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a b s t r a c t

In a network, end nodes have to compete for bandwidth through some distributed congestion control
algorithms. It is a great challenge to ensure the efficiency and fairness of the distributed control
algorithms. TCP congestion control algorithms do not perform well in terms of their efficiency and
fairness in high speed networks. In this paper, we propose a novel asymptotic evolution algorithm
based on the Logistic Model to allocate limited bandwidth resource. The algorithm introduces an explicit
bandwidth pre-allocation factor. The factor is carried by the packet and is computed in routers based
on the information of the router capacity, the aggregate load, and the instantaneous queue length;
therefore the algorithm does not require the routers to keep the per-flow state. According to this pre-
allocation bandwidth factor, the senders asymptotically adjust their sending rate and the bandwidth
factor changes asymptotically along with the variation of the aggregate load and the queue length in the
routers; therefore the sending rate and the pre-allocation bandwidth factor form alternating evolution
and eventually reach a steady state.
Theoretical analysis and simulation experiments were conducted to compare our algorithm with

related ones. The results show that our algorithm not only provides fast convergence to efficiency and
fairness, but also keeps a strong robustness against crossing traffic.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

The poor performance of TCP [1,28,14,33,21] can be quantita-
tively measured by convergence to efficiency and fairness [4,22]:
the time taken for the transport control system to transit from its
initial state to a steady one. When a new flow joins the network,
it is expected that the new flow would instantly grab the available
bandwidth of the network, which emphasizes convergence to effi-
ciency. When a flow joins a fully occupied network, it is expected
that the flow would quickly achieve fair bandwidth allocation. At
this time, convergence to fairness is accentuated.
Supposing that the throughput of a TCP flow in steady state is P ,

some literature (e.g., [4,37,15]) prove that for the classical Additive
IncreaseMultiplicativeDecrease (AIMD) algorithmused in TCP, the
time for convergence to efficiency and fairness is both O(P), which
implies that the AIMD algorithm linearly converges to efficiency
and fairness. Since the value of P is huge in high speed networks,
the AIMD algorithm takes a long time to converge to efficiency and
fairness; therefore designers attempt to improve the convergence
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by applying an additional slow-start algorithm in its starting phase.
However, this does not help improve the convergence speed in
congestion avoidance phase.
The above issuemotivated somenovel transport protocols, such

as HSTCP [9,7], STCP [17], BIC-TCP [36], XCP [16], EMKC [37],
VCP [35], EVLF-TCP [13], JetMax [38,23], RCP [39,40]. HSTCP,
STCP and BIC-TCP improve convergence by using an aggressive
increasing and a conservative decreasing algorithm. Such an
algorithm is always with a higher loss ratio than that of the TCP
algorithm. Meanwhile, this method makes the round trip time
(RTT) unfairness problemof HSTCP, STCP and BIC-TCP severer than
that of TCP. EMKC, VCP, EVLF-TCP and JetMax allocate network
resources effectively at the end node by explicitly feeding back
the state information (e.g., the loss ratio, load factor, and virtual
load factor) of the router. However, EMKC, VCP and EVLF-TCP only
improve the convergence to efficiency from O(P) to O(ln P) and
the convergence to fairness is still O(P). On the contrary, XCP
and RCP improve the convergence by letting the router directly
allocate the bandwidth for each flow, so that constant convergence
and exponential convergence can be achieved respectively in
a network of simple topology. However since XCP and RCP
are too sensitive to network load, they are instable for heavy
crossing traffic and XCP cannot achievemax–min fairness inmulti-
congested gateway networks [23].
In this paper, we propose a novel distributed alternating

evolution algorithm with fast convergence and global asymptotic
stability. The algorithm is based on some characteristics of the
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Fig. 1. Comparing the sigmoid curve with the AIMD curve.

‘‘Logistic Model’’ in population ecology [30,24], which is widely
used in many fields of modeling and forecasting [2,10]. This
alternating evolution algorithm puts forward an the explicit
bandwidth pre-allocation mechanism. Besides, we performed
theoretical analysis of stability and convergence to determine the
impact of control parameters on the algorithm performance. We
also conducted simulation experiments on the NS2 simulator to
confirm the favorable performance of the algorithm.
The remainder of this paper is organized as follows. Section 2

discusses our design rationale by addressing the ideal congestion
control and its relationship with the Logistic Model. Section 3
presents our distributed asymptotic evolution algorithm. Section 4
analyzes the global asymptotic stability and convergence of
the algorithm. Section 5 introduces the implementation of the
corresponding transport protocol. Simulation results are given in
Section 6. We conclude the paper in Section 7.

2. Design rationale

It is still an open issue to choose an operation point of
congestion control. For most of implicit loss-based approaches
(e.g., HSTCP, STCP, and BICTCP), full utilization if achievable, often
comes at the cost of severe oscillations and potentially large
queuing delay. On the contrary, some explicit congestion feedback
(e.g., XCP andVCP) choose zero queue length as the operation point
of congestion control. Thus a near-zero queue length and near-zero
packet loss rate are easy to achieve at the cost of a little spare
bandwidth. The main difference is that the implicit approaches
works in a slight overload state, and the explicit approaches works
in a slight underload state. In our opinion, an efficient congestion
controller should guarantee a small size of the buffer in steady state
so that the controller can yield high utilization and achieve small
queuing delay.
In addition, compared with the sawtooth shape of the AIMD

mechanism, we believe that the type of sigmoid curve generated
by the source algorithm is better suited for congestion control in
high speed networks. As shown in Fig. 1, the sigmoid control curve
increases the sending rate gently at the initial phase, accelerates
exponentially in themiddle stage and finally approaches the upper
bound of network capacity. The advantages of the sigmoid control
curve are: (1) Not sending too many packets at the initial phase
to avoid the burst traffic. (2) Exponentially increasing when the
available capacity is sufficient. (3) Avoiding congestion as far as
possible when the network load is heavy. (4) Allocating network
resource effectively, and avoiding the waste of network resource
caused by the oscillation of the AIMD mechanism.
Next, we introduce the foundation of the Logistic Model, a

model studying the dynamics of populations in ecology. In the
Logistic Model, the population number x(t) in generations is
expressed as:

ẋ = rx
(
1−

x
K

)
. (1)
Parameter r is the intrinsic rate of increase, which can be
interpreted as the difference between the birth rate and the death
rate of the population. Parameter K , called carrying capacity, is the
upper bound of population growth. It is usually interpreted as the
amount of resources expressed in the number of organisms that
can be supported by the resources. The population growth ratio dxxdt
declines with the population number x and reaches 0 when x = K .
If the population number exceeds K , then the population growth
ratio becomes negative and the population number declines. The
curve of the Logistic Model is just a sigmoid curve.
Overall, it is easy to see that the LogisticModel consists of: (1) an

intrinsic rate of increase r , and (2) an density-dependent factor
(1−x/K). If there is no resource limitation, the population number
exponentially increases with an intrinsic rate r . However, as the
resources are consumed gradually, the density-dependent factor
becomes more and more dominant on the population growth rate,
and finally forces the population number to achieve an equilibrium
state. The Logistic Model provides a mature mathematical method
to analyze how the populations share limited resources, so it is
natural to adapt the Logistic Model to do congestion control.
We observed that it is difficult to enforce the congestion control

using the Logistic Model directly. The problem is that when the
network aggregate traffic exceeds the available bandwidth, the
packets queue in the router buffer, which is not considered in
population ecology models. Therefore, queues behavior should be
controlled and a reasonable density-dependent factor is required
to link the Logistic Model to the queuing model.
Some researchers have attempted to improve the performance

of congestion control using the Logistic Model. For example,
Welzl [32] directly uses the Logistic Model to design CADPC. How-
ever, he does not consider the influence of queuing phenomena on
congestion control as we discussed above.

3. Algorithm design

A transport protocol may be divided into a distributed link
algorithm and a distributed source algorithm [29,8,6,19]. The
link algorithm runs in the router to detect the congestion of
the network and to generate congestion signals such as dropped
packets, delay, explicit congestion notification, explicit packet loss
rate, and explicit load factor. The source algorithm runs in the end
node to adjust the sending rate according to the congestion signal.
The main design issue of the congestion control algorithm is to
select the appropriate congestion signal for the link algorithm and
find the best way to respond to the signal in the source algorithm.
In general, explicit congestion feedback schemes directly

communicate with the router to precisely inform the end node of
the state of the network. This is achievedby sending special packets
or by changing some fields in the packets as they travel through
the routers. The use of explicit congestion feedback usually results
in superior congestion control protocols that converge faster and
have a lower packet loss rate than the protocols using implicit
congestion feedback.
Similar to XCP and MaxNet [34], our novel mechanism is an

explicit bandwidth pre-allocation mechanism. As shown in Fig. 2,
each router maintains a pre-allocation rate factor r . The basic
adjusting strategy of r is that when the link is underloaded, r
gradually increases, otherwise r decreases gradually. The minimal
r value corresponding to all links along the path is sent to the end
node. After the end node receives the pre-allocation rate factor r , it
treats the value of r as the upper limit of capacity that the network
can provide, and then it makes the sending rate x approach the r
value quickly. Driven by the alternating evolution of r and x, the
end nodes and the routers can reach a steady state gradually.
Consider a network with a set L of links, and let Cl be the finite

capacity of link l, rl(t) be the pre-allocation rate factor by the link l,
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Fig. 2. Principle of bandwidth pre-allocation mechanism.
ql(t) be the instantaneous queue size of the link l, for l ∈ L. Let
a router be a non-empty subset of L, and write P for the set of
possible routes. If l ∈ p, then the link l lies on the route p. If p ∈ l,
then the route p passes through the link l. Associate a route with a
flow, and suppose that the rate xp(t) is allocated to user p.
We proposed the following distributed congestion control

model, consisting of the the link algorithm and source algorithm.

3.1. Link algorithm

Consider a system of differential equations:

ṙl(t) = βrl(t)

1−
∑
p∈l
xp(t)+ (ql(t)− q0)/T

Cl

 (2)

where β is a constant parameter, q0 is the expected queue length
in steady state, T is a time constant. The term

∑
p∈l xp(t) denotes

the whole load on link l. In order to control the queue length, we
treat the queuing packets as special species that also consumes
part of the bandwidth resources. Then the available bandwidth
should equal to the bottleneck bandwidth minus the aggregate
traffic and the queuing traffic in the router buffer. The term (1 −∑
p∈l xp(t)+(ql(t)−q0)/T

Cl
) represents the normalized available capacity.

Therefore when the available capacity is sufficient, rl grows
quickly, otherwise rl grows slowly. When the available capacity
is completely consumed, rl achieves equilibrium. At this time ql
equals q0, and

∑
p∈l xp(t) equals Cl exactly. The link algorithm

mainly enables the pre-allocation rate factor that each link
maintains to quickly respond to the instantaneous load and queue
length. It is obvious that the link control algorithm is only decided
by the aggregate state of flows passing through the link. It is no
need to record per-flow state in routers to compute rl.

3.2. Source algorithm

Consider a system of differential equations:

ẋp(t) = αxp(t)(ln rp(t)− ln xp(t)) (3)

where

rp(t) = min{rl(t)|l ∈ p}. (4)

α is a constant parameter. In a real network, the path p often
consists of multiple links. Because each link l maintains a pre-
allocation rate factor rl, in order to obtain themost congested node
in the network, we can only choose the minimum value rp among
all pre-allocation rate factors.
For the flow p, the rp value is the maximum capacity that the

network can provide. Generally, flow p enters the network with
a low initial rate. The pre-allocation rate factor rp received by
the end-system will be larger than xp, so that xp exponentially
approaches rp according to Eq. (3). When xp equals rp, the end node
reaches equilibrium. We use the logarithm function in the source
algorithm to keep the time for convergence to fairness asO(ln ln P)
(see Section 4).
In general, the link algorithm and source algorithm have the

intrinsic rate of increase and the density-dependent factor that are
similar to those of the Logistic Model. The key control variable x
and r in the link algorithm and source algorithm are coupled so
that the x and r can alternatively evolve to the steady state. So
we call the complete control model consisting of (2) (3) and (4)
the ‘‘Alternating Evolution Control Model’’, and its corresponding
transport protocol the ‘‘Alternating Evolution Control Protocol’’
(AECP).
XCP uses the direct bandwidth allocation method in the router

to instantly get the target assignment and it requires the exchange
of congestion window in the packet header as well as the RTT
signal, which makes the network more vulnerable to router
attacks. Different from XCP, our AECP adopts an exploratory
assignment strategy in the router, which continuously adjusts the
r factor without any auxiliary information from the end node. We
name thismechanism as bandwidth pre-allocation. r and x achieve
the final target assignment through joint evolution of the link and
source algorithm.
The fluid-flow queuing model proposed in [11,26] contains

another equation of the flow rate. For the bottleneck link, given
the aggregate arrival rate and link bandwidth, we can calculate
instantaneous queue length ql(t) as follows:

q̇l(t) =
∑
p∈l

xp(t)− Cl (if ql(t) > 0). (5)

This equation shows that a queue builds up when the aggregate
arrival rate exceeds the link bandwidth.
Notice that the pre-allocation rate factor perceived by the

sender also has a time delay τp, i.e. rp = rp(t − τp); therefore the
whole control model of the network may be expressed as:

ẋp(t) = αxp(t) · (ln rp(t − τp)− ln xp(t))

ṙl(t) = βrl(t) ·

1−
∑
p∈l
xp(t)+ (ql(t)− q0)/T

Cl


q̇l(t) =

∑
p∈l

xp(t)− Cl (if ql(t) > 0)

rp(t) = min{rl(t)|l ∈ p}.

(6)

4. Performance analysis

In this section we study the global asymptotic stability [5,12,
20,31] of the system described by the differential equations (6)
and determine the time to convergence. We analyze the impact
of control parameters on the AECP’s performance and provide a
guideline to determine the appropriate parameters of AECP.
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4.1. Stability

To prove that AECP can reach a fair and stable state, we derived
the following theorem:

Theorem 1. The system described by the differential equations (6)
is globally asymptotically stable independent of bottleneck capacity,
number of flows and round trip time.

Proof. Suppose up(t) = ln xp(t), vl(t) = ln rl(t), and then the
Eq. (6) can be rewritten as:

u̇p(t) = α · (vp(t − τp)− up(t))

v̇l(t) = β ·

1−
∑
p∈l
exp{up(t)} + (ql(t)− q0)/T

Cl


q̇l(t) =

∑
p∈l

exp{up(t)} − Cl (if ql(t) > 0)

vp(t) = min{vl(t)|l ∈ p}.

(7)

Since vl(t) is computed by up(t) and ql(t), and ql(t) is also
computed by up(t), we define a mapping function f from up(t) to
vl(t)which satisfies:

v̇l(t) = βf (up(t)). (8)

Therefore, the Eq. (7) can be simplified as:{u̇p(t) = α · (vp(t − τp)− up(t))
v̇l(t) = βf (up(t))
vp(t) = min{vl(t)|l ∈ p}.

(9)

Next we use Lyapunov Stability Theory [20,12,18,25,27,3] to
prove the global asymptotic stability of AECP. Firstly, we construct
the following positive definite function:

U(up(t), vl(t)|p ∈ P, l ∈ L) = β ·
∑
l∈L

∫
−f (up(t))

0
ydy

+α ·
∑
p∈P

(vp(t − τp)− up(t))2

2
. (10)

Observe that:

∂

∂up(t)
U = −α(vp(t − τp)− up(t))− βf (up(t)) (11)

∂

∂vl(t)
U

∣∣∣∣
vl(t)=vp(t)

= α(vp(t − τp)− up(t)) (12)

∂

∂vl(t)
U

∣∣∣∣
vl(t)6=vp(t)

= 0. (13)

Furthermore,

d
dt

U =
∑
p∈P

∂

∂up(t)
U ·

d
dt
up(t)+

∑
l∈L

∂

∂vl(t)
U ·

d
dt
vl(t)

=

∑
p∈P

[−α(vp(t − τp)− up(t))− βf (up(t))]

× [α · (vp(t − τp)− up(t))]

+

∑
p∈P

αβ(vp(t − τp)− up(t)) · f (up(t))

= −[α(vp(t − τp)− up(t))]2. (14)

Clearly, the function U̇ is negative by definition. It is a Lyapunov
function for the system of differential equations (7). According to
the Lyapunov stability theory, the system is globally asymptotically
stable. �
Consider that N long-lived flows share the capacity C , and
suppose the equilibrium point of the differential equations (6) is
M(x∗1, x

∗

2, . . . , x
∗

N , r
∗, q∗). Then we have,

αx∗i · (ln r
∗
− ln x∗i ) = 0

βr∗ ·
(
1−

Nx∗i + (q
∗
− q0)/T
C

)
= 0

Nx∗i − C = 0.

(15)

Since x∗p = 0 is not a stable point, we have,{
x∗i = r

∗
=
C
N

q∗ = q0.
(16)

In the steady state, each flow gets the same rate and the queue
length equals q0, which indicates that AECP guarantees reasonable
fairness and full link utilization.

4.2. Convergence

In this section, we show that AECP converges to efficiency and
fairness exponentially. Since it is hard to solve the differential
equations (6) in networks of complex topology, we only consider
the simplest network topology inwhich there areN long-flows and
a single bottleneck link.

4.2.1. Convergence to efficiency
To better understand the time AECP requires to reach a certain

level of efficiency, we define:

Definition 1. For a given positive constant θ (0 < θ ≤ 1) and a
bottleneck link with finite capacity C , a resource allocation (x1, x2,
. . . , xN) is θ efficiency, if:

f (t) =

N∑
i=1
xi(t)

C
≥ θ. (17)

Thus the time for convergence to efficiency is the interval during
which the link utilization increases from theminimal utilization to
θ first, i.e. f (tθ ) = θ .

Based on this definition, we derive the following theorem:

Theorem 2. Considering N synchronous AECP flows competing for
the bottleneck bandwidth C with the initial throughput of each flow
as x0 (x0 � C/N), the time for convergence to efficiency satisfies the
following equations:

max

 ln
(
C
Nx0
·

θ
1−θ

)
β

,

ln
(
ln Nx0C
ln θ

)
α

 < tθ

<
ln
(
C
Nx0
·

θ
1−θ

)
β

+

ln
(
ln Nx0C
ln θ

)
α

. (18)

Proof. Since there is no persistent packet queuing before the
utilization reaches θ , q(t) = 0. Suppose all flows are synchronous,
the system can be simplified as:
ẋi(t) = αxi(t) · (ln r(t)− ln xi(t))

ṙ(t) = βrl(t) ·
(
1−

Nxi(t)− q0/T
C

)
.

(19)

Consider two extreme cases: (1) Let xi(t) equal to r(t) directly
in the end node and r(t) be adjusted based on the link algorithm, in
which case, we denote that the time for convergence to efficiency
is t1; (2) Let r(t) equal to C/N , and let xi(t) be adjusted based
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on the source algorithm, in which case, we denote the time for
convergence to efficiency is t2. Certainly we have max(t1, t2) <
tθ < t1 + t2.
In the first case, the control law can be expressed as:
xi(t) = r(t)

ṙ(t) = βrl(t) ·
(
1−

Nxi(t)− q0/T
C

)
.

(20)

Furthermore,

ẋi(t) = βxi(t) ·
(
1−

Nxi(t)− q0/T
C

)
. (21)

Solve the above equation and we have,

x(t) =
C(1−q0/CT )

N

1+
(
C(1−q0/CT )

Nx0
− 1

)
exp{−b(1− q0/CT )t}

. (22)

In high speed networks, C � q0/T , C � Nx0. Thus,

x(t) ≈
C
N

1+ C
Nx0
exp{−bt}

. (23)

Based on Definition 1, f (t1) = Nxi(t1)/C = θ . Therefore we can
solve t1 as follows:

t1 =
ln
[(

C
Nx0
− 1

)
· ( θ
1−θ )

]
β

≈

ln
(
C
Nx0
·

θ
1−θ

)
β

. (24)

In the second case, the control law can be expressed as:

ẋi(t) = αxi(t)
(
ln
C
N
− ln xi(t)

)
. (25)

Since x(t2) = θC/N , we can solve t2 as follows:

t2 =
ln
(
ln Nx0C
ln θ

)
α

. (26)

Finally,

max

 ln
(
C
Nx0
·

θ
1−θ

)
β

,

ln
(
ln Nx0C
ln θ

)
α

 < tθ

<
ln
(
C
Nx0
·

θ
1−θ

)
β

+

ln
(
ln Nx0C
ln θ

)
α

. � (27)

Clearly, the time for AECP convergence to efficiency is O(ln CN )
and it is of exponential complexity.

4.2.2. Convergence to fairness
To study the time that AECP requires to reach a certain level of

fairness, we define:

Definition 2. For a given positive constant ε (0 < ε ≤ 1), a re-
source allocation (x1, x2, . . . , xN) exhibits ε fairness, if:

g(t) =

N
min
i=1
xi(t)

N
max
j=1
xj(t)
≥ ε. (28)
Thus the time for convergence to fairness is the interval during
which g increases from the maximally unfair state to ε fairness.
i.e. g(tε) = ε.

Based on this definition, we derive the following theorem:

Theorem 3. Consider that N synchronous AECP flows have com-
pletely shared the bottleneck capacity C at steady state, and sup-
pose that a new flow enters into the network with initial throughput
x0 (x0 � C/N), then after

tε =
ln ln Cε

Nx0

α
(29)

the network achieves ε fairness.

Proof. Let xN+1(t) be the new flow, and xj(t) (j = 1, 2, . . . ,N) be
an existing one. Then the system can be described by:{
ẋN+1(t) = αxN+1(t) · (ln r(t)− ln xN+1(t))
ẋj(t) = αxj(t) · (ln r(t)− ln xj(t)).

(30)

Based on Definition 2, g(t) = xj(t)/xN+1(t). Then we derive:

˙g(t) = −αg(t) ln g(t) (31)

thus, we have

˙ln ln g(t) = −α. (32)

Consider the initial condition g(0) = C/N
x0
=

C
Nx0
, g(tε) = 1

ε
. We

have:

tε =
ln ln Cε

Nx0

α
. � (33)

Clearly, the time for AECP convergence to fairness is O(ln ln CN )
and it is of ultra exponential complexity.

4.3. Setting the parameters

In this section, we discuss the choice of parameters used by
AECP and implement the alternating evolution model using the
linearizingmethod of control theory proposed in [20].We consider
the network in which there are N synchronous long-flows and a
single bottleneck link and omit the influence of delay.
Let the rate of each flow be x(t), the pre-allocation rate factor

be r(t), and the queue length be q(t). For simplicity, we use x, r , q
to denote x(t), r(t) and q(t). Suppose
F(x, r, q) = αx · (ln r − ln x)

G(x, r, q) = βr ·
(
1−

Nx+ (q− q0)/T
C

)
H(x, r, q) = Nx− C .

(34)

Suppose the equilibrium point is M(x∗, r∗, q∗), where x∗ =
r∗ = C/N , q∗ = q0, thus we linearize the Eq. (34) at point M , and
we have

∂F
∂x

∣∣∣∣
x=x∗
= −α,

∂F
∂r

∣∣∣∣
r=r∗
= α,

∂F
∂q

∣∣∣∣
q=q∗
= 0

∂G
∂x

∣∣∣∣
x=x∗
= −β,

∂G
∂r

∣∣∣∣
r=r∗
= 0,

∂G
∂q

∣∣∣∣
q=q∗
= −

β

NT

∂H
∂x

∣∣∣∣
x=x∗
= N,

∂H
∂r

∣∣∣∣
r=r∗
= 0,

∂H
∂q

∣∣∣∣
q=q∗
= 0. (35)
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Suppose δx = x− x∗, δr = r − r∗, δq = q− q∗. Then we have:
δẋ = αδr − αδx

δṙ = −βδx−
β

NT
δq

δq̇ = Nδx.

(36)

Furthermore,
δẋ = αδr − αδx

δṙ = −
β

N
δq̇−

β

NT
δq

δq̇ = Nδx.

(37)

As shown in Fig. 3, the closed-loop control system is composed
of three components: the link algorithm acting as a PI controller
component, in which the proportional constant is β/N , and
the integral constant is T ; the source algorithm acting as an
inertia controller, in which the time constant is 1/α; the queue
model acting as an integral controller. Therefore we can represent
the following open-loop transfer function of the AECP transport
system as:

L(s) =
α

s+ α
·
β

N

(
1+

1
Ts

)
·
N
s

=
αβ(s+ 1

T )

s2(s+ α)
. (38)

In control theory, if the transfer function of an unadjusted
system is

L0(s) =
K0

s(1+ T0s)
(39)

then it can be adjusted by a PI controller whose transfer function
is

Lc(s) =
1+ τ s
Tis

(40)

to improve the performance of the system. Thus the final transfer
function of the system is

L(s) = L0(s)Lc(s) =
K0
Ti

1+ τ s
s2(1+ T0s)

. (41)

In order to obtain themaximumstabilitymargin and speed con-
vergence as much as possible, the parameters in the PI controller
takes

τ = 4T0, Ti = 8K0T 20 (42)

in general [12].
Comparing Eq. (38) with Eq. (41) and (42), we have

β = α/2, T =
4
α
. (43)

From the analysis of convergence, we can see that the larger the
α, the faster the convergence to efficiency and fairness. However
we observed from simulations that the traffic also becomes more
volatile when α gets large. To balance the convergence and
oscillation, we set α = 2 s−1. Then we have β = 1 s−1, T = 2 s.

5. Implementation

In order to practically apply this algorithm, it is necessary to
derive discrete time equations from the differential equations (6).
Suppose T1 and T2 are the sampling time in the end node and in
the router respectively and use the the discrete time, kT1 and kT2,
to replace time t . Then we can make the following approximate
transformation:

d ln(x(t))
dt

≈
ln x((k+ 1)T1)− ln x(kT1)

T1
=
ln x(k+ 1)− ln x(k)

T1
d ln(r(t))
dt

≈
ln r((k+ 1)T2)− ln r(kT2)

T1
=
ln r(k+ 1)− ln r(k)

T2

(44)

where we use x(k) and r(k) to respectively denote x(kT1) and
r(kT2) and omit the suffixes of the variables. Substituting the above
equation into (6), we obtain:
ln x(k+ 1)− ln x(k)

T1
= α ·

(
ln r

(
k−

τ

T1

)
− ln x(k)

)
ln r(k+ 1)− ln r(k)

T2
= β ·

(
1−

∑
x(k)+ (q(k)− q0)/T

C

)
.

(45)

Further we have,
x(k+ 1) = x(k)1−αT1 · r

(
k−

τ

T1

)αT1
r(k+ 1) = r(k)

× exp
{
βT2 ·

(
1−

∑
x(k)+ (q(k)− q0)/T

C

)}
.

(46)

In the implementation, we finally select T1 = τ and T2 = 0.1 s
to guarantee the sampling precision. We also define q0 be 100
packets in order to provide small queuing delay in high speed
networks. This value is similar to some AQM algorithms [19].
Substituting the value of all parameters into the Eq. (46), we have
the final congestion controller:
x(k+ 1) = x(k)1−2τ · r(k− 1)2τ

r(k+ 1) = r(k)

× exp
{
0.1

(
1−

∑
x(k)+ (q(k)− 100)/2

C

)}
.

(47)

From the above equation, we can see that the complex
logarithm computation is excluded from the practical congestion
control algorithm. Therefore the computational overhead is
reduced. Meanwhile, the small sampling time in the router, 0.1 s,
also reduces the router computational overhead compared with
that of XCP, which needs to do computation for each packet.

5.1. Packet header

It is easier to implement the AECP algorithm with the AECP
packet header. As shown in Fig. 4, the AECP header is inserted into
the place between the IPv6 header and the TCP header. The ‘‘Next
Header’’ field is used to identify the following protocol header
(e.g., TCP header) and the length of ‘‘Next Header’’ field (8 bit) in
AECP header equals to the ‘‘Next Header’’ field in the IPv6 header.
The length of ‘‘Pre-allocation rate factor’’ field (16 bit) in the AECP
header equals to the CWND field in the TCP header. Therefore the
total length of the AECP header is 3 Bytes which is much shorter
than IP header and the TCP header. The routers along the route
modify the pre-allocation rate factor field to directly control the
sending rate of the sender.
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Fig. 3. Block of the close-loop control system.
Fig. 4. AECP packet header.

5.2. Sender

On packet departures, the AECP sender initializes the pre-
allocation rate factor to −1. Whenever a new ACK packet arrives,
the sender reads the pre-allocation rate factor r(k − 1) from the
ACK packet, and tracks the RTT τ . As a result the sender adjusts the
sending rate as follows:

x(k+ 1) = x(k)1−2τ · r(k− 1)2τ . (48)

5.3. Router

The router mainly generates its pre-allocation rate factor and
inserts the factor into the headers of all passing packets. During
the sampling interval, the router tracks the total amount of data
that has arrived into the queue. At each sampling point, the router
tracks the instantaneous queue length and computes the average
incoming traffic rate

∑
x(k). Based on this information, the router

estimates the pre-allocation rate factor as follows:

r(k+ 1) = r(k) · exp
{
0.1

(
1−

∑
x(k)+ (q(k)− 100)/2

C

)}
.

(49)

In addition, the router checks if the locally pre-allocation rate factor
is smaller than the one carried in the packet. If so, it replaces
the corresponding field in the packet with the new value. In this
manner, after traversing the whole path, each packet obtains the
pre-allocation rate factor from the most congested link.

5.4. Receiver

An AECP receiver is similar to a TCP receiver except that when
acknowledging a packet, the AECP receiver copies the extension
AECP header from the data packet to its acknowledgment packet.
Receiver

Receiver

Receiver

Receiver

Router Router

Sender

Sender

Sender

Sender

Fig. 5. Dumbbell topology.

6. Simulation results

In this section, we present some simulation results of the
performance of AECP. We compare it with TCPSack, XCP, and VCP.
We use ns2 for the simulation experiments. A tail-drop discipline
at the router buffer is deployed and the buffer size is set to the
product of bandwidth and delay. In all experiments the data packet
size is 1000 bytes, while the ACK packet size is 40 bytes. For all
the graphs, rate, utilization, packet loss rate and queue length are
sampled over 1 s intervals.

6.1. Convergence

In this experiment, we evaluate the performance of transport
protocols in the simplest case where a single bottleneck link is
shared by multiple flows. The dumbbell topology used here is
depicted in Fig. 5. It consists of source/destination hosts, two
routers, and links between the hosts and routers. We ran four
flows with RTT of 50 ms, 100 ms, 200 ms, and 400 ms, while the
bottleneck bandwidth is 500 Mbps. These flows start at 0 s, 50 s,
100 s and 150 s and stop at 400 s, 350 s, 300 s, 250 s, respectively.
The rate curves are shown in Fig. 6.
As shown in Fig. 6, TCPSack cannot achieve max–min fairness

and VCP is too slow to achieve max–min fairness because of
the difference of RTT. XCP is the fastest no matter converging to
efficiency or fairness. We have explained the reason in Section 1
that the convergence to efficiency and fairness of XCP is a
constant convergence. AECP is a little bit slower than XCP, but it
performs much more faster than TCPSack and VCP because the
convergence to efficiency and fairness of AECP is an exponential
convergence. Additionally, AECP and XCP both achieve max–min
fairness independent of RTT.

6.2. Robustness

This experiment investigates the robustness of AECP in the
presence ofweb, burst, and reverse traffics. The dumbbell topology
is also used here, where the bottleneck bandwidth is 500 Mbps
and the round trip propagation delay is 50 ms. For comparison
purposes, two simulations are conducted.
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(a) TCPSack. (b) VCP.

(c) XCP. (d) AECP.

Fig. 6. The rate dynamics of four flows with TCPSack, XCP, VCP and AECP.
The first simulation has only ten high speed flows on the for-
ward path without disturbing traffic. The first flow starts at time
zero, and the other flows enter into the network at five second in-
tervals. In the second simulation, in addition to the ten high speed
flows as the first simulation, there are another ten high speed flows
on the backward path, and the average web traffic of 80Mbps gen-
erated by 400 randomon–off sources is always on. Theseweb flows
arrive according to the Poisson process. Moreover, burst CBR traffic
of 160 Mbps generated by twenty UDP sources is injected into the
network at 100 s, and then all UDP sources drop out at 200 s.
The rate dynamic curves in the first simulation and the second

simulation are shown in Figs. 7 and 8 respectively. For the clari-
fication of curves, we only show the fifth flow and the tenth flow
in the figures. The average utilization, average packet loss rate and
average queue length of the bottleneck link of the first simulation
and the second simulation are listed in Table 1.
As shown in Fig. 7 and the S1 columns in Table 1, AECP and

XCP converge to an equal rate in steady state, and the average
utilizations of the bottleneck link are very high in the absence of
disturbing traffic. In addition, the average queue length of AECP
approaches the expected queue length q0. However, Fig. 8 and
the S2 columns in Table 1 show that TCPSack and XCP oscillate
significantly in the presence of disturbing traffic. Moreover, the
average utilizations of TCPSack, VCP and XCP degrade sharply, and
the average loss rates increase obviously. Fig. 8 shows that the
AECP flows converge to an equilibrium rate of 42 Mbps even with
web traffic. When burst traffic appears at 100 s, the AECP flows
give up the bandwidth rapidly. At 105 s, the AECP flows converge
to a new equilibrium rate (26 Mbps). After the burst traffic leaves
at 200 s, the AECP algorithm grapes the available bandwidth and
converges to the previous equilibrium rate quickly. Table 1 also
shows that AECP achieves better robust, higher link utilization and
lower packet loss rate than the other protocols even in the presence
of crossing traffic.
Table 1
The average utilization, average packet loss rate and average queue length.

Protocol Utilization (%) Packet loss ratio Queue length
(Package)

S1 S2 S1 S2 S1 S2

TCPSack 100 87.14 2.47× 10−4 3.81× 10−2 19443 3888
VCP 93.06 89.95 0 0 0.5 238
XCP 99.97 94.28 0 2.64× 10−3 2.0 3315
AECP 100 98.64 0 6.75× 10−4 100 1358

S1: The first simulation in the absence of crossing traffic.
S2: The second simulation in the presence of crossing traffic.

6.3. Multiple bottlenecks

Next, we study the performance of AECP with a more complex
topology of multiple bottlenecks. For this purpose, we use a typical
multiple bottlenecks topology with three links depicted in Fig. 9.
All the links have a 20 ms one-way propagation delay. One high
speed flow (i.e., flow 1) traverses all the links in the forward
direction. In addition, each individual link has one crossing high
speed flow (i.e., flow 2, flow 3, and flow 4) traversing in the
forward direction. The middle link has the smallest bandwidth of
only 250 Mbps, and the other links have the same bandwidth of
500 Mbps. All flows start at time zero.
As shown in Fig. 10, the long flow in TCPSack cannot catch any

bandwidth resource from the short flow. In VCP, the throughputs of
flow 1, flow 2, flow 3, and flow 4 are 67Mbps, 369Mbps, 174Mbps,
and 369Mbps, respectively. These results show that the fairness of
TCPSack and VCP in multiple bottlenecks networks is really poor.
In XCP, the throughput of flow 1 and flow 3 are 125 Mbps, but the
throughput of flow 2 is 338 Mbps and the throughput of flow 4
is 365 Mbps in steady state. In AECP, the throughputs of flow 1
and flow 3 both achieve 125 Mbps and the throughput of flow 2
and flow 4 are 375 Mbps in steady state. In other words, AECP
completely achieves max–min fairness while XCP approximately
achieves max–min fairness.
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(a) TCPSack. (b) VCP.

(c) XCP. (d) AECP.

Fig. 7. The rate dynamics of ten flows using TCPSack, VCP, XCP and AECP in the absence of web traffic, burst traffic and reverse traffic.
(a) TCPSack. (b) VCP.

(c) XCP. (d) AECP.

Fig. 8. The rate dynamics of ten flows using AECP and XCP in the presence of web traffic, burst traffic and reverse traffic.
7. Conclusion

In this paperwe propose a new alternating evolution algorithm,
which consists of the link and source algorithms for congestion
control in high speed networks. The algorithm is also based on the
explicit bandwidth pre-allocation factor, which is carried by the
packet and is computed in routers according to the information
of the router capacity, the aggregate load, and the instantaneous
queue length. Therefore the routers do not need to keep the per-
flow state and the overhead is low. The senders asymptotically
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Fig. 9. Multiple bottlenecks topology.
(a) TCPSack. (b) VCP.

(c) XCP. (d) AECP.

Fig. 10. The rate dynamics of four flows using different protocol in a multiple bottleneck topology.
adjust the sending rate according to the pre-allocation bandwidth
factor. After that the pre-allocation bandwidth factor changes
asymptotically along with the varying aggregate load and the
queue length in routers. Thereby the sending rate and the pre-
allocation bandwidth factor form the alternating evolution and
both achieve a steady state eventually.
Theoretic analysis and simulation experiments show that the

algorithm is able to effectively and efficiently allocate bandwidth.
The performance of our algorithm is evaluated through simulation
in terms of convergence, robustness, fairness, queue length, link
utilization, and packet loss ratio. The simulation results show that
AECP not only provides fast convergence to efficiency and fairness,
but is also strongly robust to crossing traffic, which are desirable
for high speed networks.
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