Journal of Parallel and Distributed Computing 138 (2020) 178-189

Contents lists available at ScienceDirect

PARALLELAND
DISTRIBUTED
COMPUTING

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Efficient AES implementation on Sunway TaihuLight supercomputer: N

Check for

A systematic approach™

Liandeng Li *®, Jiarui Fang *®, Jinlei Jiang ** Lin Gan*", Weijie Zheng **, Haohuan Fu >,
Guangwen Yang &P:¢**

@ Department of Computer Science and Technology, Beijing National Research Center for Information Science and Technology, Tsinghua
University, Beijing 100084, China

b National Supercomputing Center in Wuxi, Wuxi 214072, China
¢ Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University, Beijing 100084, China

ARTICLE INFO ABSTRACT

Article history:

Received 4 February 2019

Received in revised form 20 July 2019
Accepted 21 December 2019
Available online 2 January 2020

Encryption is an important technique to improve information security for many real-world applica-
tions. The Advanced Encryption Standard (AES) is a widely-used efficient cryptographic algorithm.
Although AES is fast both in software and hardware, it is time-consuming to do data encryption
especially for large amount of data. Therefore, it is a lasting effort to accelerate AES operations. This
paper presents SW-AES, a parallel AES implementation on the Sunway TaihuLight, one of the fastest

Keywords: supercomputers in the world that takes the SW26010 processor as the basic building block. According

High-performance computing to the architectural features of SW26010, SW-AES exploits parallelism from different levels, including

Supercomputer (1) inter-CPE (Computing Processing Element) data parallelism that distributes tasks among the 256

AES algorithm on-chip CPEs, (2) intra-CPE data parallelism enabled by the Single-Instruction Multiple-Data (SIMD)

‘P/eCtﬁril?atiO“ instructions inside each CPE, and (3) instruction-level parallelism that pipelines memory access and
arallelism

the computation. In addition, corresponding to the two application scenarios, SW-AES presents scalable
ways to efficiently run AES on many nodes. As a result, SW-AES can gain a maximum throughput
of 13.50 GB/s on a single SW26010 node, which is 216.23x higher than the latest parallel AES
implementation on the Sunway TaihuLight, and about 37.3% higher than the latest AES implementation
on the GTX 480 GPU. When running on 1024 computing nodes with each one processing 1 GB data,
SW-AES can achieve a throughput of 13819.25 GB/s. On the contrast, only a throughput of 63.91 GB/s
can be achieved by the latest related work on the Sunway TaihuLight.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The rapid development of information and communication
technology (ICT) has greatly benefited human activities. The ICT-
enabled big data era where large amount of data is generated,
recorded, and analyzed by modern computers provides insightful
information and guidance in various application domains. How-
ever, ICT technology is also a double-edged sword — along with
the continuous surge of data, severe threats and challenges also
arise in terms of data protection. People nowadays want more
secure approaches to protect important digital assets such as
enterprise secrets and personal information. Encryption is a most
widely-used solution to achieve the goal.

™ An earlier version of this work appeared as Li et al,, (2017).

* Correspondence to: FIT 3-113, Tsinghua University, Beijing 100084, China.
** Correspondence to: FIT 3-112, Tsinghua University, Beijing 100084, China.
E-mail addresses: jjlei@tsinghua.edu.cn (J. Jiang), ygw@tsinghua.edu.cn

(G. Yang).

https://doi.org/10.1016/j.jpdc.2019.12.013
0743-7315/© 2019 Elsevier Inc. All rights reserved.

Supercomputers are powerful facilities widely-used in various
key fields such as national defense [2], scientific and industrial
computing [9,30], and machine learning [7]. For some fields,
encryption is also needed to protect sensitive data. Two typical
scenarios are: (1) users upload some data to the supercomputer
in a way secure or not, encrypt it and store the encrypted result
for future processing (termed online mode in this paper), and
(2) users keep the data generated by applications secure by
encrypting it (termed offline mode here).

Since data encryption is time-consuming, it is a lasting effort
to boost it either by ASIC (Application Specific Integrated Cir-
cuit) implementation [11,24,25,27] or by using more powerful
devices such as FPGA (Field-Programmable Gate Array) [21,26]
and GPU (Graphics Processing Unit) [10,12,13,15,18,23]. Besides,
supercomputers provide a good choice for performing compute-
intensive encryption operations. To make full use of the available
computing resources, it is at the core to design highly efficient
and parallel encryption algorithms that fit well with the state-
of-the-art supercomputing systems. Unfortunately, it is not an

https://doi.org/10.1016/j.jpdc.2019.12.013
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2019.12.013&domain=pdf
mailto:jjlei@tsinghua.edu.cn
mailto:ygw@tsinghua.edu.cn
https://doi.org/10.1016/j.jpdc.2019.12.013

L. Li, J. Fang, J. Jiang et al. / Journal of Parallel and Distributed Computing 138 (2020) 178-189 179

easy task to achieve the purpose, since many factors are usually
involved, such as the features of the algorithm itself and the
characteristics of the underlying system.

The Sunway TaihuLight system [9] is one of the most powerful
supercomputers in the world. With the SW26010 many-core
processor as the basic building block, the Sunway TaihuLight
presents a peak performance of 125 PFlops as well as many
other interesting features. Since its debut in June, 2016, over
one hundred large-scale applications have been deployed on it,
including climate modeling [1,8,29], material science [6,20], big
data [7,19], and so on. In this paper, we take a step further to
show how to efficiently implement the widely-adopted Advanced
Encryption Standard (AES) [5] algorithm on Sunway TaihuLight to
get the best throughput so as to meet the need of data protection.

Unlike the previous work [4] that tried to improve AES perfor-
mance by utilizing more nodes whereas resources within a single
node were underutilized, our work focuses on accelerating AES
algorithm in a systematic approach by extending our previous
work [17], which shows how to make full use of such features
of the SW26010 processor as heterogeneous-core architecture,
multi-hierarchy memory, direct memory access (DMA), two in-
struction pipelines, and so on to boost AES operations on a single
node. The paper extends our previous work in [17] with: (1) ways
to scale AES execution to many computing nodes, (2) more details
about the reasons behind the design decisions in [17], and (3) ad-
ditional experimental data that can help people to develop a deep
understanding of the impact of various optimization techniques.

The main contributions of our work are as follows:

e We present a SIMD-friendly data layout as well as an
S-Box lookup strategy that enables efficient AES operation
on a single Computing Processor Element (CPE).

e We propose new parallel mechanisms to fully utilize all CPEs
on a chip and the two instruction pipelines within one CPE,
and to scale AES operations to many computing nodes.

e We implement SW-AES, a parallel version of AES algorithm
on the Sunway TaihuLight and evaluate it thoroughly. The
result shows that SW-AES can gain a maximum throughput
of 13.50 GB/s on a single SW26010 node and 13819.25 GB/s
on 1024 nodes, which is two orders of magnitude higher
than that of the latest related work in [4].

The remainder of this paper is organized as follows. Section 2
briefly reviews background and related work. Sections 3 and 4
show how to efficiently implement AES on a single chip and
on the whole system respectively. After extensive experimental
results and discussions given in Section 5, the paper ends in
Section 6 with some concluding remarks.

2. Background and related work
2.1. AES algorithm

Fig. 1 shows the workflow of AES algorithm. It takes a 128-bit
data block as input and performs several rounds of transforma-
tions to generate output cipher text. Each 128-bit data block is
processed as a 4-by-4 byte array called the state. The length of
the cipher key can be 128, 192, or 256 bits. The number of rounds
repeated in the AES, Nr, depends on the length of the key: Nr
= 10 for 128-bit keys, Nr = 12 for 192-bit keys and Nr = 14
for 256-bit keys. Each round uses a different 128-bit roundkey
derived from the original cipher key. The roundkey can also be
viewed as a 4-by-4 byte array. Four basic operations in AES are
explained below.

plaintext

load 128-bit block

AddRoundKey(0

Ye, Ni
[SubByres() |

[4ddRoundKey(Nr) |
2

[SubBytes() |

AddRoundKey(r

i

[store 128-bit block |

Fig. 1. The workflow of AES algorithm.

r++

I

2.1.1. SubBytes

Each byte state[i, j] in the state matrix is replaced by the value
of S-Box(statel[i, j]), where S-Box is a 16-by-16 array of bytes
called substitution box. The S-box is computed in advance before
the AES encryption by the multiplicative inverse over GF(2%),
which is a finite field known of good non-linearity properties. One
can just view S-box as a fixed table.

2.1.2. ShiftRows
In this step, we circularly shift row i of the state matrix to the
left by i bytes, 0 <i < 3.

2.1.3. MixColumns

In this step, the four bytes of each column of the state array
are combined using an invertible linear transformation. Then we
multiply each column of the state, taken as a polynomial of degree
bflow 4 with coefficient in GF(28), by a fixed polynomial modulo
X'+ 1.

2.1.4. AddRoundKey

In this step, the rth roundkey is added by combining each byte
of the state with the corresponding byte of the rth roundkey using
bitwise XOR. There are total Nr 4+ 1 roundkeys needed as shown
in the AES workflow. Please note, the roundkeys are usually cal-
culated before the encryption process, and kept constant during
encryption time. The process to generate all roundkeys according
to the original AES key is termed key expansion.

In this paper, we only consider the encryption phase, because
AES is a symmetric encryption algorithm and the decryption
phase undergoes the same operations but in a reverse order. For
the sake of simplicity, we only discuss the case of 128-bit keys
here. Since the length of keys only determines the number of AES
rounds and the roundkeys can be generated beforehand according
to the original key, the method presented can be easily extended
to the cases of 192-bit and 256-bit keys.

2.2. The SW26010 many-core processor

As shown in Fig. 2, each SW26010 processor consists of 4
core groups (CGs). Each CG includes 65 cores: one management
processing element (MPE), and 64 CPEs, organized as an 8 x 8
mesh.

Both MPE and CPE are 64-bit RISC, single-threaded cores work-
ing at 1.45 GHz and supporting 256-bit vector (holding 4 sin-
gle/double precision floating-point numbers or eight integers)
instructions (including fused multiply-add, FMA) with 32 vector
registers (extended from 32 64-bit general purpose registers),

180 L. Li, J. Fang, J. Jiang et al. / Journal of Parallel and Distributed Computing 138 (2020) 178-189

PPU PPU
| | CPE Mesh
o || o || 1
pll— cre Pl cre ,/ cpe|_|cpe| |cPE| .. |CPE
£ cruster L& || T ctuster ; \]
T || ! Nlcee| |[ceel [ceel | - [cee
I I | . ——
| |
!
System Network On Chip | cre| \[cee| [cre| | .. [cee
Interface(SI) (NoC) /’] — — —
T 111 T 111 .
. | [8=]
M| T T cPE T T cPE cpe| ||cPE| ||cPE CPE
P ||| Cluster P[] Cluster D\E“E E“J
TTT1
2 T k T - v
)| |] [T - LoM
PPU PPU -7
c2 cas

Fig. 2. The general architecture of the SW26010 many-core processor.

but play different roles in computation. The MPE, which sup-
ports the complete interrupt functions, memory management,
superscalar, and out-of-order issue/execution and can perform
16 floating-point operations per cycle (implying a peak perfor-
mance of 23.2 GFlops), is good at handling the management,
task scheduling, and data communications. The CPE, which does
not support interrupt functions and can only perform 8 floating-
point operations per cycle (implying a peak performance of 11.6
GFlops), is designed for the purpose of maximizing the aggregated
computing throughput while minimizing the complexity of the
micro-architecture.

Each CG connects to its own 8 GB DDR3 memory through
a 128-bit DDR3-2133 memory controller (iMC in the figure),
which implies a theoretical DMA bandwidth of 34.128 GB/s. The
Network on Chip (NoC) connects 4 CGs with System Interface (SI).
Users can explicitly set the size of each CG's private memory
space, and the size of the memory space shared among 4 CGs.
While the MPE adopts a more traditional cache hierarchy (32-
KB L1 instruction cache, 32-KB L1 data cache, and a 256-KB L2
cache for both instruction and data), each CPE only provides a
16-KB L1 instruction cache, and relies on a 64 KB Local Directive
Memory (LDM) (also known as Scratch Pad Memory (SPM)) as a
user-controlling fast buffer. This user-controlling “cache”, while
increasing the programming difficulty for efficient utilization of
the fast buffer, provides an option to implement a customized
buffering scheme that can improve the overall performance sig-
nificantly in certain cases. Inside each CPE mesh, we have a
control network, a data transfer network (connecting the CPEs
to the memory interface), 8 column communication buses, and
8 row communication buses. The 8 column and row communica-
tion buses enable fast register communication channels across the
8 x 8 CPE mesh, providing an important data sharing capability
at the CPE level [28].

Each CPE has two pipelines (PO, and P1) for decoding, issuing,
and executing instructions. PO is for floating-point operations,
and vector operations of both floating-point and integer. P1 is
for memory-related operations. Both PO and P1 support inte-
ger scalar operations. Therefore, identifying the right form of
instruction-level parallelism can potentially resolve the depen-
dencies in the instruction sequences, and further improve the
computation throughput.

2.3. Nodes interconnection

Compute nodes of the Sunway TaihuLight supercomputer are
connected via a customized network. The network is divided into

2 levels — a fat tree at the top and a supernode network at the
bottom. While the fat tree network is used for communicating
different supernodes, the bottom network is used to connect the
256 nodes within a supernode. TaihuLight uses FDR (Fourteen
Data Rate) 56 Gbps network interface cards (NICs) for connection
and the theoretical bandwidth between any two nodes is 14 GB/s.
The real network speed is 12 GB/s with a latency at the level of
micro-second when nodes are communicating via the Message
Passing Interface (MPI).

2.4. Related work

2.4.1. ASIC AES implementation

ASIC has the advantage of high efficiency and low power
consumption. Therefore, it is also adopted to implement AES-
specific devices. Wolkerstorfer et al. [27] presented a way to
implement AES S-Boxes in hardware with combinational logic.
The result circuit is of low transistor count and die-size, with a
delay below 15 ns. Giirkaynak et al. [11] presented an ASIC im-
plementation of the full AES algorithm, with a focus on balancing
the decryption and encryption path through some optimizations.
The result circuit can achieve a throughput of 0.265 GB/s for
128-bit keys. Shastry et al. [25] presented a low power ASIC
implementation of AES based on the so-called rolled architecture
that supports all key sizes. The implementation can achieve a
throughput of 0.2 GB/s for 128-bit keys and a power consumption
of as low as 22.58 mW. Schilling et al. [24] provided a 2PRG-based
hardware implementation of AES-128 in their custom System-
on-Chip (SoC). It has two AES-128 instances and can achieve
a maximum throughput of about 0.674 GB/s at a frequency of
256 MHz. Nevertheless, ASIC is not suitable for the data center
environment in that: (1) a single device cannot afford the high
throughput required, and (2) using more devices means extra cost
and complicate operations.

2.4.2. AES on GPU

Harrison et al. [12] presented the first implementation of
AES on GPU in 2007, achieving a throughput of 0.85 GB/s on
Geforce 7900GT GPU using DirectX 9. Nishikawa et al. [22] and
Iwai et al. [13] conducted the studies that try to figure out
the influence of parallel granularity and memory usage scheme
for GPU-based AES encryption. Guo et al. [10] implemented the
encryption of AES-ECB algorithm and achieved a throughput of
3.96 GB/s on NVIDIA GT200 GPU. The best AES performance they
can achieve is 4.375 GB/s on Geforce GTX285 GPU by adopt-
ing 16 Bytes per thread as the parallel granularity and storing
S-Boxes in shared memory. Nishikawa et al. [23] further evaluated
AES based on previously reported insights and achieved 6.33 GB/s
using NVIDIA Tesla C2050 GPU. In [15], the authors studied the
AES encryption on Tesla c20 with innovative Read-Only cache to
store S-Boxes. However, the achieved performance was extremely
poor so long as the input plaintext pattern became more random
and less repetitive. Recently, a new approach proposed by Lim
et al. [18] showed a scheme of restructuring the CPU-based bit-
sliced implementation of the AES [14], to process four 16-byte
blocks at a time and achieved 9.83 GB/s throughput on GTX 480
GPU.

2.4.3. AES on FPGA

Wang et al. [26] proposed an optimization solution for AES
used in storage area network applications on FPGA XC6VLX240T.
A throughput of 9.78 GB/s was achieved as a result. Liu et al. [21]
proposed a single pipeline design for the AES encryption algo-
rithm based on FPGA, and managed to achieve a throughput of
8.26 GB/s. However, even if FPGAs can achieve higher power ef-
ficiency, their overall performance is limited by the total amount
of hardware computing resources.

L. Li, J. Fang, J. Jiang et al. / Journal of Parallel and Distributed Computing 138 (2020) 178-189 181

30 T T T

-8~ ICPE
—#=8CPE

Bandwidth (GB/s)

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K
Block Size (Byte)

Fig. 3. DMA get bandwidth with different numbers of cores by different block
sizes.

2.4.4. AES on Sunway TaihuLight

Till now, few efforts are seen on designing parallel AES-ECB al-
gorithm based on the latest SW26010 processor except the work
in [4]. The authors in [4] showed a distributed implementation of
AES algorithm on the Sunway TaihuLight system. Although a good
scalability was achieved, that is, 998 x speedup with MPI on 1024
nodes compared with the case on one node, their implementation
performs poorly on a single SW26010 node, with a throughput
of only 0.064 GB/s. In their work, plaintext data was processed
by computing cores in parallel and no fine-grained vectorization
optimization was exploited inside computing cores.

3. AES implementation on a single SW26010 chip

To map AES workflow to the SW26010 many-core architec-
ture to get high throughput, the key is to exploit all possible
parallelism provided by the architecture.

e Inter-CPE Data Parallelism. Whenever possible, we should
try to utilize 256 CPEs to conduct AES encryption of inde-
pendent plaintext blocks in parallel.

e Intra-CPE Data Parallelism. This can be achieved by using
the 256-bit SIMD instructions to load more data at once and
process them in parallel.

e Instruction-level Parallelism. Since there are two pipelines
in a CPE and each can perform (different stages of) several
instructions at once, we can adjust AES workflow and fulfill
more efficient instruction scheduling to overlap instruction
executions on two instruction pipelines to get more benefit.

3.1. Inter-CPE data parallelism

In AES, the plaintext to be encrypted can be divided into
several independent fixed 16-byte plaintext blocks and processed
in parallel. Therefore, it is natural to exploit data parallelism by
assigning computations of plaintext blocks to 256 CPEs. A two-
level parallel model is implemented for SW-AES method. Four
processes are launched on 4 CGs by their MPEs to encrypt 1/4
of the whole plaintext. Inside each CG, each process launches 64
threads on 64 CPEs to encrypt a block of plaintext simultaneously.

To distribute plaintext data blocks to 256 CPEs, data move-
ment strategy should be carefully investigated. The SW26010
architecture provides two memory access patterns for data trans-
fer between the main memory and registers of CPEs. The CPE
mesh can access data items either directly from the main mem-
ory, or from the three-level (REG-LDM-MEM) memory hierarchy.

30 T T T
—8- ICPE
~#—8CPE

16CPE
25 |-|=P—32¢PE
—©-64CPE

Bandwidth (GB/s)
S
T
I

1 I I I | I I I I I
4 8 16 32 64 128 256 512 IK 2K 4K 8K 16K
Block Size (Byte)

Fig. 4. DMA put bandwidth with different numbers of cores by different block
sizes.

In the first case, the CPE mesh can directly access data items
from memory by gload/gstore instructions. Such a direct memory
access pattern does not take advantage of any possible data
locality in cache. Moreover, the actual interface of gload/gstore
only provides a physical bandwidth of 8 GB/s, leading to an
extremely low utilization of the computing capability because it
wastes most of time on data movement. In the second case, the
CPE mesh accesses the data items through the MEM-LDM-REG
hierarchy. We apply DMA operations to load plaintext into LDM
first, and then load data into the register file for the computation.
After computation, we store the obtained cipher text into LDM
and transfer them back to the main memory by DMA operations.
In this case, the LDM serves as a cache for each CPE. As shown
in Figs. 3 and 4, the effective bandwidth for DMA load and store
ranges from 4 GB/s to 28 GB/s. In general, a higher bandwidth
over 24 GB/s is achieved with a block size larger than 256 bytes
when all 64 cores are involved, accounting for about 70% of the
theoretical DMA bandwidth. We adopt the second way for plain-
text transfer between memory and registers and each CPE uses
DMA to fetch data blocks as large as possible. In addition, double
buffering technique is adopted to overlap DMA with computing.
That is, while the data is computed in one LDM buffer, the next
plaintext block is loaded into another LDM buffer by DMA.

SW26010 adopts a heterogeneous multi-core architecture
combining on-chip computing array clustering and distributed
shared storage, with a uniformly addressed on-chip main mem-
ory space that can be accessed by both the operation control core
and the computing core. The way to run tasks on multiple CPEs
in parallel is closely related to the memory operation modes. Ac-
cording to the structural characteristics of SW26010, two modes
allowed are as follows in the Sunway TaihuLight supercomputer
system:

1. Full-chip sharing mode: each running process can access
the entire 32 GB memory. When 4 CGs perform data access
at the same time, each CG can at most get 1/4 on-chip
network bandwidth.

2. Core group private mode: there is no memory sharing
between any 2 CGs and each CG can only access its own
8 GB private memory.

The parallel model with the full-chip sharing mode is shown
in Fig. 5, where 4 pthread threads are created and allocated to
4 CGs automatically by the system. In each CG, the system uses
its own slave thread acceleration athread library to accelerate
program performance. The parallel model with the core group

182 L. Li, J. Fang, J. Jiang et al. / Journal of Parallel and Distributed Computing 138 (2020) 178-189

Start Process

l\ pthread create A
&k ——py &

ECompute Compute | Compute ComputeE

| |
[|
Lé e D \ | Compute |
iliiecdliog I\ || athread join |
... -
End Process
CGO CGl CcG2 CG3

Fig. 5. The parallel model with full-chip sharing mode.

private mode is shown in Fig. 6, where each CG initiates a process
for data processing.

3.2. Intra-CPE data parallelism

Based on our two-level parallel model, we intend to exploit
the SIMD and instruction-level parallelism inside one thread of
each CPE. However, implementing a parallel AES algorithm in one
CPE is not a straightforward task due to the following reasons.
First, the input data to be processed during the AES workflow is
only 128 bit, making it difficult to exploit the parallelism provided
by the 256-bit SIMD instructions. Second, operations critical to
cryptography such as vsrlw and seleqw, which are used in al-
ready known solution [3], are not supported in CPEs of SW26010.
Furthermore, the instruction set of CPE does not support SIMD
operation on 1-byte elementary data type. Unfortunately, the
random lookup of the fixed S-Box table in the AES workflow
works in a bytewise fashion, that is, it can only process one byte
at a time. Third, different from other popular parallel architec-
tures such as GPU and Xeon Phi, which allows another group
of threads to be issued to instruction execution pipeline when
one group of threads is stalled, SW26010 requires programmers
to explicitly control the instructions execution sequence. Finally,
since the compilers on SW26010 provide no support of automatic
vectorization to exploit SIMD capability, programming in such an
environment poses a significant challenge.

To resolve the above difficulties, we propose three optimiza-
tion techniques to exploit intra-CPE parallelism, namely a SIMD-
friendly data layout to easily exploit data parallelism inside a
CPE, a semi-SIMD style S-Box lookup approach to eliminate the
performance degradation from non-vectorized LDM access and
a Pipelined Step Execution workflow to fully utilize the two
instruction pipelines. For the sake of clarity, we list the data struc-
tures used in Table 1 before introducing the above techniques in
detail.

3.2.1. SIMD-friendly data layout

As aforementioned in Section 2.1, AES works on the basis of a
4-by-4 byte array called state. Merely conducting AES operations
on one state array is insufficient to exploit the SIMD capability of
256-bit vector registers. Even if we can load 2 states into a single
vector register at the same time, the SIMD capability will not be
unlocked naturally because the byte elements, which appear in
the register in a fixed order, are not contiguous either in the view
of ShiftRows operation or in the view of MixColumns operation
— the former works in row-major order and the latter works in
column-major order. To deal with the problem and make full use
of the SIMD capability to boost performance, a SIMD-friendly data
layout is proposed.

A SIMD-friendly data layout is possible because: (1) there
is no dependency between different states so that they can be

Start Process Start Process Start Process Start Process

! |

Compute Compute

il

R iy p——— |
v | = athread_spawn |

Compute ‘ Compute l Compute |

4
\
\
\
\\
) N
\
\

athread_join I

S |

End Process End Process End Process End Process
CGO CGl CcG2 CG3

Fig. 6. The parallel model with CG private mode.

manipulated at the same time, and (2) there are enough (32)
vector registers in one CPE. The idea of our SIMD-friendly data
layout is straightforward. Since a 256-bit vector register can hold
32 bytes and each row of a states array has 4 bytes, we treat 8
states as a batch and deploy 4 registers to make the corresponding
row in one batch to appear in one register as shown in Fig. 7,
where the input byte stream is also shown. Such a data layout is
SIMD-friendly because both ShiftRows and MixColumns can now
perform directly on the bytes in one register. Please note that,
although our idea of SIMD-friendly data layout is straightforward,
deriving such a layout efficiently in the real world is not as easy
as shown in Fig. 7, for the input data block (i.e., input stream in
the figure) appears in column-major order from the perspective
of the state array and at most two data blocks can be processed
at the same time even with the help of 256-bit vector register.
Indeed, a carefully designed transformation scheme is needed.

The transformation scheme we present is illustrated in Fig. 8.
It consists of 4 steps and works entirely with SIMD instructions.
At the very beginning, we use 4 vidd instructions to load 8 states
from LDM to four 256-bit vector registers, each maintaining two
states. Treating every 4 bytes in the input stream (corresponding
to one column of a state array as shown in Fig. 7) as an integer, we
then get 32 integers, namely A0, A1, ..., H3 as shown in Fig. 8. The
first three steps work on integers. Each step executes a shuffle
instruction with a different mask. Different colors in the figure
indicate different columns of a state array. After the first three
steps, the integers belonging to the same column of different state
arrays are in a single vector register. Step 4 works on bytes, where
each integer is viewed as 4 bytes with different colors indicating
different positions (i.e., row numbers) in a state array. Vectorized
SHIFT and AND instructions are used in this step to move the
bytes to form the final SIMD-friendly data layout. Please note that
all instructions here just change the positions of elements (either
integers or bytes) rather than their contents.

In the end, we would like to make the following points clear.
First, transformation is also needed to flush the produced cipher
text back to the main memory. It is not discussed here because it
can be easily implemented by reversing the steps and instructions
mentioned above. Second, with the help of SIMD instructions,
the transformation is very efficient. All transformations plus data
loading and storing only take up 2%-3% of the whole AES work-
flow. Third, since the SIMD-friendly data layout changes the
positions of bytes in a state array, the corresponding roundkey
should be adjusted accordingly to facilitate vectorized operations
and to ensure correct results. This is easy to do, for the roundkey is
also a 4-by-4 byte array and keeps unchanged in one round. The
only action needed is just to duplicate every byte of the roundkey
8 times and place them in the corresponding positions of the
vector register. We call the key obtained in this way ExtRoundKey.

L. Li, J. Fang, J. Jiang et al. / Journal of Parallel and Distributed Computing 138 (2020) 178-189

183

Table 1
Data structures used during the SW-AES workflow.
Name Size Location Description
state 128 bits LDM Mentioned in Section 2.1.1
state batch 128 x 8 bits 4 registers 8 state arrays perform transformation together
plaintext block 128 x bytes LDM A block of plaintext fetched by DMA
S-Box 256 bytes LDM Mentioned in Section 2.1.1
ExtS-Box 1024 bytes LDM Extend each Byte in S-Box into integer
roundkey 128 x 11 bits LDM Mentioned in Section 2.1.4, there are 11 roundkeys in total for 128-bit cipher keys
ExtRoundKey 128 x 11 bytes LDM Duplicate each byte in a roundkey 8 times, refer to Section 3.2.1 for more details
128 bytes
|
input stream | by | by | b, | by | by | bs | bg | by bys D115 | P11z | Prag | biss b1y,
array format in-register data layout
by | by | bg | by, D112 | Pise | Prag | Prag _’| by | b, | by | bj, | |b11z | b116 | b120 | b124 | register
by | bs | by | by b113 | P1a7 | Prag | bras _'| b, | b | by | b3 | |b113 | bys; | b1 | biys | register
b, | bg | by | bis b114 | biss | b1aa | D126 _’| b, | b | bio | by, | |b114 | bi1g | b, | b6 | register
by | by | by [bis buss | Buss | Bias | iy | — | bs | By | buy [bis | o [Buss | b | buss | by | reister
state, state, 256 bits / 32 bytes

Fig. 7. An illustration of our SIMD-friendly data layout and an intuitive way to get it. Here one column of a state array corresponds to 4 continuous bytes in the

input stream.

0
Shuffl e ins truction between X1 and

L [2][3][+4] 5 [6] 7
blcldl el s

X2 to generate a new element

[State Integer

[[40] ar] 421 431 Bo[B1] B2] B3 | col ci] c2] &3] po] i p2] b3 ||;|| G0l GIl 2] G31 Hol HIT] H2] H3]
L I |

[A?O]BOOICOO]DOO[E00[F00[G00]H00]AIO[BIO[HIO[4201 B20] —THz0l 4301 B30T —TH30] [] [(4031 Bo3] T H03[T 433[B33] [H33]

| Step 1 1

| [40] Bol 411 Bi] col ci] po] b1] l [Eo] Fol EIT FIT Gol HoI] Gi] HI] l

| step 2 1l [2] B2 43 B3] c2] p2] ¢3] D3] ! L] Pl BT R3] c2] m2] G3] H3
| [[40] Bo] co] Dol 411 Bi] ci] bi] [Eo] Fo]l Go] Ho] EI] FI] Gi] HI] |
| a2l B2l 21 b2 a3 B3] 3] b3] [CE2] P2 G2 H2] E3] F3| G3] H3]!
i — —
I (401 Bol col o] Eo] Fo] Go | Hol ai] Bi] ci] pi] EI| Fi] Gi] mi |31 B3 c3] D3] B3] F3] G3] H3] |

\ ~

}'_____V\ _________ 2Byte - ':
i [AI\0]A01|A02| 403] Boo] T Bo3] cool .. T co3Tpoo] .. T po3] E00] ...T 03] Fool T Fo3] Gool .. 1 GO3]HI00| B 2] I 7] I] 2277 I 2
lStq)4 l
| |
| |
| |

Fig. 8. A scheme to transform eight 128-bit state arrays into a SIMD-friendly data layout, where different characters indicate different state arrays, with Ai indicating
the 4 bytes (forming an integer) in column i of the corresponding state array and Aij indicating the byte at [j, i] (namely Aij = statel[j, i]). In the top of the figure,
we illustrate how the instruction Shuffle(X1, X2, mask) works. X1 and X2 are two 256-bit registers each of which holds 8 integers. The mask (i.e., {2,3,4,6,0,1,47}) is
used to indicate which 4 integers in a register will be taken to the new register. In this case, the first 4 integers (i.e., c, d, e, g) come from X1 and the rest 4 integers

(ie., i, j, m, p) are from X2.

3.2.2. Semi-SIMD style S-Box lookup

The data layout proposed previously makes it possible to fully
exploit the SIMD parallelism of such operations as ShiftRows,
MixColumns and AddRoundKey. However, the operation SubBytes
cannot make full use of SIMD parallelism because S-Box lookup
according to state[i, j] incurs a lot of random access. A naive and
intuitive solution is to convert S-Box into a vector, extract the
desired bytes with vector operations, and transform the extracted

bytes back into scalars. However, scalar operations to load ele-
ments of S-Box from LDM and insert them into the original vector
consume a lot of CPU cycles, which is non-negligible.

To eliminate the overhead of vector and scalar transformation,
a three-stage semi-SIMD style S-Box lookup strategy is proposed
in accordance with the SIMD-friendly data layout, as illustrated in
Fig. 9. The first stage is called extend stage, for we in this stage ex-
tend each byte of the input vector into an integer. With 3 vsrlw

184 L. Li, J. Fang, J. Jiang et al. / Journal of Parallel and Distributed Computing 138 (2020) 178-189

8 integers in I reg

blol b4 | b8 [B12] bi16]520)
bl [b5] b9 [b13] bi17] 021
b2 1 b6 [b10]bI4] bi8]b22
b3 1 b7 611 ThIs] h19] 623

Input : 32 bytes in I reg
Leol b1 1 62] 63| .| B3I K Extend
| S——
Integer

Output : 32 byies in I reg c0l c41 c8 Teid] ci6] c20] c24] 28
mmEEne & Tes T o Tei3] ci7] c2if 25T 29
—]

Integer

\/[—‘ c2] 6 cio]cid] ci18] c22] c26] 30
c3 T c7leriTeis] e19] c23] c27] c3l

8 integersin I reg

selldw Va, Rb, #c, Vd

g 0 1 2 3 4 5 6 7
/% va [o BE 6l 620

sk

simd_lookup

ExtS-Box —»

\ va [ei]es [o [edl cl7] 2i] c23] ¢29

Rb=Addr(ExtS-Box)

Fig. 9. Vectorized random table lookup operation. The input vector supplies the text (in SIMD-friendly layout) to be encrypted.

(vectorized SHIFT) instructions and 4 vandw (vectorized AND)
instructions, the original input vector is extended into 4 intv8
vectors. Please note that S-Box should be extended in the same
way in advance in order to facilitate the following operations. We
use ExtS-Box to denote the table after extension. The second stage
is table lookup stage. We finish the task with selldw, a unique
instruction provided by SW26010 for selecting and loading data
in word. The full format of the instruction is selldw Va, Rb, #c,
Vd, where Rb is a 32-bit operand indicating the starting address
of the memory (namely ExtS-Box here) to be looked up in LDM, Va
is a 256-bit extended intv8 vector with 8 integers each of which
specifies an offset to Rb, #c is an operand with the valid value
in [0, 7] to indicate which integer in Va is selected, and Vd is
the register for the return values. Eight selldw instructions are
executed with #c decreasing from 7 to 0 to finish the processing
of Va and store the final result in Vd. With the help of selldw
instruction, all data are manipulated in vectors, thus avoiding the
overhead of frequent vector-scalar transformation. The last stage
is shrink stage, where we shrink integers back into bytes and
combine the elements in 4 integer vectors into one byte vector.

3.3. Instruction-level parallelism

Each CPE of the SW26010 processor has two instruction
pipelines, namely PO and P1. Floating-point operations and vector
operations can only be handled on PO. Control transfer operations,
load|/store and register communication operations for both scalar
and vector can only be handled on P1. In each cycle, if the next
two instructions in the front of the instruction queue can be
issued into two instruction pipelines separately, we can exploit
the instruction-level parallelism (ILP) inside one CPE.

We propose a Pipelined Step Execution technique to balance
the utilization of two instruction pipelines to increase ILP. We
notice that the execution steps of the AES workflow can be
categorized into two different types as PO-pipeline bounded
and P1-pipeline bounded kernels, according to their computing
patterns. Step SubBytes, as mentioned in the previous subsec-
tion, mainly involves LDM access operations on P1-pipeline. Step
ShiftRows, which includes vectorized shift operations, and Mix-
Columns, which includes a set of logical instructions, can be
executed on PO-pipeline. Step AddRoundKey is divided into two
parts. The part which requires to access a specific part of 128
bytes ExtRoundKey each round can be implemented with vec-
torized load instruction and executed on P1 pipeline. The part
that performs vectorized XOR operations is PO pipeline bounded.
Without affecting the dependencies of the AES workflow, we
rearrange the workflow of AES into pipeline-fashion as depicted
in Fig. 10. By overlapping execution of P0O-bounded and P1-
bounded steps on independent state data, we can fully utilize the
two pipelines.

Register SubBytes Q) AddRoundKey-load Q) ShiftRows Q)

V@C’m”' MrColumm @) Ada’RoundKey Xor @ PO P1
3| | 5 ©Je) @
ol 00 %
HRSoTe 0 %®%%

- Time

Fig. 10. Pipelined workflow to increase Instruction-Level-Parallelism (ILP).

load balancer

system-level | COMPute Compute compute
V! node 1 datal node 2 dataz node N @

node-level process 0 process 1 process 2 process 3
(CGO) (CG1) (CG2) (CG3)

user request

Fig. 11. Parallel scheme for offline encryption.

4. Running AES on the whole system

Since the processing capability of a single SW26010 processor
is high enough (please refer to Section 5.1.1 for details), running
AES on the whole system is only needed when the input data
volume is very large. Corresponding to the scenarios mentioned
in Section 1, two parallel schemes are developed as follows.

The parallel scheme for the offline scenario is illustrated in
Fig. 11, where data is distributed in multiple nodes with the
volume at each node known in advance. First, a root process
receives a request that specifies the cipher key, the number of
nodes to be used as well as the location of data to be encrypted.
After that, roundkeys are generated and broadcast to all the nodes
involved along with ExtS-Box. Next, parallel execution at the node
level starts, which has been discussed previously in Section 3
and will not be repeated here. Here the core group private mode
is suggested because, as shown in Fig. 13, it can gain better
performance at most time. Since the volume of data at each node
may vary greatly sometime in the real world, a load balancer is in-
troduced to balance the load of different nodes. As different parts
of data are independent during encryption and the data volume at
each node is known in advance, the balancing policy we use - to
make every node process the same amount of data while with the
data transfer time taken into consideration - is simple and will
not be further explained in detail here. Indeed, when each process
deals with a large amount of data, the data transfer time can even
be hidden (i.e., overlapped with computation) by processing the
incoming data first.

L. Li, J. Fang, J. Jiang et al. / Journal of Parallel and Distributed Computing 138 (2020) 178-189 185

Table 2

System configurations.
Item Value
Processor SW26010

Operation system
Instruction set

C compiler

MPI compiler

Sunway Raise OS 2.0.5 (based on Linux)
Sunway-64 Instruction Set

sw5cc.new Version 5.421-sw-496
mpiCC Version 5.421-sw-496

The parallel scheme for the online scenario is illustrated in
Fig. 12, where an input data stream is supplied along with other
request parameters such as the cipher key. The detailed work-
flow is as follows. First, a root process generates roundkeys and
broadcasts them to all the nodes involved along with ExtS-Box as
does in the offline scenario. Then, the root process continuously
splits the incoming data stream into fixed-sized data blocks and
sends them to various nodes for processing. To balance the load,
the root process tries to send each node the same amount of data.
After that, data blocks are processed at each node independently.
Here the full-chip sharing memory mode is used in order to
hold in memory as many data blocks as possible. In addition,
a double-buffer mechanism is used to overlap computation and
communication so that no on-chip mesh network resource is
wasted during cipher calculation. After a data processing task
is complete, the root process collects the output. The procedure
stops until no more data is coming and all data processing tasks
are complete. In the end, we should point out that the data block
size has great impact on the system performance. As can be seen
from Fig. 13, the amount of data allocated to each core group
each time must be no less than 64 MB in order to maintain
system performance because it is only under this condition that
the pthread startup overhead can be ignored.

5. Performance evaluation and analysis

We implement SW-AES using a two-level multi-threading pro-
gramming model, with MPI to launch 1 (full-chip sharing mode)
or 4 (core group private mode) processes on 1 or 4 MPEs of a sin-
gle chip and Sunway OpenACC /Athread to launch 64 light-weight
threads to the 64 CPEs within one CG. It is Sunway OpenACC that
conducts data transfer between main memory and LDM and uses
the Athread threading library to manage threads on CPE and to
distribute the kernel workload to them. Except that the SubBytes
Step is implemented with assembly codes, the other steps are
implemented with C programming language. We perform the
experiments on a single SW26010 processor as well as the whole
system of the Sunway TaihuLight, with the configurations listed
in Table 2.

5.1. SW-AES performance on a single node

5.1.1. Overall performance

Fig. 13 shows SW-AES throughput with various input data
sizes and memory operation modes. It is easy to see that, for the
core group private mode, SW-AES throughput increases almost
linearly with the input data size increasing from 1 kB to 8 MB.
When the input data size is larger than 16 MB, it can achieve a
throughput over 12.5 GB/s. The throughput increase drops rapidly
after the input size is greater than 4 MB and stops at 256 MB
because the computing resources (i.e., CPEs) are insufficient, for
the DMA bandwidth is still underutilized now. In all, a maximal
throughput of 13.50 GB/s can be achieved. The throughput of the
full-chip sharing mode is lower and increases more slowly at the
beginning, but it approaches that of the core group private mode
when the input data size is larger than 64 MB.

input data stream

root process

o
S
S
data bloc

system-level | COmPute compute compute

Y node 1 node 2 node N

node-level pthread O | | pthread 1 | | pthread 2 | | pthread 3
(cGo) (CG1) (cG2) (CG3)

Fig. 12. Parallel scheme for online encryption.

Throughput (GB/s)

\‘& \6{* _‘)q:(* bg# \q/oo‘{‘ '\f‘k& ‘)\q& \ﬁ\ W\ <§\ \@\ gﬁ\ @ﬁ\ \'\«%ﬁ\ ’9@ 5\r1§\ \0

Input Data Size on a Single Core Group(Byte)

Fig. 13. The SW-AES overall performance with various plaintext block sizes in
different memory operation modes.

To make the performance gains clearer, Fig. 14 illustrates the
proportion of calculation time, DMA data transfer time, thread
start-up time and the calculation time overlapped by double
buffer in the core group private mode. The case of full-chip
sharing mode is not given here because it works in the same
way except that it introduces additional pthread startup time,
which is more than 60 times of the athread startup time. We
can see that, when the input data size is less than 1 MB, the
thread start-up time on CPE is non-negligible. An interesting fact
is that double-buffer technique, which is also used in [4], has
limited benefit to the overall performance. The reason is due
to the special DMA mechanism of the SW26010 processor: CPE
mesh conducts asynchronous DMA operations across 4 groups
of CPEs within one CG, whereas sequential DMA operations are
performed within each group. Thus, computation on one CPE
group has already been overlapped with DMA on another CPE
group even if a single buffer is used for DMA operation. As a
result, only limited improvement is achieved with the double
buffer technique on SW26010.

According to Fig. 14, we can conclude that when the input data
size is less than 4 MB, the startup time (athread startup time)
of the CPE cannot be ignored. Similarly, in the full-chip sharing
mode, the pthread startup time (overhead) is also non-negligible.
The performance depends on the input data size greatly. When
the input data size of each CG is less than 64 MB, the performance
of full-chip sharing mode is limited due to the pthread startup
time, which has a large impact on the performance of the system.
When the input data size of each CG is greater than 64 MB, the
percentage of computing time gradually increases, and the impact
of pthread startup time on the system decreases accordingly. The
figure also shows that only when the processed data block is
large, the full-chip sharing mode has the advantage; otherwise,
its startup time becomes the bottleneck of system performance
acceleration.

5.1.2. The effect of various optimizations
We also do some experiments to show the benefit of various
optimization techniques proposed in this paper to the overall

186 L. Li, J. Fang, J. Jiang et al. / Journal of Parallel and Distributed Computing 138 (2020) 178-189

100%

50%

Time (in percentage)

[CPE startup time

I DMA transfer time

[Double buffer overlapped time
- Computing time

0%

AR \qfc,‘e %665 6@‘9 N Ofo*\ qf)b“\

Input Data Size(Byte)

Fig. 14. Percentage of calculation time, double buffer overlap time, data transfer time and thread startup time of SW-AES workflow under various plaintext block

sizes in the core group private mode.

4 T T T T T T T
— I:I Original
el [smp
% [S1MD+Selidw
Nl I 51MD+Selldw+Pipeline
T2+
=
g
s
S
&~ 0 l n-\ll I'II|II ﬂlll H|1

ﬂ|.| Dndd Ondd Dodd Todd Dodd Oodd Ouid Oedd On

NGty \m"‘& qjae(" 5\”\L SRR \'ﬁ;\ %s@k

Input Data Size(Byte)

Fig. 15. The effect of different optimization techniques on the SW-AES overall performance under various plaintext block sizes. The throughput here is obtained on

one core group.

performance. Fig. 15 shows the results on one CG with respect
to different input sizes (from 1 kB to 256 MB). Different colors
in the figure refer to the original non-vectorized implementation
(denoted by Original parallel), implementation with the vector-
ization based on SIMD-friendly data layout method (denoted
by SIMD), implementation with SIMD and a semi-SIMD fashion
lookup table method (denoted by SIMD+selldw), and implemen-
tation incorporating all the optimization techniques (denoted by
SIMD+selldw+Pipeline), respectively.

It is easy to see from the figure that directly using SIMD
cannot improve performance. On the contrary, the performance
is somewhat decreased. The reason is that the non-vectorized
S-Box loop-up operation produces a huge amount of overhead
when extracting elements from and inserting scalar elements
into vector registers. However, it provides a good basis for the
following operations. In detail, the proposed semi-SIMD fashion
lookup table scheme is able to produce obvious benefits for all
input sizes, with a speedup ranging from 1.4x to 4.6x. The
maximum throughput for all input sizes is achieved with further
using the pipelined workflow approaches, obtaining speedups of
2.3x to 6.9x over the corresponding original implementation.

5.2. SW-AES scalability

We evaluate the scalability of SW-AES on multiple nodes, with
the experimental results shown in Fig. 16 (for weak scaling) and
Fig. 17 (for strong scaling) respectively. Since the throughput of
a single SW26010 processor can reach as high as 13.50 GB/s and
the real network speed is only 12 GB/s when compute nodes are
communicating via MPI, the network is obviously a bottleneck
for data distribution in the online scenario. For operations with
larger keys, more nodes would do help to the performance of
on-line mode, but the benefit is limited because only 20% (for
192-bit keys) or 40% (for 256-bit keys) more computation is
needed and network is still a bottleneck. Therefore, our exper-
iment here omits the online scenario and focuses only on the

100 fe——————

-
99.5
S
g
5
g 985
W
=
S 98
2,
97.5 . .
—— core group private mode
b =% full-chip sharing mode
chen et al. 2016
97 : T
1 4 16 64 256 1024

node number

Fig. 16. Weak scaling of SW-AES on multiple nodes, where each node processes
1 GB data.

offline scenario with different memory operation modes. Also, the
result of related work [4] is listed as a comparison.

For weak scaling, all three cases can achieve a parallel effi-
ciency over 97.5%. It means near-linear scalability, that is, using
N nodes means nearly N times faster. This is because data par-
allelism scheme is adopted among multiple compute nodes and
the information exchanged between nodes is relatively small so
that the cost is negligible when each node processes a large
amount of data. For strong scaling, near-linear scalability can also
be achieved for all three cases when the number of nodes is
less than 256. But, except for the core group private mode, the
speedup rates drop greatly as the number of nodes increases. This
is because, with more nodes, the data to be processed at each
node gets less, making the once negligible overhead (i.e., CPE start
time as shown in Fig. 14) obvious.

Please note that the result reported here is an ideal case where
each node processes the same amount of data. For applications in

L. Li, J. Fang, J. Jiang et al. / Journal of Parallel and Distributed Computing 138 (2020) 178-189 187

1024

—— ideal

—%— core group private mode
Sfull-chip sharing mode

256 | chen et al. 2016

64

1 4 16 64 256 1024

node number

speedup

Fig. 17. Strong scaling of SW-AES on multiple nodes, where the data to be
processed is fixed to 4 GB.

Table 3
A comparison of SW-AES with other work on a single device.

Hardware device Work Throughput Peak performance
FPGA XC7VX690T [21] 8.26 GB/s Inapplicable
FPGA XC6VLX240T [26] 9.78 GB/s Inapplicable
GeForce GTX 285 [13] 4.4 GBJs 0.709 TFlops
Tesla C2050 [23] 6.33 GB/s 1.03 TFlops
NVIDIA GT200 [10] 3.96 GB/s 0.293 TFlops
GeForce GTX 480 [18] 9.83 GB/s 1.345 TFlops
SW26010 This paper 13.50 GB/s 3.06 TFlops

the real world, the data generated at different nodes might not be
that even. Therefore, it is hard to achieve near-linear scalability.
Depending on the data distribution, the speedup that can be
obtained might be quite different. Since applications are diverse
and it is difficult to define a typical one to cover all the conditions,
we do not show the scalability of real world applications here.
But one worst case we would like to point out here is that there
is only one node containing the data generated. Since network
is a bottleneck as aforementioned for the online scenario, the
maximal speedup that can be achieved in this case would be no
more than 2x. That is, besides the local node, the data can only
be sent to another node for processing without resources being
wasted.

5.3. Comparison with related work

5.3.1. Comparison with the work on the Sunway TaihuLight

The work reported in [4] is the only related work done on
the Sunway TaihuLight. The comparison between it and SW-AES
(core group private mode) is shown in Fig. 18. In accordance with
the settings in [4], only the block sizes between 1 MB and 1
GB are used at each node, which means a total input data size
between 1 GB and 1024 GB as shown in Fig. 18. It is easy to see
from the figure that SW-AES performs much better than the work
in [4], with a throughput improvement about 216.23x when the
block size is 1 GB. Indeed, more throughput improvement can be
gained with smaller block size. The reason is that the work in [4]
did not take into consideration the fine-grained vectorization and
pipelined execution as we do.

From the experimental results shown in Fig. 18, we can draw
the conclusion that SW-AES has an aggregated throughput of
13819.25 GB/s (i.e., about 13.495 GB/s each node) on 1024 com-
puting nodes with each processing 1 GB input data, while the
work by Chen et al. [4] has an aggregated throughput of only
63.91 GB/s (i.e., about 0.062 GB/s each node). This is consistent
with the result shown in Fig. 16.

5.3.2. Comparison with other related work

As aforementioned in Section 2.4, there are also other ways
to boost AES algorithm besides the work on the SW26010 pro-
cessor. Table 3 lists the comparison results between SW-AES and

T T
10% £ 1
SW-AES
107 F —3¥— [Chen et al. 2016]
= 0
Q
IS)
S
=
S0
N
S a2k il
i 10
10" F E
1 1 1 L L 1 1 1 L 1
1 2 4 8 16 32 64 128 256 512 1024

Input Data Size (GB)

Fig. 18. Throughput comparison between SW-AES (core group private mode)
and the work by Chen et al. [4] under various plaintext block sizes. The input
data is evenly distributed on 1024 nodes.

other works on FPGA [21,26] and GPU [10,13,18,23], where peak
performance means the maximum performance in theory. For
FPGA, the peak performance is marked with inapplicable because
it depends on how circuits of the FPGA card are used. Please note
that the data presented here are taken from the corresponding
papers, and only the maximum throughputs are listed. For SW-
AES, a maximum throughput of 13.50 GB/s can be achieved on
a single processor due to the novel techniques proposed. This
value exceeds those on the mainstream HPC (high-performance
computing) accelerators such as FPGA and GPU. Since different
hardware devices are used and only operations of integer are
involved in AES, the peak performance and the comparison result
can only be used for reference.! Anyway, it indicates SW-AES is
a promising and efficient solution for data encryption/decryption
on the Sunway TaihuLight supercomputer.

6. Conclusion

In this paper, we reported our effort on accelerating AES en-
cryption/decryption on the Sunway TaihuLight, one of the fastest
supercomputers in the world that is homegrown in China. We
presented SW-AES, a parallel version of AES algorithm on the
Sunway TaihuLight. With a set of optimization techniques pro-
posed, namely, task-level parallelism among many CPEs, data-
level parallelism via SIMD, and instruction-level parallelism via
pipelined execution, SW-AES managed to achieve a throughput
of 13.50 GB/s on a single SW26010 processor. When running on
1024 computing nodes with each processing 1 GB data block, SW-
AES can achieve a throughput as high as 13819.25 GB/s, compared
with 63.91 GB/s of the latest work done on the Sunway Taihu-
Light [4]. SW-AES throughput on a single SW26010 processor also
excels over that of the work on FPGA and GPU. As FPGA and GPU
are nowadays widely used for data processing and protection, the
great throughput gain achieved by SW-AES implies the SW26010
processor is a promising candidate for the AES algorithm.

In the end, we would like to point out that, though the tech-
niques presented here are specially designed for AES, the idea of
boosting performance systematically with full architectural fea-
tures taken into consideration is applicable to other applications

1 Since both GPU and SW26010 are optimized for floating-point operations,
roughly speaking, the performance of integer operations is about 1/4~1/3 of the
floating-point performance.

188 L. Li, J. Fang, J. Jiang et al. / Journal of Parallel and Distributed Computing 138 (2020) 178-189

including traditional HPC and/or MPI applications like scientific
computing and the emerging ones like deep learning. Of course,
different steps should be taken when applying the idea to other
applications due to the difference between applications. One ex-
ample can be found in [16]. It showed how to accelerate deep
learning applications in a systematic way. Besides such mecha-
nisms as utilizing inter-CPE parallelism as much as possible, large
data block transfer between main memory and LDM via DMA, and
SIMD-friendly data layout mentioned in this paper, it developed
other optimizations such as improved all-reduce communication
and parallel I/O operation. In the end, since SIMD instructions
are widely supported by modern processors, the idea of making
SIMD-friendly data layout can also benefit applications on the
other supercomputers.

Declaration of competing interest

No author associated with this paper has disclosed any po-
tential or pertinent conflicts which may be perceived to have
impending conflict with this work. For full disclosure statements
refer to https://doi.org/10.1016/j.jpdc.2019.12.013.

Acknowledgments

This work is co-supported by National Key R&D Program of
China (2018YFB0204102), and National Natural Science Founda-
tion of China (61572280, 61672312, 61702491).

References

[1] Y. Ao, C. Yang, X. Wang, W. Xue, H. Fu, F. Liu, L. Gan, P. Xu, W. Ma,
26 pflops stencil computations for atmospheric modeling on sunway
taihulight, in: 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), IEEE, 2017, pp. 535-544.

[2] BJ. Archer, Seventy Years of Computing in the Nuclear Weapons Program,
Tech. Rep., Los Alamos National Laboratory (LANL), 2015.

[3] JW. Bos, D.A. Osvik, D. Stefan, Fast implementations of aes on various
platforms, 2009, IACR Cryptol. ePrint Archive, 2009, 501.

[4] Y. Chen, K. Li, X. Fei, Z. Quan, K. Li, Implementation and optimization of AES
algorithm on the sunway taihulight, in: 2016 17th International Conference
on Parallel and Distributed Computing, Applications and Technologies
(PDCAT), IEEE, 2016, pp. 256-261.

[5] J. Daemen, V. Rijmen, Specification for the advanced encryption standard
(aes), Fed. Inf. Process. Stand. Publ. 197 (2001).

[6] W. Dong, L. Kang, Z. Quan, K. Li, K. Li, Z. Hao, X.-H. Xie, Implement-
ing molecular dynamics simulation on sunway taihulight system, in:
2016 IEEE 18th International Conference on High Performance Comput-
ing and Communications; IEEE 14th International Conference on Smart
City; IEEE 2nd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), IEEE, 2016, pp. 443-450.

[7] J. Fang, H. Fu, W. Zhao, B. Chen, W. Zheng, G. Yang, Swdnn: A library
for accelerating deep learning applications on sunway taihulight, in: 2017
IEEE International Parallel and Distributed Processing Symposium (IPDPS),
IEEE, 2017, pp. 615-624.

[8] H. Fu, J. Liao, W. Xue, L. Wang, D. Chen, L. Gu, J. Xu, N. Ding, X. Wang, C.
He, et al., Refactoring and optimizing the community atmosphere model
(cam) on the sunway taihulight supercomputer, in: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, IEEE Press, 2016, p. 83.

[9] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang, W. Xue, F.
Liu, F. Qiao, et al., The sunway taihulight supercomputer: system and
applications, Sci. China Inf. Sci. 59 (7) (2016) 072001.

[10] G.-l. Guo, Q. Qian, R. Zhang, Different implementations of aes crypto-
graphic algorithm, in: 2015 IEEE 17th International Conference on High
Performance Computing and Communications (HPCC), 2015 IEEE 7th In-
ternational Symposium on Cyberspace Safety and Security (CSS), 2015 IEEE
12th International Conference on Embedded Software and Systems (ICESS),
IEEE, 2015, pp. 1848-1853.

[11] F. Guiirkaynak, A. Burg, N. Felber, W. Fichtner, D. Gasser, F. Hug, H. Kaeslin,
A 2 gb/s balanced aes crypto-chip implementation, in: Proceedings of the
14th ACM Great Lakes Symposium on VLSI, ACM, 2004, pp. 39-44.

[12] O. Harrison, J. Waldron, Aes encryption implementation and analysis
on commodity graphics processing units, in: International Workshop
on Cryptographic Hardware and Embedded Systems, Springer, 2007,
pp. 209-226.

[13] K. Iwai, T. Kurokawa, N. Nisikawa, Aes encryption implementation on cuda
gpu and its analysis, in: 2010 First International Conference on Networking
and Computing (ICNC), IEEE, 2010, pp. 209-214.

[14] E. Kasper, P. Schwabe, Faster and timing-attack resistant aes-gcm, in:
Cryptographic Hardware and Embedded Systems-CHES 2009, Springer,
2009, pp. 1-17.

[15] A. Khan, M. Al-Mouhamed, A. Almousa, A. Fatayar, A. Ibrahim, A. Sid-
diqui, Aes-128 ecb encryption on gpus and effects of input plaintext
patterns on performance, in: 2014 15th IEEE/ACIS International Con-
ference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), IEEE, 2014, pp. 1-6.

[16] L. Li, J. Fang, H. Fu,]. Jiang, W. Zhao, C. He, X. You, G. Yang, Swcaffe:
A parallel framework for accelerating deep learning applications on
sunway taihulight, in: IEEE International Conference on Cluster Com-
puting, CLUSTER 2018, Belfast, UK, September 10-13, 2018, IEEE, 2018,
pp. 413-422.

[17] L.Li J. Fang, J. Jiang, L. Gan, W. Zheng, H. Fu, G. Yang, SW-AES: accelerating
AES algorithm on the sunway taihulight, in: 2017 IEEE International
Symposium on Parallel and Distributed Processing with Applications and
2017 IEEE International Conference on Ubiquitous Computing and Com-
munications (ISPA/IUCC), Guangzhou, China, December 12-15, 2017, IEEE,
2017, pp. 1204-1211.

[18] RXK.Lim, L.R. Petzold, C.K. Kog, Bitsliced high-performance aes-ecb on gpus,
in: The New Codebreakers, Springer, 2016, pp. 125-133.

[19] H. Lin, X. Tang, B. Yu, Y. Zhuo, W. Chen, J. Zhai, W. Yin, W. Zheng, Scalable
graph traversal on sunway taihulight with ten million cores, in: 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), IEEE,
2017, pp. 635-645.

[20] J. Liu, H. Qin, Y. Wang, G. Yang, J. Zheng, Y. Yao, Y. Zheng, Z. Liu, X. Liu,
Largest particle simulations downgrade the runaway electron risk for ITER,
2016, arXiv preprint arXiv:1611.02362.

[21] Q. Liu, Z. Xu, Y. Yuan, A 66.1 gbps single-pipeline aes on fpga, in: 2013
International Conference on Field-Programmable Technology (FPT), IEEE,
2013, pp. 378-381.

[22] N. Nishikawa, K. Iwai, T. Kurokawa, Granularity optimization method for
aes encryption implementation on cuda, IEICE Tech. Rep. VLSI Des. Technol.
109 (393) (2010) 107-112.

[23] N. Nishikawa, K. Iwai, T. Kurokawa, High-performance symmetric block
ciphers on cuda, in: 2011 Second International Conference on Networking
and Computing (ICNC), IEEE, 2011, pp. 221-227.

[24] R. Schilling, T. Unterluggauer, S. Mangard, F.XK. Giirkaynak, M.
Muehlberghuber, L. Benini, High speed asic implementations of leakage-
resilient cryptography, in: Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2018, IEEE, 2018, pp. 1259-1264.

[25] P. Shastry, A. Kulkarni, M.S. Sutaone, Asic implementation of aes, in: 2012
Annual IEEE India Conference (INDICON), IEEE, 2012, pp. 1255-1259.

[26] Y. Wang, Y. Ha, High throughput and resource efficient aes encryp-
tion/decryption for sans, in: 2016 IEEE International Symposium on Circuits
and Systems (ISCAS), IEEE, 2016, pp. 1166-1169.

[27]]. Wolkerstorfer, E. Oswald, M. Lamberger, An asic implementation of the
aes sboxes, in: Cryptographers’ Track at the RSA Conference, Springer,
2002, pp. 67-78.

[28] Z. Xu, J. Lin, S. Matsuoka, Benchmarking sw26010 many-core processor,
in: 2017 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), IEEE, 2017, pp. 743-752.

[29] C. Yang, W. Xue, H. Fu, H. You, X. Wang, Y. Ao, F. Liu, L. Gan, P. Xu,
L. Wang, et al., 10m-core scalable fully-implicit solver for nonhydrostatic
atmospheric dynamics, in: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, IEEE
Press, 2016, p. 6.

[30] J. Zhang, C. Zhou, Y. Wang, L. Ju, Q. Du, X. Chi, D. Xu, D. Chen, Y. Liu,
Z. Liu, Extreme-scale phase field simulations of coarsening dynamics on
the sunway taihulight supercomputer, in: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, IEEE Press, 2016, p. 4.

Liandeng Li is a PhD candidate with Department of
Computer Science and Technology, Tsinghua University.
His research interests include high-performance com-
puting and big data. His research work has appeared
in SC, IEEE Cluster Conference, and IEEE ISPA.

https://doi.org/10.1016/j.jpdc.2019.12.013
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb1
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb1
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb1
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb1
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb1
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb1
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb1
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb2
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb2
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb2
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb3
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb3
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb3
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb4
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb4
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb4
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb4
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb4
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb4
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb4
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb5
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb5
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb5
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb6
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb6
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb6
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb6
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb6
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb6
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb6
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb6
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb6
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb6
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb6
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb7
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb7
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb7
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb7
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb7
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb7
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb7
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb8
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb8
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb8
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb8
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb8
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb8
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb8
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb8
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb8
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb9
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb9
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb9
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb9
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb9
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb10
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb10
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb10
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb10
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb10
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb10
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb10
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb10
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb10
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb10
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb10
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb11
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb11
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb11
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb11
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb11
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb12
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb12
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb12
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb12
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb12
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb12
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb12
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb13
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb13
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb13
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb13
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb13
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb14
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb14
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb14
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb14
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb14
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb15
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb15
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb15
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb15
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb15
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb15
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb15
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb15
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb15
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb16
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb16
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb16
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb16
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb16
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb16
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb16
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb16
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb16
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb17
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb17
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb17
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb17
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb17
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb17
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb17
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb17
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb17
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb17
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb17
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb18
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb18
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb18
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb19
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb19
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb19
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb19
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb19
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb19
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb19
http://arxiv.org/abs/1611.02362
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb21
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb21
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb21
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb21
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb21
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb22
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb22
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb22
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb22
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb22
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb23
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb23
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb23
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb23
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb23
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb24
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb24
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb24
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb24
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb24
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb24
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb24
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb25
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb25
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb25
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb26
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb26
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb26
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb26
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb26
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb27
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb27
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb27
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb27
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb27
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb28
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb28
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb28
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb28
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb28
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb29
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb29
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb29
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb29
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb29
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb29
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb29
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb29
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb29
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb30
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb30
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb30
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb30
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb30
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb30
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb30
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb30
http://refhub.elsevier.com/S0743-7315(19)30110-8/sb30

L. Li, J. Fang, |. Jiang et al. / Journal of Parallel and Distributed Computing 138 (2020) 178-189 189

Jiarui Fang is a PhD candidate with Department of
Computer Science and Technology, Tsinghua Univer-
sity. His research interests include high-performance
computing and deep learning. His research work has
appeared in SC, ACM TACO, IPDPS, and ICPADS.

Jinlei Jiang is an associate professor with Depart-
ment of Computer Science and Technology, Tsinghua
University. His research interests include distributed
computing and systems, cloud computing, and big
data. He is currently on the editorial boards of KSII
Transactions on Internet and Information Systems and
EAI Endorsed Transactions on Industrial Networks and
Intelligent Systems. He has published more than 50
research publications in refereed conferences and jour-
nals such as INFOCOM, IEEE Cluster, TPDS, and IEEE
TBD.

Lin Gan earned his PhD in computer science in 2016
from Tsinghua University. His research interests include
high-performance solutions to scientific applications
based on state-of-the-art platforms such as CPU, FPGAs,
and GPUs. He has more than 30 high-quality publica-
tions, and is the recipient of the 2016 Gordon Bell Prize,
the finalist of the 2017 Gordon Bell Prize, the Most
Significant Paper Award in 25 Years awarded by FPL
2015, the 2017 Tsinghua-Inspur Computational Earth
Science Young Researcher Award, and the 2018 IEEE-CS
Technical Consortium on High Performance Computing
(TCHPC) Early Career Researchers Award for Excellence in High Performance
Computing.

Weijie Zheng is a PhD candidate with Department of
Computer Science and Technology, Tsinghua University.
He is interested in the optimization methods, with a
special focus on differential evolution to figure out the
effect of each element in the whole process. He won
the Best Paper Award of IEEE International Conference
on Tools with Artificial Intelligence (ICTAI), 2015.

Haohuan Fu is a full professor with Department of
Earth System Science, Tsinghua University and the
Deputy Director of National Supercomputing Center in
Wauxi, China. His research interests include extreme-
scale computing on heterogeneous supercomputers,
data mining methods for analyzing scientific data sets,
and programming tools. He is the recipient of the 2016
and 2017 Gordon Bell Prize, the 2015 Tsinghua-Inspur
Computational Earth Science Young Researcher Award,
and People of the Year Award 2016 by the Scientific
Chinese magazine.

Guangwen Yang is a full professor with Department of
Computer Science and Technology, Tsinghua University
and the director of National Supercomputing Center
in Wuxi, China. His research interests include parallel
and distributed algorithms, cloud computing, and the
earth system model. He has published more than 150
research publications in refereed conferences and jour-
nals such as SC, USENIX ATC, IPDPS, IEEE TC, and ACM
TACO.

	Efficient AES implementation on Sunway TaihuLight supercomputer: A systematic approach
	Introduction
	Background and related work
	AES algorithm
	SubBytes
	ShiftRows
	MixColumns
	AddRoundKey

	The SW26010 many-core processor
	Nodes interconnection
	Related work
	ASIC AES implementation
	AES on GPU
	AES on FPGA
	AES on Sunway TaihuLight

	AES implementation on a single SW26010 chip
	Inter-CPE data parallelism
	Intra-CPE data parallelism
	SIMD-friendly data layout
	Semi-SIMD style S-Box lookup

	Instruction-level parallelism

	Running AES on the whole system
	Performance evaluation and analysis
	SW-AES performance on a single node
	Overall performance
	The effect of various optimizations

	SW-AES scalability
	Comparison with related work
	Comparison with the work on the Sunway TaihuLight
	Comparison with other related work

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

