
Distributed File Streamer:
Distributed Application

K. Chen #1, Z. Huang #2, B. Li #3, E. Huang ∗4, H. L

#Intel China Research C
Beijing 100080 Chi

1kang.chen@intel
2zhiteng.huang@int
3bingchen.li@intel

∗KSL, Software Products Di
Champaign, IL 61820
4eric.huang@intel

5hrabri.rajic@inte
6bob.kuhn@intel.

†Department of Computer Science and Tech
Beijing 100084 Chi

7cwg@tsinghua.ed

Abstract— File transfer is very common in a modern dis-
tributed computing environment. Protocols such as HTTP and
FTP are designed for downloading or uploading files from/to
servers. Some other tools such as ‘secure copy’ are used to
transfer files among hosts securely. In this paper, the file transfer
is considered in the context of connecting distributed applications,
what is an output of a data producer on one node would be
an input of a data consumer on another node. Intermediate
files are used as a medium to connect workflow computational
phases, which is a common paradigm used in grid environments.
Distributed File Streamer a.k.a. DFS, as its name implies,
uses data streaming to couple distributed applications. Instead
of waiting for a producer application for output to transfer
completely to the consumer node, DFS streams the data over
the network directly to a consumer program, managing the
data flow efficiently and providing a framework for partial file
consumption. This paper describes the architecture of the DFS
framework, gives its performance model analysis, and provides
results demonstrating DFS advantages over the traditional way
on several examples.

I. INTRODUCTION

Communication mechanisms are very important in dis-

tributed computing environments. Higher level communication

protocols, like the MPI [1] and the PVM [2] are designed

for the cluster computing environments, so they do not fit the

grid environment that well because they require a very reliable

infrastructure and a uniform environment. Sockets [3] are the

very basic method for transferring data over network. People

often wrap sockets for their special network communication

purposes. In this paper, we propose sockets wrapper for file

transfers over the network. Thus the user can deal easily with

the files without worrying about how to transfer them. File

transferring over the network is often substituted as a more

convenient communication method when data needs to be

exchanged between different nodes.

In a file communication model, applications get their input

from a

workflo

for app

one ho

Fig.

uses fil

flows a

data m

We p

perform

which

overlap

with th

typical

one or

then tra

workflo

can imp

comput

the app

require

lot of

a capa

concurr

connec

1-4244-0344-8/06/$20.00  2006 IEEE 168
A Framework for
Data Coupling

. Rajic ∗5,R. H. Kuhn ∗6, W. Chen † 7

enter Ltd.
na
.com
el.com
.com

vision, Intel
USA
.com
l.com
com

nology, Tsinghua University
na
u.cn

file that was an output from an earlier stage of the

w. Those files can be stored in the shared file system

lications to access, but could also be transferred from

st to another even across clusters.

Producer Consumer

Storage Storage

Fig. 1. Basic Producer/Consumer Data Model

1 shows a basic producer/consumer data model that

es as communication media. Many complex data work-

re comprised of several such basic producer/consumer

odels.

ropose DFS, a Distributed File Streamer, to improve

ance of such models. DFS is an optimized framework,

can speed up the overall workflow execution time by

ping the output data stage of the producer programs

e input data stage of the consumer programs. In a

data-driven workflow, computing tasks could generate

many output files on the local storage. These files are

nsferred to the remote nodes, so the next stage of the

w on the remote node can start. Fig. 2 shows how DFS

rove the distributed application by overlapping I/O and

ations. Files will be transferred in the background and

lication can keep working. Although such mechanism

s that the application should work in the same way, a

applications can fit such model. DFS framework has

bility of delivering multiple files to multiple targets

ently in an asynchronous manner. It uses parallel TCP

tions, like GridFTP [4] to maximize network bandwidth

Grid Computing Conference 2006

utilization. It reuses the established TCP channels in a non-

blocked mode to lessen the system load and reduce the data

transfer overhead.

Overlapped by DFS

Consumer Input

File transfer stage

Producer output

Fig. 2. DFS: Distributed File Streamer Way to Overlap I/O and Computations

We have also implemented very flexible buffering and

caching capabilities on both producer and consumer parts in

DFS. Depending on the network and its bandwidth availability

it is possible to guard against losing data, slowing down

the producer application, or impacting user experience if the

consumer application is a media player.

The rest of the paper is organized as follows. In Section II

of the paper we describe the DFS framework in details, pre-

senting the producer and the consumer parts of the framework

separately. We present the DFS performance model in Section

III.

In Section IV we provide DFS benchmarking results com-

paring raw DFS performance to HTTP and FTP protocols. In

the same section we present DFS integration into NGB (NAS

Grid Benchmarks) [5] HC code and VideoLAN media client

[6] showing how DFS framework could improve workflow

performance and application functionality.

In Section V we describe related efforts. Section VI serves

as a conclusion, where we summarize the DFS work.

II. DESIGN AND IMPLEMENTATION OF THE DISTRIBUTED

FILE STREAMER FRAMEWORK

A. Basic Components

DFS is an application level framework providing data

streaming that can be integrated into distributed applications.

It provides an optimized transport layer for connecting dis-

tributed nodes, a POSIX compliant I/O API, flexible data

caching and buffering, and adaptive buffering and caching

mechanisms that guard against network congestion, even tem-

porary unavailability.

As described in the previous section, the framework is split

into producer and consumer parts. The producer part intercepts

the output data, optionally saves it on the local storage system,

and then sends the data to the consumer part, which is usually

running on a remote host. The consumer part receives the data

from the producer part and stores them into its shared memory

buffers before forwarding them to the consumer application.

It optionally saves the data on the local disk too.

Producer and consumer module both have a daemon com-

ponent that manages the shared memory buffers and interacts

with th

API lib

writing

Fig.

ducer a

erated

then ge

sending

daemon

used by

DFS fr

generat

the hig

parallel

data co

transfer

DFS

links, o

local d

TCP co

socket

width u

with th

B. DFS

Deve

gram I

majorit

applica

we hav

I/O sem

both th

I. ‘Shm

data ha

To m

languag

accordi

169
e network and the other side daemon, and a file I/O

rary that is used by user applications for reading and

data to and from the DFS framework.

Producer

Producer Application

Producer API

Producer Daemon

Consumer

Consumer Application

Consumer API

Consumer Daemon

Fig. 3. Basic DFS Framework Components

3 shows the basic DFS framework components. Pro-

pplication uses the producer API to ‘write’ the gen-

data to the DFS framework. The producer daemon

ts notified about the data arrival and is responsible for

the data to the consumer destination. The consumer

gets the data from the producer daemon. Its API is

the consumer application to read the data from the

amework. DFS supports disk file and memory (data

ed by applications) file transfers across network. At

h level the framework is augmented with a set of

data transfer protocols and flexible buffer and cache

ntrol mechanisms. Generally speaking, files or data are

red from producer to consumer nodes in a ‘push’ mode.

daemons maintain two kinds of communication control

ne with the remote daemons, and the other between a

aemon and the application DFS API library. Parallel

nnections, reusable TCP channels, and a non-blocking

communication are used to maximize network band-

tilization and to minimize system overhead associated

e network communication layers.

File APIs

lopers use the DFS library API to redirect their pro-

/O to the DFS framework. Considering that the vast

y of the scientific computing applications and legacy

tions use standard POSIX file manipulation semantics,

e made the DFS APIs compliant with the POSIX file

antics and the calling sequence. The set of APIs on

e consumer and the producer are summarized in Table

’ stands for shared memory, ‘pdh’ for the producer

ndler, while ‘cdh’ for the consumer data handler.

TABLE I

COMPARISON OF DFS APIS WITH POSIX’S

POSIX DFS Producer DFS Consumer
open/create shm pdh open shm cdh open

read shm cdh read
write shm pdh write
close shm pdh close shm cdh close

ake the interface usable for codes written in FORTRAN

e, DFS library API has a wrapper interface available

ng to the FORTRAN function call conventions.

C. DFS Data Streams

DFS data streams are transferred from the producer daemon

to the consumer daemon. They consist of messages. Each

message has its own message type and format. The message

packages and the communication semantics between daemons

are designed to support both parallel and striped file transfer.

As mentioned before, the DFS framework supports a ‘push’

mode for the messages. Each transferred file from the producer

to the consumer is tagged by its own file ID, which are unique

per producer host. There are three variable-size message types.

‘MSG OPEN’ is used to open a file. It contains the file

name together with the metadata information such as file

length, and the assigned file id. ‘MSG CREATE’ is used to

create a new file and is similar to the ‘MSG OPEN’ message

format. ‘MSG STORE’ message contains the data. A fixed-

size message type ‘MSG CLOSE’ is used to close the file.

DFS data streams support striped file transfer by adding

64bits offset value on each ‘MSG STORE’ message. There-

fore, a single consumer daemon is able to handle both single

and multiple files coming from multiple producer daemons

concurrently, even when they come from different hosts and

carry different file IDs. One such situation is shown in Fig. 4.

Producers A, B, C, and D all contribute in sending a striped

file over the network. At this moment DFS just provides a

simple scheme for striped file transfers.

Producer A
Producer B

Producer C
Producer D

Fig. 4. Striped File Transfer in DFS

The consumer daemon can distinguish file data by a unique

file ID tag. An additional number, a serial number is an

increasing sequence positive integer that enables the consumer

daemon to sort all of the incoming messages. The offset

value is used to seek the target file at the right start address

when striped I/O or fault recovery events occur. As in the

POSIX standard, the only difference of the ‘create’ and ‘open’

message is that the ‘create’ message will truncate the file

size to zero while the ‘open’ message will keep the file size

unchanged.

D. Support for Multiple Sources and Destinations

Supporting multiple data destinations or sources is a fre-

quent requirement for distributed applications [7]. The output

of a producer program is often streamed to multiple con-

sumers. To support this mode, the data blocks of a specific

file will be tagged with different destinations and only when

all of the destinations have received the corresponding data,

the data blocks will be removed from the DFS framework.

DFS has a parallel data/file transfer support for various

distributed computing environments. It provides parallel TCP

channels across the network for concurrent multiple file trans-

fers from many producers to many consumers. For a single file

transfer

be tran

consum

E. Imp

The

nents: t

library.

produc

The m

operate

plemen

applica

gets ap

The

shared

subsyst

networ

up, it b

which

setup. W

control

produc

block a

to be tr

produc

be cop

the file

memor

the me

memor

shared

Upon

where

name i

networ

170
, it provides a striped mode transfer where a file could

sferred from multiple producers to multiple or just one

er. Also supported is file striping on the consumer side.

lementation of the DFS Producer Side

Fig. 5. Detail Implementation of the DFS Producer Side

DFS producer side consists of two important compo-

he producer daemon and the producer application API

There could be only one producer daemon serving

er applications on a single system at the same time.

ultiple producer applications are able to co-exist and

without interfering with each other. In the current im-

tation, one producer daemon interacts with the producer

tions library API through a FIFO (a named pipe) and

plication data via shared memory buffers.

producer daemon consists of a control thread to manage

memory, a file hash table, a file destination mapping

em, and a support system for creating and destroying

k data threads, Fig. 5. Once the control thread starts

uilds a file and a destination mapping relational table,

we call file-transfer-DB, based on the configuration

hen a producer application asks to transfer data, the

thread first creates a shared memory block. The DFS

er application library puts the data into the memory

nd it notifies the producer daemon that there is data

ansferred. Notice that when the user program calls the

er API, the content of the user provided buffer will

ied to the shared memory. However when transferring

s, the content of files can be copied to the shared

y block directly without the need of extra copies in

mory. It is possible that when the framework provide

y management functions, the user program can access

memory directly. This is for the future development.

receiving the notification, the control thread checks

the data stream is heading by matching it with the file

n file-transfer-DB. The control thread then looks for a

k data thread connected to the target machine to handle

the transfer job. If there is no established one it creates a new

network data thread to deal with the data transfer.

Each network data thread takes care of a single destination

transfer: it communicates with the consumer daemon running

on remote machine before sending the data. If the network

connection is broken, the network data thread would try to

re-connect and continue the transfer.

To use the DFS, user applications call the DFS producer

side application programming interfaces instead of using file

I/O calls. ‘shm pdh open(const char *filename, int flag)’ DFS

routine opens a file that appears on the remote machine,

‘shm pdh write(file handle *fh, void * buffer, size t size)’

routine reads data into the shared memory first and then

notifies the DFS producer side daemon to send the data

through the network. ‘shm pdh close(file handle *fh)’ will

close the file. At the end of the build process the producer

applications need to be linked with the DFS producer side

library.

F. Implementation of the DFS Consumer Side

The consumer side of the DFS framework is very similar

to the producer side. There is a DFS consumer side API,

consumer side daemon, and shared memory buffers; only the

data flows in the opposite direction.

When the producer and consumer applications are not 100%

synchronized there is a need for handling excess data on the

consumer node. DFS consumer daemon supports two modes

for data storing before passing it to the consumer application,

buffering data in the shared memory and caching data on the

consumer file system. Storing the data on the producer disk is

also an optional feature.

DFS producer and consumer daemons use the same shared

memory data management. The management module can

manipulate the space in the shared memory for the producer

and consumer programs to allocate, use and free the memory

blocks.

One consumer daemon process could fork out multiple child

processes to accept parallel connections in order to overcome

file descriptor limitation of a Linux process. One consumer

daemon could also serve several producer daemons, but only

one consumer daemon controls the connection with a single

DFS producer. We have named it a ‘device’ in DFS. Besides

the necessary non-blocked TCP communication data buffers,

the TCP ‘devices’ also maintain a file hash table, which is

used for data sorting. The entries of the hash table are linked

arrays populated by file indexes, see Fig. 6. A file index owns

all the file related information such as file name, file ID, and

a serial number indicating the last serial number which has

been processed. When a data block of the shared memory is

inserted into the hash table, the offset value enables the sorting

routine to position it to the right place. Only continuous data

can be delivered to the application or be written into disk files.

A local UNIX domain socket is used to exchange messages

between the consumer daemon and the consumer application

library. As soon as the producer daemon creates a new

TCP connection with the consumer daemon, one local UNIX

domain

created

needs t

consum

via the

chunks

interfac

In d

the dat

the sha

control

and the

data ar

create

‘create/

existen

has no

reads th

behalf.

it reach

coming

G. Imp

Unpr

tions. E

and FT

program

to main

as a fa

session

daemon

DFS lib

commu

the pro

logic in

time cr

DFS u

environ

In a

a fat se

takes c

171
...
File Hash Entries

File Index

File Data Blocks

Fig. 6. Consumer Daemon File Hash Structure

socket with the producer IP address in its name is also

in a pre-determined directory, provided the data only

o be buffered in the shared memory. In that case the

er application can connect to the consumer daemon

DFS library to obtain data from the shared memory

by simply using the POSIX compliant DFS I/O read

e.

isk file caching mode, the consumer daemon gets

a from the network connections and stores them in

red memory temporally. Previously mentioned buffer

mechanism makes it possible to do network operations

disk I/O operations in the alternating fashion, so the

e cached in a local file. The consumer daemon would

a new same named metadata file as long as a new

open’ operation happened on the producer side. The

ce of such metadata file indicates that the target file

t been transferred completely. The consumer library

e data from the local files on the consumer application

The library tests the existence of the metadata file when

es the end of the file to determine if more data is

.

roving the Framework Reliability

edictable events may result in broken network connec-

xisting application network protocols such as HTTP

P, will simply return an error to the caller, so it is the

mer’s duty to consider all possible exceptions in order

tain a communication context in the application such

ilure point in order to properly re-establish a broken

. DFS maintains the communication context on both

sides. Therefore, network problems are masked by the

rary APIs. From the end user point of view, the DFS

nication channel is as an unbroken pipe. In this way,

grammers are able to concentrate on their application

stead of the intricacies of the data transfers. For the

itical applications, such as real time video playing,

sers can ensure good end user experience with the

ment adjusted buffer size value.

common Video on Demand (VoD) environment running

ver and multiple thin clients, DFS reconnection module

are of the network faults and the suddenly inaccessible

media. When such faults happen, both DFS framework sides

will try to re-establish the connection. The producer side

daemon takes responsibility for resuming the data transfer

from the failure point. In fact, a broken connection can be

viewed as a kind of congestion leading to no or just limited

frame drops.

III. DFS PERFORMANCE MODEL

Overlapping and/or hiding I/O with computation stages is a

well exploited way [7],[8],[9] to speed up either single node

or distributed nodes computational tasks.

In the traditional way, see the upper half of the Fig. 7

the data producer application needs to finish writing all the

output data and close the output file, so that the file could be

transferred to the consumer node. Very often, it is necessary

for the producer application to finish its execution before the

file transfer could start. In a Grid setting [10] there is also a

delay before the data are ready and the scheduler could start

the transfer task. On the other hand, when both applications

are collocated or both applications use a shared file system the

transfer time is avoided. Only after the output file has been

transferred to the consumer node; adding there a scheduling

delay, the consumer program is started and the input file read.

As seen in the bottom part of Fig. 7, the DFS framework

cuts the total turnaround time considerably, by streaming the

producer data once they are started being written. Shortly

afterwards, the DFS consumer side enables data consumption

by the consumer application.

T0

Overlapped by DFS

DFS

Traditional

Producer output

Consumer input

File transfer stage

T5T4T3T2T1

Fig. 7. Traditional and DFS Distributed Application Execution

Looking into Fig. 7, many different speedup models could

be derived based on what kind of delays are taken into an

account. In a more realistic scenario, there could be several

output files stored at the regular intervals, for example they

could be written at the end of compute stage iterations, Fig. 8.

In a traditional distributed system, the consumer applications

will not begin to run until all the output files from the producer

program are transferred to the consumer’s host. But, through

DFS framework the consumer can start to run just after the

first output file or files are streamed that leads to large time

savings as shown on Fig. 8.

Of c

suitable

flexibil

efficien

Fig. 8

In th

mance

DFS/FT

speed u

mark. L

and sh

improv

A. File

Our

Xeon s

kernel.

utilities

of thei

protoco

results

proprie

DFS is

overhea

PROTOC

In F

HTTP,

The ex

of iden

for 1 a

sure to

be seen

and com

comes

file tran

172
ourse, there are other I/O models, not all of them

for optimization using the DFS framework, but the

ity of DFS could enable many different scenarios to be

tly handled.

T0

...

...

Consumer

Producer
DFS

Traditional

Consumer

Transfer

T6T5T4T3T2T1

. How DFS Can Improve More Realistic Workflow Execution

IV. DFS PERFORMANCE EVALUATION

is section, we present DFS results, including perfor-

comparison of different file size transfers over the

P/HTTP protocols. We show how DFS could help

p NAS Grid Benchmark (NGB) Helical Chain bench-

astly, we integrate DFS into VideoLAN media client

ow how a flexible framework like DFS could help

e digital video user experience.

Transfer Performance

file transfer testing environment consists of two Intel

ervers, running Red Hat EL AS 4.0 with 2.6.8 Linux

We had used Vsftpd and Apache 1.3 as comparison

, for DFS among several of FTP/HTTP servers because

r superior file transfer performance. For measuring

ls overheads we used a zero size file, Table II. The

came as expected, considering that DFS has very light

tary protocol. The result should not be read how well

performing, but just to get information about DFS

d.

TABLE II

OL OVERHEAD OF DFS/FTP/HTTP WHEN TRANSFERRING 10240

0-BYTE FILES

DFS FTP HTTP
2.460 seconds 14.96 seconds 2.58 seconds

ig. 9 we show file transfer comparisons for DFS,

and FTP protocols for a variety of file data sizes.

periments were performed transferring large number

tical files: 5120 for files sizes less than 1 MB, 512

nd 2 MBs, and just 2 runs for 4GB files. We made

clean the memory and avoid data caching. It could

that the DFS transport layer has been fully optimized

pares quite well to HTTP and FTP based utilities. It

as no surprise no surprise that FTP overheads dominate

sfers for small file sizes.

Fig. 9. Performance Comparison of file transfer using DFS/FTP/HTTP

B. Potential for DFS Speedup

A common scenario amenable to DFS framework usage

happens when there is a continuous producer output that

constitutes consumer input, as shown in Fig. 10. As soon as the

producer output gets written it is transferred to the consumer

to serve as its input. Depending on the output stage durations,

overlap of the I/O and computation stages, beginning of the

producer output stage, and various DFS overheads the final

theoretical speedup is easily seen as application and resource

dependent.

It is this inherent application limitation that dictates the

amount of available speedup that DFS could achieve. So, in

the following section we emphasize how close to theoretical

speedups we could come to, instead of the absolute numbers.

Fig. 10. Continuous data streaming

The applications could be also made of a series of above

depicted computational and I/O phases which leads to more

involved analysis [9].

C. NGB DFS Experiments

In scientific benchmarks, where the computation steps are

followed with data intensive I/O intervals it is possible to

effectively utilize higher network bandwidths to get advantage

over the rate available of the file I/O system. To demonstrate

the performance impact of the DFS framework on a pro-

ducer/consumer type of applications that use files as commu-

nication media we have used Helical Chain (HC) benchmark,

Fig. 11 from the NGB suite [5],[10],[11].

Besides class W, that involves mesh filter (MF), due to

different input and output matrix sizes, there are NGB class

S, A, B

from o

experim

We

which

with co

stage o

We

times t

problem

C

The

improv

21% sp

the DF

size an

unmod

D. Vid

For

paramo

show h

streami

traffic p

To s

VideoL

[6]. Us

173
, and C data sets, which do not need to filter data

ne stage to another and are therefore suitable for our

ents.

BT.s MF

BT.s

BT.s

MF

MF

Launch

MF

MF

LU.sMF

MF

MF

Report

SP.s LU.s

SP.s

SP.s LU.s

Fig. 11. Helical Chain benchmark

have performed HC benchmark I/O characterization

has uncovered a little bit more than 10% I/O overlap

mputations, provided the data is streamed from one

f the benchmark to another.

have run the original and the modified HC code ten

o obtain reliable average turnaround times for each

class. The results are presented in Table III.

TABLE III

TURNAROUND TIMES FOR HC CODE

lass Type Time (Seconds) Improvement

S
GridFTP 20.1

21.39%
DFS 15.8

A
GridFTP 98

10.41%
DFS 87.8

B
GridFTP 474.6

9.84%
DFS 427.9

C
GridFTP 2053.8

9.73%
DFS 1853.9

benchmark results match our experimental performance

ement estimates of 10% possible speed improvements.

eed-up for the class S is not very reliable indicator of

S performance impact because of the small problem

d the proportionally large scheduling overhead for the

ified workflow.

eo Streaming Experiments

digital media playback, user experience is of a

unt importance. Our intention in this section is to

ow DFS could be effectively used in digital video

ng situations when there are unpredictable network

roblems.

how DFS framework benefits we have integrated it in

AN, a publicly available GPL licensed media client

ing a 240 seconds, 1440x1080 resolution, 13.227 Mb/s,

396.8 MB large high definition video file we have performed

a couple of experiments introducing artificially induced dis-

turbances into our network.

In the first experiment, we have focused on the consumer

media player capability for resisting severe network conges-

tions. We have designed a network traffic interferer, a UDP

package flooding program, which was able to very effectively

disturb the network TCP/IP traffic. We have experimented with

the variety of the pre-fetch buffer sizes introducing slight and

severe network congestions.

Note that by streaming the video at the higher bit rates than

the video bit rate, the video frames are buffered on the client

side by DFS, resulting in shorter total transfer times than the

video playing times. VideoLAN Read Speed curves follow

data transfer bandwidths from the DFS consumer side to the

VideoLAN client.

For milder UDP interferer interferences, Fig. 12, DFS bit

rate was impacted, but VideoLAN kept playing smoothly.

The DFS rate dips indicate network congestions. VideoLAN

has a similar capability. It is specified by setting a number

of seconds that VideoLAN needs to keep in its buffer. Any

decrease in video bit rate is followed by very large spikes that

produce large demands on the network bandwidth. Occasion-

ally, VideoLAN would drop playing the video.

Fig. 12. Moderately intermittent network congestion

Even if a severe network situation exceeds the capability of

pre-fetched data buffer (for example 20 seconds disturbances

in Fig. 13), the perceptible impact duration (dropped width

of ‘VideoLAN Read Speed’) is much shorter than the real

congestion duration visible from the DFS streaming rate curve.

The experiments have shown that DFS can keep a transpar-

ent and reliable communication channel for VideoLAN, while

other protocols make VideoLAN give up the ongoing session.

These experiments prove that VoD (Video on Demand) is quite

a viable media delivery provided adequate network speeds are

available. Frameworks like DFS could greatly help overcome

sporadic network problems by flexible data buffering or even

disk caching.

In the second experiment we have investigated how DFS

could shield end users from network faults, i.e. broken connec-

tions. In this case VideoLAN is forced to drop the connection

for good, resulting in lost video feed. To mitigate network

disconn

the fram

We

second

was ke

In Fi

was fro

13:37:1

DFS, d

resultin

We

longer

pre-fetc

second

the DF

is reest

13:36:0

the hig

second

connec

how us

the use

simply

cut.

174
Fig. 13. Severe network congestion

ects DFS has a recovery mechanism on both sides of

ework with a flexible reconnection polling mechanism.

have examined DFS reconnection capability for 20

network disconnect intervals. DFS data transfer speed

pt at 4MBs except for occasional spikes.

Fig. 14. 2 20-seconds network disconnects

g. 14, two long network disconnects happened, the first

m 13:35:42 to 13:36:02, and the second was from

9 to 13:37:40. Using one second polling intervals in

ata retransmitting started at 13:36:03 and 13:37:41,

g in only one second latencies.

can see that the first network disconnect interval is

than the duration of the pre-fetched video. 21.717MB

hed content makes VideoLAN player continue for 14

s (to 13:35:56) before the buffered data is gone from

S cache file. Therefore, after the network connection

ablished, VideoLAN has to skip few seconds. From

3 to 13:36:12, VideoLAN client tried to recover using

hest bandwidth available. But, after buffering tens of

s of the video, the following 20-seconds network dis-

t was handled by DFS without problems, again proving

eful DFS flexibility could be by substantially improving

r video media experience. VideoLAN, without DFS has

stopped playing the video after the network has been

V. RELATED WORK

Producer-consumer data exchange models appear frequently

in application coupling general area [12]. Data handling

components are just one part of the solution, so they are

not presented or built in as elaborate and optimized way as

the DFS framework. DFS is also not concerned with data

transformations associated with geometry mesh issues coming

from different physics solution codes, an issue that is of

greatest importance in application coupling solutions.

DFS operates in a distributed producer-consumer setting as

does Distributed Data Broker (DDB) [13]. DDB is a toolkit

that manages distributed communication in multi-application

systems in high performance computing environments. It has

been tested in UCLA Earth System Model (ESM) under the

NASA/ESS HPPC program. DDB is reducing the number of

synchronization points and the need of global reductions oper-

ations in order to improve high level computational efficiency.

There are also similar I/O solutions like DFS that overlap

I/O and computations or hide I/O under computations, like

active buffering and background I/O in parallel large-scale

multi-component rocket simulations [8].

When we look into how DFS manages data in the shared

memory parallels could be drawn to MPI parallel I/O collec-

tives or MPI-IO [14].

Removing the need for data staging is a classic example of

remote I/O [15]. Serving data to multiple device remote view-

ers in addition to data filtering also requires data streaming

solutions in data visualization [16].

DFS could be viewed as an API to enable transferring data

in complex workflows [8], where API of utilities like Globus

Toolkit’s [17] GridFTP [4] is used.

VI. CONCLUSIONS

We have introduced a Distributed File Streamer framework

for optimization of consumer/producer distributed models that

supports different data transport modes and gives lots of

flexibility for use in digital media applications.

It has been demonstrated that the DFS transport layer is

fully optimized by comparing its performance to the FTP and

HTTP protocols on different file sizes.

It was shown that the DFS provides a convenient framework

for optimizing distributed computing tasks with data depen-

dencies between the computational stages. 10% speedups have

been obtained on the DFS enabled NGB code Helical Chain

benchmark on class A, B, and C problems. In addition to I/O

overlapping with computations, additional DFS framework ad-

vantage, albeit small was the elimination of the job scheduling

overheads between the remote tasks.

Computer networks have started playing significant roles

in digital media distribution. High Definition video streaming

needs a reliable and robust data transfer protocols to sat-

isfy high end user expectations. In a non-exclusive network

domain, network resource contention coming from different

network applications has a potential to introduce intermittent

and unpredictable network congestions.

DFS

nition v

the DF

and spa

for fen

that DF

networ

[1] M.
TN

[2] V. S
Co

[3] D.
Pro
Pre

[4] W.
200

[5] R. F
1.0
Rep

[6] Vid
[7] G.

del
dis
per
Sup
pp.

[8] X.
par
’03
and
Soc

[9] E.
of
’98
join
put

[10] M.
for
255

[11] L.
per
Pro
275

[12] R.
rev
offi

[13] L. A
and
in I
tion

[14] P.
B.
inte
200

[15] I. F
fast
wo
US

[16] M.
aliz
Pro
Los

[17] I.
sys
Co

175
provides a reliable and effective support for high defi-

ideo streaming. The VideoLAN experiments show that

S framework can effectively utilize disk storage space

re network bandwidth to provide flexible buffer space

ding severe network congestions. It was demonstrated

S can be very effective in recovering from intermittent

k faults by its both sides reconnection mechanisms.

REFERENCES

P. Forum, “Mpi: A message-passing interface standard,” Knoxville,
, USA, Tech. Rep., 1994.
. Sunderam, “Pvm: a framework for parallel distributed computing,”

ncurrency: Pract. Exper., vol. 2, no. 4, pp. 315–339, 1990.
E. Comer, Internetworking with TCP/IP, Vol III: Client-Server
gramming and Applications, BSD Socket Version, Second Edition.
ntice Hall, 1996, cOM d 96:1 1.Ex.
A. et al., “Gridftp: Protocol extensions to ftp for the grid,” Apr
3. [Online]. Available: http://www.gridforum.org/
. V. der Wijngaart and M. A. Frumkin, “Nas grid benchmarks version

,” NASA Ames Research Center, Moffett Field, CA, 2002, Tech.
., 2002.
eoLAN, “http://www.videolan.org.”
Allen, T. Dramlitsch, I. Foster, N. T. Karonis, M. Ripeanu, E. Sei-
, and B. Toonen, “Supporting efficient execution in heterogeneous
tributed computing environments with cactus and globus,” in Su-
computing ’01: Proceedings of the 2001 ACM/IEEE conference on
ercomputing (CDROM). New York, NY, USA: ACM Press, 2001,
52–52.

Ma, X. Jiao, M. Campbell, and M. Winslett, “Flexible and efficient
allel i/o for large-scale multi-component simulations,” in IPDPS
: Proceedings of the 17th International Symposium on Parallel

Distributed Processing. Washington, DC, USA: IEEE Computer
iety, 2003, p. 255.1.
Rosti, G. Serazzi, E. Smirni, and M. S. Squillante, “The impact
i/o on program behavior and parallel scheduling,” in SIGMETRICS
/PERFORMANCE ’98: Proceedings of the 1998 ACM SIGMETRICS
t international conference on Measurement and modeling of com-

er systems. New York, NY, USA: ACM Press, 1998, pp. 56–65.
Frumkin and R. F. V. der Wijngaart, “Nas grid benchmarks: A tool
grid space exploration,” Cluster Computing, vol. 5, no. 3, pp. 247–
, 2002.
Peng, S. See, J. Song, A. Stoelwinder, and H. Neo, “Benchmark
formance on cluster grid with ngb,” in Parallel and Distributed
cessing Symposium, 2004. Proceedings. 18th International, 2004, p.
.

W. Ford and G. D. Riley, “Model coupling
iew,” Jan 2002. [Online]. Available: http://www.met-
ce.gov.uk/research/interproj/flume/pdf/d3 r8.pdf
. Drummond, J. Demmel, C. R. Mechoso, H. Robinson, K. Sklower,
J. A. Spahr, “A data broker for distributed computing environments,”

CCS ’01: Proceedings of the International Conference on Computa-
al Sciences-Part I. London, UK: Springer-Verlag, 2001, pp. 31–40.

Corbett, D. Feitelson, Y. Hsu, J.-P. Prost, M. Snir, S. Fineberg,
Nitzberg, B. Traversat, and P. Wong, “Mpi-io: A parallel file i/o
rface for mpi,” NASA Ames Research Center, Moffett Field, CA,
2, Tech. Rep., 2005.
oster, J. David Kohr, R. Krishnaiyer, and J. Mogill, “Remote i/o:
access to distant storage,” in IOPADS ’97: Proceedings of the fifth

rkshop on I/O in parallel and distributed systems. New York, NY,
A: ACM Press, 1997, pp. 14–25.
Wolf, Z. Cai, W. Huang, and K. Schwan, “Smartpointers: person-
ed scientific data portals in your hand,” in Supercomputing ’02:
ceedings of the 2002 ACM/IEEE conference on Supercomputing.
Alamitos, CA, USA: IEEE Computer Society Press, 2002, pp. 1–16.

Foster, “Globus toolkit version 4: Software for service-oriented
tems,” in IFIP International Conference on Network and Parallel
mputing, vol. 3779. Springer-Verlag GmbH, 2005, pp. 2–13.

