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Emerging non-volatile memory (NVM) offers non-volatility, byte-addressability, and fast access at the same

time. It is suggested that programs should access NVM directly through CPU load and store instructions.

To guarantee crash consistency, durable transactions are regarded as a common choice of applications for

accessing persistent memory data. However, existing durable transaction systems employ either undo logging,

which requires a fence for every memory write, or redo logging, which requires intercepting all memory reads

within transactions. Both approaches incur significant overhead.

This article presents DudeTx, a crash-consistent durable transaction system that avoids the drawbacks of

both undo and redo logging. DudeTx uses shadow DRAM to decouple the execution of a durable transac-

tion into three fully asynchronous steps. The advantage is that only minimal fences and no memory read

instrumentation are required. This design enables an out-of-the-box concurrency control mechanism, trans-

actional memory or fine-grained locks, to be used as an independent component. The evaluation results show

that DudeTx adds durability to a software transactional memory system with only 7.4%–24.6% throughput

degradation. Compared to typical existing durable transaction systems, DudeTx provides 1.7× –4.4× higher

throughput. Moreover, DudeTx can be implemented with hardware transactional memory or lock-based con-

currency control, leading to a further 1.7× and 3.3× speedup, respectively.
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1 INTRODUCTION

Emerging non-volatile memory (NVM) technologies [5, 31, 71] are promising because they of-
fer non-volatility, byte-addressability, and fast access at the same time. Phase change memory
(PCM) [36, 48], spin-transfer torque RAM (STT-RAM) [2, 35], and ReRAM [1] are representative
examples of NVM. Notably, Intel and Micron recently announced 3D XPoint, a commercial NVM
product on the way to the market [30]. As NVM enjoys DRAM-level access latency, empirical stud-
ies [14, 24, 34, 60, 72, 73] suggest that NVM should be directly accessed through the processor-
memory bus by load/store instructions, making a persistent memory. It avoids the overhead of
legacy block-oriented file systems or databases. Persistent memory also allows programmers to
update persistent data structures directly at byte level and without the need for serialization to
storage.

While persistent memory provides non-volatility, it is challenging for an application to ensure
correct recovery from the persistent data on a system crash, namely, crash consistency [45, 60]. A
solution to this problem is using the crash-consistent durable transaction, which makes a group of
memory updates appear as one atomic unit with respect to a system crash. Durable transactions
offer both strong semantics and an easy-to-use interface. Many prior works [24, 28, 34, 60] have
provided durable transactions as the software interface for accessing persistent memory data.

Most implementations of durable transactions enforce crash consistency through logging [14,
28, 34, 67]. However, there is a dilemma in choosing between undo logging and redo logging [61],
the two basic logging paradigms. In undo logging, the original (old) values are stored to a log
before they are modified by a transaction. Having its old value preserved in the log, the data can
be modified in-place. Therefore, a memory load can directly read the latest value without being
intercepted and remapped to a different address. This avoids noticeable overheads, thus many
systems [14, 28, 34, 67] use undo logging. However, undo logging requires each in-place update
to perform after the logged old value is persistent, so that a transaction is able to roll back to the
original value if a crash occurs. To enforce this order, the system uses persist, a costly operation
to flush the logged old value from CPU caches to NVM for every update. This incurs significant
overhead [24, 60, 61]. To mitigate the overhead, one approach [28, 34] is to log all the old values
that are about to be updated in a transaction at once, reducing the frequency of persist ordering
from once per update to once per transaction. However, this method requires prior knowledge of
the write set of a transaction and hence supports only static transactions (accordingly, we refer to
transactions without predefined write sets as dynamic ones).

To the contrary, redo logging [24, 60, 67] imposes only one persist order for each transaction,
no matter whether the transaction is static or dynamic. In particular, all memory updates of a
transaction are first buffered in a log in persistent memory, and then applied to the data in-place.
The process is referred to as update redirection. The system only needs to guarantee that updates
of old values happen after the whole log is persisted, incurring only one persist per transaction.
However, since the data updates are buffered in the log, the reads of them in a transaction must be
remapped to the log to obtain the latest values. The overhead of such address remapping entailed
by update redirection is expensive [51, 61]. Recently, Kiln [73] avoids the overhead by using non-
volatile caches. However, it requires non-trivial hardware changes, including modification of the
cache coherent protocol.

The dilemma between undo and redo logging is essentially a tradeoff between update redirec-
tion cost and persist ordering cost. For any design, either in-place update with per-update persist
ordering overhead (as in undo logging) or transaction-level persist ordering with update redirec-
tion overhead (as in redo logging) have to be employed. Nevertheless, our investigation demon-
strates that it is possible to make the best of both worlds while supporting both dynamic and static
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transactions. The key insight of our solution is decoupling a durable transaction into three fully

asynchronous steps. (1) Perform: execute the transaction on a shadow memory,1 and produce a
redo log for the transaction. (2) Persist: flush redo logs of transactions to persistent memory in
an atomic manner. (3) Reproduce: modify original data in persistent memory according to the per-
sisted redo logs. It is essential that we never directly write back dirty data from shadow memory to
persistent memory—all the updates are realized via the logs. That means we never have to worry
about uncontrollable CPU cache eviction violating the crash consistency guarantee, because the
evicted data from CPU caches is only written to the shadow memory. By decoupling, our solu-
tion can perform in-place update in Perform, and requires only transaction-level persist ordering
in Persist and Reproduce, achieving both minimal update redirection overhead and low persist
ordering overhead.

A core component of our decoupled framework is a shared, cross-transaction shadow memory. It
acts as a volatile mirror/cache of the persistent memory. More importantly, it only requires page-

level mapping, which is coarse-grained and can be efficiently supported by the operating system
and CPU hardware. In contrast, traditional redo logging incurs costly object-level or even byte-
level address mapping implemented by software.

This article presents DudeTx, a durable decoupled transaction system on persistent memory
that implements the above insight and design rationale. Besides resolving the dilemma between
undo and redo logging, DudeTx offers three other advantages as follows.

First, Perform in DudeTx is a decoupled step that simply executes concurrent transactions on
shadow memory. As a result, users of DudeTx can optionally adopt an existing concurrency con-
trol mechanism to guarantee the isolation property of those transactions. To demonstrate this
capability, we show the methods to integrate DudeTx with three main types of concurrency con-
trol mechanisms: (1) an out-of-the-box software transactional memory system (STM, Section 4.1);
(2) a hardware transactional memory system that is slightly customized (HTM, Section 4.2); and (3)

direct use of locks (Section 5). Although the implementation of these concurrency control mech-
anisms vastly differ from each other, the integration to DudeTx is almost the same and simple. In
other words, we essentially provide a framework of designing and implementing durable transac-
tions that can cooperate with existing concurrency control mechanisms.

Second, in DudeTx, each thread conducts Perform of consecutive transactions back-to-back,
without stalling due to persistence. By design, DudeTx reduces persistence-induced stalls with
less complexity than recently proposed relaxed persistence models [32, 34].

Third, the fully decoupled framework introduces many unique optimization opportunities, such
as applying cross-transaction write combination and data compression to the redo logs before
flushing them in Persist. These optimizations can improve the throughput and, in certain cases,
significantly reduce the amount of writes to persistent memory (whose endurance is much lower
than DRAM [11, 23]).

In summary, we make the following contributions.

—We propose a decoupled framework for implementing durable transactions on persistent
memory. It incorporates a shared, cross-transaction shadow memory, and achieves advan-
tages of both traditional undo and redo logging. One of our implementations, based on
an existing STM named TinySTM [21], achieves 1.7×–4.4× higher throughput than prior
systems, NVML [28] and Mnemosyne [60], while running various benchmarks including
TPC-C [58] and TATP [56].

1The shadow memory can be either volatile or non-volatile. Considering performance advantage, we assume use of DRAM.
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—We demonstrate the benefits of several optimizations that are uniquely enabled by our de-
coupled framework. Specifically, we apply cross-transaction write combination and data
compression to the redo logs. Our experiments show that these techniques can reduce the
amount of writes to persistent memory by up to 93%.

—For the first time, an out-of-the-box concurrency control mechanism, STM or HTM (with
minor modification) or locking, can be used as a stand-alone component for implement-
ing durable transactions on persistent memory. Most prior durable transaction systems are
coupled with and bound to a specific transactional memory implementation. Besides, our
evaluation shows that HTM and fine-grained locks give an additional 1.7× and 3.3× speedup
over the STM-based DudeTx, respectively.

2 BACKGROUND AND MOTIVATION

2.1 Requirements of Durable Transactions

Requirements of database transactions have been well defined. They are applicable to persistent
memory. We briefly review the four properties of a full transaction on persistent memory, i.e.,
atomicity, consistency, isolation, and durability (ACID) [25].

First, a persistent memory system may contain volatile storage components, such as CPU caches
or DRAM, for performance purposes [46]. Still, it has to retain data updates of any acknowledged
transaction despite power loss or system crashes. This property is referred to as durability. Second,
a logical update of data records performed by a transaction typically constitutes multiple writes
to various addresses in persistent memory. To ensure correctness of application semantics, these
writes have to be executed “all or nothing.” That means, either all writes of a transaction are suc-
cessfully performed, or none of them are performed (i.e., data in persistent memory is intact). This
property is called atomicity. Third, when multiple transactions execute concurrently in the sys-
tem, each transaction should see an isolated view of the memory data. Specifically, data updates
made by one transaction should be invisible to other concurrent transactions until the transaction
is committed. This property is isolation. There are three paradigms to realize isolation: STM, HTM,
and lock acquiring/releasing. Transactional memory (TM) has an easy-to-use interface, but sacri-
fices performance because it has to trace all memory read and write operations of a transaction
as a whole. On the contrary, fine-grained locks may enable more concurrency. But it is hard to
develop correct lock-based programs. Finally, the consistency property means that each update to
the memory data only brings the data from one consistent state to another. The definition of a con-
sistent state is application-specific. It most cases, the application rather than the storage system
is responsible for defining consistent data updates. Prior research [21, 22, 25, 26] has shown that
the transaction with atomicity and isolation guarantees is a powerful and convenient interface to
realize consistency.

The durable transaction in this article provides full ACID properties. Thus, it is different from
the well-known storage transaction described in [39, 41], which only requires one transaction to
be atomically persisted to storage devices.

2.2 Drawbacks of Undo and Redo Logging

In order to develop durable transactions for persistent memory, logging techniques have been
proposed. For example, NVML [28], NV-Heap [14], and DCT [34] are based on undo logging, which
records old values to a separate log before actually modifying the data. Undo logging is prevalent
because it enables transactions to perform in-place updates, avoiding the overhead of redirecting
updates. However, undo logging has to ensure the following persist order: for each single update,
the undo log is flushed to persistent memory before the corresponding in-place update is applied
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to the real data structure. Typically, the persist order is enforced by a persist operation which
includes cache line flushing (e.g., CLFLUSHOPT, CLWB) and store ordering (e.g., SFENCE, or deprecated
PCOMMIT) [54], incurring significant overhead [11, 20, 57, 60]. Hence, it is prohibitively expensive
to enforce persist ordering for every memory write in a transaction.

To mitigate this issue, DCT [34] and NVML [28] perform all undo logging of old data at the
beginning of a transaction, so that only one persist ordering is needed for the transaction. However,
this solution requires prior knowledge of the write set of a transaction and hence only supports
static transactions. If such knowledge is not available, their authors claimed that a program must
execute a read phase to identify all regions it might touch and acquire all locks. Clearly, it would
introduce considerable performance penalty.

Another approach of supporting durable transactions is based on redo logging, which requires
only one persist ordering for each transaction, no matter if it is a static or dynamic transaction.
Take Mnemosyne [60] as an example. Every memory write in a transaction is intercepted and
transformed to an append operation to the redo log, which stores the new values (uncommitted
data); at the same time, all memory reads of the transaction to the uncommitted data are redi-
rected to the redo log to obtain the latest values. After the transaction is committed, all the redo
log records of the transaction are flushed to persistent memory at once. The tradeoff is that one
can reduce the number of persist ordering (as in undo logging), at the cost of intercepting and
redirecting writes and reads.

LOC [41] removes persistence ordering of redo logging by modifying hardware. It provides eager
commit and speculative persistence to remove intra-transaction ordering and inter-transaction or-
dering, respectively. However, these existing techniques still suffer redirecting overhead. Although
object-based [3, 37, 55] or block-based [53, 69] storage systems can alleviate the cost by increasing
the redirection or mapping granularity, TM systems for persistent memory have to support fine-
grained byte-level redirection or mapping [22, 62]. Indeed, a page-level mapping mechanism (e.g.,
as used in eNVy [67]), incurs lower overhead than a finer-grained mapping mechanism (e.g., as
used in Mnemosyne [60] or SoftWrAP [24]) because page-level mappings occupy relatively small
memory space and can be accelerated by CPU Translation Lookaside Buffer (TLB) hardware. How-
ever, it introduces the write amplification issue in which an entire page may have to be read or
written in order to update just a few bytes of the page. In contrast, a fine-grained mapping can min-
imize the write amplification. Overall, the redirection-induced cost in the traditional redo logging
mechanisms is significant [51, 61].

Considering both undo and redo logging, we realized that the overhead of persist ordering and
address mapping are introduced due to the lack of efficient control of when a memory store actually
modifies the data in persistent memory. With undo logging, the system does not know when an
in-place update will be evicted from the CPU caches to the persistent memory. To guarantee the
ability to rollback a transaction, we have to ensure that the undo log becomes persistent before
issuing the in-place data update to persistent memory. With redo logging, the new data is stored
in a redo log, so that the evictions do not matter. Unfortunately, as a result, the address mapping
mechanism and its overhead become inevitable.

In essence, current systems couple the memory stores in volatile memory with their persistence
in NVM. Without significant hardware modifications, we believe that decoupling the persistence
is the best (and possibly the only) way to avoid the drawbacks of both undo and redo logging and
reduce the performance penalty.

3 THE DECOUPLED FRAMEWORK

Based on the principle of decoupling, this section describes the design of DudeTx, a C library that
provides the guarantees of complete ACID in spite of a system crash. DudeTx provides two kinds
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of interface: (1) TM-based interface and (2) lock-based interface, which share a same inner frame-
work. In this section, we take TM-based interface as an example to show this inner framework.
Implementation-dependent issues will be described in Section 4 (for TM-based DudeTx) and Sec-
tion 5 (for directly using locks), respectively. In other words, in this section, we focus on describing
the method of building durable transactions with an out-of-the-box isolation control component.

3.1 The Decoupled Framework

To realize the efficient decoupled execution, we make the following design choices. First, we main-
tain a single shared, cross-transaction shadow memory, which is logically a volatile mirror or cache
of the whole persistent memory space. The key feature is that the shadow memory is shared among
transactions rather than transaction-local [24, 60, 67]. It enables cost-effective page-level manage-
ment of the shadow memory, which requires less metadata than finer-grained management and
enables use of hardware support such as TLB. A transaction-local shadow memory hardly uses
page-level management because of excessive memory I/O. When a small object is to be updated,
a full shadow page may have to be read from the persistent memory. In DudeTx, the page is not

discarded after the transaction ends. That means subsequent transactions can still access that page.
Therefore, the cost of extra memory I/O is amortized among multiple transactions in DudeTx.

Second, we use an out-of-the-box TM2 to execute transactions on the shadow memory for iso-
lation and consistency. A TM implementation can by definition execute transactions in isolation
and ensure application-defined consistency, by detecting and resolving conflicts. Decoupled with
TM, the durability and atomicity of the updates of each transaction are ensured by DudeTx library
during flushing the updates to persistent memory after TM commits the transaction.

Third, we use a redo log as the only means to transfer updates on the shadow memory to the
persistent memory. The reason why we do not choose undo logging is that its persist ordering
requirement would inevitably introduce persistence latency into the critical path of transaction
execution. The redo log ensures that no dirty data is ever directly written back to the persistent
memory. This design guarantees that a TM can safely execute on the shadow memory without
affecting persistent memory. Also, all updates to the persistent memory are crash consistent.

Following the above design choices, we build a framework to realize the whole execution of an
ACID transaction into three decoupled, asynchronous steps as follows.
Perform: Transactions execute with an out-of-the-box TM on top of the shadow memory and
access volatile data by load/store instructions. The TM guarantee the isolation and atomicity prop-
erties in the volatile memory. Each committed transaction generates one redo log, which is tem-
porarily stored into one of the thread-local log buffers. This avoids contention among threads.
Persist: The committed transactions are persisted by flushing their redo logs to a log region in
persistent memory. It can be done by the background threads (typically one is enough). This step
ensures the atomicity and durability properties of the transactions.
Reproduce: The system finally reproduces the updates of a transaction and modifies the data in
persistent memory according to the redo log. This is the only step that operates on the actual
persistent data structures of the application. Reproduce can be performed in the background.

Although Reproduce is necessary for completing a transaction, a transaction is considered to be
persistent in DudeTx once its Persist step is finished, because we can always perform Reproduce
as long as the redo log is persisted.

Figure 1 depicts DudeTx’s memory architecture and demonstrates the three decoupled steps.
The NVM and (part of) DRAM are mapped to an application’s address space. Different from the

2As we have mentioned before, in this section, we will use TM-based DudeTx as an example to show the shared inner

framework. Issues related to lock-based DudeTx will be discussed in Section 5.
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Fig. 1. DudeTx memory architecture and data movement in the three steps. Data X, Y, and Z locate at

addresses a, b, and c in the persistent memory, respectively. These addresses are mapped to a′, b′, and c′ in

the shadow memory.

regular memory mapping, DudeTx maintains two physical pages for a logical page: (1) one volatile
shadow page as the shadow memory in DRAM, which is visible to the application and can be di-
rectly accessed by load/store instructions of transactions (in the Perform step); and (2) one persis-

tent page stored in the persistent memory or NVM, which is only modified by background threads
in the Reproduce step. The two pages communicate only via redo logs, which also occupy two
regions in DRAM and NVM—the volatile log region and persistent log region, respectively. The
arrows show data movement in the three steps. We can see that each of the two log regions acts
as a channel connecting two steps. If the size of the shadow memory is equal to that of the per-
sistent memory, the address mapping between them is simply a constant offset; otherwise, we
implement dynamic address mappings and page-in/out as will be described later in Section 3.6.
Next, we introduce more details of the three steps.

DudeTx offers five APIs for applications to use: dtmBegin, dtmEnd, dtmAbort, dtmRead, and
dtmWrite. A transaction should be wrapped with a pair of dtmBegin and dtmEnd. Users need
to replace all memory reads/writes in a transaction with dtmRead and dtmWrite, respectively.
Algorithm 1 gives an example of using DudeTx to perform a transaction that transfers $1 from
one account to another in a bank.

3.2 Perform

DudeTx integrates an out-of-the-box TM system to perform the functions of the five APIs in the
shadow memory. Algorithm 2 presents the pseudo-code to implement DudeTx’s APIs with an
existing TM, whose corresponding functions are referred to as tmBegin, tmEnd, tmAbort, tmRead,
and tmWrite. dtmBegin and dtmRead simply call tmBegin and tmRead, respectively. dtmWrite has
to append an entry to the local volatile redo log of the transaction, in addition to calling tmWrite.
The entry consists of the address and the value of the write. dtmEnd appends an end mark to the
volatile redo log, and dtmAbort clears redo log entries generated by the aborted transaction.

For simplicity, DudeTx assumes that the TM provides transaction ID that is a globally unique
and monotonically increasing number. The transaction ID indicates the global order of committed
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ALGORITHM 1: Transactional Transfer

Func transfer(src, dst)
/* transcation begin */

dtmBegin();

/* using dtmRead to read */

srcBalance = dtmRead(accounts[src]);

/* checking balance */

if srcBalance ≤ 0 then

/* abort in transaction */

dtmAbort();

end

/* using dtmWrite to write */

dtmWrite(accounts[src], srcBalance - 1);

dstBalance = dtmRead(accounts[dst]);

dtmWrite(accounts[dst], dstBalance + 1);

/* transaction end */

dtmEnd();

ALGORITHM 2: DudeTxAPIs Implementation

Func dtmBegin()
return tmBegin();

Func dtmRead(addr)
return tmRead(addr);

Func dtmWrite(addr, val)
/* the thread-local redo log recording the address and value */

vlog.AppendEntry(addr, val);

/* transactional memory write */

return tmWrite(addr,val);

Func dtmAbort()
/* clear log entries generated in this transaction */

vlog.PopToLastTx();

tmAbort();

Func dtmEnd()
/* get transaction id */

tid = tmEnd();

/* append an end mark */

vlog.AppendTxEnd(tid);

transactions in Perform. DudeTx follows this order to Reproduce transactions based on redo logs
from different threads. Most existing TM techniques can produce this ID as they already maintain
a global clock in their implementations [21, 22]. Meanwhile, according to our experiments, the
current maximum transaction throughput has not reached such a level that the global clock is the
bottleneck.
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In DudeTx, each volatile redo log is stored in a fixed-length, circular buffer, which maintains
a pair of cursors pointing to the log head and end, respectively. Because the size of a volatile log
buffer is limited, if the buffer is full, the Perform thread will be blocked and wait for a thread doing
Persist to flush the log and unblock it. In our evaluation, we find that the log flushing of Persist
is generally faster than the log entry generation of Perform.3 Therefore, a thread rarely blocks for
this reason in practice.

3.3 Persist

DudeTx maintains one or more background threads (typically one is enough) to continuously
flush redo logs from the volatile log region to the persistent log region. These Persist threads
work together to determine a global latest durable transaction ID (“durable ID” for short) so that all

transactions with smaller durable IDs are persistent. Consequently, a Perform thread can query
the global durable ID and response to callers of earlier transactions with the status of durability.

When a Perform thread is created, DudeTx assigns a Persist thread that is responsible for
flushing redo logs of that Perform thread. The Persist thread maintains, in the persistent log
region, a thread-local persistent log buffer, similar to the volatile log buffer accessed by the Perform
thread. The redo logs do not have to be flushed according to the commit order of transactions,
because only the Reproduce step updates actual data in persistent memory. In other words, only
Reproduce needs to follow the transaction commit order. Due to the potential out-of-order redo
log flushing, Persist of a transaction is only considered to be finished when the global durable
ID is larger than its transaction ID. In any case, DudeTx does not need to wait for the finish of
Reproduce to acknowledge durability of a transaction, because the transactions with Persist
finished can be always replayed with the redo log to reproduce all memory updates.

Moreover, although the redo log of a transaction can be flushed to persistent memory imme-
diately after the transaction is committed in Perform, DudeTx have the freedom to persist redo
logs in a batched manner. This brings new optimization opportunities that are only possible in our
decoupled framework. We use cross-transaction log combination and log compression to reduce
the amount of writes to persistent memory which has limited endurance compared with DRAM.
Log Combination. If two writes modify the same memory address, they can be coalesced when
flushed to the persistent log. The earlier write of them can be saved as long as they are flushed
atomically. Such log combination has been applied to the cross-transaction case in other fields,
e.g., MobiFS [50]. However, for durable transaction systems, this technique is only applicable with
our decoupled framework. The Persist thread splits successive transactions into groups. In each
group, it reads log entries by the order of their transaction ID and inserts them into a hash table.
Later log entries can overwrite earlier entries if they write the same data addresses. Finally, a group
of log entries is flushed in an atomic manner.
Log Compression. The write size of Persist can be further reduced by compressing the com-
bined logs before flushing them to persistent memory. DudeTx uses the lz4 [15] algorithm and
achieves a compression ratio over 69% in our experiments. It is important to note that the decom-
pression is not always needed. We can keep a redo log in the volatile log region even after the log
has been flushed to persistent memory, if extra memory space is available. Reproduce can directly
read redo logs from the volatile log region. Therefore, without a crash, the overhead to read out
and decompress the redo logs from persistent memory can be avoided.

3Pure log generation (in the cache) is faster than log flushing (in the NVM). But the log generation is only one part of the

transaction execution. Accessing data, acquiring/releasing locks, and so forth consumes most of the CPU times. Thus, in

the real world, log flushing is faster.
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3.4 Reproduce

In Reproduce, DudeTx replays redo logs according to the order determined by transaction IDs and
recycles the replayed logs. The only necessary persistence ordering in this step is to ensure that
recycling happens after the logs have reproduced their updates to the persistent memory. DudeTx
can only start reproducing a transaction after it is durable, i.e., its transaction ID is smaller than the
current global durable ID. When cross-transaction log combination is used, the recycle granularity
is enlarged to a group of transactions.

3.5 Recovery

During recovery, DudeTx scans the whole persistent log region and replays logs that have not been
processed by Reproduce. Similar to Reproduce, the recovery replays the redo logs in an increasing
order of their transaction IDs until it finds a transaction whose log is omitted or incomplete. The
incomplete log, along with its corresponding transaction, is abandoned. Since the transaction must
have not been acknowledged with durability, the application should re-execute the transaction if
it promises ACID transactions to users.

Another step in recovery is to restore persistent memory allocation information. Similar to other
durable transaction systems [24, 28, 60], DudeTx provides pmalloc and pfree for applications to
allocate and free persistent memory. The specific allocation algorithm is orthogonal to our design,
but the system needs a separate log for each thread to record all the pmalloc/pfree operations of
each transaction. On recovery, these logs are also scanned so that DudeTx can determine which
regions of persistent memory are allocated.

3.6 Memory Management

In a practical hybrid system configuration, the size of shadow memory is typically smaller than
the size of persistent memory. This is because one may intend to use DRAM only as the shadow
to achieve the best performance and, currently, the density of NVM is higher than DRAM. In such
a case, a paging mechanism is required, and its implementation is critical to the performance of
the whole DudeTx system.

Our paging mechanism is similar to the one used in operating systems. When a transaction
accesses a memory address whose page is not present in the shadow memory, a page fault is
triggered and the page in persistent memory is swapped in as a shadow page. If no shadow memory
space is available, DudeTx has to evict an existing shadow page. Consequently, the persistent-
shadow page address mappings have to be updated accordingly. Meanwhile, different from the
traditional OS paging, the evicted page is simply discarded without any writing back. It is correct
because all updates to that page by different threads have already been recorded in redo logs,
which will be eventually reproduced in persistent memory asynchronously (if the transaction is
successfully committed in Perform step).

Since a page could be evicted without writing back, we are required to address a subtle issue:
we need to ensure that all updates to a persistent page have been reproduced when the page needs
to be swapped into the shadow memory. To ensure this requirement, we maintain a touching ID

for each page, which is the ID of the last transaction that writes on the page. Before loading a
persistent page into the shadow memory, DudeTx compares its touching ID and the ID of the
most recent transaction that has finished Reproduce. If touching ID is bigger, that is, modified
data in this page has not been updated in persistent memory yet, the page loading needs to wait
until the touching ID becomes smaller.

As for the address translation mechanism, in DudeTx, we provide both hardware-based and
software-based paging methods.
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ALGORITHM 3: Software-Based Address Paging

Func transfer(vaddr)
page = addr_to_page(vaddr);

while true do

if page.ref < 0 then

swapIn(page);

else

ref = page.ref;

if compare_and_swap(page.ref, ref, ref+1) then
return translate(addr)

end

end

end

Func swapOut(page)
if compare_and_swap(page.ref, 0, -1) then

return true;

else

return false;

end

3.6.1 Hardware-Based Paging. As we mentioned above, there are two physical memory
regions: the shadow memory and the persistent memory. But they are both invisible to users. We
provide a virtual address space for users, which is supposed to be persistent and has the same size
of the persistent memory region. The virtual address is logically equal to the persistent memory
address. That is, if a user wants to access virtual memory, which he regards as persistent memory,
the OS would translate this address to shadow memory transparently. This mapping is done by
page table in OS, so the program can directly access value on the shadow memory through the
assistance from TLB. No overhead exists in this translation. When a page fault happens, a free
shadow page is selected to map this virtual page and page table is updated.

We use Dune [6] to manage page faults and page mappings. Dune utilizes Intel’s VT-x virtual-
ization technique to enable user-space programs to handle page fault exceptions. When there are
not enough free shadow pages, we pick up some pages and evict them directly. Before that, we
have to delete page table entries and flush TLB entries in all processors, i.e., do TLB shootdown.
We add a TLB shootdown feature to Dune by reusing the inter-processor interrupt facility in the
Linux kernel. DudeTx has to stall all processors and issue the INVVPID instruction to flush all TLB
entries.

3.6.2 Software-Based Paging. Although the hardware-based paging mechanism is fast in trans-
lating, its cost on page eviction is high (i.e., it has to stop all processors for doing TLB shootdown).
As a result, it is suitable for workloads that have a low swapping frequency. As a complement, we
also implement a software-based paging mechanism that maintains a simple one-level page table
in DRAM. In this case, every dtmRead/dtmWrite operation has to first look up the page table for
translating a virtual address to an address4 in the shadow memory. The address translation and
page swapping are all controlled by our software library.

4In the software-based approach, this address is also a virtual address managed by OS. But this address is not exposed by

DudeTx to the application.
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Software-based paging does not have to stop all processors when swapping out pages. Page
swapping in/out can be done with other transactions’ execution simultaneously. Thus, it is more
efficient when there are too many page evictions than hardware-based paging. But we have to
ensure that a page to swap out is not being used by any other transactions. To that end, we record a
reference in each page that is the number of transactions accessing the page. A page with reference
more than zero is not allowed to swap out. If reference of a page is smaller than zero, this page is
swapped out.

Algorithm 3 shows how we use this reference to transfer a virtual address and swap out pages.
(1) In transfer, we check if the reference of the page is smaller than zero first. If yes, a swap in

procedure has to be invoked. Otherwise, we try to use compare and swap based atomic instruction
to update the reference value. Then, it is safe to read the global page table and translate the address.
(2) In swapOut, we simply use a compare and swap instruction to mark that the page is evicted.
The result is false means that the page is used by other transactions or has already been swapped
out.

4 TM-BASED DUDETX

In this section, we describe the implementation of DudeTx on STM and HTM.

4.1 STM-Based Implementation

We developed an implementation of DudeTx using Tiny-STM [21], a lightweight STM that rep-
resents the category of time-based software TM [21, 22, 52]. TinySTM maintains a timestamp for
every object and tries to linearize concurrent transactions. If a transaction fails to access a “snap-
shot” of all the objects it accesses during execution, it is aborted via a longjump to roll back to the
begin of execution. One of the following two methods can be used to support rollback of memory
updates in TinySTM: Write-back access does not modify the shadow memory during a transaction,
but records the write set, which is simply discarded if the transaction is aborted. Write-through

access directly modifies the shadow memory but records old values before modification. If the
transaction is aborted, the old values are restored. We choose the write-through access in our
implementation as it permits in-place update.5

By design, the three steps in DudeTx’s framework are asynchronous, ensuring different prop-
erties of ACID. In the implementation, applications can use different options to ensure these prop-
erties. One option is to let dtmEnd wait for Persist until the transaction is durable. In that case,
DudeTx directly provides full ACID transactions through its APIs as specified in Section 3.2. The
other option is more flexible and may have performance advantage. In this case, dtmEnd imme-
diately returns without waiting for its log to be durable, so that the Perform thread can execute
transactions back-to-back and the execution does not suffer from persistence-induced stalls. At this
point, the transaction is not guaranteed to be durable. An application may require that a transac-
tion should be durable before responding to external users. To fulfill such requirement, DudeTx
can expose the application individual transaction IDs and the global durable ID to the users. Then
the application based on DudeTx can periodically check the global durable ID and notify the users
that all transactions with smaller IDs than durable ID can be acknowledged with full ACID.

4.2 HTM-Based Implementation

Intel’s Haswell processor supports Restricted Transactional Memory (RTM) [29]. As a represen-
tative HTM implementation, RTM offers XBEGIN and XEND to specify an HTM transaction, a code

5Essentially, this is a form of undo logging, but as the shadow memory is volatile, there is no costly persistence ordering

issue.
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region to be executed atomically and in isolation. Conflicts between HTM transactions on different
cores are detected by the cache coherence protocol. Programs can choose to re-execute an aborted
transaction or execute a fallback routine.

The interface of HTM is largely identical to a STM, so using HTM for DudeTx is straightforward.
We replace tmBegin, tmAbort, tmRead, and tmWrite in Algorithm 2 with XBEGIN, XABORT, regular
memory read, and regular memory write, respectively.

The only issue is that XEND does not return a transaction ID for DudeTx to determine the trans-
action order. It is easy to maintain a global transaction ID generator in software, such as simply
a long integer incremented in every HTM transaction. Unfortunately, it will lead to a prohibitive
abort rate in the current HTM system, because the global integer itself will introduce conflicts.
We cannot manipulate the ID generator outside a HTM transaction, otherwise the ID value is not
guaranteed to reflect the real order of transactions. To resolve this issue, a minor hardware change
is proposed: we simply require the HTM to ignore conflicts on certain memory addresses. In this
way, the software maintained transaction ID could be allocated in this region and does not cause
aborts due to its increment. In our evaluation, as the proposed hardware support is not available,
we report a good estimate of the HTM-based performance (see details in Section 6.7).

5 LOCK-BASED DUDETX

Previous sections demonstrate that an out-of-the-box transactional memory can be integrated
into our framework. This enables us to easily utilize all the advances of STM and HTM tech-
niques. Meanwhile, using fine-grained locks often supports more concurrency and hence higher
performance than transactional memory. In this section, we further explore the approach to fit-
ting lock-based concurrency control into our decoupled framework. The challenge is that locks
lead to a more complex dependency relationship among durable transactions. Nevertheless, since
our framework elegantly decouples a durable transaction into three steps, such integration is well
supported.

Next, we first introduce the background and a thorough example to explain the difficulties
caused by lock-based concurrency control. Then, we describe the methods to overcome them in
DudeTx, and show that using locks is as simple as replacing them with a wrapped lock implemen-
tation provided by us. Finally, we elaborate on the core design: how to detect dependencies among
transactions.

5.1 Background and Example

For a transactional system, the order to commit transactions is essential. In a TM system, the
order is determined by a monotonic transaction ID assigned to each transaction. However, a lock-
based concurrency control mechanism largely complicates the ordering problem. Such a problem
and lock-based programming model are well discussed in Atlas [8, 9]. We borrow two important
definitions.

Failure-Atomic SEction (FASE): In a single thread execution, a section is failure-atomic if the
following conditions hold:

(1) The point just before the section holds no lock.
(2) The point just after the section holds no lock.
(3) Any point in the section holds at least one lock.

We have to maintain such a property: If any update within a FASE is durable, i.e., visible in NVM
after a failure, then all updates within that FASE must be. The FASE in Atlas has the full ACID
properties (Section 2.1). However, Atlas automatically builds FASE according to lock acquire and
release operations, which limits programming flexibility. For example, users cannot specify two
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Fig. 2. An example of complex dependency relationships: (a) lock-based code to insert an item into an ordered

link list; (b) a possible interleaving that results in circular dependency; (c) a possible dependency graph.

adjacent automatically identified FASEs to be atomically persisted in Atlas. Therefore, we offer an
interface for programmers to specify the scope of a FASE by themselves. A section wrapped by
txBegin() and txEnd() in DudeTx is a FASE. They are not enforced to align with lock operations.
In our context, we continue to use the term transaction to refer to such a FASE.

Durability-Ordered Relationship: If the release operation of a FASE f1 happens before an
acquire operation of another FASE f2, we say f1 is durability-ordered before f2 (donated by f1 <d

f2). Because operations after the acquire operation in f2 depend on data modified by operations
before the release operation in f1, we can easily conclude that if f1 <d f2, f2 should be durable only

if f1 is. In this article, we briefly refer to this relationship as a dependency.
Based on the above concepts, we discuss an example to illustrate a typical case of complex depen-

dency relationships in Figure 2. The example DudeTx code (a) is to insert an item to an ordered link
list. The code contains a pair of txBegin() and txEnd() to wrap a transaction, and locks to pro-
tect access to a single node. The programmer can freely use lock and unlock functions at any point
within the transaction (note that it is programmers’ responsibility to avoid deadlock or double-
entry bugs). Although this convenience enables users to design fine-grained locks to achieve best
performance, it may introduce subtle interleavings that lead to complicated dependency relation-
ships. For example, Figure 2(b) demonstrates a possible interleaving of two transactions m (Tm )
and n (Tn ) running code in (a). We assume a, b, . . . , e in the figure are locks of a sequence of nodes
in the list. The two transactions make circular dependency:Tm <d Tn because of the lock b, while
Tn <d Tm because of the lock d. As a result, it is impossible to decide a global order between these
two transactions.

Atlas solves this problem by merging multiple FASEs into one. Specifically, if a cycle exists
among FASEs, i.e., if f1 <d f2 <d · · · <d f1, then all of the constituent FASEs must be durable if
one of them is. For example, Figure 2(c) depicts a dependency graph, where each node represents
a transaction and each arrow represents a dependency. In this figure, Transaction 4 and Transac-
tion 5 circularly depend on each other. They should be considered as a single logical transaction
to be committed in an atomic manner. Thus, the two transactions should be merged. Furthermore,
the complexity grows as the graph expands with other dependency relationships. For example,
Transaction 5 depends on Transaction 2. So, Transaction 4 and Transaction 5 can be committed
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only if Transaction 2 can be. In other words, Transaction 4 and Transaction 5 should both be rolled
back if Transaction 2 is aborted (i.e., cascading roll-back).

5.2 Building Dependency Graph

In DudeTx, we provide wrapped lock/unlock functions that automatically generate the depen-
dency graph on-the-fly. As Figure 2(a) already shows, programmers still need to use txBegin and
txEnd to annotate a transaction, so that all updates within the transaction scope are persisted on
NVM in an atomic manner. But using lock-based concurrency control with DudeTx is as simple
as replacing the regular locks with the wrapped ones provided by DudeTx. Particularly, program-
mers only need to use the DudeTx wrappers txLock and txUnlock to replace the regular lock
and unlock in the code, respectively. The wrappers add the functionality to record necessary in-
formation for constructing a dependency graph.
txUnlock attaches a metadata to the lock it releases. This metadata describes the transaction that

executes this txUnlock. It includes the transaction’s ID and the executing thread’s ID. Based on
the metadata, a following transaction that acquires the same lock can notice a dependency on the
precedent transaction. This is done by txLock. Then, we can establish a dependency relationship
between the two transactions.

The dependency graph shown in Figure 2(c), for example, is generated in the following steps:
(1) When txBegin is called, a new node is added to the graph. (2) An execution of txLock will add
an arrow to the current transaction from the last transaction that releases the lock. In addition to
dependency relationships among transactions from different threads, we also add a dependency
from a transaction x to a transaction y if y is executed immediately after x in the same thread.

5.3 Reproduce According to the Dependency Graph

As the dependency graph is generated on the fly, we can group the transactions/nodes into two
categorizes: (1) volatile transactions, whose logs are not yet persisted; and (2) persistent trans-
actions, whose logs are all persisted on NVM. We use gray nodes and white nodes to represent
these two kinds, respectively. For example, in Figure 2(c), transactions 1, 2, 3, 4, 5, 6 are persistent
transactions while transactions 7, 8, 9 are volatile transactions. Note that a volatile transaction can
either already finish its execution in the shadow memory or be in the process.

But the difficulty here is that an individual persistent transaction is not always a reproducible

transaction. A transaction is reproducible if it is safe to apply logs of the transaction to the original
data. It is possible that a persistent transaction has to be rolled back because a transaction that it
depends on is aborted or rolled back. Such a persistent transaction is not reproducible.

As described in Section 4.1, it is relatively easy to identify reproducible transactions in a TM
setting. A persistent transaction is reproducible if its ID is smaller than the global durable ID. But,
in a lock-based setting, there is no monotonic transaction ID that defines this global order. Instead,
we can only determine a reproducible transaction from its relationships in the dependency graph: a
transaction is reproducible if (1) it is a persistent transaction, and (2) all the transactions it depends
on are reproducible.

In our implementation, a background thread continuously seeks for reproducible transactions
according to the above definition. Once a reproducible transaction is identified, it is removed from
the dependency graph and passed to the Reproduce thread.

Atlas provides a method to detect reproducible transactions in the dependency graph. It marks
all persistent transactions as reproducible at first, and then gradually invalidates false marks. The
invalidation procedure works by iteratively transferring a transaction’s state from reproducible
to non-reproducible if it relies on a volatile or non-reproducible transaction. For each transaction
that is transferred from reproducible to non-reproducible, a depth first search (DFS) is performed
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to mark all transactions that depend on it as non-reproducible. After the procedure terminates,
transactions that are still reproducible can go through Reproduce. Take Figure 2(c) as an exam-
ple. Initially, all transactions are labeled as reproducible. Then, because Transaction 2 relies on a
volatile transaction, its state is transferred to non-reproducible, which leads to a DFS that marks
Transaction 4 as non-reproducible as well. In the end, only Transactions 1, 3, and 6 are still marked
as reproducible. We name this method two-round detecting, because some transactions may be ac-
cessed twice. For example, after we have determined Transaction 4 as reproducible, a state update
of Transaction 5 incurs another access to Transaction 4.

It is easy to understand the correctness of two-round detecting. If a persistent transaction x is
not reproducible, there must be another transaction y that it directly or indirectly depends on that
is not reproducible. Then there must be a dependency path from transaction y to transaction x.
Meanwhile, if a transaction x is finally labeled as reproducible, all its direct and indirect depended
transactions should also be reproducible, otherwise a DFS must have transferred transaction x to
non-producible.

However, the performance of two-round detecting is low, because it has to scan all transactions
in some cases. As we will see in Section 6.8, two-round detecting could be a bottleneck when the
system is heavily loaded. Thus, we provide a more efficient method, one-round detecting.

One-round detecting works as long as there is no cycle in the dependency graph. Then we can
scan all the nodes of a snapshot of the dependency graph in its topological order. If there is
no cycle in a dependency graph, there must be at least one node without any precedent node.
In a single thread, the first node must be the ancestor of other nodes (i.e., Transactions 1, 2, and
3 in Figure 2(c)). Thus, we can scan a single thread from its first transaction in the dependency
graph; if it has no precedent node, we can mark it as reproducible and remove it from the graph.
For example, in Figure 2(c), the detecting thread first checks Transactions 1 and 3, which do not
depend on any volatile transactions, so they are marked as reproducible. Then the thread checks
Transaction 6 which is also reproducible. However, Transaction 2 depends on Transaction 9 which
is not persistent. Thus, only Transactions 1, 3, and 6 are reproducible. We call this method one-
round detecting, as all transactions will be accessed at most once.

The problem of one-round detecting is that sometimes topological ordering is impossible. For
example, in Figure 2(c), there is a cycle between Transactions 4 and 5. According to [7], circu-
lar dependency can be forbidden theoretically by restricting developers following a principle like
two phase lock (2PL) to build strict transactions. In other words, if we restrict developers using
techniques like 2PL, we can adopt one-round detecting to achieve better performance.

Thus, there is a tradeoff between two-round detecting and one-round detecting. The two-round
detecting algorithm, as adopted by Atlas, allows programmers to introduce circular dependency,
but incurs high detecting overhead. In contrast, we propose one-round detecting which relies on
programmers to avoid circular dependency but offers fast detecting.

6 EVALUATION

6.1 Setup

Environment. We perform all our experiments on a 12-core Intel(R) Xeon(R) CPU E5-2643 v4
machine (3.4GHz, supporting RTM) with 64GB physical DRAM, running x86-64 Linux version
3.16.0 kernel. The results are the average of 10 runs. We use 1GB DRAM to emulate NVM and up
to 1GB DRAM as shadow memory.
Persistent Memory Emulation. As real NVM is not yet available, we emulate persistent memory
using DRAM. Similar to prior works [10, 24, 60], our method models the slow writes of persistent
memory, and ignores the small additional latency of reads. Specifically, (1) if a single write to
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persistent memory is required to become persistent right away, we model the persist ordering
overhead by adding a fixed extra delay. The write latency of PCM can be as large as 1μs [11,
20], hence we set the extra delay to 3,500 cycles, the same as prior works [24, 64]. In addition, we
believe the write latency would drop in the future, so we also run experiments with the extra delay
set to 1,000 cycles (about 300ns). The delay is realized by looping on the processor’s timestamp
counter via RDTSC. (2) If a sequence of writes are persisted together, we consider both the latency
and bandwidth limit of persistent memory. Only one persist order is required for all these writes,
so the extra delay is calculated by max{latency, (total write size )/(NVM bandwidth)}. We test
various bandwidth values in our experiments.
Benchmarks. We evaluate DudeTx with both micro benchmarks (HashTable and B+-Tree), and
realistic workloads in TPC-C [58] and TATP [56].

HashTable benchmark is a simple fixed-size hash table that maps 64-bit integer keys to 64-bit
integer values (randomly generated inputs, 100% insertion). In our implementation, hash collisions
are resolved by circularly testing the next bucket. We guarantee the ACID of every operation by
wrapping it in a transaction.

B+-Tree benchmark inserts randomly generated inputs to a B+-tree that maps 64-bit integer
keys to 64-bit integer values. Similar to HashTable, we build a concurrent B+-tree by transferring
a single-thread B+-tree with transaction APIs.

TPC-C [58] is a well-known online transaction processing (OLTP) benchmark. We implement
the New Order transaction of it, which simulates a customer buying different items from a local
warehouse. The transaction is write-intensive and requires atomic updates to different tables. We
implement the TPC-C with both B+-tree and hash table as its table storage. An array of B+-trees or
hash tables are used to represent a table with a compound key. As our implementation is identical
to [10], we omit the details.

TATP [56] is a benchmark that models a mobile carrier database. We implement the Update
Location transaction of it, which records the handoff of a user from one cell tower to another. The
transaction is much shorter than New Order in TPC-C, because there is only one search and one
update in it. Similar to TPC-C, we also implement both a B+-tree version and a hash table version
of TATP.
Evaluated Systems. Our evaluation involves the following four systems.

(1) Volatile-STM, the regular TinySTM running on DRAM without the durability guarantee
and no delay is added. This gives the theoretical performance upper bound of DudeTx based on
TinySTM.

(2) DudeTx, the standard asynchronous implementation based our decoupled framework. The
capacity of its log buffers is 1 million log entries per thread. If the log buffer is full, the Perform
step has to block and wait for Persist to flush more logs to persistent memory and release space.

(3) DudeTx-Inf, an asynchronous implementation of DudeTx that has infinite log buffers. In
this case, Perform never has to block.

(4) DudeTx-Sync, a synchronous implementation of DudeTx that immediately flushes logs to
persistent memory after Perform step. The transaction returns after it becomes persistent. In other
words, the first and second steps of DudeTx are merged and transactions cannot be executed
back-to-back.

6.2 Throughput

6.2.1 Performance Analysis. Theoretically, if ordered by throughput from high to low, the above
four systems should be Volatile-STM, DudeTx-Inf, DudeTx, and DudeTx-Sync. The throughput
differences between them represent the overhead of log generation, log buffer saturation, and log
persistence, respectively. To measure these overheads, we evaluated the four systems using the
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Fig. 3. Throughput of evaluated systems with different NVM bandwidth.

benchmarks described in Section 6, with various persistent memory bandwidth, from 1GB/s to
16GB/s. Because the latency only affects DudeTx-Sync, we only use 1,000 cycles latency for other
systems. Figure 3 presents the results, from which we can derive the following three findings.

Finding (1): DudeTx incurs minor overhead (7.4%–24.6% less throughput) over the original
volatile STM.

As expected, Volatile-STM provides the highest throughput among all systems under all bench-
marks. Based on TinySTM, DudeTx adds a small performance penalty to the original STM. The
throughput of DudeTx is only 7.4% (B+-tree based TPC-C) to 24.6% (HashTable) less than that
of Volatile-STM. The different performance penalties among benchmarks are due to the different
write intensity. Since the main overhead introduced in DudeTx is log generation, a benchmark
that has higher write intensity typically suffers from a higher overhead. For example, as the major
operations of a hash table insertion are memory writes and the HashTable benchmark consists
of 100% insertions, HashTable is the most write-intensive benchmark and hence sees the largest
performance penalty.

Finding (2): Log flushing is not the bottleneck of the decoupled framework in DudeTx.

We see that DudeTx-Inf produces almost the same throughput as DudeTx, which means that
the Perform step of a transaction is rarely blocked by a full log buffer. More importantly, the
observation applies to not only 16GB/s NVM but also 1GB/s NVM. For more direct evidence, Table 1
shows the number of memory writes executed by each benchmark when the NVM bandwidth is
set to 1GB/s and latency is 1,000 cycles. We can calculate that around 78MB (TATP based on B+-
tree) to 488MB (TPC-C based on hash table) redo logs are generated per second, which are less
then the bandwidth of persistent memory.

Finding (3): Decoupling enables high performance of DudeTx and avoids the bottleneck in
log flushing.

Although flushing is not a bottleneck with decoupling, it does impact the performance if a
transaction immediately flushes its log to persistent memory after it is performed and blocks un-
til the log is persisted, especially when the bandwidth of persistent memory is low (e.g., 1GB/s).
We can see that the throughput is gradually improved with the increase of persistent memory
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Table 1. Statistics of Memory Writes in Different Benchmarks

(1GB/s NVM Bandwidth, 1,000 Cycles Latency, Four 4 Threads)

Benchmark # writes Throughput # writes per tx
B+-tree 28.9M/s 1.83 MTPS 15.8
TPC-C (B+-tree) 17.2M/s 93.5 KTPS 183.5
TATP (B+-tree) 4.87M/s 4.87 MTPS 1.0
HashTable 15.5M/s 5.16 MTPS 3.0
TPC-C (hash) 30.5M/s 195 KTPS 156.5
TATP (hash) 5.77M/s 5.77 MTPS 1.0

“M/s” stands for millions per second.

bandwidth, until the latency of persistent memory becomes the new bottleneck. When the band-
width is beyond 8GB/s, the throughput of most benchmarks is hardly improved by higher band-
width. However, for transactions that have a lot of instructions (e.g., a TPC-C transaction costs
about 110k cycles), the latency of persistent memory (i.e., 3,500 cycles) is negligible compared
to the whole execution time. As a result, for those benchmarks, the performance gap between
DudeTx and DudeTx-Sync is small. On the contrary, for transactions that have fewer instructions
(e.g., a TATP transaction costs about 3,000 cycles), they show a clear performance decline from
DudeTx to DudeTx-Sync, when latency is increased from 1,000 cycles to 3,500 cycles.

6.2.2 Comparison to Current Systems. Mnemosyne [60] is a durable transaction library for per-
sistent memory, with the same guarantees as DudeTx. It uses Intel’s STM compiler to instrument
memory reads/writes and TinySTM to manage transactions. Mnemosyne uses TinySTM’s write-
back access scheme (redo logging) rather than the write-through scheme (undo logging) as in
DudeTx. Since it does not follow our decoupling approach, Mnemosyne faces the tradeoff as de-
scribed in Section 2.2, i.e., a redo logging scheme requires less fences but costly address mapping.

We also evaluate NVML [28], an undo logging based persistent transactional memory library
developed by Intel. NVML requires that users have prior knowledge of the memory write set of
a transaction, which means that it supports only static transactions. As NVML transactions do
not guarantee the isolation property, users of NVML need to use separate concurrency control
mechanisms (e.g., locking). Accordingly, we implement a hash table using fine-grained locks with
NVML, but the complex changes leading to a high-performance lock-based concurrent B+-tree
would make the comparison with other systems unfair. Therefore, we only run the hash table based
benchmarks over NVML. In our evaluation, we move all the memory allocation operations to the
beginning of the program, so that our comparison is focused on transaction execution excluding
the slow NVML allocation.

Table 2 shows the result. As we can see, DudeTx and DudeTx-Sync are about 1.7×–4.4×
and 1.3×–3.0× faster, respectively, than Mnemosyne and NVML running various benchmarks.
Mnemosyne is slow for the following reasons: (1) Intel STM Compiler instruments all the
memory accesses of every transaction, resulting in a noticeable performance degradation [51];
(2) Mnemosyne needs to use CLFLUSH, which invalidates the cache line and hence increases cache
misses. This problem is avoided in DudeTx because the shadow memory is resident in DRAM;
(3) Each transaction requires a costly synchronous persist, which is similar to DudeTx-Sync. Fi-
nally, (4) the address mapping overhead of redo logging. In contrast, although NVML also suffers
from the cache invalidation and persist issues, it avoids excessive instrumentation and address
mapping by asking users to manually annotate NVM writes and by using undo logging, respec-
tively. NVML’s specific implementation details also affect its performance. For example, NVML
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Table 2. Throughput of DudeTx, DudeTx-Sync, Mnemosyne, and NVML (1GB/s

NVM Bandwidth, 1,000 Cycles Latency, Four Threads)

Benchmark DudeTx DudeTx-Sync Mnemosyne NVML
B+-tree/MTPS 1.83 1.02 0.77 -
TPC-C(B+-tree)/KTPS 93.5 71.0 42.1 -
TATP(B+-tree)/MTPS 4.87 4.16 2.81 -
HashTable/MTPS 5.16 4.47 1.95 2.04
TPC-C(hash)/KTPS 195 133 76.6 44.7
TATP(hash)/MTPS 5.77 5.05 2.56 2.70

Table 3. Durable Transaction Latency of the Hash Table Based TPC-C

Benchmark in DudeTx, DudeTx-Sync, Mnemosyne, and NVML

Percentage DudeTx DudeTx-Sync Mnemosyne NVML
50% 45μs 18μs 62μs 112μs
90% 73μs 40μs 87μs 161μs
99% 124μs 90μs 126μs 254μs

dynamically allocates transaction metadata and undo logs for each transaction, which is very
expensive. In DudeTx and Mnemosyne, both the metadata and log buffers are allocated collec-
tively on thread creation. As a result, NVML can only run at most 1.14 million empty transactions
per second per thread. In contrast, the maximum throughput of running empty transaction on
DudeTx/Mnemosyne is 30+ millions per second.

6.3 Latency

The transaction implemented in a decoupled manner can return to users immediately after the
Perform step but, at that point, the transaction is not durable yet. For applications that require
an explicit acknowledgement of the durability of a transaction, users of DudeTx can periodically
inquire the global latest durable transaction ID as mentioned in Section 3.3. Particularly, an ap-
plication thread can work this way: executing a transaction of ID ti ; getting the durable ID di

and acknowledging transactions whose ID ≤ di ; executing a transaction of ID ti+1; getting the
durable ID di+1 and acknowledging transactions whose ID ≤ di+1, . . . . In certain cases, the latency

of a transaction (measured by the time between the beginning of the transaction and its durabil-
ity acknowledgment) may increase in DudeTx because Persist is done asynchronously. In this
section, we present our evaluation results of this latency by comparing DudeTx, DudeTx-Sync,
Mnemosyne, and NVML.

Table 3 presents the distribution of latency (e.g., in DudeTx, 50% of the transactions can be
durable within 45μs). We see that decoupling only introduces a moderate extra latency compared
to DudeTx-Sync. The extra latency is mainly due to the fact that we do not check the latest
durable transaction ID in the middle of a transaction. According to our evaluation, about 99%
of the transactions can be persisted before the end of their next transaction’s Perform. It means
that in most cases, the background Persist thread can finish flushing the log of a transaction
during the Perform step of the next transaction. Therefore, the latency of DudeTx is about 2× the
ideal latency that is 1/(throughput of DudeTx). Because DudeTx’s throughput is more than 2×
that of Mnemosyne and NVML, DudeTx has an even better latency performance than those exist-
ing synchronous durable transaction solutions. Compared to them, DudeTx achieves both higher
throughput and lower latency.
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Fig. 4. Log optimization. Fig. 5. Swap overhead.

6.4 Log Optimization

The decoupled framework enables the log optimization techniques before the log is persisted.
The effect of log combination is determined by the skewness of workload. In one extreme,
if all the writes access the same address, all but the last one can be omitted. In reality, according
to the “power law” [4, 17], many real-world workloads are indeed skewed. In this experiment, we
use the Session Store workload of YCSB [16] and run it on a B+-tree based key-value store. The
store is loaded with 10K records, and the ratio of read/update transactions is 50:50. Transactions
follow the Zipfian distribution with a constant of 0.99.

Figure 4 presents our evaluation results. We see that a higher optimization ratio can be obtained
if the transactions are grouped to persist. Around 7% NVM writes can be saved if the log com-
bination is performed for every 10 transactions, and the ratio increased to 93% when each group
contains 100,000 transactions. Figure 4 also shows the result of using lz4 [15] to compress logs. It
can stably achieve a compression ratio as high as 69% even when applying to only 10 transaction
groups. However, log compression per se can only reduce NVM writes in Persist. Reproduce still
needs to execute the same number of writes as Perform.

DudeTx allows users to explore the tradeoff in optimization—a larger group of transactions
means a higher latency and more memory usage, but leads to less NVM write traffic. Besides, we
find that log optimization typically has no influence on the throughput of applications (unless the
size of each group is too large). This is because that log flushing is not the bottleneck of the system,
i.e., Finding (2). However, the latency of our system is proportional to the number of grouped
transactions, as a transaction has to wait for other transactions in the same group to persist.

6.5 Swapping Overhead

We evaluate the overhead of swapping in/out when the size of shadow memory is smaller than
NVM. Overall overhead of swapping largely depends on its frequency, which is determined by
(1) the ratio of shadow memory to NVM and (2) how skewed the transactional access is. Figure 5
depicts the throughput of updating a B+-tree based key-value store. The workloads are generated
by Zipfian distribution with two constants, 0.99 and 1.07. We use 1GB NVM and a shadow DRAM
that varies from 64MB to 1GB. The total working set of each workload is around 650MB. The
figure indicates that the throughput decreases as the size of shadow memory shrinks or when the
workload becomes less skewed.

Our software-based and hardware-based implementations have different sensitivity over the
shadow memory size. Figure 5 shows that hardware-based paging has better performance than
software-based paging when the shadow memory is relatively large, but its performance drops
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Fig. 6. Scalability. Fig. 7. Lock-based DudeTx (four threads).

more quickly as the size of shadow memory decreases. The reason is that hardware-based paging
has less overhead in address translation due to use of TLB, but more overhead in page fault and
swapping mainly because it has to do a VM exit to shoot down invalid TLB entries when it evicts
a shadow page. (This is due to our implementation with Dune, and it can be improved in future
work.) On the contrary, software-based paging does not involve TLB shootdown but incurs more
overhead in address translation (at least two memory accesses per address translation). It turns out
that modification of page references, though by a simple compare-and-swap instruction, is costly
too, as multiple cores visit the same page frequently.

NVM is considered to have higher density than DRAM. But in works [19, 42] which gave the
exact data, density of NVM is not more than 4× of that of DRAM. In this case, hardware-based
implementation is still better than others. Even in worse case, e.g., when DRAM size is only 1

16 of
NVM size, we can choose software-based implementations.

6.6 Scalability

Figure 6 presents our results on the scalability of DudeTx. It shows the throughput of running
B+-tree based TPC-C with different numbers of threads. The NVM bandwidth is set to 1GB/s and
the latency is 1,000 cycles (actually they have negligible impact on results). The results are normal-
ized to the throughput of one thread. We see that our TinySTM-based DudeTx implementation
achieves a similar speedup as TinySTM itself. DudeTx has even a little better speedup, because its
throughput of one thread is slower than TinySTM.

The scalability bottleneck of DudeTx lies in the concurrency control mechanism of TinySTM,
instead of other parts of DudeTx. To manifest the bottleneck, we implement another version of
TPC-C with less conflicts, where each thread serves customer requests for a fixed district. As
each B+-tree in Order tables is responsible for a certain district, this eliminates most conflicts in
concurrency control. Therefore, the bottleneck in TinySTM is avoided. We can see from Figure 6
that scalability of DudeTx shows almost linear scalability in this case. In other words, DudeTx-
specific overhead has little influence on scalability.

6.7 HTM-Based DudeTx

As we discussed in Section 4.2, we can only estimate the possible speedup of using HTM by
generating the transaction ID with atomic operations that are not wrapped in transactions. Such
methodology is reasonable because, although the order of transactions may not be accurate, it does
not affect the performance evaluation. Moreover, in our implementation, if a HTM transaction fails
more than five times, a fallback routine is called to execute the transaction using a global lock.
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Table 4. Throughput of DudeTx Based on STM and HTM (1GB/s NVM

Bandwidth, 1,000 Cycles Latency, Four Threads)

B+-Tree HashTable TATP (B+-tree)

Volatile-STM/MTPS 2.36 6.84 6.69
DudeTx-STM/MTPS 1.83 5.16 5.77

Slowdown 22% 26% 14%

Volatile-HTM/MTPS 3.59 11.8 6.96
DudeTx-HTM/MTPS 3.21 7.47 6.50

Slowdown 11% 28% 7%

Table 4 shows the throughput of HTM-based DudeTx. TPC-C is not shown because its transac-
tion issues such a large write set that Intel Haswell’s HTM cannot handle it. It achieves up to 1.7×
higher throughput than the STM-based implementation, especially when applications are more
complicated. Among all benchmarks, B+-Tree shows the largest speedup. This is because a trans-
action in this benchmark is bigger than other benchmarks and conflict management in HTM is
more effective than STM. In contrast, TATP has less speedup (about 1.33×) because there is only
one concurrent write in a transaction, which means that most of the execution time is spent in
local reads that cannot be improved by replacing STM with HTM. The same reason applies to the
HashTable benchmark in which aborted transactions are less than 0.3%. In addition, HashTable
has a very high write ratio (72%) and inserting logs for each write has a great influence on per-
formance. That also results in higher overhead on pure HTM. However, the overhead of DudeTx
is still less than 28% for both STM and HTM. That means our decoupled framework is compatible
and effective to many kinds of transactional memory technologies.

6.8 Lock-Based DudeTx

In this section, we discuss the performance of lock-based DudeTx and two dependence graph
detecting algorithms. To evaluate their performance, we implement two popular data structures:
linked list and B+-tree. For linked list, we use optimistic concurrent control to decrease the use
of lock. Specifically, it does not acquire any lock when searching from the head of the list, until
it finds the correct nodes. Then it would check if the node is modified during acquiring the lock.
It would abort this transaction and retry if the node has been modified by other transactions. We
use the 2PL scheduler when acquiring locks so that one-round detecting and two-round detecting

are both suitable here. For B+-tree, we used techniques described in [63], which is against the 2PL
rule, i.e., it acquires and releases locks with no limitation. Thus, we implement another B+-tree
with 2PL, which holds all locks of nodes on the path from the root to the leaf, and releases them
only after finishing all operations.

We test the durable lock-based program in DudeTx, using one-round detecting and two-round

detecting, respectively. Volatile TM-based, durable TM-based, and volatile lock-based programs
are also evaluated as comparison. Figure 7 presents our evaluation results. As we can see from
the figure, first, lock-based programs are faster than the TM-based programs, especially for linked
list. It is because TM has to wrap each read and write operation in a transaction, which has a
much higher overhead than accessing the data directly. On the contrary, a lock-based program
only needs to lock the special data.

Secondly, two-round detecting may be the bottleneck of the system. If the buffer for storing
dependency graph is full, the worker threads have to stop and wait for detect thread. In linked list
benchmark, detecting dependency graph is slower than transaction execution. Thus, two-round
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detecting blocks the system. On the contrary, one-round detecting has nearly no overhead and has
almost the same performance as the original volatile lock-based program.

Thirdly, 2PL has many limitations. In the B+-tree benchmark, a 2PL program has to hold all
locks from the root to the leaf. Threads are all blocked on the lock of the root node. A multi-thread
program is not better than a single thread program (maybe even worse because of context switch).
As Figure 7 shows, in B+tree experiment, the 2PL program is much worse than others, even TM-
based programs. On the contrary, total throughput is still in the control of two-round detecting,
thus the two-round detecting program has the near performance of the volatile lock-based program.
Thus, it is necessary to provide two kinds of detecting algorithms for users so that they can choose
a better one according to their own situations.

7 RELATED WORK

We first distinguish DudeTx from traditional transactional memory work, and compare it with
other persistent memory systems. They can be classified by a taxonomy of crash consistency pro-
tection methods [49]: persistent locks work with memory-access-level protection; durable trans-
actions protect code blocks; NVM-oriented data structures offer object-based interfaces; hardware
solutions typically achieve software-transparent program-level protection. Finally, we also discuss
related work on file systems and databases.

Transactional Memory. The traditional concept of transactional memory is about concur-
rency control, having no durability guarantee [21, 22, 26, 43]. DudeTx relies on transactional
memory to perform concurrent transactions and detect conflicts. However, our focus is not on op-
timizing software transactional memory [68] or hardware transactional memory [65, 66]. Instead,
we solve the problem of how to efficiently make transactions durable on persistent memory.

Persistent Lock Programming Model. Atlas [8, 9] offers a lock-based programming model
for NVM. However, it is based on undo logging, and limited by the persist ordering overhead. In
contrast, making best use of both undo and redo logging is the fundamental contribution of this ar-
ticle. Moreover, Atlas automatically builds FASEs according to lock acquire and release operations.
It is not as flexible as DudeTx which does not necessarily align FASEs with lock operations. Fi-
nally, Atlas uses two-round detecting (Section 5.3), while DudeTx incorporates a faster one-round
detecting algorithm.

Durable Transaction Systems. Previous NVM-based durable transaction systems [14, 24, 34,
60] usually suffer from a dilemma between per-update persist ordering and update redirection
overhead. DCT [34] and NVML [28] bypass this issue by allowing only static transactions. They
also require that all locks should be acquired at transaction start and released after transaction com-
mit. Those limitations result in less concurrency and inferior performance [47]. Mnemosyne [60]
designs an alternative asynchronous reproducing method that replays redo logs on background,
similar to the Reproduce step in DudeTx. However, it does not decouple Perform and Persist
steps as DudeTx does. It still does not solve the dilemma, and does not perform well when the
write latency of persistent memory is large.

SoftWrAP and DudeTx both use the concept of shadow memory, but they are fundamentally
different. First, SoftWrAP still has to do object-level address mapping. Due to its “double-buffered”
alias table, SoftWrAP needs up to three times of indirection for reading a value. Second, changing
SoftWrAP’s mapping granularity to reduce its indirection overhead is not easy. In SoftWrAP’s im-
plementation, a page-level mapping would bring excessive write amplification overhead. Mean-
while, a straightforward one-to-one mapping would result in both unacceptable memory space
consumption (>3× due to the use of two alias tables) and increased execution time (due to tracking
modified memory to avoid scanning the whole alias table for dumping). Third, SoftWrAP argues
that concurrency control can be decoupled from durable transactions, but it requires non-trivial
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modifications. It claims that isolation can be implemented by using local alias table, but it is not
clear how to automatically merge it into global alias table. Moreover, dedicated mechanisms are
required to find a quiescent point that SoftWrAP can safely switch alias table from active to closed,
which would incur further delay and complexity. According to our investigation, the reason why
SoftWrAP suffers from the above disadvantages is that SoftWrAP tries to directly copy data from
shadow memory to NVM. In DudeTx, copying data from the per-thread redo log can fundamen-
tally avoid these problems.

LOC [41] employs eager commit and speculative persistence to reduce persist ordering over-
head in redo logging. BPPM [40] uses execution-in-log (EIL) to save one copy of log, and volatile
checkpoint with bulk persistence (VCBP) to reduce persistence overhead due to checkpointing.
Log-structured NVMM [27] also reduces persist ordering and storage cost of redo logging. Differ-
ent from these works, DudeTx focuses on eliminating address mapping overhead of redo logging.

NVM-Oriented Data Structures. Prior works [11, 12, 18, 66, 70] optimize implementation of
certain data structures on NVM. For example, Yang et al. [70] design a high-performance persistent
B+-tree, which reduces the number of NVM writes by disordering keys in leaf nodes. Moreover,
PCM-DB [11] proposes two optimizations on B+-tree and hash joins for database on PCM. Differ-
ent from those works that deal with specific data structures, DudeTx aims to provide a general
transactional library for wider use scenarios (e.g., mingling of different data structures).

Software-Transparent Solutions. Other work increases performance of persistent-memory
applications or simplifies their programming by hardware support. WSP [44] achieves so by us-
ing residual power to flush data in CPU caches to NVM upon caches. ThyNVM [51] relies on
an efficient checkpointing design in the memory controller to realize software-transparent crash
consistency protection. DudeTx assumes no essential hardware modifications.

File Systems. The file system community has studied crash consistency for a long time.
OptFS [13] decouples consistency and durability, and LightTx [39] decouples concurrency con-
trol and crash consistency. Such decoupling has a different purpose or method with DudeTx, as
file systems and durable transactions face different challenges. For example, LightTx does not have
to deal with address mapping overhead, because the flush translation layer (FTL) in solid state disk
(SSD) helps translate address in coarse granularity. For SSDs, the address translation overhead is
not a critical issue as it is far less than that of disk accesses. On the contrary, accessing data in NVM
is much faster so that the address mapping latency becomes noticeable. Actually, “shadow mem-
ory” used in certain file systems corresponds to the persistent log in DudeTx, while the shadow
memory in DudeTx has a totally different meaning.

Database Systems. In-memory databases [33, 59, 65] have to flush logs to disks to provide
ACID guarantees. These systems may achieve a better throughput than TM systems, but their
data can only be accessed through specific database operations. In contrast, the TM interface is
more flexible. Moreover, certain databases have extra constraints. For example, FOEDUS [33] uses
a dual-page technique so that data must fit into fixed-size pages, and hence is not efficient or
directly usable for durable transactions on persistent memory.

8 CONCLUSION

This article presents DudeTx, a decoupled framework to implement atomic, durable transactions
on persistent memory. DudeTx avoids the inefficiencies of traditional undo logging and redo log-
ging based techniques. Its key design is to decouple an ACID transaction into three asynchronous
steps, which enable us to run an out-of-the-box concurrency control mechanism on the shadow
memory as a stand-alone component in our system, including STM, HTM, and fine-grained lock.
Our evaluation results show that DudeTx adds guarantees of crash consistency and durability
to TinySTM by adding only 7.4%–24.6% overhead, and is 1.7× to 4.4× faster than existing works
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Mnemosyne and NVML. Using HTM and fine-grained lock leads to another 1.7× and 3.3× speedup,
respectively. Through decoupling, we have also enabled the possibility of reducing the write traffic
to NVM by log optimization up to 93% reduction.
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