
Chen ZN, Chen K, Jiang JL et al. Evolution of cloud operating system: From technology to ecosystem. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 32(2): 224–241 Mar. 2017. DOI 10.1007/s11390-017-1717-z

Evolution of Cloud Operating System: From Technology to Ecosystem

Zuo-Ning Chen 1, Fellow, CCF, Kang Chen 1, Jin-Lei Jiang 1, Member, CCF, ACM, IEEE, Lu-Fei Zhang 2

Song Wu 3, Member, CCF, IEEE, Zheng-Wei Qi 4, Member, CCF, ACM, IEEE

Chun-Ming Hu 5, Member, CCF, IEEE, Yong-Wei Wu 1, Senior Member, CCF, IEEE

Yu-Zhong Sun 6, Member, CCF, IEEE, Hong Tang 7, Ao-Bing Sun 8, and Zi-Lu Kang 9

1Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
2Jiangnan Institute of Computing Technology, Wuxi 214083, China
3School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
4School of Software, Shanghai Jiao Tong University, Shanghai 200240, China
5School of Computer Science and Engineering, Beihang University, Beijing 100191, China
6Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
7Alibaba Cloud Computing Inc., Hangzhou 310024, China
8G-Cloud Technology Inc., Dongguan 523808, China
9Institute of Technology of Internet of Things, Information Science Academy of China Electronics Technology Group

Corporation, Beijing 100081, China

E-mail: chenzuoning@vip.163.com; {chenkang, jjlei}@tsinghua.edu.cn; zhanglf04@126.com
E-mail: wusong@hust.edu.cn; qizhwei@sjtu.edu.cn; hucm@buaa.edu.cn; wuyw@tsinghua.edu.cn
E-mail: yuzhongsun@ict.ac.cn; hongtang@alibaba-inc.com; sunab@g-cloud.com.cn; zlkang@189.cn

Received November 14, 2016; revised December 16, 2016.

Abstract The cloud operating system (cloud OS) is used for managing the cloud resources such that they can be used

effectively and efficiently. And also it is the duty of cloud OS to provide convenient interface for users and applications.

However, these two goals are often conflicting because convenient abstraction usually needs more computing resources.

Thus, the cloud OS has its own characteristics of resource management and task scheduling for supporting various kinds

of cloud applications. The evolution of cloud OS is in fact driven by these two often conflicting goals and finding the right

tradeoff between them makes each phase of the evolution happen. In this paper, we have investigated the ways of cloud

OS evolution from three different aspects: enabling technology evolution, OS architecture evolution and cloud ecosystem

evolution. We show that finding the appropriate APIs (application programming interfaces) is critical for the next phase

of cloud OS evolution. Convenient interfaces need to be provided without scarifying efficiency when APIs are chosen. We

present an API-driven cloud OS practice, showing the great capability of APIs for developing a better cloud OS and helping

build and run the cloud ecosystem healthily.

Keywords cloud computing, operating system, architecture evolution, virtualization, cloud ecosystem

1 Introduction

1.1 Cloud Operating System

In recent years, cloud computing systems have been

becoming more and more prevalent both abroad 1○∼ 3○

and domestically 4○. Many traditional applications have

been migrated to the cloud systems. For developers

and service providers, services and applications are

hosted without the concern about infrastructure con-

struction, application deployment, hardware updating

Survey

Special Section on MOST Cloud and Big Data

The work is supported by the National Key Research and Development Program of China under Grant No. 2016YFB1000500.
1○https://aws.amazon.com/cn/documentation/, Nov. 2016.
2○https://www.azure.cn/documentation/, Nov. 2016.
3○https://cloud.google.com/, Nov. 2016.
4○https://develop.aliyun.com/, Nov. 2016.

©2017 Springer Science +Business Media, LLC & Science Press, China



Zuo-Ning Chen et al.: Evolution of Cloud Operating System: From Technology to Ecosystem 225

or data center maintenance. Now, the platform compo-

nents running inside the cloud providers are considered

as cloud operating systems (OS). The cloud OS[1], simi-

lar to traditional OS managing bare metal hardware[2-6]

and the software resources, goes through a serial of evo-

lution and now enters the next stage of evolution. We

start our discussion with the functions that can be pro-

vided by cloud OS[1]. And towards the end of this pa-

per, we hope to provide a guideline for the next stage

of evolution.

Cloud computing systems[1,7-9] are often built from

the existing single machine OS, usually Linux. Now,

the other operating systems like Windows have been

used in the data center infrastructure. Most of the

cloud computing system components are constructed

as user applications[2-3] from the traditional OS point

of view. However, the platform for running cloud appli-

cations can still be called an OS as the platform serves

the same two critical goals as a traditional OS. On the

one hand, the cloud OS is used for managing the large-

scale distributed computing resources, similar to the

traditional OS managing hardware in a single machine.

On the other hand, the cloud OS provides abstraction

for running user applications. APIs (application pro-

gramming interfaces) are provided for programmers to

develop cloud applications. This is similar to the case

that a local OS provides system calls for servicing appli-

cations. For example, file systems are used for providing

storage APIs instead of exposing the block operation di-

rectly from disks in local OS. Cloud OS provides similar

APIs to a distributed file system. Besides programming

APIs, some other facilities will be provided for running

the system smoothly in the cloud. Job scheduler is such

a service for scheduling jobs[10-12]. Local OS schedules

processes while cloud OS schedules distributed jobs.

Data management is also a very important component

in the cloud OS[13-18]. Users and applications need to

track the data flow inside their applications running in

the cloud environment. Data processing applications es-

pecially need the thorough understanding of their data

flow among different components in the cloud OS. Fig.1

shows the cloud OS API levels as well as various services

supported. Core APIs are relatively stable and used for

managing the underlying infrastructure and hiding re-

sources heterogeneity and distribution. On top of core

APIs are other APIs that provide more functionalities,

easing the burden of building more higher levels of cloud

services and applications. Through this way, the cloud

ecosystem can be built and cloud services and applica-

tions can proliferate.

SaaS

PaaS

IaaS

C
o
re

 A
P
I

Ia
a
S
 A

P
I

P
a
a
S

A
P
I

S
a
a
S
 A

P
I

More

API Levels

O
S 
K
er
ne

l

C
lo
ud

 O
S 
Fu

nc
ti
on

al
it
ie
s

High

Rich

E
c
o
sy

st
e
m

 S
e
rv

ic
e
s

Fig.1. Cloud OS API levels and the ecosystem services.

1.2 Requirements of Cloud OS

In a single computer, it is quite clear that there

needs an OS abstracting the bare metal hardware for

facilitating the applications as well as users to use

the computing resources conveniently. However, most

of the components in the cloud OS are implemented

as user-level programs. The fundamental necessity of

building a cloud OS needs further discussion as cloud

applications can always be built directly on the current

operating systems without concerning the management

of hardware in the kernel mode. The true necessity

relies on the programming APIs and runtime support

in the cloud environment[13,18-21]. Local OSes mainly

focus on a single machine. They usually do not con-

sider any cloud application logically as a whole uni-

fied application spanning over a large number of ma-

chines. Thus traditional OSes just provide the basic

facilities for communications. In addition, cloud ap-

plications have different forms such as micro services

for building web applications, batch processing for big

data analysis[19-21], query-based data analytics[18,22-23],

and real time processing of streaming data[24-26]. All

the applications have their own internal logical orga-

nizations of multiple components running on multiple,

or even thousands of machines. Exposing very sim-

ple communication interfaces is just not enough. Deve-

lopers need higher levels of abstractions for building

their applications without struggling with details re-

lated to the complex communication patterns and ma-

chine architecture. Exposing APIs that can run on



226 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

top of multiple machines will be very helpful. This is

a very common case for the current cloud OS practi-

tioners such as Google GAE 5○, Amazon AWS 6○, Mi-

crosoft Azure 7○ and Alibaba Cloud 8○. Cloud appli-

cation developers can get the programming interfaces

without considering the physical resources. For exam-

ple, developers can store objects in the cloud without

knowing the final disks storing the data[14]. Program-

ming is always about abstractions and we need the

cloud OS to provide the cloud programming abstrac-

tion for building cloud applications. The other reason

why a cloud OS is necessary is that running cloud appli-

cation is different from running applications in a single

machine. For each single machine OS, a task sched-

uler will be used for managing the processes created in

the system. However, the runtime characteristics are

quite different for running different types of cloud ap-

plications such as batch processing, steam processing

or graph processing. Cloud operating systems should

be built for managing the computing resources related

to thousands, or even tens of thousands of machines[27].

And they should provide different management schemas

for different applications. The coordination[28-30] and

interference of different applications should be taken

into consideration while building such a job scheduler

in the cloud environment. Thus, the administrators do

not need to manage each individual machine. Based on

the above observation, cloud OS is quite necessary and

important.

1.3 State-of-the-Art Cloud OS Practices

Currently, there exist multiple cloud providers. The

famous ones include Google, Amazon, Microsoft and

Alibaba Cloud. The services they provide are called

public clouds because they help to build cloud applica-

tions publicly available to Internet users. While facing

the huge amount of users, these providers have to build

their infrastructures to be scalable with high perfor-

mance. The technologies used behind the infrastruc-

ture are so important that open source communities

have adopted them and help build the open source ver-

sions of cloud infrastructure such as OpenStack and

Hadoop. We can identify the infrastructures and their

open source incarnations as cloud operating systems.

However, each cloud OS practitioner started their

own cloud OS under different considerations. Amazon

started with virtual machine (VM) instances for deve-

lopers and administrators to start building their own

systems, releasing them from the maintenance of the

underlying hardware. At the same time, Google started

its cloud OS considering large amount of data process-

ing. These are the two main pioneers building the

cloud OS. The services provided by these two companies

are quite different. The followers, such as Microsoft,

started with the similar services with different inter-

faces exposed. For business reasons, the interfaces are

proprietary, leading to open source versions to provide

similar but slightly different interfaces. Thus, the cloud

application developers have to face the problem of ven-

dor lock-in which means that applications built for one

specific provider will not run on the other platforms.

Even for building the private cloud environments using

open source software, the developers have to rely on the

specific open source implementation of specific version.

This will impede the construction of cloud ecosystem or

make it difficult to adopt cloud computing technologies.

For the next phase of cloud OS evolution, well-defined

APIs will be critical.

1.4 Impetus of Cloud OS Evolution

Like traditional local OS, the cloud OS is not static.

It is evolving from generation to generation. The im-

petus of cloud OS evolution is mainly due to two consi-

dered conflicting goals. One is to improve the efficiency

and the other is to improve the users (and developers)

experiences. The former includes the improvement of

performance and the efficiency of computing resources

used. This goal is quite straightforward — never wast-

ing any computing power provided. The later is re-

lated to the better programming interfaces, more con-

venient management facilities and user-friendly inter-

faces. However, these two goals are often considered

conflicting. The reason is that better user experiences

require more convenient interfaces which often need ad-

ditional layers of abstractions. More computation over-

head will be introduced for such abstractions. Expos-

ing lower level interfaces is more performance-friendly

but implies more work of developers, hurting the cloud

ecosystem. Thus, the evolution of cloud OS is mainly

to find a better tradeoff between these two conflicting

5○https://cloud.google.com/, Nov. 2016.
6○https://aws.amazon.com/cn/documentation/, Nov. 2016.
7○https://www.azure.cn/documentation/, Nov. 2016.
8○https://develop.aliyun.com/, Nov. 2016.



Zuo-Ning Chen et al.: Evolution of Cloud Operating System: From Technology to Ecosystem 227

goals. The tradeoff drives the technology evolution, ar-

chitecture evolution and ecosystem evolution. We will

discuss each of them in detail in Section 2, Section 3,

and Section 4 respectively.

1.5 Importance of Cloud OS APIs

For supporting more cloud applications, more ap-

plication programming interfaces are added to the API

set of cloud operating systems. However, some fun-

damental programming interfaces (called core APIs)

are becoming more and more stable. These core APIs

are quite important and almost all the cloud providers

make them available to developers and users though

their implementations may be different. This is key to

building the cloud application ecosystem. The applica-

tions built with the same set of APIs can benefit from

the same construction template. This can make the ap-

plication running with similar technology proliferated.

In addition, with core APIs, the applications can do the

communication and make it easier to build larger and

more complex cloud applications. Just like the cases

in traditional operating systems, choosing appropriate

APIs is quite important for the users of cloud operating

systems. For further evolution, we need to make clear

API definitions and their levels and categories. This

tries to make the evolution in the right direction. For

such a goal, this paper analyzes the current evolution of

cloud OS from different angles including the technology

trends, OS architecture improvement, and the cloud OS

ecosystem.

2 Enabling Technology Evolution

As the definition of APIs is tightly related to the

development of technologies, we will firstly study the

evolution of the enabling technologies for cloud com-

puting. Since the evolution is based on the impetus

of appropriate tradeoff between the two goals, namely

the higher efficiency and the more convenient user ex-

periences, the analysis will also focus on technologies

dealing with these two aspects. Virtualization and

programming interface evolutions are quite related to

bringing better user experience of cloud OS. Hardware

and large-sale computing are related to improving the

computing efficiency.

2.1 VM-Induced Technology Evolution

The first technology evolution is quite related to

the introduction of virtual machines[31-32]. In the early

stage of cloud computing, VM is even considered as

synonym for cloud computing. One could say that

if there were no VMs, there would be no cloud com-

puting. Virtual machines are just like physical ma-

chines but run instructions using simulated hardware

rather than physical hardware. This is mostly con-

venient for the users who want to deploy their sys-

tems on the Internet without purchasing, deploying and

maintaining hardware. Amazon is the first company

to provide VM services to the public. This is espe-

cially useful for start-ups providing Internet services.

VM instances can be rented based on the current user

scale and can be expanded on demand. This is a new

model of infrastructure provisioning which is usually

considered to be difficult and time-consuming[33]. How-

ever, the VM technology introduces huge amount of

performance overhead. A lot of efforts have been con-

ducted to improve the performance[34-38]. Despite the

hardware improvement discussed in Section 3, many

lightweight technologies have been developed to pro-

vide similar capability but with improved performance.

One is to use the lightweight containers to replace

the heavyweight virtual machines[39-41]. Containers

are the virtualization inside OS kernel. It provides a

higher level of virtualization instead of instruction-level

virtualization used by VMs. Thus, a lot of simulation

overhead can be eliminated. It is a typical trend that

one improves the user experience with overhead intro-

duced. The tradeoff requires to improve the perfor-

mance of the next generation platform. Here, it does

not mean that all the VMs will be replaced by contain-

ers. VMs have their own virtue and are used for the

applications needing more isolation rather than higher

performance. Some applications can benefit from con-

tainers for higher performance.

Despite the performance improvement of contain-

ers over VMs, cloud computing wants to further im-

prove performance. Towards this goal, some other

forms of computation models have emerged in recent

years to push computation to the end user. Edge

computing[42-43] is among the most promising techno-

logies in this trend. While CDN (content delivery net-

work) is used to put data near to the end user, edge

computing tries to push the computing, instead of data,

near to the end user. This is another way to improve the

performance of virtualized infrastructure other than us-

ing containers. In edge computing, developers have to

divide their computing into different parts and offload

some of the computation to the edge servers instead of

the centralized ones.



228 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

2.2 Evolution of Hardware Enhancement

Performance is always the main concern in any com-

puting evolution. How to improve the cloud OS perfor-

mance is no exception. There are mainly two ways to

improve the performance of applications in the cloud

environment.

One way is to use the newly developed hardware and

the other is through software improvement. Hardware

evolution is always accompanied by some correspond-

ing software. During cloud system evolution, there are

many hardware advances mainly for improving the per-

formance. As mentioned before, VM introduces huge

amounts of computing overhead because of the extra

level of indirection. Intel has made great efforts to im-

prove the performance of hardware virtualization by, for

example, providing VT-x for CPU virtualization and

memory virtualization, and VT-d for device virtuali-

zation. With the help of hardware virtualization, the

performance overhead of current VM is negligible, usu-

ally less than 5%. Besides the improvement of sys-

tem virtualization, there are a lot of other improve-

ments using new hardware features. RDMA (remote di-

rect memory access) was introduced one decade ago for

improving the network performance and now becomes

prevalent in cloud computing data centers[44-46]. Also,

the network topology of a data center is quite important

for cloud computing performance[47-48]. For perfor-

mance of a single machine, FPGA[49-53] and GPGPU[54]

were introduced to improve the performance of specific

applications. They are now widely used in the cloud

environment for specialized cloud applications. SSD

(solid state drive) and NVM (non-volatile memory) de-

vices will become more and more important for improv-

ing the storage performance.

For the software side, the system software has to

adapt to the new hardware features. Legacy operating

systems were designed for single CPU single core ma-

chines. Now, multi-core machines are ubiquitous. The

system must adapt to the change to provide real multi-

ple tasks capability[55-57] instead of time-sharing mul-

titasks. The operating systems have provided multi-

process architecture for running concurrent tasks[58-59].

Threads will be used as multi-tasks inside a single pro-

cess. Nowadays, new operating components and pro-

gramming library have to support new features like

SIMD instructions[60-63], GPGPU parallel processing

and FPGA for performance accelerating[64]. These are

all the system adaptation to embrace the evolution of

underlying hardware. And also, it will be quite clear

that future cloud OS will support the new hardware

development. For example, huge-scale VM has emerged

to support cloud applications such as Internet gam-

ing that requires huge amounts of memory and a large

number of CPU cores. Thus, for the next generation

of cloud computing development, one should obviously

take serious consideration of hardware evolution. On

the other hand, cloud applications and cloud OS can

also propel the hardware enhancement.

2.3 Evolution of Software Scalability

Despite the hardware development and its soft-

ware supporting modules, software platform has its own

adaptation for supporting higher performance cloud ap-

plications. There are mainly two ways for improvement.

One is called scale-up, focusing on the performance in

a single machine and the other is scale-out, focusing

on the performance of multiple machines. Traditional

OS mainly focused on the performance scale-up. Multi-

ple tasks and multiple threading are the common tech-

nologies in OS to improve the throughput. And pro-

gramming libraries are used for harnessing the power

of SIMD, GPGPU and FPGA as mentioned in Subsec-

tion 2.2.

However, despite the great efforts of improving the

single machine performance, the performance of a single

machine will never be enough for many cloud applica-

tions requiring a huge amount of processing as in dis-

tributed operating systems[65]. With the development

of big data applications, this will be an unavoidable

case in many areas. Cloud OS has done great work to

improve the performance and the programmability of

the platform. This is usually called a scale-out scheme

to deal with more machines. For example, distributed

file systems are built for storing a large amount of un-

structured data while distributed databases are built

for storing structured data. Computation frameworks

such as MapReduce and Spark have been built for the

construction of cloud applications. Another improve-

ment that cannot happen in a single machine is that

the task management and scheduling in the cloud envi-

ronment is quite different from that in a single machine.

The cloud OS has to manage thousands of machines of

a cluster, or manage multiple clusters in a data cen-

ter, or even manage multiple data centers all over the

world. The management infrastructure is surely quite

comprehensive and complex. The cloud OS has to pro-

vide the scalable, fault-tolerant management function

to deal with a huge number of nodes and the severe sit-

uations like machine failure, network failure and even



Zuo-Ning Chen et al.: Evolution of Cloud Operating System: From Technology to Ecosystem 229

data center failure. In addition to the scale of cloud

computing, the cloud OS has to consider various types

of applications. The task scheduler in the cloud envi-

ronment has to face different granularities of tasks[66].

For example, VMs and containers can be used as units

for scheduling[67]. This is quite different from the task

scheduling in traditional OS[68-69]. VM live migration

can help to migrate the workload from one machine to

another[70-71], thus improving the inter-operability of

different components. Such a case will never happen in

a single machine.

In summary, the software evolution related to per-

formance improvement tries to improve the efficiency by

the ways of scale-up and scale-out. For future develo-

pment, the organization of OS has to adapt to the new

cloud applications. Single granularity and uniformed

interface will not be enough to build the cloud ecosys-

tem. Developers have to access various granularities of

infrastructure abstraction which should be provided by

the cloud operating system.

2.4 Programmability Evolution

In addition to the VM evolution, hardware and plat-

form performance improvement, the other quite impor-

tant evolution is the programming interface evolution.

In the early days of cloud computing, there were quite

a small number of programming interfaces. Most of the

interfaces were related to the underlying infrastructure.

For example, the AWS firstly provided programming

interfaces for manipulating VM instances and for the

communication among VM instances. These are consi-

dered as low-level APIs and suitable for the construc-

tion of virtual infrastructure. These APIs are not for

any application such as business logic or scientific anal-

ysis. Though they can benefit the system developers or

administrators, application developers cannot get too

much help from these infrastructure-level programming

interfaces. Application developers have to resort to the

traditional OS APIs especially networking APIs and/or

cluster middleware to build their cloud applications.

Using existing OS APIs or middleware is not enough

for building cloud applications for several reasons. The

designers of the existing environment did not have an

appropriate consideration of the features of the current

cloud systems. They have never seen an ultra-scale sys-

tem like cloud computing. Cloud computing APIs need

redesign and have better support for applications run-

ning in the cloud environment. That is why the pro-

gramming interface evolution began to support cloud

applications. And early programming interfaces for ap-

plications tried to mimic the traditional interfaces from

traditional OS but were adjusted to the cloud environ-

ment. A distributed file system is a typical example

that extends a local file system. Applications can use

the similar programming interfaces to store data ob-

jects in the distributed file systems. Similar things hap-

pen in cloud OS with SQL (structured query language)

APIs[24].

With the further improvement and application

flourishing, the cloud ecosystems have extracted more

common programming interfaces for building new cloud

applications. Unlike previous general APIs, these new

sets of APIs have their own application level purposes.

For example, messaging APIs are used for sending and

receiving messages. Distributed authentication APIs

are used for user identification and verification. Dis-

tributed logging APIs help developers to do the pro-

gramming logging which is quite important for appli-

cation development and monitoring. These APIs are

quite necessary in the cloud environment but have no

counterpart in traditional operating systems.

It is obvious that different sets of APIs are and

will be constructed to facilitate the development of

different cloud applications. For example, we have

seen the cloud computing APIs supporting batch-

ing processing, streaming processing[24-25], and graph

processing[72-79]. Cloud APIs for deep learning and

artificial intelligence[80] are now under fast develo-

pment. The computation patterns have switched from

the structured data computation to the combination

of both structured and unstructured data computation

for supporting more big data applications. Thus, future

cloud OS will have more programming APIs supporting

new cloud applications. The platform and the exposed

APIs must support various applications with complex

logic dealing with a large amount of data.

In summary, we have investigated the evolution of

system virtualization, hardware enhancement, and per-

formance and programming interfaces. It is no doubt

that more and more programming APIs will be pro-

vided by the cloud OS in the future. Some of the APIs

are not purely functional and they will be used to de-

tect the application-level runtime characteristics so as

to improve the efficiency. In addition, the core APIs will

be stable because the stable APIs are required to build

and run cloud ecosystems. Based on the core APIs, a

higher level of APIs can be defined and the whole cloud

ecosystem can be constructed.



230 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

3 Cloud OS Architecture Evolution

With the development of computing infrastructure,

new network applications proliferate in the cloud. The

cloud OS and the single node OS have the evolution of

their internal architectures for fitting such development

trend. The cloud applications have made more APIs

available for programmers, thus enriching the cloud OS

ecosystem.

3.1 Architecture Evolution of Single Node OS

At an early stage, the computing resources like

mainframes were quite expensive, and time sharing OS

was used as the fundamental building block to manage

the underlying hardware. This was the first time that

OS came into being. The OS abstracted the interaction

between the programs and machines and made it possi-

ble to share computing resources among multiple users.

Based on the computing resources available at that

time, the OS was designed to have a monolithic kernel

(such as UNIX and Solaris) with a single namespace

and large-scale binary covering process management,

memory management and file system. Such architec-

ture can have high performance but with complex in-

ternal structure. Later, micro-kernel came into being

like Mach and QNX. Such kernels only contain neces-

sary and critical components such as isolation and in-

ter procedure communication. Other modules and sys-

tem functions run as independent components on top

of the kernel. This can simplify the development of

operating systems and make it easier to stabilize the

whole system. By using the micro-kernel, a new service

can be added by using a new process without modi-

fying the kernel itself. Micro-kernel has better scala-

bility but less performance. It is the performance that

prevents the preference of micro-kernel. Although the

debate between these two architectures will continue,

there exist de-facto standard APIs. POSIX (portable

operating system interface for UNIX) is such a quite

important programming standard and now supported

by most operating systems available. This makes it

possible to run applications on different platforms.

Later, the computing resources became more pow-

erful, the network connects every computing facility in

the world, and the intension of OS has been extended.

The model of interaction between machines and hu-

mans is also changed and the graphical user interfaces

(GUIs) are made to be a must. Meanwhile, Windows

OS became ubiquitous, providing the developers with

capabilities of creating windows, drawing on windows

and services for using various kinds of graphical devices.

Recently, more computing power has been put in the

server-side computing, and CPUs are becoming multi-

core and heterogeneous. Traditional operating systems

lack the support of heterogeneous architectures and ap-

plications can interfere in performance. In addition, the

shared memory model and the cache coherence proto-

col based on synchronization and mutual exclusion have

limited the scalability of the system[81]. The virtuali-

zation technology can be used to deal with the proces-

sor heterogeneity and to perform isolation. In addition

to the higher resource utilization, virtualization can in-

crease the mobility of applications, reduce the mana-

gement cost and enable disaster recovery. In large-scale

system maintenance, applications with the underlying

OS are packed in a single virtual image. This is a new

form of software delivery called virtual appliance, which

can decouple the application implementation from the

underlying hardware platform. Many programming in-

terfaces like libvirt[82] are proposed for manipulating

VMs.

3.2 Architecture Evolution of Cloud OS

Cloud computing can be considered as a success-

fully commercialized distributed computing paradigm.

Traditional distributed operating systems such as

Amoeba[83] try to make the distributed environment

transparent to the OS layer and the application layer.

In the OS layer, distributed shared memory and process

migration can achieve the goal. In the application layer,

remote procedure call and inter process message com-

munication can be used to achieve the same goal. The

transparency of distributed environment is valid only

in the situation of enough low communication latency.

Now the computing resources are more flexible, ubiq-

uitous, and heterogeneous. Together with the newly

developed cloud applications like MapReduce, all the

factors improve the development of cloud system soft-

ware. MapReduce[13], proposed by Google first, pro-

vides a loosely coupled framework dealing with a large

number of heterogeneous and unreliable nodes and is

used to build data processing applications.

The current architecture of cloud OS is based on

the platform software. The software components are

just simply stacked together to provide the functions

needed. The architecture is simply the OS combined

with network middleware. The network components

are typically the distributed database, and distributed



Zuo-Ning Chen et al.: Evolution of Cloud Operating System: From Technology to Ecosystem 231

storage and middleware for message communication.

They are used to hide the distribution of the under-

lying computing resources. Sometimes, the infrastruc-

ture can do the optimization based on different types

of applications. The virtualized underlying platform

makes the cloud OS transparent by using VM live mi-

gration. However, VMs can introduce great overhead,

leading to lower efficiency. The supporting of network

data transmission is not enough either[31].

In recent years, the emerging and the proliferation

of containers have improved the development of cloud

OS. Containers use the isolation capability from the

existing OS. This can reduce the number of abstrac-

tions, thus improving the efficiency. By using contain-

ers as the basic building blocks for cloud OS, the unified

management framework can support extremely large-

scale computing systems and storage systems. The jobs

supported can be a mixture of various types like servic-

ing and batch processing. Complex and comprehen-

sive resource description language can be used for task

assignment, scheduling and fault tolerance[10-12,84-86].

In the cloud OS software stack, the application con-

tainers are suited for hosting micro services. Now, the

management tool like Docker[87] becomes very popular

in practice. With its standard build file and the flexible

RESTful APIs, the management tool can greatly help

improve the automation of software packaging, testing

and deployment. However, the current implementation

of containers lacks performance isolation and security

isolation[88]. Thus, the containers are usually run in-

side VMs for performance isolation. This obvious re-

dundancy brings some new opportunities to bring the

containers one level lower in the OS by using the micro

kernel or customized kernel to remove the problem of

performance isolation[89-91].

The architecture of traditional loosely coupled cloud

OS makes it complex to use and introduces a lot of re-

dundant work. It lacks application workload perception

and the policy cannot notify the underlying component

effectively. Thus, the architecture should consider the

vertical integration of OS to reduce the levels of ab-

straction. More perception points can be put in the OS

which can consider the scheduling policies in the dis-

tributed and cloud environment. This can help to build

a unified and flat management framework for cloud

computing platform. Such architecture is beneficiary

for function convergence of each component, workload

perception based optimization, and orderly evolution.

Traditional monolithic single node OS is not easy to

decouple the policy from mechanism. Single node OS

needs the enhancement of internal structure to improve

the capability of application workload perception. The

mechanism can be implemented in the small kernel and

provide users with more customizable policy interfaces.

And more advanced research includes the data distri-

bution, function distribution and space reuse to replace

time reuse in OS. This can make the single node OS

more scalable and flexible[92-95].

As a conclusion, the cloud OS should vertically inte-

grate single node OS and network middleware for appli-

cation workload perception. At the bottom layer, the

virtualization technology and containers can be used to

support multi-core and heterogeneous processors. Also,

the decoupling of application development and hard-

ware should be supported as high efficient sandbox.

Micro-kernel technologies can be used to improve the

isolation of containers and the flexibility of single node

OS. At the higher layer, the unified resource mana-

gement framework can achieve the goals of mixed job

deployment, global scheduling optimization and appli-

cation workload perception[96-99]. Service mashup can

be implemented by using the application package mana-

gement. For each stage of cloud OS evolution, new APIs

are introduced. With the new APIs and their stan-

dardization, new applications can push the next stage

of OS architecture evolution, expanding cloud technolo-

gies adoption.

4 Cloud Ecosystem Evolution

For the future development of cloud OS, the main

goal is to support the cloud ecosystem and build more

applications. This section will study the evolution of

cloud ecosystem. The evolution of the cloud systems is

tightly related to the technology used and the change

of the OS architecture as discussed above. This sec-

tion will show how technologies and OS architecture fit

in the cloud OS evolution. Based on the observation of

different cloud providers and their open source counter-

parts, the evolution of cloud ecosystem can be studied

through two different perspectives. The first is called

the evolution of layers, and it is quite related to the

technology development and driven by the gradually

emerging applications in each phase of cloud OS evo-

lution. The second is related to the adoption of cloud

technologies.

Before diving into the detailed discussion, we first

briefly sketch the importance of APIs and their role

in improving the ecosystem. Table 1 shows several as-

pects of how APIs can improve the underlying cloud OS



232 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

and the applications running on top of them. APIs can

clearly define the boundary between the system plat-

form and the applications. That is critical to build

applications without worrying about the quick evolu-

tion of the underlying technologies. Cloud ecosystem

and OS cannot be built without the introduction and

evolution of APIs.

Table 1. Role of APIs for Cloud Ecosystem

Aspect Description

Improved
productivity

Different components of cloud OS and ap-
plications can be developed independently
by different people

Enhanced
usability

Implementation details are hidden and
users only need to understand the informa-
tion exposed

Functionality
reuse

More advanced functions can be developed
using existing APIs; such a way also im-
proves productivity

Better
interoperability

Applications developed with standardized
APIs can run on any system that supports
these APIs

Healthy growth Larger scale ecosystem can be formed by
utilizing existing APIs, developing and de-
livering new APIs

4.1 Evolution of Layered Cloud Ecosystem

The cloud ecosystems seem quite proliferated re-

cently. And it is clearer that the core APIs are now

relatively stable. However, until recently, cloud ecosys-

tems were not very clear. Different cloud providers have

their own definition of cloud ecosystems. The cloud

ecosystem evolution is quite driven by the applications

on its top. At first, cloud providers just wanted to

provide services over Internet, releasing users and ad-

ministrators from deployment and maintenance. The

cloud OS at that time had very vague appearance in the

ecosystem. Thus, many of the pioneer cloud practition-

ers tried their best to hold the services from developers

for end users. For example, Google AppEngine helps

the developers to run their customer services inside the

Google cloud infrastructure. Thus the start-ups do not

need to worry about the whole underlying infrastruc-

ture. They only need to worry about the application

logic which can attract end users. Amazon did the same

thing with a much lower level of programming inter-

faces. However, in this stage of cloud OS evolution,

there is no clear methodology to define the core APIs

and the application level APIs. The earlier cloud OS

efforts just provided the services that were already in-

side the providers. Anyway, this stage at least revealed

some about the later huge evolution of cloud OS.

With the development of cloud ecosystem, and es-

pecially because of the applications running on top of

the cloud infrastructure, the underlying fundamental

services became quite important. All the practition-

ers now have a clearer picture of what the ecosystem

should look like. People realize that there are at least

three levels for many components in any cloud ecosys-

tem. Each level services different purposes. In the very

first level, the underlying computing resources can be

virtualized. The reason is quite simple that we have to

use some forms of indirection to hide the physical re-

sources. And then the physical resources can evolve on

their own without disturbing the software stacks run-

ning on top. In this level of ecosystem, we can see

virtualized hardware components including VM, vir-

tual networking[100], and virtualized storage. This level

also has its own evolution by introducing containers

and edge computing servers. Decoupling this level from

higher levels is quite important for the ecosystem evolu-

tion, for the developers now do not struggle with time-

consuming and error-prone details of hardware deploy-

ment and management. The first level of virtualization

mainly makes very convenient interface for system ad-

ministration and application deployment. We call this

layer the virtualization layer.

On top of the virtualization layer, the cloud OS has

to provide supports for developers. In fact, this layer

has its own independent development history from the

virtualization layer. Some of the cloud applications

in fact do not need to run in the virtualized environ-

ment for the reason of performance overhead. For ex-

ample, the batch data processing or the stream data

processing needs some computation frameworks to get

the programs built more productively. And also, for

hosting web services in the cloud environment without

considering virtual or physical computing resources, the

cloud OS has to expose the necessary interfaces with-

out revealing the virtual or physical servers. To support

such cloud applications, cloud providers have built the

distributed file system and various computing frame-

works for developers. The programming interfaces have

to be abstract so that the programs do not need to no-

tice the location of hosting. With the evolution of cloud

OS, the storage services are now considered to be in the

virtualization layer. And the programming frameworks

can be considered in a higher level of ecosystem. This

layer can be called service supporting layer. There is

another very important component in this layer, namely

the task management. As for supporting running cloud

applications, task management will be used for schedul-



Zuo-Ning Chen et al.: Evolution of Cloud Operating System: From Technology to Ecosystem 233

ing various kinds of workloads. The workloads include

Web services, batch processing, real-time monitoring,

and other kinds of applications. As the scale of cloud

computing system is often quite large, the task mana-

gement is quite important to guarantee the efficient use

of computing resources and improve the overall system

performance. The service support layer is considered as

the fundamental application service in the cloud ecosys-

tem.

The application service layer is the final layer sitting

on top of the service supporting layer. The application

layer provides services to end users. Usually applica-

tions in traditional OS do not expose any programming

interface for programmers. However, most of the cloud

applications do so because through this way, the ap-

plication developers can mash up multiple services to

provide a new service for end users. It is quite common

in the cloud environment that services can be connected

together to construct more complex and higher level of

applications. And some of the services are so common

and important that they can form another level of core

APIs. For example, user authentication and messaging

services can be considered as application layer APIs for

almost all applications.

From the above analysis, one can come to a con-

clusion that the architecture of the cloud OS should

be and now is quite similar to that of the local OS.

The system should be divided into different layers and

each layer has its own purpose. The local OS has the

hardware layer, OS and runtime layer, and user appli-

cation layer. Cloud OS has each counterpart. For the

future development of cloud OS, the layered service is

unavoidable. The critical work that has to be done here

is to separate each layer clearly and define the interface

between layers precisely. This is common system prac-

tice and can reduce the whole system complexity. In

addition, each layer can have its own evolution without

disturbing the other layers too much. For example, the

containers and edge computing can be adopted in the

virtualization layer. Because of the clearly layered sys-

tem, the introduction of new technologies can be fitted

into the whole framework quickly. In addition, such

introduction might have some other benefits. For ex-

ample, with the introduction of containers, the cloud

OS can mask the heterogeneous hardware computing

resources without too much overhead like VMs. Thus,

the service management APIs and the resource mana-

gement APIs can be decoupled by using the containers.

The resource management APIs can handle the hetero-

geneity of different computing resources and expose the

computing resources as containers. The service mana-

gement APIs can then manage and schedule these con-

tainers. The containers can be scheduled to appropriate

computing resources to achieve high performance and

efficiency.

Although the separation of these three layers is quite

clear nowadays, there is no clear boundary between

them. And often, it is not the lower layer that helps

improve the upper layers. In contrast, the applications

layer often plays the role of ecosystem impeller. With

more and more cloud applications becoming prevalent

in the services for ender users, the infrastructure and

the platform have to adapt to such trends and make op-

timization for running the application more efficiently.

As a summary, the current cloud ecosystem works

in the similar way to traditional operating systems. By

exposing multiple layers of interfaces, application deve-

lopers as well as system developers can all make con-

tributions to the ecosystem. The impetus is still the

tradeoff between the user experience improvement in

the application level and the efficiency improvement in

the system level. Thus, for the future evolution of cloud

ecosystem, the layered model of cloud OS is still valid.

The interface will proliferate and more application spe-

cific programming and management interfaces will be

added to the ecosystem. The core APIs related to the

infrastructure and resource management will be much

more stable in the ecosystem. With the layered model

decoupling the different functions in the cloud OS, the

evolution of each layer can be relatively independent.

4.2 Evolution of Cloud Technology Adoption

Despite the public cloud, the technologies used in

the cloud system have drawn much attention from the

traditional industry. The ease of use, large-scale capabi-

lity of data processing and the fault tolerance feature

can benefit the current IT infrastructure of many insti-

tutes. In fact, the adoption of cloud technologies was

slow in early stages. This is mainly because the ecosys-

tem even for the public cloud was not mature. As the

enabling technology implementation is quite difficult,

there was no public reference implementation at that

time. Besides the difficulties, one of the main reasons

for the availability issue of public implementation is the

lack of standardized interfaces, that is, APIs.

Later, with the development of public cloud ecosys-

tem, the programming interfaces for the cloud OS be-

come more and more mature. All the public cloud

providers expose similar programming interfaces cover-

ing infrastructure management, and task management



234 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

and some critical application-level programming inter-

faces. And a lot of efforts have been done to implement

the relatively mature and stable core APIs. Two very

important open source projects, Hadoop and Open-

Stack, started to make great influence on the adop-

tion of cloud technologies. They both can be consi-

dered as the incarnation of public cloud operating sys-

tems. OpenStack, which is quite similar to the in-

frastructure virtualization in Amazon’s cloud, can be

used to create the virtualized infrastructure including

the computing virtualization, networking virtualization

and storage virtualization. Hadoop has implemented a

bunch of data processing infrastructure for improving

the performance, programmability and the fault tole-

rance of large-scale clusters. These two open source

projects have a large number of components, enabling

the users to adopt the cloud technology more easily. It

is quite clear that eventually stabled programming in-

terfaces have made it possible to expose the internally

used cloud infrastructure to be publicly available.

However, the current technology adoption is still

limited to general cloud technologies. Some cloud ap-

plication might need special considerations. For exam-

ple, many of the current high performance computing

applications do not benefit from the flexibility of cloud

infrastructure. Thus, the general technologies currently

implemented might not be appropriate. In the future

evolution, the cloud technology needs to be integrated

into the applications. The infrastructure should per-

cept the applications and make appropriate adaptation

to run the applications more efficiently. We have seen

the cloud technology improving the IT service for many

existing applications. The cloud OS will make more lay-

ered abstractions of underlying services. With the im-

proved programming interfaces and their implementa-

tion, the cloud technologies will be more convenient for

building specialized cloud services. Application deve-

lopers and the IT specialist can use the publicly availa-

ble cloud OS software stack to construct in-house cloud

while the public cloud service cannot meet their de-

mands.

5 Methodology of Cloud OS API Abstraction

Based on the study above, APIs are critical to pro-

pel the evolution of future cloud OS. API abstraction

will be the first step for implementing any cloud OS

and also it is the foundation of building cloud applica-

tions. There are a few principles for doing cloud API

abstraction.

1) The APIs abstraction must be compatible with

the current cloud practice. This principle shows the

respect for the efforts currently done and can fit the

users’ expectation. A lot of applications have shown

the validity of the current cloud OS.

2) Core APIs should be stable. We have seen many

cloud applications requiring different underlying sup-

ports. However, the core APIs should be stable. This

will help to build the cloud ecosystem. Developers have

the relatively solid foundation for building their appli-

cations. Otherwise, if the APIs are changing swiftly,

learnt knowledge will soon get obsolete and hurt the

existing cloud applications.

3) APIs should be layered and cover enough de-

mands. As analyzed before, the ecosystem needs lay-

ered API abstraction. Each layer needs to service diffe-

rent purposes. In fact, each layer can have its own

ecosystem and can make evolution by itself. Through

this way, the APIs can be made prolific to cover enough

demands without too much overhead.

4) Although the APIs, especially the core APIs,

must be kept relatively stable, they can and should have

necessary evolution to embrace the technology improve-

ment as well as the new requirements raised by cloud

applications. New hardware will be introduced to the

cloud ecosystem, and the cloud OS must support such

hardware for running applications more efficiently.

Based on the above principles, it is now clear how

we can define the cloud OS APIs. For compatibility

with the current cloud operating systems, the APIs can

be gotten from the current cloud system practition-

ers including the public clouds and their open source

counterparts. Usually the APIs defined by these two

communities are similar because the open source ver-

sions are derived from the public services. The open

source versions often evolve more quickly and new fea-

tures can be merged to the open source implementation

fast. Cloud providers with other considerations can-

not do the change that quickly. All such APIs are the

source that a new cloud OS can learn from. The APIs

will be divided into different categories based on their

functions. Also, the categories should be put into mul-

tiple layers based on their distances from the underlying

computing resources.

After the categorization and layering work, one

should take very careful considerations of the relative

stableness of all APIs as well as their functions. The

core APIs should not be tied to any specific applica-

tion and should be stable. Thus, two categories of

APIs should always be considered as core APIs. One



Zuo-Ning Chen et al.: Evolution of Cloud Operating System: From Technology to Ecosystem 235

is related to the infrastructure virtualization and re-

source management such as VM, containers, virtual

storage, and virtual networking. The other is related

to the task management such as workload monitoring,

different granularity of job management, task scheduler

based on different workloads, and so on. Some pro-

gramming frameworks should also be taken into con-

sideration such as batch processing, streaming process-

ing, graph analytics[101-102] and distributed query pro-

cessing, because they are so widely used that they are

amongst the most important applications, including the

application framework that can help to build the cloud

ecosystem. APIs supporting latest hardware should be

included as they are required by applications and can

benefit the adoption of cloud technologies while build-

ing specialized in-house cloud infrastructure.

In summary, one can define the core APIs of cloud

OS as well as the necessary APIs for building appli-

cations from the existing public clouds and their open

source counterparts. The ecosystem can then be built

from these APIs. The APIs should be standardized

so that applications can be developed more quickly

without too much concern about API implementation.

In the next section, we will give some exemplar cloud

practice that first defines the APIs and then builds an

ecosystem around it.

6 API-Driven Cloud OS Practice

By API-driven, we mean APIs are defined first and

then a cloud OS implementing these APIs is developed.

Such a way is possible because nearly a decade has

passed since the advent of cloud computing and peo-

ple have gained enough experience about the concept

and the real-world applications. In addition, such a way

can produce APIs of the most convenience and systems

that can efficiently support them.

6.1 Core APIs Definition

In Section 5, we have pointed out some principles to

define cloud OS APIs. According to these criteria and

the practice of public cloud services and open source

cloud projects, we define five categories of APIs as fol-

lows.

• Container-related APIs include Create, Start, Kill,

Delete as defined by the open container initiative and

other self-defining ones such as List (for listing all con-

tainers of a certain user), Watch (for getting the sta-

tus of a certain container), Migrate, and Stop. These

APIs make it possible for users to create and manipu-

late container-based applications.

• Virtual machine related APIs are supplied for

users to create and control virtual machines. Virtual

machines provide a way to utilize resources more flexi-

bly and efficiently.

• Scheduling-related APIs are provided for users to

submit jobs and monitor the execution process. It is

the duty of scheduling to guarantee the desired quality

of job execution.

• Storage-related APIs are used for users to save

their contents. The storage types supported include

object storage, file storage, and block storage.

• Operation management related APIs deliver func-

tionalities such as resources deployment and mana-

gement, configuration management, system monitor-

ing, system auditing, and security management. These

functionalities are essential for proper system ope-

rations.

6.2 Cloud OS Architecture

As a reference, we design a cloud OS that imple-

ments the above-mentioned APIs under the sponsor of

National Key Research and Development Program of

China. The architecture of our cloud OS is shown in

Fig.2.

The OS consists of multiple layers, namely physical

resources, OS kernel, system services, eco-system sup-

port, and applications. The physical resources layer

provides various kinds of resources, including CPU,

memory, storage, network, and so on. OS kernel, which

locates between the physical resources layer and the

system services layer, fulfills the task of resources ab-

straction and services provisioning. The system services

layer provides such services and the corresponding APIs

as networking services, large-scale in-memory comput-

ing, data storage, elastic computing, and so on based

on the APIs shipped by the OS kernel. On the top of

system services are other facilities (e.g., account mana-

gement, user authorization, billing, container services,

resources orchestration, and VM/container repository)

that are necessary to build an eco-system. These faci-

lities also provide APIs of their own. The most upper

layer is the applications layer that ships such capabili-

ties as big data processing, scientific computing, graph

computing, deep learning, and so on. Please note the

application here is called from the perspective of OS

and it might not involve business logic.

In our system, we mainly focus on the key functions



236 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

Physical Resources (CPU, Memory, Storage, Network, … )

R
e
so

u
rc

e
s 

D
e
p
lo

y
m

e
n
t

&
 D

a
ta

 C
e
n
te

r 
M

g
m

t.

S
y
st

e
m

 M
o
d
e
l 

E
v
a
lu

a
ti
o
n
 &

 T
e
st

in
g

Resources

Abstraction &

Management

Distributed

File System

Security

Mgmt.
RPC

Tasks

Scheduling

Virtual Hardware

& Container API

Distributed
Coordination

Service

Scientific
Computing

Big Data
Processing

New Devices Virtualization Multi-Tenant SupportMulti-Granularity Hardware Management

Huge VM Container

Multi-Granularity

Resources Pooling 

and Management

Deep
Learning

Networking
Services

Large-Scale In-
Memory Computing

Data Storage Elastic
Computing

…

Applications
Graph

Computing
…

VM/Container
Repository

Resources
Orchestration

Container
Services

Account Management/ 
Authorization/Billing

…

System

Services

Eco-System

Support

O
S
 K

e
rn

e
l

Fig.2. Overall architecture of the cloud OS developed. Mgmt means management.

in the OS kernel. Details of them will be explained in

the following subsection.

6.3 Key Technologies

To achieve the purpose of high efficiency and ease

of use, our cloud OS implementation pays attention to

the following technologies.

Container Technology. Containers provide a light-

weight way for users to develop and run distributed

applications and are considered as a future direc-

tion. Though there are many containers available (e.g.,

Docker and LXC), they are far from perfect. Our OS

will investigate ways to enhance container isolation and

to do live migration without performance degradation.

In addition, since container services will be consumed

by many tenants in cloud environments and comput-

ing has expanded its scope from central data center to

the edge, we will also study how to better support the

multi-tenant feature and edge computing by containers.

Huge VM Technology. Traditional VM embodies

the idea of resource partition, allowing users to manipu-

late resources in a more fine-grained way. Besides this

paradigm, it is necessary to consider scenarios where

large amounts of resources are combined and presented

as a powerful virtual machine (called huge VM) along

with the advent of new devices (e.g., GPU, RDMA, and

FPGA) and applications (e.g., scientific computing, big

data processing). The issues to study include how to do

new devices virtualization so as to lay a good basis for

huge VM construction, how to build a huge VM that

can support more than 500 virtual computing cores and

up to 2 TB memory, and how to do resources scheduling

to improve performance.

Tasks Scheduling Technology. Tasks scheduling runs

on top of multi-granularity resources pooling and mana-

gement. It is the duty of tasks scheduling to guarantee

both resources utilization and services quality. Since

large-scale resources are involved and the tasks running

are of different characteristics, it is not an easy task to

do tasks scheduling. Here we focus on hybrid workloads

scheduling, the scalability and fault tolerance of the

scheduler itself, and the adaptation of typical comput-

ing frameworks with cloud computing environments.

Distributed File System Technology. Just like file

system to traditional OS, distributed file systems play

a key role in cloud computing, simplifying storage ac-

cess. Since there are many distributed file systems (e.g.,

GFS/HDFS, Gluster, Ceph) available, we shift our fo-

cus from scalability to reliability, with an aim to achieve

better reliability and storage efficiency. We utilize the

large-scale erasure code to achieve the purpose. To

guarantee read/write performance, parallel computing

is introduced for data encoding and decoding.



Zuo-Ning Chen et al.: Evolution of Cloud Operating System: From Technology to Ecosystem 237

Resources Deployment and Data Center Mana-

gement Technology. For resources deployment, we put

forward a method to identify the dependencies among

multiple applications and design a Puppet-based and

cache-enabled deployment tool, with which resources

can be deployed quickly and energy efficiently. For data

center management, we monitor system runtime states

and devise a deep learning based algorithm to identify

and locate failures and do security assessment. In this

way, data center management becomes intelligent.

Besides the above key technologies, we also inves-

tigate the issue of system testing, with a purpose to

give a full evaluation of the whole system in terms of

API compliance and interface performance. The result

is an interface semantic contract based automatic test-

ing scheme that can shield the difference in interface

formats and reduce testing cost.

In summary, our OS implementation shows the pos-

sibility to build an ecosystem around some APIs. In

this implementation, we just focus on the core func-

tions of OS kernel and the corresponding APIs. It can

still be improved by, for example, introducing more ad-

vanced functions and/or services over the OS kernel to

boost application development efficiency.

7 Conclusions

In this paper, we gave the brief study of the evolu-

tion of cloud OS related technologies and ecosystems. It

is very clear that the APIs play a central role in the evo-

lution of cloud OS. APIs are the abstraction of the un-

derlying computing infrastructure, and implement the

requirements of the cloud applications. With the inter-

nal management of jobs and resources, the cloud OS

tries to run applications efficiently. Building the cloud

ecosystems based on the carefully chosen OS APIs is

critical to make the system productive and healthy.

References

[1] Armbrust M, Fox A, Griffith R et al. A view of cloud com-

puting. Communications of the ACM, 2010, 53(4): 50-58.

[2] Tanenbaum A S, Woodhull A S. Operating Systems Design

and Implementation (3rd edition). Pearson, 2006.

[3] Auslander M A, Larkin D C, Scherr A L. The evolution of

the MVS operating system. IBM Journal of Research and

Development, 1981, 25(5): 471-482.

[4] Deitel H M, Deitel P J, Choffnes D. Operating Systems.

Pearson/Prentice Hall, 2004.

[5] Bic L F, Shaw A C. Operating Systems Principles. Prentice

Hall, 2003.

[6] Silberschatz A, Galvin P B, Gagne G. Operating System

Concepts. John Wiley & Sons Ltd., 2008.

[7] Hu T H. A Prehistory of the Cloud. MIT Press, 2016.

[8] Mell P, Grance T. SP800-145. The NIST definition of cloud

computing. Communications of the ACM, 2010, 53(6): 50.

[9] Zheng W. An introduction to Tsinghua cloud. Science

China Information Sciences, 2010, 53(7): 1481-1486.

[10] Hindman B, Konwinski A, Zaharia M et al. Mesos: A plat-

form for fine-grained resource sharing in the data center. In

Pro. USENIX Conference on Networked Systems Design

and Implementation, Mar.31-Apr.1, 2013, pp.429-483.

[11] Schwarzkopf M, Konwinski A, Abd-El-Malek M et al.

Omega: Flexible, scalable schedulers for large compute clus-

ters. In Proc. ACM European Conference on Computer Sys-

tems, Apr. 2013, pp.351-364.

[12] Verma A, Pedrosa L, Korupolu M et al. Large-scale cluster

management at Google with Borg. In Proc. the 10th Euro-

pean Conference on Computer Systems, Apr. 2015, pp.18:1-

18:17.

[13] Dean J, Ghemawat S. MapReduce: Simplified data pro-

cessing on large clusters. In Proc. the 6th Symposium on

Operating Systems Design & Implementation, Dec. 2004,

pp.137-150.

[14] Ghemawat S, Gobioff H, Leung S T. The Google file system.

ACM SIGOPS Operating Systems Review, 2003, 37(5): 29-

43.

[15] Chang F, Dean J, Ghemawat S et al. Bigtable: A dis-

tributed storage system for structured data. ACM Transac-

tions on Computer Systems (TOCS), 2008, 26(2): 205-218.

[16] Baker J, Bond C, Corbett J et al. Megastore: Providing

scalable, highly available storage for interactive services. In

Proc. the 5th Biennial Conference on Innovative Data Sys-

tems Research, January 2011, pp.223-234.

[17] Corbett J C, Dean J, Epstein M et al. Spanner: Google’s

globally distributed database. ACM Transactions on Com-

puter Systems (TOCS), 2013, 31(3): 8:1-8:22.

[18] Yu Y, Isard M, Fetterly D et al. DryadLINQ: A system for

general-purpose distributed data-parallel computing using

a high-level language. In Proc. the 8th USENIX Sympo-

sium on Operating Systems Design and Implementation,

Dec. 2008, pp.1-14.

[19] Isard M, Budiu M, Yu Y et al. Dryad: Distributed data-

parallel programs from sequential building blocks. ACM

SIGOPS Operating Systems Review, 2007, 41(3): 59-72.

[20] Zaharia M, Chowdhury M, Das T et al. Resilient distributed

datasets: A fault-tolerant abstraction for in-memory clus-

ter computing. In Proc. the 9th USENIX Conference on

Networked Systems Design and Implementation, Apr. 2012,

pp.141-146.

[21] Power R, Li J. Piccolo: Building fast, distributed programs

with partitioned tables. In Proc. the 9th USENIX Sympo-

sium on Operating Systems Design and Implementation,

October 2010, pp.293-306.

[22] Melnik S, Gubarev A, Long J J et al. Dremel: Inte-

ractive analysis of web-scale datasets. Communications of

the ACM, 2011, 54(6): 114-123.

[23] Peng D, Dabek F. Large-scale incremental processing us-

ing distributed transactions and notifications. In Proc. the

9th USENIX Symposium on Operating Systems Design and

Implementation, October 2010, pp.251-264.

[24] Neumeyer L, Robbins B, Nair A et al. S4: Distributed

stream computing platform. In Proc. the 10th IEEE In-

ternational Conference on Data Mining Workshops, Dec.

2010, pp.170-177.



238 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

[25] Viglas S, Naughton J F. Rate-based query optimization for

streaming information sources. In Proc. ACM SIGMOD In-

ternational Conference on Management of Data, Jun. 2002,

pp.37-48.

[26] Shen H, Zhang Y. Improved approximate detection of du-

plicates for data streams over sliding windows. Journal of

Computer Science and Technology, 2008, 23(6): 973-987.

[27] Li Y, Chen F H, Sun X et al. Self-adaptive resource mana-

gement for large-scale shared clusters. Journal of Computer

Science and Technology, 2010, 25(5): 945-957.

[28] Hunt P, Konar M, Junqueira F P et al. ZooKeeper:

Wait-free coordination for Internet-scale systems. In Proc.

USENIX Annual Technical Conference, Jun. 2010.

[29] Ongaro D, Ousterhout J. In search of an understandable

consensus algorithm. In Proc. USENIX Annual Technical

Conference, Jun. 2014, pp.305-319.

[30] Lamport L. Paxos made simple.ACM SIGACT News, 2001,

32(4): 18-25.

[31] Barham P, Dragovic B, Fraser K et al. Xen and the art of

virtualization. ACM SIGOPS Operating Systems Review,

2003, 37(5): 164-177.

[32] Ben-Yehuda M, Day M D, Dubitzky Z et al. The tur-

tles project: Design and implementation of nested virtuali-

zation. In Proc. the 9th USENIX Conference on Operating

Systems Design and Implementation, Oct. 2010, pp.423-

436.

[33] Xiao Z, Song W, Chen Q. Dynamic resource allocation using

virtual machines for cloud computing environment. IEEE

Transactions on Parallel and Distributed Systems, 2013,

24(6): 1107-1117.

[34] Kivity A, Laor D, Costa G et al. OSv — Optimizing the

operating system for virtual machines. In Proc. USENIX

Annual Technical Conference, June 2014, pp.61-72.

[35] Ren S, Tan L, Li C et al. Samsara: Efficient determinis-

tic replay in multiprocessor environments with hardware

virtualization extensions. In Proc. USENIX Annual Tech-

nical Conference, June 2016, pp.551-564.

[36] Chen H, Wang X, Wang Z et al. DMM: A dynamic memory

mapping model for virtual machines. Science China Infor-

mation Sciences, 2010, 53(6): 1097-1108.

[37] Zhao X, Yin J, Chen Z et al. vSpec: Workload-adaptive ope-

rating system specialization for virtual machines in cloud

computing. Science China Information Sciences, 2016,

59(9): 92-105.

[38] Wang X, Sun Y, Luo Y et al. Dynamic memory paravirtual-

ization transparent to guest OS. Science China Information

Sciences, 2010, 53(1): 77-88.

[39] Lu L, Zhang Y, Do T et al. Physical disentanglement in

a container-based file system. In Proc. the 11th USENIX

Symposium on Operating Systems Design and Implemen-

tation, Oct. 2014, pp.81-96.

[40] Arnautov S, Trach B, Gregor F et al. SCONE: Secure Linux

containers with Intel SGX. In Proc. USENIX Symposium

on Operating Systems Design and Implementation, Nov.

2016, pp.689-704.

[41] Banga G, Druschel P, Mogul J C. Resource containers: A

new facility for resource management in server systems. In

Proc. USENIX Symposium on Operating Systems Design

and Implementation, Feb. 1999, pp.45-58.

[42] Pedro G L, Alberto M, Dick E et al. Edge-centric com-

puting: Vision and challenges. ACM SIGCOMM Computer

Communication Review, 2015, 45 (5): 37-42.

[43] Shi W, Cao J, Zhang Q et al. Edge computing: Vision and

challenges. IEEE Internet of Things Journal, 2016, 3(5):

637-646.

[44] Dragojević A, Narayanan D, Castro M et al. FaRM: Fast re-

mote memory. In Proc. USENIX Symposium on Networked

Systems Design and Implementation, Apr. 2014, pp.401-

414.

[45] Mitchell C, Geng Y, Li J. Using one-sided RDMA reads

to build a fast, CPU-efficient key-value store. In Proc.

USENIX Annual Technical Conference, June 2013, pp.103-

114.

[46] Jose J, Subramoni H, Luo M et al. Memcached design on

high performance RDMA capable interconnects. In Proc.

International Conference on Parallel Processing, Sept.

2011, pp.743-752.

[47] Greenberg A, Hamilton J R, Jain N et al. VL2: A scalable

and flexible data center network. ACM SIGCOMM Com-

puter Communication Review, 2009, 39(6): 51-62.

[48] Paraiso F, Haderer N, Merle P et al. A federated multi-cloud

PaaS infrastructure. In Proc. the 5th IEEE International

Conference on Cloud Computing, Jun. 2012, pp.392-399.

[49] Eguro K, Venkatesan R. FPGAs for trusted cloud comput-

ing. In Proc. the 22nd International Conference on Field

Programmable Logic and Applications, Aug. 2012, pp.63-

70.

[50] Hutchings B L, Franklin R, Carver D. Assisting network

intrusion detection with reconfigurable hardware. In Proc.

the 10th IEEE Symposium on Field-Programmable Custom

Computing Machines, Apr. 2002, pp.111-120.

[51] Chalamalasetti S R, Lim K, Wright M et al. An FPGA

Memcached appliance. In Proc. ACM/SIGDA Interna-

tional Symposium on Field Programmable Gate Arrays,

Feb. 2013, pp.245-254.

[52] Huang M, Wu D, Yu C H et al. Programming and runtime

support to blaze FPGA accelerator deployment at datacen-

ter scale. In Proc. ACM Symposium on Cloud Computing,

Oct. 2016, pp.456-469.

[53] Wang X M, Thota S. A resource-efficient communication

architecture for chip multiprocessors on FPGAs. Journal of

Computer Science and Technology, 2011, 26(3): 434-447.

[54] Dong Y, Xue M, Zheng X et al. Boosting GPU virtuali-

zation performance with hybrid shadow page tables. In

Proc. USENIX Annual Technical Conference, July 2015,

pp.517-528.

[55] Zhang K, Chen R, Chen H. NUMA-aware graph-structured

analytics. In Proc. the 20th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, Feb.

2005, pp.183-193.

[56] Mao Y, Kohler E, Morris R T. Cache craftiness for fast

multicore key-value storage. In Proc. ACM European con-

ference on Computer Systems, Apr. 2012, pp.183-196.

[57] Tu S, Zheng W, Kohler E et al. Speedy transactions in mul-

ticore in-memory databases. In Proc. ACM Symposium on

Operating Systems Principles, Nov. 2013, pp.18-32.

[58] Zhang G, Horn W, Sanchez D. Exploiting commutativity to

reduce the cost of updates to shared data in cache-coherent

systems. In Proc. IEEE/ACM International Symposium on

Microarchitecture, Dec. 2015, pp.13-25.

[59] Wang Z, Qian H, Li J et al. Using restricted transactional

memory to build a scalable in-memory database. In Proc.

the 9th European Conference on Computer Systems, Apr.

2014, Article No. 26.

[60] Russell R M. The CRAY-1 computer system. Communica-

tions of the ACM, 1978, 21(1): 63-72.



Zuo-Ning Chen et al.: Evolution of Cloud Operating System: From Technology to Ecosystem 239

[61] Barik R, Zhao J, Sarkar V. Efficient selection of vec-

tor instructions using dynamic programming. In Proc.

IEEE/ACM International Symposium on Microarchitec-

ture, Dec. 2010, pp.201-212.

[62] Klimovitski A. Using SSE and SSE2: Misconcep-

tions and reality. Intel Developer Update Magazine,

Mar. 2001. http://saluc.engr.uconn.edu/refs/process/in-

tel/sse sse2.pdf, Feb.2017.

[63] Intel I. Intelr SSE4 Programming Reference, D91561-

103, 2007. http://software.intel.com/sites/default/fi-

les/m/8/6/8/D9156103.pdf, Feb. 2017.

[64] Tian C, Zhou H, He Y et al. A dynamic Mapreduce sched-

uler for heterogeneous workloads. In Proc. International

Conference on Grid and Cooperative Computing, Aug.

2009, pp.218-224.

[65] Sun N, Liu W, Liu H et al. Dawning-1000 PROOS dis-

tributed operating system. Journal of Computer Science

and Technology, 1997, 12(2): 160-166

[66] Zhang L, Litton J, Cangialosi F et al. Picocenter: Sup-

porting long-lived, mostly-idle applications in cloud envi-

ronments. In Proc. the 11th European Conference on Com-

puter Systems, Apr. 2016, pp.37:1-37:16.

[67] Canali C, Lancellotti R. Improving scalability of cloud mon-

itoring through PCA-based clustering of virtual machines.

Journal of Computer Science and Technology, 2014, 29(1):

38-52.

[68] Le K, Bianchini R, Zhang J et al. Reducing electricity cost

through virtual machine placement in high performance

computing clouds. In Proc. International Conference for

High Performance Computing, Networking, Storage and

Analysis, Nov. 2011.

[69] Chun B G, Ihm S, Maniatis P et al. CloneCloud: Elas-

tic execution between mobile device and cloud. In Proc. the

6th European Conference on Computer Systems, Apr. 2011,

pp.301-314.

[70] Jin H, Deng L, Wu S et al. Live virtual machine migra-

tion with adaptive, memory compression. In Proc. IEEE

International Conference on Cluster Computing and Work-

shops, Aug. 2009.

[71] Ye K, Jiang X, Huang D et al. Live migration of multiple

virtual machines with resource reservation in cloud comput-

ing environments. In Proc. IEEE International Conference

on Cloud Computing, Jul. 2011, pp.267-274.

[72] Malewicz G, Austern M H, Bik A J et al. Pregel: A sys-

tem for large-scale graph processing. In Proc. ACM SIG-

MOD International Conference on Management of Data,

Jun. 2010, pp.135-146.

[73] Kyrola A, Blelloch G, Guestrin C. GraphChi: Large-scale

graph computation on just a PC. In Proc. USENIX Sym-

posium on Operating Systems Design and Implementation,

Oct. 2012, pp.31-46.

[74] Girod L, Mei Y, Newton R et al. XStream: A signal-

oriented data stream management system. In Proc. the 24th

IEEE International Conference on Data Engineering, Apr.

2008, pp.1180-1189.

[75] Low Y, Bickson D, Gonzalez J et al. Distributed GraphLab:

A framework for machine learning and data mining in the

cloud. Proceedings of the VLDB Endowment, 2012, 5(8):

716-727.

[76] Chen R, Shi J, Chen Y et al. PowerLyra: Differentiated

graph computation and partitioning on skewed graphs. In

Proc. European Conference on Computer Systems, Apr.

2015.

[77] Zhang M, Wu Y, Chen K et al. Exploring the hidden di-

mension in graph processing. In Proc. the 12th USENIX

Symposium on Operating Systems Design and Implemen-

tation, Nov. 2016, pp.285-300.

[78] Zhu X, Chen W, Zheng W et al. Gemini: A computation-

centric distributed graph processing system. In Proc.

USENIX Symposium on Operating Systems Design and Im-

plementation, Nov. 2016, pp.301-316.

[79] Gonzalez J E, Xin R S, Dave A et al. GraphX: Graph

processing in a distributed dataflow framework. In Proc.

USENIX Symposium on Operating Systems Design and Im-

plementation, Oct. 2014, pp.599-613.

[80] Abadi M, Barham P, Chen J et al. TensorFlow: A system

for large-scale machine learning. In Proc. the 12th USENIX

Symposium on Operating Systems Design and Implemen-

tation, Nov. 2016, pp.265-283.

[81] Nesbit K J, Moreto M, Cazorla F J et al. Multicore resource

management. IEEE Micro, 2008, 28(3): 6-16.

[82] Bolte M, Sievers M, Birkenheuer G et al. Non-intrusive

virtualization management using libvirt. In Proc. European

Design and Automation Association Conference on Design,

Automation and Test in Europe, Mar. 2010, pp.574-579.

[83] Tanenbaum A S, Kaashoek M F, van Renesse R et al. The

Amoeba distributed operating system — A status report.

Computer Communications, 1991, 14(6): 324-335

[84] Vavilapalli V K, Murthy A C, Douglas C et al. Apache

Hadoop YARN: Yet another resource negotiator. In Proc.

ACM Symposium on Cloud Computing, Oct. 2013, pp.5:1-

5:16.

[85] Burns B, Grant B, Oppenheimer D et al. Borg, Omega, and

Kubernetes. ACM Queue, 2016, 14(1): 70-93

[86] Zhang Z, Li C, Tao Y et al. Fuxi: A fault-tolerant resource

management and job scheduling system at Internet scale.

Proceedings of the VLDB Endowment, 2014, 7(13): 1393-

1404

[87] Harter T, Salmon B, Liu R et al. Slacker: Fast distribution

with lazy docker containers. In Proc. USENIX Conference

on File and Storage Technologies, February 2016.

[88] Singh B, Srinivasan V. Containers: Challenges with the

memory resource controller and its performance. In Proc.

Ottawa Linux Symposium, June 2007.

[89] Nikolaev R, Back G. VirtuOS: An operating system with

kernel virtualization. In Proc. ACM Symposium on Ope-

rating Systems Principles, Nov. 2013, pp.116-132.

[90] Soltesz S, Pötzl H, Fiuczynski M E et al. Container-

based operating system virtualization: A scalable, high-

performance alternative to hypervisors. ACM SIGOPS

Operating Systems Review, 2007, 41(3): 275-287.

[91] Steinberg U, Kauer B. NOVA: A microhypervisor-based se-

cure virtualization architecture. In Proc. European Confer-

ence on Computer Systems, Apr. 2010, pp.209-222.

[92] Boyd-Wickizer S, Clements A T, Mao Y et al. An analysis

of Linux scalability to many cores. In Proc. USENIX Sym-

posium on Operating Systems Design and Implementation,

Oct. 2010, pp.86-93.

[93] Colmenares J A, Bird S, Eads G et al. Tessellation operating

system: Building a real-time, responsive, high-throughput

client OS for many-core architectures. In Proc. IEEE Hot

Chips Symposium, Aug. 2011.

[94] Baumann A, Peter S, Schüpbach A et al. Your computer is

already a distributed system. Why isn’t your OS? In Proc.

the 12th Conference on Hot Topics in Operating Systems,

May 2009.



240 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

[95] Wentzlaff D, Agarwal A. Factored operating systems (FOS):

The case for a scalable operating system for multicores.

ACM SIGOPS Operating Systems Review, 2009, 43(2): 76-

85.

[96] Grandl R, Chowdhury M, Akella A et al. Altruistic schedul-

ing in multi-resource clusters. In Proc. USENIX Symposium

on Operating Systems Design and Implementation, Nov.

2016, pp.65-80.

[97] Grandl R, Kandula S, Rao S et al. GRAPHENE: Packing

and dependency-aware scheduling for data-parallel clusters.

In Proc. USENIX Symposium on Operating Systems Design

and Implementation, Nov. 2016, pp.81-98.

[98] Gog I, Schwarzkopf M, Gleave A et al. Firmament: Fast,

centralized cluster scheduling at scale. In Proc. USENIX

Symposium on Operating Systems Design and Implemen-

tation, Nov. 2016, pp.99-115.

[99] Jyothi S A, Curino C, Menache I et al. Morpheus: Towards

automated SLOs for enterprise clusters. In Proc. USENIX

Symposium on Operating Systems Design and Implemen-

tation, Nov. 2016, pp.117-134.

[100] Zhou F F, Ma R H, Li J et al. Optimizations for high

performance network virtualization. Journal of Computer

Science and Technology, 2016, 31(1): 107-116.

[101] Tang H, Mu S, Huang J et al. Zip: An algorithm based on

loser tree for common contacts searching in large graphs.

Journal of Computer Science and Technology, 2015, 30(4):

799-809.

[102] Ma C, Yan D, Wang Y et al. Advanced graph model for

tainted variable tracking. Science China Information Sci-

ences, 2013, 56(11): 1-12.

Zuo-Ning Chen received her Mas-

ter’s degree in computer application

technology from Zhejiang University,

Hangzhou, in 1999. She is an ad-

junct professor in computer science

and technology, Tsinghua University,

Beijing, and an academician of the

Chinese Academy of Engineering. Her

current research interests include big data computing,

cloud computing, and high performance computing. She

has made important contributions in the field of computer

software and high-end computers and received the Special

and First Prizes of the National Science and Technology

Progress Award of China.

Kang Chen received his Ph.D. de-

gree in computer science and technology

from Tsinghua University, Beijing, in

2004. Currently, he is an associate

professor of computer science and

technology at Tsinghua University,

Beijing. His research interests include

parallel computing, distributed processing, and cloud

computing.

Jin-Lei Jiang received his Ph.D.

degree in computer science and techno-

logy from Tsinghua University, Beijing,

in 2004, with an honor of excellent

dissertation. He is currently an as-

sociate professor of computer science

and technology at Tsinghua University,

Beijing. His research interests include

distributed computing and systems,

cloud computing, big data, and virtualization.

Lu-Fei Zhang received his B.S. de-

gree from Tsinghua University, Beijing,

in 2008. He is currently an engineer

in Jiangnan Institute of Computing

Technology, Wuxi. His research inter-

ests include cloud computing, big data,

etc. text text text text text text text

text text text text text text text text

text text text text text text text

Song Wu is a professor of com-

puter science at Huazhong University

of Science and Technology (HUST),

Wuhan. He received his Ph.D. degree

in computer science from HUST in

2003. He is now served as the director

of Parallel and Distributed Computing

Institute, and the vice head of Service

Computing Technology and System

Laboratory (SCTS) of HUST. He has published more

than one hundred papers and obtained over thirty patents

in the area of parallel and distributed computing. His

current research interests include cloud computing and

virtualization.

Zheng-Wei Qi is a professor in

School of Software, Shanghai Jiao

Tong University (SJTU), Shanghai,

and a member of the Shanghai Key

Laboratory of Scalable Computing and

Systems. He received his Ph.D. degree

in computer science from SJTU with

a thesis on the formal method in dis-

tributed systems. His research interests

focus on trusted computer systems: virtual machines,

program analysis, cloud computing, mobile computing,

and GPU virtualizations. He received the Second Prize of

the National Science and Technology Progress Award of

China in 2014.



Zuo-Ning Chen et al.: Evolution of Cloud Operating System: From Technology to Ecosystem 241

Chun-Ming Hu received his Ph.D.

degree in computer science from Bei-

hang University, Beijing, in 2006. He

is an associate professor in School of

Computer Science and Engineering,

Beihang University, Beijing. His current

research interests include distributed

systems, system virtualization, data

center resource management and scheduling, and large-

scale data processing systems.

Yong-Wei Wu received his Ph.D.

degree in applied mathematics from the

Chinese Academy of Sciences, Beijing,

in 2002. He is currently a professor

in computer science and technology

at Tsinghua University, Beijing. His

research interests include parallel and

distributed processing, mobile and distributed systems,

cloud computing, and storage. He has published over

80 research publications and received two Best Paper

Awards. He is currently on the editorial boards of

IEEE Transactions on Cloud Computing, Journal of

Grid Computing, IEEE Cloud Computing, and Inter-

national Journal of Networked and Distributed Computing.

Yun-Zhong Sun received his Ph.D.

degree in computer engineering from

Institute of Computing Technology

(ICT), Chinese Academy of Sciences,

Beijing. He is a professor in the State

Key Laboratory of Computer Architec-

ture at ICT. His research interests focus

on distributed system software and

computing/programming models. He

has authored and co-authored more than 50 publications,

and has served in various academic conferences and

journals. He is a member of CCF and IEEE, and the IEEE

Computer Society.

Hong Tang received his B.S. degree

in computer science from Zhejiang

University, Hangzhou, in 1997, and

his Ph.D. degree in computer science

from University of California (UC),

Santa Barbara, in 2003. He joined

Alibaba Cloud Computing in 2010,

and is currently the chief architect

of Apsara Cloud Platform. Prior to Alibaba, he was a

director of Search System Infrastructure at Ask.com. In

2008, he joined Yahoo (US)’s Cloud Computing team

as a senior principal engineer, driving the research and

development of Hadoop. Dr. Tang’s research interests

include high-performance computing and parallel systems,

distributed computing and storage systems, large-scale

Internet services, and cloud computing. He was elected as

Innovative Talent in the National Recruitment Program of

Global Experts in 2013.

Ao-Bing Sun received his Ph.D.

degree in computer science from the

School of Computer Science and

Technology of Huazhong University

of Science and Technology, Wuhan, in

2008, and worked as a postdoctoral

researcher at Institute of Computing

Technology (ICT), Chinese Academy

of Sciences, Beijing, during 2010∼2012. He is now a

vice president of G-Cloud Technology Inc., Dongguan.

His research interests include cloud computing, grid

computing, image processing and so on.

Zi-Lu Kang is the director of the

Institute of Technology of Internet of

Things, Information Science Academy

of China Electronics Technology Group

Corporation, Beijing. He has directed

or participated in multiple engineering

projects and product developments

related to smart city and Internet of Things. He has also

participated in the development of Internet of Things

standards of International Telecommunication Union

(ITU).


