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Abstract—Creating backup copies is the most commonly used
technique to protect from data loss. In order to increase relia-
bility, doing routinely backup is a best practice. Such backup
activities will create multiple redundant data streams which is
not economic to be directly stored on disk. Similarly, enterprise
archival systems usually deal with redundant data, which needs
to be stored for later accessing. Deduplication is an essential
technique used under these situations, which could avoid storing
identical data segments, and thus saves a significant portion
of disk usage. Also, recent studies [1], [2] have shown that
deduplication could also effectively reduce the disk space used
to store virtual machine (VM) disk images.

We present droplet, a distributed deduplication storage system
that has been designed for high throughput and scalability.
Droplet strips input data streams onto multiple storage nodes,
thus limits number of stored data segments on each node and
ensures the fingerprint index could be fitted into memory. The
in-memory finger index avoids the disk bottleneck discussed in
[3], [4] and provides excellent lookup performance. The buffering
layer in droplet provides good write performance for small data
segments. Compression on date segments reduces disk usage one
step further.

Index Terms—deduplication; storage system; cluster;

I. INTRODUCTION

The primary purpose of backup activities is to recover from

data loss. It is a common practice to create multiple copies of

important files and store them in peripheral storage devices.

Up on data loss, a recent version of lost or corrupted files could

be retrieved from backup storage to aid recovering procedure.

Because backup systems contain multiple copies of impor-

tant data, their storage consumption is considerably high. In

order to reduce disk storage consumption, two techniques are

used frequently: compression and deduplication. They increase

the effective disk storage space and improve backup efficiency.

Also, for the same amount of data, less network bandwidth is

required to transfer them, which reduces loads on networks.

Compression works by encoding original data segments

using fewer bits. Repeating data patterns within the data

segment are detected and processed. Compression applications

such as zip, gzip, and bzip2 are frequently used in Linux

distributions. They provide good compression ratio within

reasonable time frame [5].

Deduplication works by eliminating duplicate data seg-

ments, leaving only a single copy to be stored. Deduplication

could work at file level, which guarantees no duplicate file

exists; or work at finer granularity of block level, which

ensures that duplicate data segments within a file could be

detected. There are primarily two block level deduplication

methods: fixed-length block, which divides data into fixed

length data segments; and variable-length block, which locates

certain split marks inside data and divides block boundary

at those locations. Fixed-length block approach has better

performance because of its simple design, while variable-

length block approach is more resilient to insertions inside

data.

The biggest challenge in deduplication systems, as pointed

out in [3], is to identify duplicate data segments quickly. Byte-

by-byte comparison is infeasible, as it requires too much IO

operation. So most deduplication systems detect duplicate data

segments with “fingerprints”. The fingerprints need to satisfy

the property that two fingerprints are the same if and only if
corresponding two data segments are the same. Cryptographic

hash functions such as MD5 [6], SHA-1 [7] are best fitted

for this purpose. Though collisions are possible for these hash

functions, the probability is orders of magnitude smaller than

probability of disk corruption [8], [9], thus they are safely

ignored.

To check for data duplication quickly, an index over all

existing fingerprint is necessary. Because of the properties of

cryptographic hash functions, index access pattern is random.

If the index is stored on disk, this random access pattern will

result in too much random disk IO and will degrade whole

system performance significantly. At the time of [3], RAM

storage is relatively expensive and has limited size, so they

used Bloom filters [10] to store a compressed index in RAM,

which could reduce around 99% unnecessary disk IO. A more

recent study [4] shows that even with this optimization, the

average index lookup is still slower than RAM lookup by a

factor of 1000. As RAM gets cheaper and bigger in size, it

is possible to store all index into RAM, providing maximum

possible deduplication speed. Also, for large data sets where

the index cannot fit into one storage node’s RAM, this single

storage node would have already become a bottleneck. Under
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this situation, multiple storage nodes could be deployed to

reduce index size and deduplication load on a single node.

This architecture of RAM storage is also presented in [11].

Recent findings [12] have shown that deduplication out-

performs compression. This is because compression works at

a limited range within a file, while deduplication generally

works at global scale and has abundant data segment samples.

Several other research works [1], [2] also presented the effec-

tiveness of deduplication on VM disk images, and have shown

that fixed-length block deduplication reaches similar space

saving as variable-length block approach. As virtual machine

is considered as an essential component in cloud computing, it

indicates that deduplication will continue to be a hot research

topic in the following years.

Inspired by all these considerations, we designed droplet,

a distributed deduplication storage system that aims for high

throughput and scalability. It scatters data blocks to multiple

storage nodes, and uses fast compression after data dedu-

plication to achieve maximum disk storage saving. Droplet

combines write requests of small data blocks into large lumps

to improve disk IO. Experiments have shown that droplet

achieves excellent deduplication performance.

The rest of this paper is organized as follows. Section 2

provides system architecture of droplet. Section 3 presents

considerations on droplet’s design in detail. Section 4 shows

evaluation results and discussions. Related work is given in

section 5. Finally we conclude this paper in section 6.

II. SYSTEM DESIGN

Droplet consists of 3 components: a single meta server that

monitors whole system status, multiple fingerprinting servers

that run deduplication on input data stream, and multiple

storage nodes that store fingerprint index and deduplicated data

blocks.
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Fig. 1: System architecture

A. Communication Between Components

Meta server maintains information of fingerprinting and

storage servers in the system. When new nodes are added into

the system, they need to be registered on Meta server first.

Meta server provides routing service with this information.

Droplet itself does not provide a backup service. Instead, it

provides storage to backup services. A backup server acts as

client to droplet. The client first connects to Meta server and

queries for list of fingerprinting servers, and then connects to

one of them. After that, raw data stream containing backup

content will be sent to this fingerprinting server, which calcu-

lates data block fingerprints and replies results to the client.

After achieving the fingerprints, the backup server could store

these fingerprints as reference to deduplicated data.

Fingerprinting servers, when they receive raw data stream

from clients, will split data into blocks and calculate their

fingerprints. Each data block is tagged with its fingerprint,

compressed to a smaller size, and then pushed to a dedu-

plication queue. A daemon process periodically collects all

fingerprints in the queue, and checks duplicated fingerprint by

querying storage servers. New data blocks not found in storage

servers are then flushed to storage servers, while duplicated

data blocks are discarded immediately.

The whole fingerprint space is split into 256 buckets ac-

cording to their first byte. Those 256 buckets are scattered to

all the storage nodes. Meta server maintains this information

and provides storage server routing to fingerprinting servers.

When listing of fingerprints is sent to a storage server, it

checks existence of these fingerprints, and replies listing of

new fingerprints only, which allows fingerprinting server to

discard duplicated data blocks. The storage server is also in

charge of storing data blocks sent to it.

B. Client API

Droplet provides a clean interface to client side. The client

library caches routing information from Meta server, in order

to reduce the CPU load on Meta server and speedup communi-

cation process. It automatically switches fingerprinting server

after a certain amount of data has been sent, which distributes

deduplication load on each fingerprinting server. The demo

client code in Python is given below.

dp == droplet.connect(svr_host, svr_port) # establish connection to droplet
f = open(fpath, "rb") # prepare the file to be stored and deduplicated
try:
    result = dp.store(f) # store and deduplicate file contect
    for offst, finger in result:
        # result is a list of data block offset and its fingerprint
        print "%s, %d" % (finger, offst)
finally:
    f.close()

Fig. 2: Demo client API usage
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III. IMPLEMENTATION DETAILS

A. Fixed Length Block

Droplet deduplication runs at block level. Fixed-length

block is used instead of variable-length block, based on a few

considerations:

1) Variable-length block needs to locate split marks in

data by Rabin fingerprint or similar techniques, which

incurs additional calculation overhead. Droplet needs

to provide high throughput, thus it need to avoid such

additional calculation overhead.

2) The metadata of processed data block on client side is

easier to manage when droplet uses fixed-length block.

Given an offset in archived data, client side could easily

locate corresponding data block by simple calculation.

For variable-length block, a more complex algorithm

will be needed to locate data blocks from an offset.

3) Deduplication on VM disk images have been studied in

[1]. It has shown that for VM disk images, variable-

length block and fixed-length block provides nearly the

same deduplication ratio. As VM disk images contains

all files in a whole system, similar result is expected

on system backup data sets. A possible explanation is,

data insertion in large file is not common, thus fixed-

length block could provide the same deduplication ratio

as variable-length block, even though it is not resilient

to data insertion.

The deduplication ratio in this paper is defined as:

deduplication ratio = 1− total size after deduplication

total size of orginal data set
.

B. Block Size Choice

Deduplication block size is a balancing factor, which is very

difficult to choose, as it has great impact on both deduplication

ratio and IO throughput. Smaller block size will lead to higher

deduplication ratio, since duplicate data segment at a finer

granularity could be detected. Bigger block size result in fewer

interrupts in IO activities and less meta data, and is able to

provide indexing service for larger data set with limited RAM

capacity.

In order to choose a proper block size, we need to study the

properties of input data set. We analyzed all files in a photo

gallery website serving around 140,000 pictures, treating them

as backup data streams. The distribution of file size is given

in Figure 3. It shows that file size in range 64KB∼1MB is

most common.

The relationship between block size, deduplication ratio

and IO throughput is given in Figure 7 and 8. Based on our

experience, droplet uses a block size of 64KB, which provides

excellent IO performance and good deduplication ratio.
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Fig. 3: File size distribution in backup data set

C. Fingerprint Calculation

Fingerprint calculation is the most important procedure

in deduplication. Among all well known cryptographic hash

functions, MD5 and SHA-1 are frequently used for fingerprint

calculation. MD5 provides faster calculation speed, while

SHA-1 has smaller collision probability. The output of MD5

and SHA-1 hash is 128 bits and 160 bits.

The fingerprint of each input data block need to be cal-

culated to detect duplication, thus the performance of this

procedure has direct impact on overall system throughput.

Also, smaller fingerprint means more entries could be fitted

into RAM index. Based on these considerations, droplet uses

MD5 as its fingerprinting function.

In order to speedup fingerprinting procedure, droplet runs

MD5 calculation algorithm in multiple threads to exploit the

power of multicore CPUs. As shown in Figure 4, droplet MD5

procedure achieves linear speedup as number of calculation

threads increase, until memory bandwidth has been satirized.

The speed of SHA-1 hash is also provided for comparison.
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Fig. 4: Multithread fingerprint calculation speed

Similar efforts to speedup MD5 calculation speed have been

made. The work in [13] tried to calculate MD5 hash with

GPU. Because GPU is relatively expensive and not common

on commodity servers, droplet did not adopt such techniques.

D. Fingerprint Index

The fingerprint index is the most important component in

droplet. Its performance has direct impact on overall system
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throughput. In order to achieve maximum querying speed, the

index is located inside RAM to avoid any disk IO.

The index is implemented as a hash table, with fingerprint

as key. Droplet uses cuckoo hash [14], because it has a

much better worst case complexity than other hash table

implementations, and uses memory efficiently.

A B C D E

W

Fig. 5: Cuckoo hash

Figure 5 explains how cuckoo hash works. Cuckoo hash

uses a number of hash functions to calculate a set of alternative

slots of a given key. When inserting a new element w, all of

its alternative slots will be checked, and w will be put in the

first empty slot. If no slot is available, the current element

in one of the slots (like C) will be “kicked” and replaced by

w. The kicked element will again be inserted, kicking another

element (like D) if necessary. If an insertion results in too

many collisions, the hash table will be rehashed.

Data blocks are sealed into large lumps of “containers”,

each has a size of several megabytes. The data blocks are

located by its container ID and offset inside the container

file. Items in the index has the format fingerprint →
(container ID, offset). Each item is 24 bytes (16

byte MD5 fingerprint, 4 byte container ID and offset). To avoid

frequent hash collisions, we ensure the cuckoo hash to work

with a load factor below 50%. Even with a small block size of

64KB, a storage server with 24GB memory could easily hold

24GB

24B
× 50%× 64KB = 32TB

deduplicated data blocks, which is big enough for most use

cases. The price for 32TB hard disk (16×2TB) is around

$2000, while the price for 24GB memory (3×8GB) is around

$250, which means the major cost of such a storage server will

be on hard disk rather than memory, thus storing the index in

memory is cost efficient.

E. Storage for Data Blocks

The design of data blocks storage is given in Figure 6.

Small data blocks are packed into large lumps of containers,

and flushed to disk in the scale of a whole container. Each

container has a size of multiple megabytes, in order to exploit

the high sequential IO throughput of hard disk. Each container

is referenced by a unique ID, and blocks inside the container

are referenced by their offset.

For each block, its size and fingerprint is stored together

with data content. The block size is not stored in RAM index,

Storage
Block container

Size

Fingerprint

Block data

Block info

Index in RAM
Fingerprint Container ID Offset

Fig. 6: Data block storage

because it is not necessary when detecting duplication. If a

block needs to be retrieved, the storage server could locate

the block info with (container ID, offset) pair in

RAM index, and extract block size before fetching block

data. Because disk access cannot be avoided when retrieving

data block content, accessing block size info on disk will not

introduce additional overhead.

In order to check for disk corruption, the block’s fingerprint

is also included in the container file. This information could

be used when doing integrity check on container files, thus

corrupted data blocks could be immediately detected.

F. Compression on Data Blocks

In order to reduce disk storage and network bandwidth con-

sumption at maximum rate, droplet compresses data blocks on

fingerprinting servers before sending them to data servers. As

modern commodity servers have relatively powerful multicore

CPU, the fingerprinting server is usually network saturated first

rather than CPU saturated first. It is beneficial to compress data

before sending it over network, alleviating burden on network

by doing more work on CPU.

Droplet uses Google’s snappy compression library [15]. It

does not aim for maximum compression ratio; instead, it aims

for high speeds and reasonable compression. Snappy is an or-

der of magnitude faster for most inputs than other compression

algorithms, but with 20%-100% larger compressed data. This

behavior is acceptable for droplet.

TABLE I: Compression algorithm comparison

Google snappy gzip bzip2
Space saving 34.0% 59.3% 64.2%

Compression speed 237M/s 19.4M/s 2.7M/s
Decompression speed 413M/s 61M/s 13.2M/s

Table I provides performance of Google snappy, gzip, and

bzip2 on a 16MB text file.
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IV. EVALUATION

A. Experiment Environment

To evaluate droplet’s design, we conducted a few experi-

ments on a rack of 8 blades connected by 1Gb Ethernet. Each

blade has 4 Xeon X5660 CPUs, 24GB DDR3 memory, and a

500GB hard drive (Hitachi HDS721050CLA362). The blades

are running Ubuntu 11.04 with Linux kernel version 2.6.38.

B. Block Size Choice

Data block size has a direct impact on disk IO performance

and deduplication ratio. A proper choice on data block size

need to balance these two factors in order to achieve best

result.

The relationship between block size, deduplication ratio

and IO performance is given in Figure 7 and 8. As block

size increases, the deduplication ratio gradually degrades. In

Figure 8, the label “raw” denotes the crude performance of

writing deduplicated data blocks to hard disk, while the label

“deduplicated” takes the original input data size into account.

It is shown that deduplication speed stabilizes after block

size reaches 256KB, which is a good choice for data block

size. But in practice we have chosen 64KB as data block size,

since it already provides relatively good IO performance, and

higher deduplication ratio than 256KB data blocks.

C. Index performance

The fingerprint index, implemented as a cuckoo hash, is

the most important component in the system. Performance

statics of the fingerprint index is given in Figure 9. As the

cuckoo hash holds more and more keys, both insertion and

query speed will be affected. The insertion speed drops very

quickly after load factor reaches 0.7, because each insertion is

likely to result in multiple key relocations. The query speed

also drops, since it is more unlikely to find queried key in the

first alternative slot, thus more than one memory access will

be necessary.

In practice, we limit the load factor below 0.5 to achieve

best performance on the fingerprint index.

D. Block Storage Comparison

Disk storage is the bottleneck in droplet. Droplet optimizes

disk access by combining small write requests together. This

significantly reduces fragmented IO request sent to disk.

Figure 10 presents performance comparison between droplet

container, Berkeley DB and Tokyo Cabinet. In this experiment,

Berkeley DB and Tokyo Cabinet uses fingerprint as key, and

block content as value. Tokyo Cabinet is using B+ tree based

API. Droplet’s block storage provides highest IO throughput.

V. RELATED WORK

A. Deduplication Systems

Deduplication techniques generally detect redundant objects

by comparing calculated fingerprints rather than comparing

byte by byte. Cryptographic hash functions such as MD5

and SHA-1 are frequently used for fingerprint calculation.

For file content deduplication, the unit chosen is usually a

section of the file, and finer-grain unit generally leads to higher

deduplication ratio. Fixed size chunking is straightforward,

but fails to handle content insertions gracefully. Variable size

chunking solves this problem at the cost of complexity and IO

performance overhead.

Venti [8] is one of the first papers that have discussed data

deduplication in detail. It provides block-based deduplication

with variable-length blocks, and uses SHA-1 hash to calculate

the fingerprint of data blocks. Venti is a centralized dedupli-

cation system, with all data blocks inside one archival server.

The index in Venti requires one disk access to test if a given

fingerprint exists, which brings performance penalty. Venti

mitigates this problem by striping the index across disk arrays,

achieving a linear speedup.

Data Domain [3] avoided unnecessary disk index lookups

with the help of a Bloom filter in main memory, which

represents the set of all existing fingerprints. When inserting

a new data block, its fingerprint is checked against the Bloom

filter. If the fingerprint is missing, the data block will be

directly added without disk index lookup. This optimization

is reported to have avoided 99% unnecessary disk access.

ChunkStash [4] goes one step further by storing index on

SSD instead of magnetic disk. An in-memory cuckoo hash

table is used to index the fingerprint index on SSD. The

cuckoo hash table stores compact fingerprint signatures (2

bytes) instead of full fingerprint (20 bytes SHA-1 hash), which

tradeoffs between RAM usage and false SSD reads. Compared

with magnetic disk index based inline deduplication systems,

a speedup of 7x-60x is observed.

Both Data Domain and ChunkStash are centralized dedu-

plication, which means the deduplication server itself will

become a performance bottleneck when large amount of data

is to be archived.

B. Deduplication for Virtual Machines

One of the most important components in cloud computing

technology is virtual machine. Most data centers need to deal

with virtual machine images. As a result, deduplication on

virtual machines has become a focus in both research and

industrial circles.

Previous work of [1], [2] has conducted a few deduplication

experiments on common VM images. It is stated that for VM

images, the deduplication ratio could be considerably high,

and could be better than conventional compression algorithms.

Also, deduplication ratio of variable size chunking is nearly the
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Fig. 9: Fingerprint index performance

same with fixed size chunking, which means that the simple

fixed size chucking scheme is good enough for deduplication

on VM images. However, no IO performance result was

evaluated in these studies.

Deduplication for VM is not limited to VM images.

VMware ESX server adopted content-based paged sharing

technique to eliminate redundancy, enabling a more efficient

use of hardware memory [16]. Difference engine [17] moved

one step further by applying page patching and compression

techniques to memory pages, achieving an even higher com-
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Fig. 10: Block storage comparison

pression ratio.

As a complete deduplication solution for VM images in

a cluster setting, DEDE [18] achieves a high IO speed at

around 150MB/s, and supports mixed block size of 1MB

or 4KB. DEDE reduces burden on server side by running

deduplication on client side, which enlightened the design of

droplet However, the data blocks are stored on a centralized

SAN, which is not highly scalable when exposed to the

growing needs of storing numerous VM images.
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C. Network Data Transfer

The benefit of deduplication is not only limited to disk space

savings. LBFS [19] reduces amount of data sent over network

by means of variable-length deduplication, transferring only

the blocks not present on target node. Source code manage-

ment systems such as git [20] also adopt this approach,

only transferring data not existing on target machine. These

optimizations greatly reduced network bandwidth consump-

tion. Droplet borrows this approach to reduce network traffic

between deduplication nodes and storage nodes.

D. Storage for Data Blocks

Haystack [21] is an object storage system designed for Face-

book’s Photo application. By storing multiple small files into

one big file, it avoids additional disk operations incurred by

file systems. Haystack is append-only, delete images by special

marks, and need to be rewritten to compact spaces occupied by

deleted images. The Haystack approach enlightened the design

of droplet storage nodes, which combines write requests of

small data block into large lumps, and flush them to disk in

similar format like Haystack.

E. Distributed Storage Systems

The master node in GFS [22] provides routing service to

all client nodes. This results in a high CPU burden on the

master node, even though individual request rate from each

client node is relatively low. Droplet reduces CPU burden on

Meta server by caching the routing table to each fingerprinting

server. The fingerprinting servers find corresponding storage

server from its cached routing table, and will fall back to

querying Meta server when failed to find or connect to the

storage servers.

Amazon’s Dynamo [23] used DHT [24] to organize its

content. Data on the DHT is split into several virtual nodes,

and being migrated for load balance in unit of virtual nodes.

Droplet follows this approach by splitting data blocks into

shards according to their fingerprints, and split them across

all storage nodes.

VI. CONCLUSION

We presented droplet, which is a distributed deduplication

system with good IO performance and high scalability. Droplet

provides good IO performance by combining multiple write

requests of small data blocks into large lumps of data, which

exploits the high throughput of sequential IO on magnetic

disks. The data blocks are scattered among all storage nodes

by their fingerprints. Adding new storage nodes will alleviate

RAM consumption of fingerprint index on all storage nodes,

and bring linear speedup on throughput.

Droplet achieves maximum deduplication throughput by

storing whole fingerprint index inside RAM, completely avoid

any disk access when doing fingerprint lookup. Such exclusive

usage of RAM storage has also been advocated by [11]. This

approach could achieve best performance with reasonable cost,

as RAM price is becoming cheaper. The index in RAM con-

tains only minimum necessary information, efficiently utilizing

the RAM storage.

Droplet shows that it is worthy to place whole fingerprint in-

dex into RAM storage. The system provides best performance

with a reasonable cost.
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