps. The link rate of the lab

testbed is fixed without change, whereas the link rate in the

simulation testbed varies in the same way as the real-world

4G network [43].

Datasets and workloads. We use the head movement se-

quences of two datasets [5], [44] to emulate users’ behavior in

video watching. A Markov based tool [17] is used to generate

more tile distributions and to enlarge each video to 10 minutes.

Each video is divided into 6 × 4 tiles for efficient encoding

and bandwidth saving, based upon the results from [13].

Therefore, each video contains 7,200 different tiles with a fixed

segmentation of 2 seconds. The top-[1, 4] viewed tiles along

with the corresponding three nearest neighboring tiles are

cached if the video is selected by the cache node. Additionally,

the bitrate of each video segment on the content server is

adaptable according to the network bandwidth. The Weibull

distribution [39] is used to generate the video streaming

requests, for the video content access does not follow Zipf’s

law [48].

Evaluation metrics. We use the following metrics to study

the performance of CUBIST. (1) Video Bitrate: it is defined

as the average bitrate (Mbps) during each video streaming

session. It is the key indicator of the video quality perceived.

The larger the bitrate, the higher the video quality. (2) Cache
Hit Ratio: this refers to ratio that the user requests are served

by the cache node. The higher the cache hit ratio, the more

efficient the caching system and the more the saved bandwidth.

(3) Rate Transitions: this refers to the number of resolution

changes between two consecutive tiles when users watch a

360-degree video. It is also a major factor of QoE.

Benchmarks. To validate the efficiency of CUBIST, we select

the following benchmarks for comparisons: (1) No Cache: The

content server handles all the requests from the users. (2) Video
Cache: The cache node places the entire video according to the

video popularity estimation in Section III-A. (3) Tile Cache:
We implement the tile-based cache scheme presented in [28],

which is the latest and most related work to ours.

B. The Benefit of Hierarchical Cache

CUBIST adopts hierarchical cache design to balance the

cost and performance. Fig. 8 plots the throughput of CUBIST

(DRAM-SSD) and other configurations, where: 1) the cache

space is 20% of the total video size, 2) the ratio of L1 to

L2 cache is 3:2, and 3) the ratio of L1 to L2 hit varies

between 9:1 and 7:3 randomly. As shown in the figure, the

throughput of CUBIST is only a bit lower than the case that

all packets are read directly from the DRAM. This is because

cache miss is inevitable, resulting in interaction with remote

video server, which reduces the marginal utility of DRAM.

Compared with a single-layer SSD, CUBIST improves the

throughput from 765MBps to 39GBps, but with a lower cost

214

214

215

DRAM CUBIST

T
hr

ou
gh

pu
t (

M
B

ps
)

28

29

SSD HDD-SSD

Fig. 8: Throughput of the cache node with different cache

configurations.

than the pure DRAM scheme — the cost of CUBIST is

reduced by about 38%. For the HDD-SSD case, the system

behaves in a similar way. In a word, hierarchical cache design

can meet the need of 360-degree video caching in a good

cost-performance ratio. Indeed, this scheme has been widely

supported by many caching systems. In the end, hierarchical

cache design with fixed cache cost means larger cache space

and higher cache hit ratio, which would bring in more benefit.

 21.6

 22.5

 23.4

 24.3

 25.2

 26.1

 27

 27.9

d=0 d=1 d=π/2 d=π CUBIST
 0.72

 0.75

 0.78

 0.81

 0.84

 0.87

 0.9

 0.93

25.3

27.1

26.1
25.6

28.0

75%

86%

88%
91%

87%

B
itr

at
e

(M
bp

s)

C
ac

he
 h

it
ra

tio

Pre-fetch Distance

Video quality Cache hit ratio

(a) video bitrate & cache hit ratio

 25

 25.5

 26

 26.5

 27

 27.5

 28

 28.5

 29

 29.5

 5 10 15 20 25 30 35 40 45 50

V
id

eo
 B

itr
at

es
 (

M
bp

s)

Bandwidth (Mbps)

d=1 d=π/2 d=π CUBIST

(b) Prefetch performance vs. bandwidth

Fig. 9: The benefit of CUBIST prefetching.

C. The Benefit of Prefetching and Caching

1) The Benefit of Prefetching: We evaluate the benefit of

prefetching in the lab testbed. Each test has 1,000 requests to

20 different videos, with the cache capacity set to 20% of the

total video size. In order to show the adaptability of CUBIST

prefetching strategy, 4 different settings are used, with fixed

prefetching distance beginning at d = 0 (no prefetching) and

ending at d = π (full prefetching). The experimental results

are shown in Fig. 9.

Fig. 9(a) shows the impact of prefetching on the video

quality (i.e., bitrate) and cache hit ratio. We can see that the

cache hit ratio for d = 0 and d = π sets a lower and an

upper bound of CUBIST, respectively. The 16% improvement

in cache hit ratio indicates that prefetching is effective as a

supplement to the cache system that only caches the most

frequently accessed tiles. However, if we look at the effective

bitrates of the delivered videos, full prefetching nearly does no

help compared with the case of no prefetching. This is because

full prefetching consumes too much network bandwidth. By

adapting the prefetching distance, CUBIST can get the highest

video bitrate while with a good cache hit ratio.

Fig. 9(b) shows the behavior of prefetching when the

network bandwidth between the video server and the cache

node increases. Interestingly, the bitrate delivered by full

prefetching increases rapidly when the network bandwidth is

larger than 25Mbps. Prefetching with distance π/2 exhibits a

similar phenomenon. The reason is obvious: more bandwidth

means more data can be transmitted from the video server to

the cache within the same period. It can also be seen from

the figure that the adaptable prefetching strategy presented by

CUBIST can utilize network resources better by selecting and

transferring tiles to be requested shortly.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

top-1 top-2 top-4 top-1 top-2 top-4

Small capacity Large capacity
0.10 0.25

H
it

ra
tio

Cache Pre-fetch

Fig. 10: The cache hit ratio of CUBIST with different cache

capacity and tiles selection schemes. The benefit of tiles

prefetching is also shown.

2) The Behavior of Caching: We study the cache hit ratio

of CUBIST in a simulated testbed with various settings. Each

test has 500 videos with 4.2× 105 requests. The first quarter

of the videos is used to warm-up and initialize the CUBIST

system. The results are shown in Fig. 10 and Fig. 11.

Fig. 10 shows the cache hit ratio with regard to differ-

ent cache capacities and tile selections. Here the impact of

215

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

C
ac

he
 h

it
ra

tio

Cache Capacity ratio (%)

Video-Cache
Tile-Cache

CUBIST-NP
CUBIST

Fig. 11: The cache hit ratio of different caching policies along

with the change of cache capacity.

prefetching on the cache hit ratio is also shown. By top-n
(n=1, 2, 4), we mean the mostly viewed n tiles along with

their three nearest neighbors are cached. We can see from the

figure that, when the cache is small (with a capacity ratio of

0.10), the top-1 case can get the highest cache hit ratio of

61%, with 17% contributed by prefetching. The reason is that

selecting top-1 tiles can cover more videos, but for each video

it only covers parts of the most frequently accessed tiles and

thus leaves much more chances for prefetching to function.

As the cache space grows from 0.10 to 0.25, selecting top-

2 tiles would be a better choice. It can reach a hit ratio of

84% among which 10% is contributed by prefetching. Finally,

caching top-4 tiles always leads to sub-optimal performance.

Figure 11 shows the cache hit ratio of 4 caching schemes

when the cache capacity ratio grows from 2% to 30%. When

the cache capacity ratio is less than 15%, the top-1 tiles

are cached. Otherwise, the top-2 tiles are cached. It can be

seen from the figure that the cache hit ratio of CUBIST and

T ileCache increases from 0.36 to 0.87 and from 0.39 to 0.82

respectively as the cache capacity grows. T ileCache is more

efficient in storage utilization due to finer granularity in video

manipulation when the cache capacity ratio is less than 20%.

However, the gap between CUBIST and T ileCache is not

large because of the prefetching mechanism — as indicated by

the curve CUBIST-NP, without prefetching the cache hit ratio

would drop greatly below that of T ileCache. The cache hit

ratio of the V ideoCache scheme is always under 50% because

some parts of the cached videos would never be accessed as

pointed out previously.

D. QoE Comparison with Related Work

We also evaluate the end-user QoE in terms of effective

video bitrate and the frequency of bitrate transitions using

the same settings in Section V-C2, with the results shown in

Fig. 12.

Fig. 12(a) shows the effective video bitrate obtained by

various caching schemes, where the case of no cache is

also given. It can be seen that the gain made by caching

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

No-Cache
Video-Cache

Tile-Cache
CUBIST-NP

CUBIST

B
itr

at
e

(M
bp

s)

(a) video bitrates of 5 caching policies

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

C
D

F

Bitrate(Mbps)

CUBIST
CUBIST-NP

Tile Cache
Video Cache

No Cache

(b) CDF of the video bitrate transitions

Fig. 12: QoE perceived by end users in various settings.

is significant. The median bitrate of CUBIST is 34.8Mbps,

which is the highest among all caching schemes. CUBIST

outperforms T ileCache, whose median bitrate is 26.9Mbps,

by 12.9% in video bitrate. The median bitrate of CUBIST

without prefetching (denoted by CUBIST-NP) is 23.6Mbps,

which is lower than that of the T ileCache scheme. This

indicates the benefit of prefetching from another angle.

Fig. 12(b) shows the CDF of the video rate transitions of 5

caching schemes over 300 segments. The smaller the bitrate

change times and amplitude, the higher the video quality. For

the 5 schemes, the bitrate change frequencies are similar, but

the change distributions are different. As can be seen in the

figure, the NoCache scheme has the lowest bitrate changes

due to the limited bandwidth, but its bitrate is always low as

shown in Fig. 12(a). The V ideoCache scheme has a relatively

stable bitrate, with nearly half of the bitrate changes less than

1Mbps. CUBIST shows better control of video transitions,

with about 75% of the bitrate changes less than 2Mbps, about

2.2× higher than that of the T ileCache scheme. The reason is

that a cache miss in T ileCache incurs a larger bitrate change

due to the lack of prefetching. On the contrary, CUBIST

216

provides support for prefetching and makes it possible to issue

tiles request in advance so as to hide some transmission time.

Therefore, it outperforms all the other caching schemes.

VI. RELATED WORK

FoV-adaptive streaming. Recently, a number of papers

have used user behavior or head movement information to

optimize 360-degree video delivery (e.g., [9], [13], [18], [37],

[6], [38], [40], [47]). Technologies ranging from data analytics

and statistics [10], [27] to machine learning algorithm [2],

[32], [33] are applied to predict users’ future behavior with

historical information and video content properties. These

FoV-adaptive video streaming mechanisms lay a good foun-

dation for our work. Indeed, our method on tile requirement

estimation is specially designed on the basis of [6], [17]. The

work reported here differs from these work in that it presents

different methods for estimating video popularity, predicting

tile requirement, and selecting the right video bitrate. In

addition, it supplements these work with edge caching.

Edge cloud and cache-enabled delivery. Edge cloud [19]

and caching nowadays have also been adopted to enhance 360-

degree video delivery [29], [50]. FoV-aware caching policy

[28] uses a probabilistic model to cache the common FoV of

each video. It works on tiles directly without considering tiles

prefetching. JERTC [26] uses a genetic algorithm to optimize

tile-based caching while the work [34] jointly considers tiles

caching and encoding for 360-degree videos. Tile-based edge

caching is also supported in Allies [41], but the work focuses

on how to improve the cache utilization of edge clouds and

minimize video service costs by jointly optimizing cache

placement and request scheduling. Chakareski[4] designs a

framework that, given specific caching and computational

resources at each base station, allows the base stations to coor-

dinate caching/rendering/streaming strategies to maximize the

aggregate reward for users. It offers an optimization solution

for edge caching. Maniotis and Thomos [30] presented a tile-

based edge caching scheme for 360-degree video streaming,

but with a focus on live-streaming in mobile networks, which

is quite different from the scenario of CUBIST. Liu et al. [49]

presented a 360-degree video streaming scheme based on

multi-access edge computing (MEC), but with a focus on

operation offloading and real-time video transcoding.

In-network cache organization. It is common and widely-

accepted to use a small, fast cache to improve the throughput

of various systems and applications. HCS [31] exploited both

DRAM and SSD in routers for efficient contents storing and

packet forwarding. Netcache [21] incorporated cache in the

switch to improve the performance of in-memory storage.

CUBIST shares the same idea, but does caching at the

edge, which is more powerful in terms of cache space and

processing capability. Though HCS and Netcache inspire our

idea of hierarchical cache design in CUBIST, the methods

they presented are not applicable to 360-degree video delivery

because the cache space in a router or a switch is too limited

and their caching strategies do not take into consideration the

characteristics of 360-degree video delivery.

VII. CONCLUSION

We presented CUBIST, a method and system for high-

quality 360-degree video streaming in networks with the ca-

pability of edge caching. At the core of CUBIST are the cost-

effective edge cache design and FoV-adaptive prefetching and

caching. The cache is cost-effective in the sense that DRAM,

SSD and/or HDD are organized hierarchically and contents

are placed at different levels to achieve high performance to

cost ratio. Unlike most existing work, CUBIST synthesizes

proactive (FoV-adaptive) tile prefetching and reactive caching

so that it can deliver 360-degree video in high quality but with

low bandwidth consumption and access latency. Experiments

with real-world datasets and simulated workloads show that

CUBIST can achieve its design goal well in terms of video

quality, cache hit ratio, and rate transitions — compared with

the latest work [28], CUBIST can improve the effective video

bitrate by 12.9% with most rate transitions being small.

CUBIST can be further improved in two ways. First, video

encoding and transcoding play a key role in 360-degree

video delivery as shown in [34], [26], [41], [30]. Currently,

CUBIST does not pay much attention to it. So, we will

study how to improve the delivered video quality further by

a more efficient tile-based network encoding scheme and the

corresponding caching mechanisms. Second, the edge cache

node in the real world may consist of multiple servers as

in the case of multi-access edge computing paradigm [49],

which introduces new dimensions to consider. Therefore, we

will investigate cooperative caching mechanisms and request

routing algorithms to make CUBIST more applicable in such

environments.

ACKNOWLEDGMENT

This work is co-sponsored by Natural Science Foundation

of China (U1701263, 61572280).

REFERENCES

[1] M. Agiwal, A. Roy, and N. Saxena. Next generation 5G wireless
networks: A comprehensive survey. IEEE Communications Surveys &
Tutorials, 18(3):1617–1655, 2016.

[2] Y. Bao, H. Wu, T. Zhang, A. A. Ramli, and X. Liu. Shooting a moving
target: Motion-prediction-based transmission for 360-degree videos. In
Big Data (Big Data), 2016 IEEE International Conference on, pages
1161–1170. IEEE, 2016.

[3] E. Bastug, M. Bennis, M. Médard, and M. Debbah. Toward intercon-
nected virtual reality: Opportunities, challenges, and enablers. IEEE
Communications Magazine, 55(6):110–117, 2017.

[4] J. Chakareski. Vr/ar immersive communication: Caching, edge comput-
ing, and transmission trade-offs. In Proceedings of the Workshop on
VR/AR Network, pages 36–41. ACM, 2017.

[5] X. Corbillon, F. De Simone, and G. Simon. 360-degree video head
movement dataset. In Proceedings of the 8th ACM on Multimedia
Systems Conference, pages 199–204. ACM, 2017.

[6] X. Corbillon, A. Devlic, G. Simon, and J. Chakareski. Optimal set of
360-degree videos for viewport-adaptive streaming. in Proc. of ACM
Multimedia (MM), 2017.

[7] X. Corbillon, G. Simon, A. Devlic, and J. Chakareski. Viewport-adaptive
navigable 360-degree video delivery. In Communications (ICC), 2017
IEEE International Conference on, pages 1–7. IEEE, 2017.

[8] S. Dernbach, N. Taft, J. Kurose, U. Weinsberg, C. Diot, and A. Ashkan.
Cache content-selection policies for streaming video services. In IEEE
INFOCOM 2016, pages 1–9. IEEE, 2016.

217

[9] F. Duanmu, E. Kurdoglu, S. A. Hosseini, Y. Liu, and Y. Wang.
Prioritized buffer control in two-tier 360 video streaming. In Proceedings
of the Workshop on VR/AR Network, pages 13–18. ACM, 2017.

[10] C.-L. Fan, J. Lee, W.-C. Lo, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu.
Fixation prediction for 360 video streaming in head-mounted virtual
reality. In Proceedings of the 27th Workshop on Network and Operating
Systems Support for Digital Audio and Video, pages 67–72. ACM, 2017.

[11] V. R. Gaddam, M. Riegler, R. Eg, C. Griwodz, and P. Halvorsen.
Tiling in interactive panoramic video: Approaches and evaluation. IEEE
Transactions on Multimedia, 18(9):1819–1831, Sept. 2016.

[12] C. Ge, N. Wang, G. Foster, and M. Wilson. Toward QoE-assured
4K video-on-demand delivery through mobile edge virtualization with
adaptive prefetching. IEEE Transactions on Multimedia, 19(10):2222–
2237, 2017.

[13] M. Graf, C. Timmerer, and C. Mueller. Towards bandwidth efficient
adaptive streaming of omnidirectional video over http: Design, imple-
mentation, and evaluation. In Proceedings of the 8th ACM on Multimedia
Systems Conference, pages 261–271. ACM, 2017.

[14] R. Grandl, K. Su, and C. Westphal. On the interaction of adaptive
video streaming with content-centric networking. In IEEE Packet Video
Workshop, Dec. 2013.

[15] A. G. Hawkes. Spectra of some self-exciting and mutually exciting point
processes. Biometrika, 58(1):83–90, 1971.

[16] D. He, C. Westphal, and J. Garcia-Luna-Aceves. Joint rate and fov
adaptation in immersive video streaming. In ACM Sigcomm workshop
on AR/VR Networks, Aug. 2018.

[17] D. He, C. Westphal, J. Jiang, G. Yang, and J. Garcia-Luna-Aceves.
Towards tile based distribution simulation in immersive video streaming.
In IFIP NETWORKING 2019, 2019.

[18] M. Hosseini. View-aware tile-based adaptations in 360 virtual reality
video streaming. In 2017 IEEE Virtual Reality (VR), pages 423–424.
IEEE, 2017.

[19] X. Hou, Y. Lu, and S. Dey. Wireless VR/AR with edge/cloud computing.
In 2017 26th International Conference on Computer Communication and
Networks (ICCCN), pages 1–8. IEEE, 2017.

[20] B. Hubert et al. Linux advanced routing & traffic control howto.
setembro de, 2002.

[21] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica.
Netcache: Balancing key-value stores with fast in-network caching. In
Proceedings of the 26th SOSP, pages 121–136. ACM, 2017.

[22] K. V. Katsaros, G. Xylomenos, and G. C. Polyzos. Globetraff: a traffic
workload generator for the performance evaluation of future internet
architectures. In New Technologies, Mobility and Security (NTMS), 2012
5th International Conference on, pages 1–5. IEEE, 2012.

[23] C. Koch, G. Krupii, and D. Hausheer. Proactive caching of music videos
based on audio features, mood, and genre. In Proceedings of the 8th
ACM on Multimedia Systems Conference, pages 100–111, 2017.

[24] C. Kreuzberger, B. Rainer, H. Hellwagner, L. Toni, and P. Frossard.
A comparative study of DASH representation sets using real user
characteristics. In Proceedings of the 26th International Workshop on
Network and Operating Systems Support for Digital Audio and Video,
Klagenfurt, Austria, May 13, 2016, pages 4:1–4:6, 2016.

[25] D. H. Lee, C. Dovrolis, and A. C. Begen. Caching in HTTP adaptive
streaming: Friend or foe? In Proceedings of the 24th ACM Workshop on
Network and Operating Systems Support for Digital Audio and Video,
NOSSDAV 2014, Singapore, March 19-20, 2014, page 31, 2014.

[26] K. Liu, Y. Liu, J. Liu, A. Argyriou, and Y. Ding. Joint EPC and RAN
Caching of Tiled VR Videos for Mobile Networks. In International
Conference on Multimedia Modeling, pages 92–105. Springer, 2019.

[27] X. Liu, Q. Xiao, V. Gopalakrishnan, B. Han, F. Qian, and M. Varvello.
360° innovations for panoramic video streaming. In Proceedings of the
16th ACM Workshop on Hot Topics in Networks, pages 50–56, New
York, NY, USA, 2017. ACM.

[28] A. Mahzari, A. T. Nasrabadi, A. Samiei, and R. Prakash. Fov-aware edge
caching for adaptive 360° video streaming. In 2018 ACM Multimedia
Conference, pages 173–181, 2018.

[29] S. Mangiante, G. Klas, A. Navon, Z. GuanHua, J. Ran, and M. D. Silva.
VR is on the edge: How to deliver 360° videos in mobile networks. In
Proceedings of the Workshop on Virtual Reality and Augmented Reality
Network, pages 30–35. ACM, 2017.

[30] P. Maniotis and N. Thomos. Tile-based edge caching for 360° live
video streaming. IEEE Transactions on Circuits and Systems for Video
Technology, 2021.

[31] R. B. Mansilha, L. Saino, M. P. Barcellos, M. Gallo, E. Leonardi,
D. Perino, and D. Rossi. Hierarchical content stores in high-speed icn
routers: Emulation and prototype implementation. In Proceedings of the
2nd ACM Conference on ICN, pages 59–68. ACM, 2015.

[32] A. Nguyen, Z. Yan, and K. Nahrstedt. Your attention is unique: Detecting
360-degree video saliency in head-mounted display for head movement
prediction. In Multimedia Conference, pages 1190–1198. ACM, 2018.

[33] H. Pang, C. Zhang, F. Wang, J. Liu, and L. Sun. Towards Low
Latency Multi-viewpoint 360° Interactive Video: A Multimodal Deep
Reinforcement Learning Approach. In IEEE INFOCOM 2019-IEEE
Conference on Computer Communications, pages 991–999. IEEE, 2019.

[34] G. Papaioannou and I. Koutsopoulos. Tile-based caching optimization
for 360 videos. In MobiHoc. ACM, 2019.

[35] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai. A survey
on low latency towards 5g: Ran, core network and caching solutions.
IEEE Communications Surveys & Tutorials, 20(4):3098–3130, 2018.

[36] S. Petrangeli, V. Swaminathan, M. Hosseini, and F. D. Turck. An http/2-
based adaptive streaming framework for 360° virtual reality videos. In
ACM Multimedia, pages 306–314. ACM, 2017.

[37] F. Qian, B. Han, L. Ji, and V. Gopalakrishnan. Optimizing 360 video
delivery over cellular networks. In ACM MobiCom All Things Cellular
Workshop, Oct. 2016.

[38] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan. Flare: Practical
viewport-adaptive 360-degree video streaming for mobile devices. In
Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking, pages 99–114. ACM, 2018.

[39] H. Rinne. The Weibull distribution: a handbook. Chapman and
Hall/CRC, 2008.

[40] P. Rondao-Alface, M. Aerts, D. Tytgat, S. Lievens, C. Stevens, N. Verz-
ijp, and J. Macq. 16K cinematic VR streaming. In ACM Multimedia,
pages 1105–1112. ACM, 2017.

[41] J. Shi, L. Pu, and J. Xu. Allies: Tile-based joint transcoding, delivery
and caching of 360° videos in edge cloud networks. In 2020 IEEE
13th International Conference on Cloud Computing (CLOUD), pages
337–344. IEEE, 2020.

[42] T. Trzciński and P. Rokita. Predicting popularity of online videos
using support vector regression. IEEE Transactions on Multimedia,
19(11):2561–2570, 2017.

[43] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface,
T. Bostoen, and F. De Turck. HTTP/2-Based Adaptive Streaming of
HEVC Video Over 4G/LTE Networks. IEEE Communications Letters,
20(11):2177–2180, 2016.

[44] C. Wu, Z. Tan, Z. Wang, and S. Yang. A dataset for exploring user
behaviors in VR spherical video streaming. In Proceedings of the 8th
ACM on Multimedia Systems Conference, pages 193–198. ACM, 2017.

[45] M. Xiao, C. Zhou, Y. Liu, and S. Chen. Optile: Toward optimal
tiling in 360-degree video streaming. In Proceedings of the 25th ACM
international conference on Multimedia, pages 708–716. ACM, 2017.

[46] M. Xiao, C. Zhou, V. Swaminathan, Y. Liu, and S. Chen. Bas-
360: Exploring spatial and temporal adaptability in 360-degree videos
over http/2. In IEEE INFOCOM 2018-IEEE Conference on Computer
Communications, pages 953–961. IEEE, 2018.

[47] L. Xie, Z. Xu, Y. Ban, X. Zhang, and Z. Guo. 360probdash: Improving
QoE of 360 video streaming using tile-based http adaptive streaming. In
Proceedings of the 25th ACM international conference on Multimedia,
pages 315–323. ACM, 2017.

[48] C. Xu, C. Dale, and J. Liu. Statistics and social network of youtube
videos. In International Workshop on Quality of Service, 2008.

[49] L. Yanwei, L. Jinxia, A. Antonios, and C. Song. Mec-assisted panoramic
vr video streaming over millimeter wave mobile networks. IEEE
Transactions on Multimedia, 21(5):1302–1316, 2019.

[50] L. Zhang, S. O. Amin, and C. Westphal. VR video conferencing over
named data networks. In Proceedings of the Workshop on VR/AR
Network, pages 7–12. ACM, 2017.

218

