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Abstract—Text analytics directly on compression (TADOC) is
a promising technology designed for handling big data analytics.
However, a substantial amount of DRAM is required for high
performance, which limits its usage in many important scenarios
where the capacity of DRAM is limited, such as memory-
constrained systems. Non-volatile memory (NVM) is a novel
storage technology that combines the advantage of reading per-
formance and byte addressability of DRAM with the durability
of traditional storage devices like SSD and HDD. Unfortunately,
no research demonstrates how to use NVM to reduce DRAM
utilization in compressed data analytics. In this paper, we
propose N-TADOC, which substitutes DRAM with NVM while
maintaining TADOC’s analytics performance and space savings.
Utilizing an NVM block device to reduce DRAM utilization
presents two challenges, including poor data locality in traversing
datasets and auxiliary data structure reconstruction on NVM.
We develop novel designs to solve these challenges, including a
pruning method with NVM pool management, bottom-up upper
bound estimation, correspondent data structures, and persistence
strategy at different levels of cost. Experimental results show
that on four real-world datasets, N-TADOC achieves 2.04×
performance speedup compared to the processing directly on the
uncompressed data and 70.7% DRAM space saving compared to
the original TADOC.

I. INTRODUCTION

The advent of the big data era has amplified the need for

large-scale data analytics. Text analytics directly on compres-

sion (TADOC) [1]–[9] emerges as an efficient tool for address-

ing this need. TADOC’s unique feature of directly processing

compressed data, circumventing the need for decompression,

translates into significant savings in storage space. Addition-

ally, TADOC can also optimize processing time by reusing

input and intermediary data [2], [3]. Studies have demonstrated

that TADOC is capable of reducing processing time by 50%

and storage space by 90.8% [2], [3]. However, traditional

TADOC utilizes dynamic random-access memory (DRAM)

extensively, leading to high costs.

On the other hand, non-volatile memory (NVM), a next-

gen storage technology with a density superior to DRAM

and promising performance in various real-world applica-

tions [10]–[13], offers a potential remedy. By offloading data

onto NVM, one can decrease DRAM usage and handle larger

datasets due to NVM’s greater density. Furthermore, NVM’s

- Feng Zhang is the corresponding author.

lower equipment and power costs compared to DRAM can

reduce the total cost of ownership for data analysts [14]. In

addition, we argue that an efficient implementation of TADOC

on NVM aligns perfectly with NVM’s unique characteristics.

NVM’s lower bandwidth compared to DRAM aligns with

TADOC’s ability to process data under compression, reduc-

ing bandwidth demand. TADOC can further augment this

alignment by utilizing text redundancy to decrease update

frequencies during analytics, thereby minimizing NVM write

operations and enhancing its durability. As such, this paper

explores the potential of integrating NVM into TADOC,

aiming to deliver a cost-effective text data analytics solution.

Despite the benefits of building TADOC on NVM devices,

establishing a compressed data direct processing framework

based on NVM is a challenging task. TADOC’s requirement

for random access to compressed datasets can lead to poor data

locality when directly applied to NVM. In addition, when the

capacity of traditional data structures is insufficient, violent

reconstruction is required. This can lead to a large number

of redundant access to NVM, which can further decrease the

efficiency of TADOC on NVM. These challenges necessitate

the invention of new techniques to minimize the impact of

poor data locality and superfluous NVM access on NVM-

based TADOC processing.

Currently, none of the previous works can be applied to

enable TADOC on NVM efficiently. Zhang et al. [1], [2] first

proposed TADOC and it is designed in sequential execution.

There are prior works [5], [8], [15] focused on accelerating

TADOC through GPU or porting TADOC to other accelerator.

However, due to the differences in hardware architecture, they

cannot be utilized efficiently by NVMs.

We design N-TADOC, the first NVM-based text analytics

directly on compression. N-TADOC enables us to utilize

nonvolatile memory to perform text analytics on the data

in the compressed state. It integrates three novel designs to

overcome the above challenges for NVM-oriented compressed

data direct processing. First, we introduce a pruning method to

eliminate redundancy in compressed data, and then carefully

restructure the compressed data in the NVM pool for better

cache utilization. Second, we design a bottom-up method to

estimate the upper bound of variable length of data structures

on NVM, reducing redundant NVM access due to insufficient
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space for refactoring. Third, we design data structures such as

vector and hashtable to adapt to NVM pool management and

the upper bound summation method of data object length. Fi-

nally, we utilize various frameworks to achieve different levels

of persistence cost for text analytics. These collective design

decisions have allowed us to create a robust, efficient NVM-

based text analytics framework capable of surmounting these

challenges. N-TADOC represents a crucial advancement in

harnessing NVM’s full potential in data analytics applications.

We conduct a comprehensive evaluation of N-TADOC on

the Intel Optane platform utilizing four diverse real-world

datasets, including the Yelp COVID-19 data [16], NSF Re-

search Award Abstracts [17], and Wiki dump data with differ-

ent sizes [18]. To validate the effectiveness of N-TADOC, we

assess the performance of six operations commonly used in

text analytics, as outlined in previous studies [19]–[21]. The

results indicate that N-TADOC not only reduces the average

DRAM occupancy by more than 70% compared to the original

TADOC but also significantly boosts the efficiency of typical

data analytics tasks by 2.04×. These promising outcomes

demonstrate the potential of N-TADOC to efficiently enable

text analytics on NVM-based devices.

To the best of our knowledge, N-TADOC is the first work

to provide efficient text analytics on NVM without the need

for decompression. In this paper, we make the following

contributions.

• We present N-TADOC, which is the first work enabling

efficient NVM-based text analytics directly on com-

pressed data.

• We propose a novel pruning method with NVM pool

management and maintain data locality for text analytics.

• We design a bottom-up summation technique to estimate

the upper bound of the size of data objects, eliminating

redundant NVM access for data object reconstruction.

• We develop novel data structures to adapt to NVM pool

management and summation technique.

• We conduct comprehensive experiments of N-TADOC on

NVM, demonstrating its significant benefits compared to

uncompressed text analytics.

II. BACKGROUND

In this section, we introduce TADOC and non-volatile

memory (NVM) devices, which constitute the background and

premises of our work.

TADOC. TADOC [1]–[9] is a novel lossless compression

method that can process compressed data directly without

decompression. To be more specific, TADOC performs a

digital encoding of the original data input employing a dictio-

nary conversion. It then recursively describes the digital data

that has been transformed using context-free grammar (CFG)

and translates this description into rules. Figure 1 illustrates

how TADOC compresses data using CFG representation. Fig-

ure 1 (a) shows the original two files of file A and file B,

where wi represents a word. TADOC extends Sequitur [22]–

[24] as core algorithm to transfer input data to the CFG, as

shown in Figure 1 (b). The first rule R0 represents compressed

file A and file B including delimiters, and the following rules

R1, R2 represent frequently occurring patterns in compressed

files. The CFG can be further transferred to Figure 1 (c)

with the help of the dictionary shown in Figure 1 (d). After

repeated data pieces have been converted into a number of

rules using context-free grammar, the process of data analytics

is then represented as rule interpretation. TADOC inserts one

segmentation symbol for the file boundary so that we can

utilize the redundant information that exists between files.

Moreover, these rules can be further represented as a directed

acyclic graph (DAG), as shown in Figure 1 (e), so the data

analytics tasks can be transformed into a DAG traversal

problem. The latest TADOC technology [1]–[4] can now cut

down on the amount of storage space required for compressed

text analytics by an average of 90.8%.

Example. We take word count as an example to show how

to perform text analytics through DAG traversal in Figure 1 (e).

In Step 1, R0 is weighted as 1, while R1 and R2 are given the

weight of 0. In Step 2, R0 passes weight to subrules R1 and

R2, so R1’s weight reaches 2 and R2 reaches 2. Besides, R2

receives weight from R1 in the next iteration, which makes its

weight reach 6. In Step 3, we accumulate the weighted word

frequencies of all three rules, which constitutes the final result.

w1:0 w2:1 w3:2 
R0:3 R1:4 R2:5 spt1:6 

3: 4 5 6 5 4
4: 0 5 5 2
5: 1 0 

file A: w1 w2 w1 w2 
         w1 w3 w2 w1

(a) Original input

(d) Dictionary(c) TADOC compressed data

(b) CFG

R1 R2R0:

w1 w3R1: R2

w2R2: w1

R2

spt1 R2

(e) DAG representation

R1file B: w2 w1 w1 w2 
         w1 w2 w1 w3

file A file BR0: R1 R2 spt1 R2 R1
R1: w1 R2 R2 w3
R2: w2 w1 

Fig. 1. A compression example with TADOC.

NVM device. As a promising storage technology, NVM has

prospective features [25]–[29]. First, unlike hard-disk drivers

(HDDs) or solid-state drives (SSDs) that only support block-

based data access, NVM is byte addressable, which is similar

to DRAM. Second, NVM has a high storage density, higher

than DRAM, and comparable to SSD and HDD. Third, it

is non-volatile, which means that all data written to NVM

will not be lost when the machine is suddenly powered off or

the program is interrupted. However, compared with DRAM

and disk, programming on NVM requires special consider-

ations. For example, the read and write latency of NVM is

unbalanced. In particular, NVM has a read latency similar to

DRAM, but its write latency is higher than DRAM. Since non-

volatile memory combines the advantages of DRAM, SSD,

and HDD, it is capable of taking their place in the fields of

file systems, databases, and other applications [11], [30], but

special optimizations are required.

Intel Optane. We conduct experiments on the Intel Optane

platform [10]. It has three modes: 3) Direct access mode.

In this mode, applications can access NVM directly through

the load/store instruction, which bypasses the interface of
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the traditional file system and maximizes the performance of

NVM. 2) File mode. In this mode, NVM can be recognized

by the file system as an external storage device. 1) Memory
mode. As an additional memory device, NVM is not different

from DRAM and does not guarantee the persistence of data.

The work of this paper is designed in the direct access mode.

Moreover, please note that our work is not limited to Intel

Optane. Other platforms with similar characteristics such as

ReRAM [31] and PCM [32] can also benefit from our design.

III. MOTIVATION

This section initially outlines the obstacles that arise when

integrating NVM into the direct analysis of compressed text.

Following this, it briefly revisits prior studies to clarify why

their methodologies do not offer solutions to these challenges.

Lastly, it details the practical applications of N-TADOC.

A. Challenges

In this section, we discuss two major challenges of enabling

efficient text analytics on NVM without decompression.

Poor data locality in traversing DAG on NVM. The first

critical challenge comes from the management of compressed

datasets on NVM [33]. The characteristics of compressed data

necessitate random access to various nodes during the traversal

of the DAG formed by the CFG. For instance, as depicted

in Figure 1 (e), after initially traversing R0, the grammatical

representations of R1 and R2 are retrieved. However, NVM’s

relatively large access granularity and the scattered distribution

of data objects on NVM result in poor data locality. In

particular, the physical 3D-Xpoint media access granularity is

256 bytes. If R0, R1, and R2 are distributed randomly on the

NVM device with poor data locality, then it becomes difficult

to leverage this feature. This lack of data locality leads to

frequent redundant access operations and significantly impacts

the efficiency of the analytics process. Therefore, the task of

maintaining a DAG representation in an NVM pool with good

data locality remains a challenging task. This lack of data

locality combined with the larger access granularity of NVM

(256 bytes in Intel Optane NVM) exaggerates the problem

of access amplification and hence considerably hampering the

efficiency of the analytics process. Thus, managing a DAG

representation with improved data locality in an NVM pool is

a tough task.

Redundant access and overhead due to dynamic data
object growth on NVM. Another significant challenge faced

by N-TADOC is the management of data object capacity

limitations during the analytics process on NVM [34]. As

the analytics progresses, intermediate results and data objects

grow dynamically, potentially surpassing the capacity of the

allocated space on NVM. This situation necessitates frequent

reconstruction of data objects, resulting in a substantial number

of redundant access operations on NVM. The process of

dynamic data object growth involves time-consuming read-

modify-write operations, as data objects need to be resized

or relocated to accommodate the expanding data. Addressing

this challenge requires the development of efficient strategies

to manage dynamic data object growth on NVM and minimize

the overhead associated with frequent reconstructions. By

addressing the challenge of redundant access and overhead

due to dynamic data object growth on NVM, N-TADOC can

achieve better efficiency and performance, enabling faster and

more scalable text analytics on NVM-based systems.

B. Revisiting Previous Methods

In this part, we explore past traversal-based methods to ex-

plain motivation for a new NVM-based TADOC architecture.

Why NVM-based STL data structure does not apply?
In the realm of NVM-based TADOC, the utilization of so-

phisticated data structures such as vectors and hash tables

is unavoidable. First, the data structures available in the

standard library do not inherently support the allocation of

space on NVM devices, which makes it difficult to implement

the TADOC algorithm. Second, after exploring and experi-

menting with the PMDK (Persistent Memory Development

Toolkit) [35], we have found that the effectiveness of many

data structures is significantly lower than that of the STL.

Therefore, we believe that it is crucial to construct a collection

of efficient libraries that can be used to store results generated

by text analytics on NVM.

Why previous TADOC method does not apply? In

our preliminary explorations, we attempt to apply existing

TADOC methods [1]–[4] to NVM environments for direct

text analytics. We overloaded the allocator of the data struc-

tures from previous work to point to NVM while keeping

methods unchanged. Directly applying Optane PM to TADOC

incurs 13.37× performance overhead compared to the original

version. These existing methods are optimized for DRAM

and fail to fully leverage the characteristics of NVM. The

non-volatile nature of NVM requires a different approach to

data storage and management compared to DRAM. Therefore,

exploring new algorithms and data management strategies is

essential to fully exploit the potential of NVM and achieve

high-performance text analytics.

C. Application Scenarios of N-TADOC

In this section, we explore potential application scenarios

for N-TADOC. In conventional big data applications, disks

and DRAM have always been central components, with the

former being used for persistent data storage and the latter

for faster access and disk cache. However, with the advent of

NVM technology, it is anticipated to play a significant role

in future designs [36]. Implementing TADOC on NVM could

benefit a multitude of big data applications, and we highlight

three key examples:

• Distributed system with mixed computing and storage

resources is a potential application scenario [37]. In such

systems, the real-time analysis and processing of text data

are vital. Employing NVM as a medium for direct analyt-

ics of compressed text could lead to notable advantages.

The quick access time and reduced latency of NVM can

enhance system responsiveness and performance, partic-

ularly beneficial when multiple distributed components
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need to concurrently access and analyze compressed

text. In addition, the decreased dependency on traditional

DRAM storage improves cost-effectiveness. Leveraging

NVM’s high-density storage and non-volatility can allow

text analytics tasks to be carried out more efficiently

within distributed systems, thereby enhancing scalability

and reducing operational costs.

• Data mining is an essential method for a collection

of modern information extraction tasks [38] and often

involves large-scale text datasets. By utilizing NVM for

direct analytics of compressed text, significant improve-

ments can be achieved in terms of search efficiency

and storage requirements. For instance, in data mining

applications, the ability to perform fast searches and build

indexes directly on compressed text stored in NVM en-

ables quicker identification of patterns and insights within

the data. The combination of efficient text compression

techniques and direct analytics on NVM contributes to

more efficient and scalable data mining processes.

• Embedded Systems such as IoT networks and wireless

sensor nodes often operate under more stringent power

constraints [39]. The data stored in memory are often

written to an SSD as the standard procedure. However,

as a result of the speed gap that exists between DRAM

and SSD, NVM devices attract an increasing amount

of attention. By enabling support for compressed data

direct processing on NVM, this emerging technology

can serve as an intermediate buffer layer, significantly

enhancing the overall effectiveness of data analytics while

simultaneously conserving energy. The ability to directly

analyze compressed data on NVM not only reduces the

need for frequent data movement between DRAM and

storage devices but also exploits NVM’s non-volatile

nature, enabling energy-efficient processing and reducing

data transfer overhead.

IV. N-TADOC DESIGN

In this section, we introduce the design of N-TADOC

architecture, including the pruning method with NVM pool

management, the bottom-up summation for NVM space, the

N-TADOC data structures, and different persistence strategies.

Next, we show the overview of N-TADOC.

A. Overview

We introduce N-TADOC, a framework for enabling efficient

TADOC on NVM. The overview of N-TADOC is shown in

Figure 2. The system takes TADOC compressed data as input

and produces the required text analytics results. N-TADOC

leverages pruning to eliminate redundancy and NVM pool

management to manage the DAG structure efficiently. The

framework employs a bottom-up approach to estimate the

upper bound of data structure lengths on NVM and uses

novel data structures for NVM pool management and bottom-

up summation respectively. Additionally, N-TADOC provides

phase-level and operation-level persistence for text analytics

to ensure data integrity and availability.

Persistence strategy

TADOC 
compressed 

data 

Text 
analytics 
results

Initialization Graph traversal

DAG structure
NVM

Top-down/ 
Bottom-up

Bottom-up
summation

Pruning method

NVM pool
management

Fig. 2. N-TADOC overview.

Workflow. The workflow of N-TADOC consists of two

phases: initialization and graph traversal. During the initial-

ization phase, N-TADOC performs the necessary setup and

data preparation for the graph traversal phase. This includes

constructing the DAG for the dataset, initializing the hash

table or vector for storing the rule information, and allocating

memory for the graph traversal process. The initialization

phase also involves reading any persisted data if available.

In the graph traversal phase, N-TADOC traverses the DAG

and propagates the weight of the rules to each file in the

dataset. The traversal process is dependent on the chosen

traversal strategy, which can be either top-down or bottom-up.

During the traversal phase, N-TADOC accesses the NVM-

resident data structures for rule and frequency lookup. N-

TADOC provides flexibility in data persistence, allowing for

the results to be persisted after each operation or at the end

of the phase. Once the graph traversal and result collection is

complete, N-TADOC returns the results such as wordcount

output 〈word1, count1〉, 〈word2, count2〉, . . . to the user for

further analytics.

Solutions to challenges. N-TADOC optimizes compressed

dataset arrangement using pruning and reorganization tech-

niques to reduce redundancy and improve cache utilization.

It employs a bottom-up method to estimate NVM’s capacity

for variable-length data structures of intermediate analytical

results, minimizing the need for frequent reconstructions.

Additionally, tailored data structures and various frameworks

in N-TADOC optimize NVM pool management and persis-

tence costs, resulting in an efficient and robust text analytics

framework that harnesses NVM’s potential.

Difference from previous works. TADOC [1] targets the

data structure design, which is a lossless compression method

that employs CFG to translate data into rules. After rule

representation, the analytics tasks can be transformed into rule

analysis, as discussed in Section II. TADOC involves only

data structure design without any architectural optimization.

G-TADOC [5] targets the computation, which provides the

GPU acceleration for the computation part of rule process-

ing in TADOC, including the parallelization with a large

number of threads, dependency elimination in rule parallel

processing, and order maintenance among massive threads.
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As to this work, N-TADOC targets the storage, which utilizes

NVM block devices to improve storage efficiency. Specifically,

we design a pruning method with NVM pool management,

bottom-up upper bound summation, and persistence strategy at

different levels. These hardware storage designs from a storage

architectural perspective have never been considered before.

N-TADOC is a holistic system that significantly reduces both

latency and space costs. It achieves this by utilizing advanced

techniques to optimize data organization and management,

reducing redundancy and improving locality.

B. Pruning Method with NVM Pool Management

We next show the detailed design of rearranging rules in

CFG with the management of the NVM pool. Similar ideas

have also been used in recent academic explorations [40]–[42].

We redesign the DAG structure generated by compressing

the original text stored in NVM. Our proposed structure

can maintain good data locality during DAG traversal, thus

reducing the redundant reads and writes of NVM due to

frequent cache misses, and improving the efficiency of data

analytics.

General design. We introduce a pruning approach that

is based on two key observations. First, we observe that

generated rules can contain numerous duplicate subrules. For

instance, in Figure 1, the rule R0 has two subrules, R1s,

which are identical. Second, the internal structure of rules

can be random, where subrules and words are arranged in

a disordered manner. This duplication pattern is not leveraged

further, and the structural disorder leads to non-cache-friendly

DAG traversal. To address this issue, we introduce a pruning

technique that trims the grammar representations of the rules

for text analytics tasks. In our pruning technique, we traverse

the rule to obtain the subrules and words it contains along

with their frequencies. We then write all subrules and their

frequencies to the DAG pool, followed by the frequencies

of words. After pruning, the IDs and frequencies of the

subrules and words in the rule are arranged consecutively

on the NVM, which sets the foundation for the locality of

the traversal on the DAG. To maximize the utilization of

the large read/write granularity on NVM devices, we arrange

the pruned representations of different rules adjacently in the

DAG pool. Furthermore, we organize the metadata of rules

in the NVM pool, including the position of subrules and

words (referring to the offset at which the rule is stored in

the DAG pool), the out/in degree (representing the number of

outgoing/incoming edges for the rule in the compressed file’s

DAG representation), word list size (indicating the number of

different word types included in the rule), and the weight of

the rule (representing the frequency or occurrence of the rule

in the dataset). This allows for efficient retrieval and traversal

of the pruned DAG. The NVM pool also contains a traversal

queue and a frequency counter. The traversal queue is used

to record the progress of a task during a top-down traversal

process, take out the rule being traversed, and add its subrules

to the queue. For example, in Figure 3, we take rule R1 out of

the queue and add its subrules R2, R3, and R4 to the queue.

The counter records the frequencies of words or sequences

based on the requirements of the task. It consists of vectors

or hash tables, which are covered in Section IV-D. At the end

of the traversal, we update the counter based on the weight of

each rule and their word list.

R1:

R1: R2 w3 R4 w4 R3 R2 R4 w4

R2*2 R3 R4*2 w3 w4*2
<R2, 2>

<R3, 1>

<R4, 2>

<w3, 2>

<w4, 2>

Prune

DAG pool

R1

R0's rep

R2's rep

...

Meta data pool

rulePos

wordPos

outDegree

inDegree

wordNum

weight

R1

R0's meta data

R2's meta data

...

frequency counter

traversal queue

NVM pool

R1 R2 R3 R4

R4R1

w3 w4... ...

R2 R3

Fig. 3. Pruning method with NVM pool management.

Detailed algorithm. We present our NVM pool

management-based pruning approach in Algorithm 1.

The algorithm takes as input the rules to be pruned, denoted

as R, and the pointer to the NVM pool, pool top. Initially,

the algorithm calls the getSubrules and getWords functions

to obtain the IDs and frequencies of the subrules and words

in R, and stores them in a bucket data structure, as shown

in Lines 2 and 3. Subsequently, N-TADOC writes each tuple

〈id, freq〉 to the NVM pool by moving the pointer accordingly,

as indicated in Lines 5 to 8.

Algorithm 1 Pruning Method with NVM Management

Input: Rule that needs to be pruned: R; NVM pool pointer:

pool top
Output: R’s new management in NVM pool

1: function pruneNVMManage(r, pool top)

2: sub rules = getSubrules(R);
3: words = getWords(R);
4:

5: write sub rules at pool top;

6: pool top ← pool top+ sub rules.size;

7: write words at pool top;

8: pool top ← pool top+ words.size;

Example. We can demonstrate the pruning process with

NVM pool management using the following example. Let

us consider the raw grammar “R1→R2 w3 R4 w4 R3 R2

R4 w4”. After executing Algorithm 1, R1 is pruned to the

simplified version “R1→R2×2 R3 R4×2 w3 w4×2”, as

shown in Figure 3. It is worth noting that R1’s representation

is arranged adjacent to the next rule, R2, in the NVM pool.

This arrangement eliminates at most 50.2% of the grammar

redundancy on NVM. This arrangement not only saves NVM

space but also reduces internal fragmentation, making it easier

for the traversal on the DAG to achieve good data locality.
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Overall, the pruning method effectively trims the grammar

representation of rules, making it more efficient for text

analytics tasks.

Complexity analysis. We denote the number of rules in

CFG as Nr and the number of words as Nw. We denote the

original grammar length of rule R as LRraw
, and the trimmed

length is expressed as LRprune
. Because we need to traverse

the grammar of R and use buckets to count the frequency

of subrules and words, the time complexity of this process is

O(LRraw
), and the space complexity is O(Nr+Nw). Then we

traverse buckets to harvest and write the pruned grammar to

NVM, with the time complexity of O(LRprune
+Nr+Nw) and

space complexity of O(LRprune
). Therefore, the overall time

complexity of Algorithm 1 is O(LRraw
+LRprune

+Nr+Nw),
and its space complexity is O(Nr +Nw + LRprune).

The pruning method can also support sequence analytics

tasks by performing a lightweight bottom-up preprocessing

step to obtain the head and tail structure of all rules, which

is also mentioned in Section IV-D. Then, using this head and

tail structure, pruning operations can be performed, avoiding

analytics errors caused by rearranging subrules and sequences

within rules. Therefore, it can be argued that the pruning

method keeps TADOC’s functional scope, making it suitable

for both sequence-dependent and sequence-independent ana-

lytics tasks. Similarly, the ”Bottom-up Summation” method

explained below remains unaffected by the task’s dependency

on sequence information.

C. Bottom-Up Summation

This part shows the detailed design of the bottom-up

summation technique for the length of the data structure.

Traditional TADOC traverses the DAG structure in a top-down

or bottom-up manner for different datasets. In the top-down

method, nodes’ weights propagate from top down to bottom in

topological order. In the bottom-up method, nodes pass word

lists in reverse topological order from bottom up to top. To

adapt to the growing word list in bottom-up traversal, TADOC

uses variable length data structures such as unordered map.

On NVM, when the capacity of variable length data structure

is insufficient, the cost of reconstruction is high. Therefore, we

design a method that can estimate the length of a data structure

based on the bottom-up traversal method of TADOC.

General design. In this section, we introduce our proposed

technique for estimating the length of data structures, which

we refer to as the “bottom-up summation” technique. This

technique is closely related to the bottom-up traversal method,

where the word list of the bottom rules in the DAG graph is

passed up level by level to update the word list of all rules.

Our approach focuses on estimating the upper bound of the

word list length for each rule in a lightweight traversal from

the bottom to the top of the DAG. To begin, we define a rule

as “determined” once an upper bound has been established

for its word list length. Initially, if a rule does not contain

any subrules, we set its upper bound as equal to its length.

We then perform a summation on the rule R, and if we

discover that R contains a subrule R′ that has not yet been

determined, we repeat the same process for R′ until all of the

subrules in R have been determined. Once all subrules have

been determined, we calculate the upper bound of rule R as

the sum of the upper bounds of all of its internal subrules

plus the length of its original word list. After the traversal

of R is completed, its determination is made. Finally, we

allocate space for the word list based on its upper bound,

which helps to eliminate the overhead of redundant read and

write operations during data structure reconstruction on NVM.

This process improves the efficiency of the data structure

reconstruction process and reduces the access latency of the

NVM, as it avoids unnecessary read and write operations that

can negatively impact the overall performance.

Detailed algorithm. Algorithm 2 presents our bottom-up

summation method, which helps determine the upper bound

of the word list length for each rule in the DAG graph. This

algorithm takes as input the rule R for which the upper bound

needs to be determined and all the determined rules’ upper

bounds, denoted as L. To begin, the algorithm traverses all

subrules of rule R, as shown in Line 2. If any subrule has

not been determined, the algorithm recursively determines the

upper bound of that subrule by calling itself with the subrule

as input and updating L, as shown in Lines 3 to 5. Then, the

algorithm calculates the upper bound of R by summing the

upper bounds of all the internal subrules and adding the length

of its original word list, as shown in Lines 6 to 8. Once the

algorithm has computed the upper bound of R’s word list, it

sets R to be determined, as shown in Line 9. This marks the

completion of the bottom-up summation process for R, and

the upper bound can be used to allocate space for its word

list.

Algorithm 2 Bottom-Up Summation

Input: Rule that needs to determine the upper bound: R;

Upper bounds of all rules: L
Output: Upper bound of rule R: l

1: function bottomUpSummate(R,L)

2: l ← 0;

3: for r in R.subrules do
4: if r is not determined then
5: bottomUpSummate(r, L);

6: l ← l + L[r];

7: l ← l +R.wordNum;

8: L[R] ← l;
9: set R determined;

Example. We use an example to demonstrate the bottom-up

summation process. To obtain the upper bound of the word list

length of R0 in Figure 1 (e), we need to recursively determine

the upper bounds of R1 and R2, respectively. R2 does not

contain any subrules, so the upper bound is equal to its word

list’s length, which is 2. R1 only contains subrule R2 and two

words itself, so its upper bound is 2+2, which is 4. Finally,

we obtain R0’s upper bound in this bottom-up method, which

is 6 (4+2).

3730

Authorized licensed use limited to: Tsinghua University. Downloaded on December 26,2024 at 04:02:36 UTC from IEEE Xplore.  Restrictions apply. 



Complexity analysis. The time complexity of Algorithm 2

is important to consider since it affects the efficiency of the

approach. In this regard, we can analyze the complexity of

the bottom-up summation process. Let us denote the generated

subgraph of node R and all nodes it can reach in the DAG as

G. We respectively denote the number of nodes and edges in

graph G as V and E. Since the bottom-up summation process

needs to access all nodes once in graph G, the complexity

of the process can be expressed as O(V ). Additionally, the

upper bound information of nodes is transmitted from bottom

to top along the edge once, and the complexity of this process

can be expressed as O(E). Hence, the overall complexity of

Algorithm 2 is O(V + E).

D. N-TADOC Data Structures

This section shows the data structure redesigned on N-

TADOC to adapt to the NVM pool management technique pro-

posed in Section IV-B and the bottom-up summation method

proposed in Section IV-C. This section first introduces the

implementation of traditional data structures such as the hash

table on NVM, and then introduces the head and tail structure

designed for rules in order to support efficient sequence

operation.

Basic structures for analytics. In this part, we explain the

data structure of allocating space on the memory pool for N-

TADOC, which is designed to efficiently process compressed

data in NVM. The most important data structure for TADOC

is the hash table, which can be used to store results locally

or globally, and the same structure is used in the design of

N-TADOC. Figure 4 shows the hash table data structure used

in N-TADOC. In the first step, we read the compressed graph

dataset and establish a DAG pool on NVM. In the second step,

the metadata is fed to the bottom-up estimator to generate

the estimated length of each rule data object. In the third

step, NVM allocator allocates space for data objects on NVM

using estimated results. The original state of the hash table is

shown in Figure 4 (a), where the status buffer is used to check

the status of each node, the key buffer is used to store keys,

and the value buffer is used to store corresponding values.

The hash table length is adjusted upward to the power of

2 for alignment to improve the hit rate of the cache. Since

the upper bound of the size of each hash table is known,

all hash tables can be stored adjacent in a memory pool to

reduce the external fragmentation of NVM and save space.

Figure 4 (b) shows the state after inserting 〈2, 5〉 into the hash

table, assuming that the key-value pair is mapped to the first

node. In case of hash collision, the final mapping location of

the new node is determined by pseudo-random detection and

hashing, which ensures that the new node is inserted into the

table with minimal disruption to the existing data structure.

Head and tail structures for sequence support. The head

and tail structures are integral to improving the efficiency

of sequence analytics such as sequence count. Traditionally,

TADOC utilizes function recursive calls to expand rules,

which results in coarse-grained expansion and consequent

inefficiencies. However, to address this limitation and enhance
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status

key

value

0 0 0 0
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...

metadata path
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Fig. 4. Hash table design.

the sequence support, the GPU-based TADOC [5] proposes the

use of head and tail data structures for each rule, which store

the content of the beginning and end of the rule. By leveraging

these data structures, it becomes possible to avoid multi-rule

scanning and instead focus on only the head and tail buffers

of different subrules, thereby increasing the speed of sequence

analytics.

E. Persistence Strategy

This part shows several persistence strategies we employ in

N-TADOC. To fully leverage the persistence features of non-

volatile memory, we develop N-TADOC persistence cost at

both the operation level and phase level to cater to different

requirements.

Operation-level persistence cost. For operation-level per-

sistence cost, we utilize the Persistent Memory Development

Kit (PMDK) [35] libpmemobj-cpp, which implements trans-

action and logging mechanisms to ensure the atomicity of

operations. However, it should be noted that the transaction

mechanism may cause a significant issue of write amplifica-

tion, which can lead to degraded efficiency in N-TADOC data

analytics. To address this issue, we propose another persistence

strategy, which is referred to as phase-level persistence cost.

Phase-level persistence cost. Regarding phase-level persis-

tence cost, we directly map the space on NVM to memory

by utilizing libpmem, and explicitly flush back to NVM at the

end of each N-TADOC phase. As the data is only persisted at

the end of each phase, the cost of persistence is considerably

reduced. Specifically, in the initialization phase, N-TADOC

first establishes the DAG structure, which is then flushed

back to NVM at the end of the phase. In the graph traversal

phase, N-TADOC obtains the result and persists it to NVM.

In the event of failure, N-TADOC returns to the previous

checkpoint, but the cost of persistence is amortized, resulting

in better performance. Moreover, if the process is interrupted

by external factors such as power failure, we restart analytics

from the current phase, which significantly enhances its ability

to prevent potential risks. The data generated in different

phases is always isolated from the persistent data of the
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previous phase, the persistent data of the previous stage will

only be read in the next phase. This means that when a failure

occurs in the current phase, the recovery process can directly

overwrite the dirty data. This requires identifying and reverting

to the previous checkpoint, discarding the intermediate results

of the current phase. As a result, the recovery process needs to

recompute certain portions of the analytics, potentially leading

to longer recovery times.

In summary, the trade-off lies in the balance between

persistent performance and recovery performance. By reducing

the frequency of data persistence, N-TADOC achieves better

overall performance during normal execution. However, in the

event of a failure, the recovery process may incur additional

computational overhead to recompute certain portions of the

analytics. The specific trade-off between these two aspects

depends on the characteristics of the workload, the frequency

of failures, and the recovery requirements of the system.

V. IMPLEMENTATION

The primary focus of this paper is to implement the N-

TADOC framework for direct processing of compressed files

on non-volatile memory. N-TADOC comprises a set of text

analytics tasks that are typically found in various existing

applications. The main framework is developed using C/C++,

including the data structure component, compressed file read-

ing components, and graph traversal component.

In addition, libpmemobj-cpp is utilized to achieve operation-

level persistence while libpmem is used for phase-level per-

sistence. The operation-level persistence provided by PMDK

guarantees the atomicity of operations using transaction and

logging mechanisms, which helps to maintain data consistency.

On the other hand, phase-level persistence using libpmem
enables us to flush data to NVM at the end of each phase,

thereby reducing the persistence cost.

The N-TADOC framework’s implementation allows for

the efficient processing of compressed files on NVM while

providing data consistency guarantees through persistence

mechanisms.

VI. EVALUATION

In this section, we first introduce our experimental setup,

then measure the performance of N-TADOC on NVM, and

compare it with uncompressed text analytics on NVM, TA-

DOC, N-TADOC on SSD and HDD for evaluation. We also

study the space savings of N-TADOC on DRAM, break down

analytics time, and point out the impact of different workloads

on N-TADOC efficiency.

A. Experimental Setup

In this part, we show our experimental setup.

Methodology. In our evaluation, we compare the per-

formance of our method, which enables TADOC on NVM

devices, denoted as “N-TADOC”, with the baseline of ana-

lyzing uncompressed text on NVM devices. In the baseline

configuration, the text analysis task was performed on NVM.

No specialized compression techniques or methods designed

for NVM were employed, except for the dictionary conversion

of the original text into numerical representations. To provide

a theoretical upper bound of efficiency, we also implement

TADOC on a pure DRAM platform. We measure the perfor-

mance of N-TADOC separately for phase-level persistence and

operation-level persistence and compare the space savings of

N-TADOC on DRAM. Furthermore, we include a comparison

with TADOC implemented on SSD (Solid State Disk) and

HDD (Hard-Disk Driver). This allows us to evaluate the per-

formance of N-TADOC in comparison to an alternative NVM-

based storage solution. All datasets used in our evaluation

are assumed to be stored on disk and the time measurement

includes IO time. We begin timing from the initialization phase

of loading the dataset to writing the analytics results back to

disk after the graph traversal. Following this methodology, we

aim to provide a comprehensive evaluation of the performance

and efficiency of N-TADOC on NVM devices compared to

the baseline approach, the pure DRAM platform, N-TADOC

on SSD and HDD. Additionally, we consider space savings

achieved by N-TADOC on DRAM and hard disk. To provide

further insights into the performance of N-TADOC, we break

down the phase-level time taken by N-TADOC, highlighting

the specific tasks and operations involved in the process.

Furthermore, we optimize the traversal process of N-TADOC

under different workloads to evaluate its performance under

varying conditions.

Benchmark. We use the following six common text an-

alytics tasks to measure the performance of N-TADOC and

the baseline. These analytics tasks have been widely used in

previous studies [19]–[21].

• Word count [19], [43], [44] is a fundamental algorithm

in text analytics, widely employed in applications such as

document classification, clustering, and theme identifica-

tion. It calculates the total occurrences of each word in a

given dataset, which may comprise multiple compressed

files.

• Sort [19], [21], [45] is a common preprocessing step in

various data analytics tasks and plays a crucial role in

text analytics for organizing and arranging data system-

atically. The sort benchmark involves sorting the words

of compressed files based on alphabetical order.

• Term vector [19], [20], [46] focuses on representing

documents as vectors, where each term corresponds to a

dimension in the vector space. This benchmark involves

constructing term vectors for the content of compressed

files by their most frequent words.

• Inverted index [19], [47], [48] is a crucial data structure

used in search engines and text retrieval systems. This

benchmark task involves building word-to-document in-

dexing from the compressed files.

• Sequence count [19], [49], [50] is vital for applications

such as identifying frequent n-grams, pattern recognition,

and extracting sequential patterns from textual data. The

sequence count benchmark aims to identify and count

specific sequences of words in compressed text data.

• Ranked inverted index [19], [20], [51] is valuable for
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efficient ranked retrieval in information retrieval systems,

enabling quick access to relevant documents based on

occurrence frequencies. The ranked inverted index bench-

mark utilizes the output of the sequence-count benchmark

and produces a list per word-sequence in decreasing order

of occurrence in the respective documents.

Platforms. In this paper, experiments are carried out on

a single machine. This machine is configured with two Intel

Xeon gold 5320 CPUs, 2TB Intel Optane persistent memory

200 series, 400GB Intel Optane SSD DC P5800X series

SSD and 160TB DELL SAS RPM HDD. DRAM speed is

3200MT/s. The operating system is Ubuntu 20.04. We set the

memory budget to 20% of the uncompressed dataset size to

avoid full memory caching of NVM data.

Datasets. The datasets utilized in our evaluation are listed in

Table I. These datasets have been obtained from various real-

world workloads and have been extensively used in previous

studies [1], [5]. Specifically, Dataset A contains COVID-19

data collected from Yelp [16]. Dataset B, consisting of a

large number of small files, contains the NSF Research Award

Abstracts (NSFRAA) and has been downloaded from the UCI

Machine Learning Repository [17]. Dataset C comprises four

web documents retrieved from Wikipedia [18], while Dataset

D is a considerably large Wikipedia dataset.

TABLE I
DATASETS.

Dataset File# Rule# Vocabulary Size
A 1 36,882 240,552
B 134,631 2,771,880 1,864,902
C 4 2,095,573 6,370,437
D 109 57,394,616 99,239,057

B. Performance

This part shows the N-TADOC overall speedup over un-

compressed text analytics with the same persistence strategy,

the gap between N-TADOC and the theoretical efficiency

upper bound, speedups over SSD and HDD compressed text

analytics.

Speedups over NVM uncompressed text analytics. In

Figure 5, we demonstrate the speedup that N-TADOC provides

in comparison to NVM uncompressed text analytics on four

different datasets. Figure 5 (a) demonstrates that N-TADOC

with phase-level persistence achieves 2.04× speedup, whereas

Figure 5 (b) demonstrates that N-TADOC with operation-level

persistence achieves a speedup of 1.40×. This is because the

persistence strategy at the operation level introduces more

overhead than the persistence at the phase level. For simplicity

of discussion, the N-TADOC mentioned later is based on

phase-level persistence strategy.

We have the following findings. First, the fact that N-

TADOC is capable of achieving a large performance boost in

the majority of cases demonstrates that data analytics directly

on compressed files can be efficiently conducted on NVM.

Second, when applied to dataset B, which is comprised of a

large number of small files, N-TADOC achieves a moderate

performance on the benchmark associated with file informa-

tion such as term vector and inverted index. This is mainly due

to that we use the bottom-up traversal method instead of the

top-down traversal method to perform text analytics on dataset

B. We preprocess to extract the word lists of all rules and

cache those word lists on NVM, which introduces additional

overhead. On the other hand, this is a significant improvement

over the top-down traversal strategy, which is covered in the

Section VI-E. This is because the top-down traversal strategy

needs to traverse the DAG when processing each file, and the

efficiency can be very low when the number of files is large.

Discrepancy to DRAM compressed text analytics. In

Figure 6, we demonstrate that N-TADOC with phase-level

persistence cost still has a certain discrepancy to the theo-

retical efficiency upper bound, which is TADOC running on

a pure DRAM platform. As shown in Figure 6, N-TADOC

is 1.59× slower than TADOC on average. We also make

notable findings during the evaluation. First, N-TADOC’s

word count has the lowest performance, with an average

slowdown of 2.26× when compared to TADOC. Word count is

a simple benchmark with efficient implementation on DRAM

involving basic counting operations. In contrast, in the case

of developing TADOC on NVM, it introduces the complexity

of memory management. This additional complexity results

in a significant performance gap between N-TADOC and the

theoretical upper bound in word count. Second, the slowdown

effect is most noticeable on the smallest dataset A, with an

average slowdown of 1.55×. Due to NVM’s superior perfor-

mance in handling large-scale data, the minimal size of the

dataset may not fully leverage the performance advantages of

NVM. As a result, N-TADOC might not achieve the theoretical

performance on the smallest dataset. Third, the performance

gap between N-TADOC and TADOC diminishes as the dataset

size increases. In addition to the advantages of NVM over large

dataset, N-TADOC is more likely to benefit from improved

cache utilization for larger dataset. As the dataset size grows,

the cache hit rate improves, leading to reduced memory latency

and enhanced overall performance.

Speedups over SSD and HDD compressed text ana-
lytics. To evaluate the performance of N-TADOC on HDD

compressed text analytics, we compare its speedups with

respect to SSD-based and HDD-based approaches. We switch

the file path from NVM to SSD/HDD while keeping the

compression strategy intact. The following results demonstrate

the performance improvements achieved by N-TADOC over

SSD and HDD compressed text analytics. Figure 7 presents

the speedup achieved by N-TADOC compared to SSD and

HDD compressed text analytics using four different datasets.

As shown in Figure 7, N-TADOC with phase-level persistence

achieves an average speedup of 1.87× and 2.92× over N-

TADOC for SSD and HDD. These results indicate that N-

TADOC significantly outperforms SSD-based and HDD-based

approaches in terms of speed. The utilization of NVM devices

in N-TADOC enables faster data access and processing, result-

ing in improved performance for compressed text analytics
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Fig. 5. Performance speedups over uncompressed text analytics.
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Fig. 6. Performance discrepancy to TADOC.

tasks. By leveraging the benefits of NVM, such as reduced

latency and higher data transfer rates, N-TADOC demonstrates

substantial speedups over SSD and HDD compressed text

analytics.

These findings highlight the efficiency and performance

advantages of N-TADOC on NVM devices compared to tradi-

tional NVM-based uncompressed and HDD-based compressed

approaches. By leveraging the speed and reliability of NVM,

N-TADOC offers substantial improvements in processing time

and overall performance for compressed text analytics work-

loads.

C. DRAM Space Savings

In this part, we show the space savings achieved by N-

TADOC on DRAM.

DRAM space savings were evaluated by measuring the

difference in DRAM usage between TADOC and N-TADOC,

with RSS (Resident Set Size) being used to indicate the

physical memory size occupied by the process. RSS was

measured using the smem command line tool, and the ex-

periments conducted on all four datasets show significant

DRAM space savings, with an average space saving of 70.7%.

Furthermore, the DRAM space-saving ratio for datasets A, B,

C, and D was found to be 65.6%, 70.7%, 72.2%, and 74.3%,

respectively. The findings of this paper indicate that larger

datasets tend to have a greater proportion of DRAM space

savings as compared to smaller ones. This can be attributed

to the fact that larger datasets occupy more NVM, which

makes it more advantageous to use NVM resources instead

of DRAM. Additionally, different benchmarks show varying

DRAM space saving rates, with the word count task showing

the highest rate at 79.8% and the sequence count task showing

the lowest rate at only 60.7%. This observation provides an

explanation for the largest difference in efficiency between N-

TADOC and TADOC in the word count task, as shown in

Figure 6. Overall, this trade-off between using more NVM to

save DRAM and the resultant performance degradation needs

to be considered while conducting data analytics directly on

compressed files on NVM.

D. Time Breakdown

In this part, we analyze the time breakdown of the N-

TADOC analytics process, focusing on the proportion of the

initialization phase and the graph traversal phase, as well as

the speedups achieved under different phases.

Time breakdown. Table II presents a detailed breakdown

of the analytics time for datasets C and D. The results indicate

that, for both datasets, the initialization phase takes up a larger

proportion of the total time on average as the dataset size

increases. For instance, on large dataset D, the initialization

phase accounts for 73.4% of the total time on average for

benchmarks such as sequence count and ranked inverted index.

This is mainly due to the increased dataset size and the

associated persistence cost. Moreover, the time proportion of

the graph traversal phase is significantly higher for benchmark

tests such as sort than word count on both datasets. This is

because sorting the results by dictionary introduces additional

overhead. The same reason applies to the difference in the

proportion of phase time between benchmarks such as inverted
index and term vector.

Speedups under different phases. The initialization phase

starts with allocating space on the NVM and ends with reading

the dictionary of compressed data. In contrast, the graph

traversal phase starts with graph traversing and ends with

merging results. The results show that the initialization phase

and graph traversal phase achieve an average of 1.96× and

2.53× speedup, respectively, under different benchmark tests
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Fig. 7. Performance speedups over N-TADOC on SSD and HDD.

for dataset C. On the other hand, for dataset D, the initial-

ization phase and graph traversal phase achieve an average

of 1.23× and 2.87× speedup, respectively. Moreover, the

graph traversal phase’s speedup ratio is higher than the overall

speedup, indicating that the acceleration effect of N-TADOC

is mostly achieved in this phase.

TABLE II
TIME BREAKDOWN FOR DATASETS C AND D (SECONDS).

Dataset Benchmark
Initial Traversal
phase phase

C

word count 2.70 1.36
sort 6.47 9.39

term vector 7.60 7.11
inverted index 7.30 2.86
sequence count 7.48 17.51

ranked inverted index 7.45 19.49

D

word count 225.31 23.76
sort 271.43 295.83

term vector 126.40 273.77
inverted index 125.61 168.38
sequence count 1107.51 308.08

ranked inverted index 1187.58 544.78

E. Traversal Optimization under Different Workloads

We continue our investigation into how N-TADOC performs

in a variety of different workloads. The impact of workload

on performance improvement is mostly comprised of two

types of graph traversal: top-down traversal and bottom-up

traversal. The top-down traversal of a graph is more appro-

priate for datasets that have a limited number of rules or files

before compression. The bottom-up traversal of a graph is

more appropriate for datasets that have a limited number of

components in the root node after compression. When using

the top-down traversal strategy, the program is required to

traverse the DAG in order to retrieve the weight of rules for

each file. During the graph traversal phase, the performance

of the algorithm can suffer severely if the number of rules

or documents is high and the top-down traversal method is

used, as is the case with dataset B. In dataset B, we evaluate

how effective the top-down and bottom-up approaches are in

comparison to one another. On average, the efficiency of the

top-down method is approximately 1000× lower than that of

the bottom-up method. As a consequence of this, the top-down

method does not make effective use of NVM to cache the

rule’s word list. Instead, it chooses to traverse the DAG for

each file individually for weight propagation, which results

in low efficiency. After acquiring the word list for each rule

during the bottom-up traversal procedure, the program then

scans the root node to collect the final results. This is done

in order to complete the process. Bottom-up traversal has

the potential to achieve higher performance than top-down

traversal in certain circumstances. These scenarios include the

root node having a short length or there being an excessive

number of files and rules.

F. Discussion

This part discusses N-TADOC’s specialized optimization,

application scope, limitations and vision for the future.

Specialized optimization. N-TADOC is specifically de-

signed and optimized for NVM, taking advantage of its non-

volatile persistence characteristic. As to persistence, it does not

need to be considered on DRAM, but is a critical and unique

concern on NVM. We also run the code originally designed

for DRAM directly on NVM and find that the efficiency is

not high. These techniques cannot be directly applicable to

disk-based storage media such as HDD or SSD too. This

limitation primarily arises from the heavy reliance of N-

TADOC on random access, which aligns with the performance

characteristics and access patterns of NVM but does not

exhibit the same level of efficiency on HDD or SSD.

Application scope. N-TADOC is designed to benefit text

analytics workloads that heavily rely on dynamic data struc-

tures and operations. These workloads can include tasks such

as document indexing and query processing. By leveraging

NVM’s characteristics, N-TADOC aims to optimize the per-

formance and efficiency of these operations for text analytics

applications.

Limitations. In small-scale text analytics tasks, the size of

the input text can limit the effectiveness of N-TADOC due

to insufficient data to fully utilize the NVM resources. The

limited amount of data stored in NVM can result in decreased
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performance improvements in small-scale tasks. Additionally,

the cost of initial data transmission and data organization on

NVM can become a bottleneck in small-scale applications,

which can diminish the potential performance gains of using

NVM-based solutions. This is because the time and resources

required to transfer data and organize it on NVM can become

a significant portion of the overall analytics time, potentially

offsetting any performance gains achieved by using NVM.

Therefore, while N-TADOC has demonstrated its effectiveness

in large-scale text analytics tasks, it may not be the optimal

solution for small-scale applications.

Cross-evaluation. In order to thoroughly evaluate the per-

formance and effectiveness of N-TADOC in comparison to

TADOC, it is crucial to conduct cross-evaluation. In our

experiments, N-TADOC on NVM achieves a 5× speedup over

TADOC on NVM. Comparing the results of N-TADOC and

TADOC in the NVM environment, we observe the advantages

and improvements offered by N-TADOC.

Vision for the future. The discontinuation of Intel Op-

tane [52] is undoubtedly disappointing news. However, it is

worth noting that Intel Optane is not the only non-volatile

memory, NVM-based architecture, available in the market.

There are other NVM architectures that offer similar or even

better features than Optane. While the experiments conducted

so far have focused on Intel Optane due to its large-scale

commercial availability, there is a plan to migrate N-TADOC

to other NVM-based architectures in the future. Resistive

Random Access Memory (ReRAM) [31] and Phase Change

Memory (PCM) [32] are among the potential candidates for

this migration. The migration of N-TADOC to different NVM

architectures will enable researchers to explore and compare

the performance of N-TADOC on different platforms. This

can not only help in identifying the strengths and weaknesses

of each architecture but also provide an opportunity for

optimization and improvement of N-TADOC. The exploration

of N-TADOC on other NVM architectures could also lead

to the discovery of new opportunities for improvement and

optimization. For example, a different architecture may pro-

vide better compression or faster access times, leading to

more efficient and faster processing of large text corpora.

Additionally, techniques such as data compression and caching

can be explored to further optimize the storage and retrieval of

compressed text data in NVM, balancing the trade-off between

space efficiency and analytics speed.

VII. RELATED WORK

According to our understanding, N-TADOC is the first work

that enables NVM-based text analytics without decompression.

In this section, we show the related work of grammar com-

pression, NVM data analytics, and embedded NVM systems.

Grammar compression. There has been a significant

amount of research dedicated to compressing grammatical

structures [1]–[9], [53]–[55]. For example, Text Analytics Di-

rectly on Compression (TADOC) [3] uses grammatical struc-

tures for compression, and can be used to perform a variety of

document analytics. Pan et al. [5] enable TADOC on GPUs,

resulting in a significant improvement in the performance of

TADOC. CompressDB [9] is a storage engine that supports

data processing on compressed data without decompression,

achieving improved throughput and latency reduction for var-

ious database systems. CompressGraph [6] leverages redun-

dancy in repeated neighbor sequences to achieve performance

boost and space reduction in graph applications. These works

has further expanded the potential uses for TADOC, making

it a more efficient and scalable solution for processing large

volumes of data.

NVM data analytics. NVMs have found applications in

several subfields of data analytics, including structured data

analytics [56]–[60], graph analytics [12], and machine learning

analytics [61]–[63]. Alibaba’s storage engine X-engine [56] in

cloud-native database [57] uses LSM-tree design and adaptive

separation of hot data records and cold data records; they store

hot data on NVM/SSD and cold data on SSD/HDD, improving

write throughput and read throughput. Malicevic et al. [12]

investigate the effect that switching from DRAM to NVM

has on the most recent and cutting-edge graph processing

frameworks. A lightweight version of random shuffling known

as LIRS [61] has been developed for use in machine learning

analytics in order to shuffle training set using NVM devices.

Embedded NVM systems. Embedded NVM systems have

gained significant popularity in recent times due to their high

efficiency and low cost. To overcome the challenges associated

with NVM embedded systems, researchers have been conduct-

ing extensive research. Two key issues that researchers have

been focusing on are write endurance and state retention [64],

[65]. N-TADOC utilizes a dual-layer structure consisting of

DRAM and NVM. By leveraging NVM reads and performing

certain computations, N-TADOC reduces the write opera-

tions on NVM during text analytics tasks to improve write

endurance. It also reduces state retention overhead through

different persistence strategies.

VIII. CONCLUSION

In this paper, we have presented N-TADOC, which enables

efficient NVM-based text analytics without decompression.

We show the challenges of data locality and redundant access

overhead of data objects growth on NVM , and present a series

of solutions to solve these challenges. N-TADOC is 2.04×
faster than text analytics on the uncompressed datasets with

NVM. With a moderate performance decrease, N-TADOC

saves 70.7% of DRAM space compared with TADOC.

ACKNOWLEDGMENTS

This work is supported by the National Key R&D Pro-

gram of China under Grant (No. 2023YFB4503603), National

Natural Science Foundation of China (62172419, U1911203,

and 62322213), and Beijing Nova Program (20220484137 and

20230484397). Feng Zhang is the corresponding author of this

paper.

3736

Authorized licensed use limited to: Tsinghua University. Downloaded on December 26,2024 at 04:02:36 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] F. Zhang, J. Zhai, X. Shen, D. Wang, Z. Chen, O. Mutlu, W. Chen, and
X. Du, “TADOC: Text analytics directly on compression,” The VLDB
Journal, 2021.

[2] F. Zhang, J. Zhai, X. Shen, O. Mutlu, and W. Chen, “Zwift: A Program-
ming Framework for High Performance Text Analytics on Compressed
Data,” in ICS, 2018.

[3] F. Zhang, J. Zhai, X. Shen, O. Mutlu, and W. Chen, “Efficient Docu-
ment Analytics on Compressed Data: Method, Challenges, Algorithms,
Insights,” Proc. VLDB Endow., 2018.

[4] F. Zhang, J. Zhai, X. Shen, O. Mutlu, and X. Du, “Enabling Efficient
Random Access to Hierarchically-Compressed Data,” in ICDE, 2020.

[5] F. Zhang, Z. Pan, Y. Zhou, J. Zhai, X. Shen, O. Mutlu, and X. Du,
“G-TADOC: Enabling Efficient GPU-Based Text Analytics without
Decompression,” in ICDE, 2021.

[6] Z. Chen, F. Zhang, J. Guan, J. Zhai, X. Shen, H. Zhang, W. Shu, and
X. Du, “Compressgraph: Efficient parallel graph analytics with rule-
based compression,” Proc. ACM Manag. Data, vol. 1, no. 1, pp. 4:1–
4:31, 2023.

[7] Y. Zhang, F. Zhang, H. Li, S. Zhang, and X. Du, “Compressstreamdb:
Fine-grained adaptive stream processing without decompression,” in
ICDE. IEEE, 2023, pp. 408–422.

[8] Y. Liu, F. Zhang, Z. Pan, X. Guo, Y. Hu, X. Zhang, and X. Du,
“Compressed data direct computing for chinese dataset on dcu,” CCF
Transactions on High Performance Computing, pp. 1–15, 2023.

[9] W. Wan, F. Zhang, C. Zhang, M. Zhang, J. Zhai, Y. Chai, H. Zhang,
W. Lu, Y. Chen, H. Li et al., “Compressed data direct computing for
databases,” IEEE Transactions on Knowledge and Data Engineering,
2023.

[10] “Intel Optane Memory,” https://www.intel.com/content/www/us/en/
products/details/memory-storage/optane-memory.html.

[11] M. Dong, H. Bu, J. Yi, B. Dong, and H. Chen, “Performance and
protection in the ZoFS user-space NVM file system,” in SOSP, 2019.

[12] J. Malicevic, S. Dulloor, N. Sundaram, N. Satish, J. Jackson, and
W. Zwaenepoel, “Exploiting NVM in large-scale graph analytics,” in
INFLOW@SOSP, 2015.

[13] A. Eisenman, D. Gardner, I. AbdelRahman, J. Axboe, S. Dong, K. M.
Hazelwood, C. Petersen, A. Cidon, and S. Katti, “Reducing DRAM
footprint with NVM in facebook,” in EuroSys, 2018.

[14] V. Mironov, I. G. Chernykh, I. M. Kulikov, A. A. Moskovsky, E. Epi-
fanovsky, and A. Kudryavtsev, “Performance Evaluation of the Intel
Optane DC Memory With Scientific Benchmarks,” in MCHPC@SC,
2019.

[15] Z. Pan, F. Zhang, Y. Zhou, J. Zhai, X. Shen, O. Mutlu, and X. Du,
“Exploring Data Analytics Without Decompression on Embedded GPU
Systems,” IEEE Trans. Parallel Distributed Syst., 2022.

[16] “COVID-19 Data from Yelp Open Dataset,” https://www.yelp.com/
dataset/, 2019.

[17] A. Asuncion and D. Newman, “UCI machine learning repository,” 2007.
[18] “Wikipedia HTML data dumps,” https://dumps.wikimedia.org/enwiki/,

2017.
[19] F. Ahmad, S. Lee, M. Thottethodi, and T. Vijaykumar, “Puma: Purdue

mapreduce benchmarks suite,” 2012.
[20] F. Zhang and M. F. Sakr, “Performance variations in resource scaling for

mapreduce applications on private and public clouds,” in IEEE CLOUD.
IEEE Computer Society, 2014, pp. 456–465.

[21] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N. Vijaykumar,
“Tarazu: optimizing mapreduce on heterogeneous clusters,” in ASPLOS.
ACM, 2012, pp. 61–74.

[22] C. G. Nevill-Manning and I. H. Witten, “Inferring sequential structure,”
1996.

[23] C. G. Nevill-Manning and I. H. Witten, “Identifying Hierarchical Struc-
ture in Sequences: A linear-time algorithm,” CoRR, vol. cs.AI/9709102,
1997.

[24] C. G. Nevill-Manning and I. H. Witten, “Linear-time, incremental
hierarchy inference for compression,” in Data Compression Conference.
IEEE Computer Society, 1997.

[25] C. J. Xue, Y. Zhang, Y. Chen, G. Sun, J. J. Yang, and H. Li, “Emerging
non-volatile memories: opportunities and challenges,” in CODES+ISSS,
2011.

[26] A. Shanbhag, N. Tatbul, D. Cohen, and S. Madden, “Large-scale in-
memory analytics on Intel Optane DC persistent memory,” in DaMoN,
2020.

[27] O. Patil, L. Ionkov, J. Lee, F. Mueller, and M. Lang, “Performance
characterization of a DRAM-NVM hybrid memory architecture for HPC
applications using intel optane DC persistent memory modules,” in
MEMSYS, 2019.

[28] K. Wu, F. Ober, S. Hamlin, and D. Li, “Early Evaluation of Intel
Optane Non-Volatile Memory with HPC I/O Workloads,” CoRR, vol.
abs/1708.02199, 2017.

[29] M. I. Seltzer, V. J. Marathe, and S. Byan, “An NVM carol: Visions of
NVM past, present, and future,” in ICDE. IEEE Computer Society,
2018, pp. 15–23.

[30] J. Arulraj and A. Pavlo, “How to Build a Non-Volatile Memory Database
Management System,” in SIGMOD, 2017.

[31] Y. Chen, “Reram: History, status, and future,” IEEE Transactions on
Electron Devices, vol. 67, no. 4, pp. 1420–1433, 2020.

[32] R. Bez, “Chalcogenide pcm: A memory technology for next decade,”
in 2009 IEEE International Electron Devices Meeting (IEDM). IEEE,
2009, pp. 1–4.

[33] J. Arulraj, “Data management on non-volatile memory,” in SIGMOD
Conference. ACM, 2019, p. 1114.

[34] I. Oukid and W. Lehner, “Data structure engineering for byte-addressable
non-volatile memory,” in SIGMOD Conference. ACM, 2017, pp. 1759–
1764.

[35] “PMDK,” https://pmdk.io/, 2022.
[36] K. Kambatla, G. Kollias, V. Kumar, and A. Grama, “Trends in big data

analytics,” J. Parallel Distributed Comput., vol. 74, no. 7, pp. 2561–
2573, 2014.

[37] T. E. Anderson, M. Canini, J. Kim, D. Kostic, Y. Kwon, S. Peter,
W. Reda, H. N. Schuh, and E. Witchel, “Assise: Performance and
Availability via Client-local NVM in a Distributed File System,” in
OSDI, 2020.

[38] M. Chen, J. Han, and P. S. Yu, “Data Mining: An Overview from a
Database Perspective,” IEEE Trans. Knowl. Data Eng., 1996.

[39] A. Chen, “A review of emerging non-volatile memory (NVM) technolo-
gies and applications,” Solid-State Electronics, 2016.

[40] A. S. Memaripour and S. Swanson, “Breeze: User-level access to non-
volatile main memories for legacy software,” in ICCD. IEEE Computer
Society, 2018, pp. 413–422.

[41] W. Cai, H. Wen, H. A. Beadle, C. Kjellqvist, M. Hedayati, and M. L.
Scott, “Understanding and optimizing persistent memory allocation,” in
ISMM. ACM, 2020, pp. 60–73.

[42] D. Bittman, P. Alvaro, P. Mehra, D. D. E. Long, and E. L. Miller,
“Twizzler: A Data-centric OS for non-volatile memory,” ACM Trans.
Storage, vol. 17, no. 2, pp. 11:1–11:31, 2021.

[43] J. E. Blumenstock, “Size matters: word count as a measure of quality
on wikipedia,” in WWW. ACM, 2008, pp. 1095–1096.

[44] J. W. Pennebaker, M. E. Francis, and R. J. Booth, “Linguistic inquiry
and word count: Liwc 2001,” Mahway: Lawrence Erlbaum Associates,
vol. 71, no. 2001, p. 2001, 2001.

[45] N. K. Govindaraju, N. Raghuvanshi, M. Henson, and D. Manocha,
“A cache-efficient sorting algorithm for database and data mining
computations using graphics processors,” University of North Carolina,
Tech. Rep, 2005.

[46] R. Stata, K. Bharat, and F. Maghoul, “The term vector database: fast
access to indexing terms for web pages,” Computer Networks, vol. 33,
no. 1-6, pp. 247–255, 2000.

[47] H. Yan, S. Ding, and T. Suel, “Inverted index compression and query
processing with optimized document ordering,” in WWW. ACM, 2009,
pp. 401–410.

[48] D. R. Cutting and J. O. Pedersen, “Optimizations for dynamic inverted
index maintenance,” in SIGIR. ACM, 1990, pp. 405–411.

[49] L. Lebart, “Classification problems in text analysis and information
retrieval,” in Advances in Data Science and Classification: Proceedings
of the 6th Conference of the International Federation of Classification
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