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Abstract

Task partitioning of a graph-parallel system is tradition-
ally considered equivalent to the graph partition problem.
Such equivalence exists because the properties associ-
ated with each vertex/edge are normally considered in-
divisible. However, this assumption is not true for many
Machine Learning and Data Mining (MLDM) problems:
instead of a single value, a vector of data elements is de-
fined as the property for each vertex/edge. This feature
opens a new dimension for task partitioning because a
vertex could be divided and assigned to different nodes.

To explore this new opportunity, this paper presents
3D partitioning, a novel category of task partition al-
gorithms that significantly reduces network traffic for
certain MLDM applications. Based on 3D partitioning,
we build a distributed graph engine CUBE. Our evalua-
tion results show that CUBE outperforms state-of-the-art
graph-parallel system PowerLyra by up to 4.7x (up to
7.3 x speedup against PowerGraph).

1 Introduction

Efficient graph-parallel systems require careful task par-
titioning. It plays a pivotal role because the load bal-
ancing and communication cost are largely determined
by the partitioning strategy. All existing partitioning al-
gorithms in current systems assume that the property of
each vertex/edge is indivisible. Therefore, task partition-
ing is equivalent to graph partitioning. But, in reality, the
property associated with a(n) vertex/edge for many Ma-
chine Learning and Data Mining (MLDM) problems is a
vector of data elements, which is not indivisible.

This new feature can be illustrated by a popular ma-
chine learning problem, Collaborative Filtering (CF),
which estimates the missing ratings based on a given in-
complete set of (user, item) ratings. The original problem
is defined in a matrix-centric view: given a sparse rating
matrix R with size NxM, the goal is to find two dense
matrices P (with size N x D) and Q (with size M x D) that
are R’s non-negative factors (i.e., R ~ PxQT). Here, N
and M are the number of users and items, respectively.
D is the size of feature vector. When formulated in a
graph-centric view, the rows of P and Q correspond to
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Figure 1: Collaborative Filtering.

vertices of a bipartite graph. Each vertex is associated
with a property vector with D features. In contrast, the
rating matrix R corresponds to edges. For every non-zero
element (u, v) in matrix R, there is an edge connects ver-
tex p, and vertex q,, and the weight of this edge is R,,.
An illustration of these two views is given in Figure[I]

One distinct nature of the graph in Figure [T (b) is
that each vertex is associated with a divisible element
vector, which is a common pattern when modelling
MLDM algorithms as graph computing problems. An-
other good example is Sparse Matrix to Matrix Multi-
plication (SpMM), a prevalently used computation ker-
nel that multiplies a dense feature matrix with a sparse
parameter matrix (see Section [5.2.1] for more details).
SpMM dominates the execution time of most minibatch-
based neural network training algorithms.

In essence, when formulating matrix-based applica-
tions as graph problems, the property of vertex or edge is
usually a vector of elements, instead of a single value.
More importantly, during computation, these property
vectors are mostly manipulated by element-wise oper-
ators, where the computations can be perfectly paral-
lelized without any additional communication when dis-
joint ranges of vector elements are assigned to different
nodes.

Due to the common pattern of vector property and its
amenability to parallelism, this paper considers a new di-
mension of task partitioning, which is assigning disjoint
elements of the same property to different nodes. It is
considered to be a hidden dimension in existing 1D/2D
partitioners used in previous systems [[10} [15 (16} 24] be-
cause all of them treat the property as an indivisible com-
ponent. According to our investigation, the 3D partition-
ing principle could significantly reduce network traffic
and improve performance.

The key intuition is that: since each node only pro-
cesses a subset of elements in property vectors, it can
be assigned with more edges and vertices that otherwise
need to be assigned to different nodes. Therefore, on the
bright side, certain communications previously happened
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Figure 2: An illustration of 1D, 2D, and 3D partitioning.

between nodes are converted to local value exchanges.
But, on the other side, 3D partitioning may incur extra
synchronizations between sub-vertices/edges. In either
case, with 3D partitioning, programmers are given the
option to carefully choose the partition strategy of this
third dimension. This ability enables them to explore a
new tradeoff that may lead to better performance, which
is prohibited by traditional 1D/2D partitioners. Impor-
tantly, 3D partitioning does not require long property
vector to be effective. Our results show that a network
traffic reduction up to 90.6% can be achieved by parti-
tioning this dimension into just 64 layers. In other words,
our algorithm works very well on property vectors with
modest and reasonable size.

Based on a novel 3D partitioning algorithm, we build
a distributed graph processing engine CUBE, which in-
troduces significantly fewer communication than exist-
ing systems in many real-world cases. To achieve better
performance, CUBE internally uses a matrix-based data
structure for storing and processing graphs while provid-
ing a set of vertex-centric APIs for the users. The matrix-
based design is inspired by a recent graph-processing
system [34]], which only works on a single machine. The
design of CUBE achieves both the programming produc-
tivity of vertex programming and the high performance
of a matrix-based backend.

This paper makes the following contributions.

i) We propose the first 3D graph partitioning algorithm
(Section [3.2)) for graph-parallel systems. It considers a
hidden dimension that is ignored by all previous systems.
Unlike traditional 1D and 2D partitioning, the new di-
mension allows dividing the elements of property vectors
to different nodes. Our 3D partitioning offers unprece-
dented performance that is not achievable by traditional
graph partitioning strategies in existing systems.

ii) We propose a new programming model UPPS
(Update, Push, Pull, Sink) (Section@) designed for 3D
partitioning. The existing graph-oriented programming
models are insufficient because they implicitly assume
that the entire property of a single vertex is accessed as
an indivisible component.

iii) We build CUBE, a graph processing engine that
adopts 3D partitioning and implements the proposed
vertex-centric programming model UPPS. The system

significantly reduces communication cost and memory
consumption. We use matrix-based data structures in the
backend which reduces the COST metric [25]] of our sys-
tem to as low as four (Section ).

iv) We systematically study the effectiveness of 3D
partitioning with both micro-benchmarks (Section [5.2)
and real-world MLDM algorithms (Section [5.3.3). The
results show that it only trades a negligible growth of
graph partitioning time for a notable reduction of both
communication cost and memory consumption. Overall,
CUBE outperforms state-of-the-art graph-parallel system
PowerLyra by up to 4.7x (up to 7.3x speedup against
PowerGraph).

2 Motivation and Background

An optimal task partitioning algorithm should /) en-
sure the balance of each node’s computation load; and
2) try to minimize the communication cost across mul-
tiple nodes. As the existing schemes assume that the
property of each vertex is indivisible, the partitioning
of graph-processing task is originally considered equiv-
alent to graph partitioning. More specifically, existing
partitioners try to optimally place the graph-structured
data, including vertices and edges, across multiple ma-
chines, so that /) the number of edges on each node
(which is roughly proportional to computation loads) is
balanced; and 2) the number of replicas (i.e., the num-
ber of shared vertices/edges which is proportional to the
communication cost) is as small as possible. Two kinds
of approaches exist for solving this problem: 1D parti-
tioning and 2D partitioning.

1D Both GraphLab [22] and Pregel [23] adopt a 1D
partitioning algorithm. It assigns each node a disjoint
set of vertices and all the connected incoming/outcom-
ing edges. This algorithm is enough for randomly gen-
erated graphs, but for real-world graphs that follow the
power law, a 1D partitioner usually leads to considerable
skewness [[15]].

2D To avoid the drawbacks of 1D partitioning, recent
systems [8, [15]] are based on 2D partitioning algorithms,
in which the the graph is partitioned by edge rather than
vertex. With a 2D partitioner, the edges of a graph will
be equally assigned to each node. The system will set



up replica of vertices to enable computation, and the au-
tomatic synchronization of these replicas requires com-
munication. Various heuristics have been proposed to
reduce communication cost by generating fewer num-
ber of replicas. For example, PowerLyra [10] uses a
hybrid graph partitioning algorithm (named Hybrid-cut)
that combines 1D partitioning and 2D partitioning with
heuristics. By treating high-degree and low-degree ver-
tices differently, Hybrid-cut achieves much lower com-
munication cost on many real-world datasets. However,
Hybrid-cut is still a special case of 2D partitioning that
does not assign the same property vector to different
nodes.

3D In many MLDM problems, a vector of data elements
is associated to each vertex or edge hence the assump-
tion of indivisible property is untrue and not necessary.
This new dimension for task partitioning naturally leads
to a new category of 3D partitioning algorithms. To be
more specific, for an N-node cluster a 3 partitioner will
use L copies of the graph topology, where L is the num-
ber of layers and N is divisible by L. Each of these
copies is partitioned by a regular 2D partitioner among
a layer of only N/L nodes. On the other hand, the vector
data associated to the graph are partitioned across layers
evenly. In this setting, each layer occupies N/L nodes
and the same graph with only subset of elements (1/L
of the original property vector) in its edges/vertices are
partitioned among these N /L nodes by a regular 2D par-
titioner. Therefore, each vertex is split into L sub-vertices
and the /" layer maintains a copy of the graph that com-
prises of all the i sub-vertices/edges. 3D partitioning
reduces communication cost along edges (e.g., synchro-
nizations caused by element-wise operators), because the
graph is partitioned across fewer nodes in each layer, thus
each node in a layer could be assigned with more vertices
and edges. This essentially converts the otherwise inter-
node communication to local data exchanges.

Figure [2] compares the different partition algorithms
applied on the graph in Figure 2] (a). In 1D partitioning
(Figure[2) (b)), each node is assigned with one vertex and
the incoming edges. There are six replicas in total. In 2D
partitioning (Figure 2] (c)), edges are evenly partitioned,
which leads to the same number of replicas as 1D parti-
tioning.

Figure[2)(d) illustrates the concepts of 3D partitioning,
where N is 4 and L is 2. First, the total of 4 nodes are di-
vided to two layers. We denote each node as Node; ;,
where i is the layer index and j is the node index within
a layer. Second, the graph is partitioned in the same way
in both layers using a 2D partitioning algorithm. Dif-
ferent from 1D and 2D partitioning, since the number
of nodes for each layer is halved, each node is assigned
with more vertices and edges. In the example, the first
node in all layers (Nodepo and Node; ) are assigned

with 3 edges and 3 connected vertices, in which 1 ver-
tex is replica. The second node in all layers (Nodeg 1 and
Node 1) are also assigned with 3 edges and 4 connected
vertices, but among which 2 vertices are replicas. The
increased number of vertices and edges in each node (3
edges in each layer of Figure [2] (d) compared to 1 or 2
edges in Figure [2] (b),(c)) translates to the reduced num-
ber of replicas needed for each layer (3 replicas in Fig-
ure [2] (d)) compared to 6 in Figure 2 (b),(c)). Although
the total number of replicas (3 replicas x 2 layers = 6
replicas) in all layers stays the same, the size of each
replica is halved, therefore, the network traffic needed
for replica synchronization is halvecﬂ In essence, a 3D
partitioning algorithm reduces the number of sub-graphs
in each layer and hence reduces the intra-layer replica
synchronization overhead.

However, 3D partitioning will incur a new kind of syn-
chronization not needed before: the inter-layer synchro-
nization between sub-vertices/edges. Therefore, pro-
grammers should carefully choose the number of layers
to achieve the best performance. Nevertheless, the tradi-
tional 1D and 2D partitioning do not allow programmers
to explore this tradeoff. A detailed discussion of this per-
formance tradeoff is given in Section[3]

3 Programming Model

Existing graph-oriented programming models (e.g. GAS
[L5], TripletView [16l], Pregel [23]) are designed for
1D/2D partitioning algorithms. They are insufficient for
3D partitioning because it is assumed that all elements
of a property vector are accessed as an indivisible com-
ponent. Thus, we adapt the popular GAS model and in-
corporate it with 3D partitioning, which leads to a new
model named UPPS (Update, Push, Pull, Sink) that ac-
commodates 3D partitioning requirements. In this sec-
tion, we first introduce UPPS and describe how a graph
can be partitioned in the 3D fashion using UPPS. Then
we explain the operations of UPPS and demonstrate their
usages with two examples.

3.1 Data

As a vertex-centric model, UPPS models the user-
defined data D as a directed data graph G, which con-
sists of a set of vertices V together with a set of edges
E. Users are allowed to associate arbitrary type of data
with vertices and edges. The data attached to each ver-
tex/edge are partitioned into two classes: /) an indivisi-
ble property DShare that is represented by a single vari-
able; and 2) a divisible collection of property vector el-
ements DColle, which is stored as a vector of variables.
The detailed specification of UPPS is given in Table [I]

'In some cases, there may be a shared part of every sub-vertices.
We will discuss this situation later.



Table 1: The programming model UPPS.

Data
G — {V,E, D= {DShare, DColle}, Sc} Ghipartite — (U, V, E, D={DShare, DColle}, Sc}
DShare, — asingle variable DShare, ., — asingle variable
DColle, — a vector of variable with size S¢ DColle, ., — a vector of variable with size S¢
DColle,li] — the i"* element of DColle, DColle, ,[i] — thei’* element of DColle, .,
Dy [i] — abbreviation of {DShare,, DColle,|i]} Dy [i] — abbreviation of {DShare,_,,, DColle,_,]i]}
Computation
UpdateVertex(¥) — foreach vertex u € V do D!V := F(D,,);
UpdateEdge(F) — foreach edge (u,v) € E do D, := F(Dy);
Push(§, A, &) — foreach vertex v € V, index i € [0,S¢) do
DColley]i] := A(Dy[i], @D (un)er(S(Dulil; Dusvlil));
Pull(G, A, ®) — foreach vertex u € V, index i € [0,S¢) do
DCollej"[i] := A(Dylil, @(u.v)eE(g(DV[i]s Dy [i]));
Sink(3H) — foreach edge (u,v) € E, index i € [0,5¢) do

DCollel, [i] := H(D,[i], Dy[i], Du—vli]);

Users are required to assign an integer Sc¢ as the col-
lection size that defines the size of each DColle vector.
When only DShare part of the edge data is used, DColle
of edges can be set to NULL. But, if DColle of ver-
tices and edges are both enabled, UPPS requires that their
length should be equal. This restriction avoids inter-layer
communication for certain operations (see Section [3.3).
Moreover, if the input graph is undirected, the typical
practice is using two directed edges (in each direction)
to replace each of the original undirected edge. But, for
many bipartite graph based MLDM algorithms, only one
direction is needed (see more details in Section [3.6).

3.2 3D Partitioning

By explicitly decoupling the divisible property vec-
tor DColle and the indivisible part DShare, UPPS al-
lows users to divide each vertex/edge into several sub-
vertices/edges so that each of them has a copy of DShare
and a disjoint subset of DColle. Based on UPPS, a 3D
partitioner could be constructed by first dividing nodes
into layers based on a layer count L and then partitioning
the sub-graph in each layer following a 2D partitioning
algorithm P. Thus, a 3D partitioner can be denoted as
(P,L).

Specifically, we should first guarantee that N is divis-
ible by L. Then, the partitioner will /) equally group
the nodes into L layers so that each layer contains N/L
nodes; 2) partition edge set E into N/L sub-sets with the
2D partitioner P; and 3) randomly separate vertex set
V into N/L sub-sets. In the rest of this paper, we use
Node; ; to denote the j* node of the i'" layer; E; and V;
to denote the j subset of E and V, respectively.

With the above definitions, after partition, Node; ;
contains the following data copies:

* ashared copy of DShare,, if vertex u € V;

* an exclusive copy of DColle, [k, if vertex u € V; and
LowerBound (i) < k < LowerBound(i+ 1);

* ashared copy of DShare,_,,, if edge (u,v) € Ej;

* an exclusive copy of DColle,_,,[k], if edge (u,v) €
E; and LowerBound(i) < k < LowerBound(i+1);

In the above equations, LowerBound (i) equals to i
([Sc/L])+ min(i,Sc%L). In other words, each layer of
the nodes contains a shared copy of all the DShare data
and an exclusive sub-set of the DColle data.

In a 3D partitioning (P,L), both L and P affect the
communication cost. When L = N, each layer only has
one node which keeps the entire graph and processes
1/L of DColle elements. In this case, no replica for
DColle data is needed, and the intra-layer communica-
tion cost is zero. But, it could potentially incur higher
inter-layer communication due to synchronization be-
tween sub-vertices/edges. When L = 1, there is only one
layer and (P, L) is degenerated to the 2D partitioning P.
Therefore, the communication cost is purely determined
by P. The common practice is to choose the L between
1 and N, so that both L and P will affect communication
cost. The programmers are responsible for investigat-
ing the tradeoff and choosing the best setting. To help
users choose the appropriate L, we provide the equations
to calculate communication costs for different UPPS op-
erations which can be used as building blocks for real
applications (see Section [5.2). Within a layer, one can
choose any 2D partitioning P and it is orthogonal to L.

3.3 Computation

UPPS has four types of operations which resemble the
name of the model: Update, Push, Pull, and Sink. The
definition of these operations are given in Table []] All
possible variant forms of computations allowed in UPPS
are also encoded in these APIs.



Update This operation takes all the information of each
vertex/edge to calculate the new value. Roughly, Update
operates on all elements of an edge or vertex in verti-
cal direction. Since vertices and edges may be split into
sub-vertices/edges, each node Node; ; needs to synchro-
nize with nodes in other layers while updating. Note that
Update only incurs inter-layer communicate between a
node and nodes in other layers that share the same subset
of vertices (V;) or edges (E;) (i.e., Node, ;).

Push, Pull, Sink These three operations handles updates
in horizontal direction: the updates follow the depen-
dency relations determined by graph structure. For each
edge (u,v) € E: Push operation uses data of vertex u and
edge (u,v) to update vertex v; Pull operation uses data of
vertex v and edge (u,v) to update vertex u; Sink operation
uses data of u and v to update the edge (u,v).

Push/Pull operation resembles the popular GAS
(Gather, Apply, Scatter) operation. In GAS, each ver-
tex reads data from its in-edges with the gather func-
tion G, generates the updated value based on sum func-
tion 6, which is used to update the vertex using the ap-
ply function A. UPPS further partitions property vertex,
which is always considered as an indivisible component
in GAS. To avoid inter-layer communication, UPPS re-
stricts that the i’ DColle element of each vertex/edge
will only depend on either DShare (which is by defini-
tion replicated in all layers) or the i"" DColle element
of other vertices/edges (which is by definition exist in
the same layer). Similar restriction applies to Sink. In
other words, Node; ; only communicates to Node; , in
Push/Pull/Sink.

3.4 Bipartite Graph

Many MLDM problems model their input graphs as bi-
partite graphs, where vertices are separated into two dis-
joint sets U and V and edges connect pairs of vertices
from U and V. A recent study [11] demonstrates the
unique properties of bipartite graphs and the special need
of differentiated processing for vertices in U and V. To
capture this requirement, UPPS provides two additional
APIs: UpdateVertexU and UpdateVertexV. They only up-
date the vertices in U and V, respectively. We use the
bipartite-specialized 2D partitioner bi-cut [11] as P for
bipartite graphs.

3.5 Compare with GAS

UPPS also follows the popular “think as a vertex” phi-
losophy so that it is easy for programmers to use. In fact,
the popular GAS model is a special case of UPPS that
has S¢ < IEI Thus, users only need to make moderate
changes to their original programs if they just want to
take advantage of our efficient matrix backend.

2In this case, the workers can only be partitioned into one layer and
hence our 3D partitioner degenerates to a traditional 1D/2D partitioner.

In contrast, if the users want to reduce the commu-
nication cost by using a 3D partitioner, the workers
should be partitioned into at least two layers. As we will
show, many popular algorithms can benefit from 3D par-
titioning without significant program change. Take the
breadth-first search (BFS) as an example, in GAS, it can
be implemented by: /) associating a boolean property
to each vertex, which represents whether this vertex has
been accessed or not; 2) propagating this property in the
Scatter phase; and 3) using boolean ‘OR’ operation in
both the Gather and Apply phase. In order to extend
this application to do multi-source BFS, users of GAS
model can simply /) replacing the original boolean vari-
able of each vertex to a vector of boolean variables with
length k, where k is the number of sources; and 2) using
element-wise ‘OR’ operation in the Gather and Apply
phase. We see that the computation of GAS-based multi-
source BFS is dominated by element-wise operations of
two vectors, which shows a notable sign of optimization
opportunity with 3D partitioning and UPPS. In fact, with
UPPS, the multi-source BFS can be simply implemented
by using the same program as original BFS. The only
difference is that the collection size S¢ is set to k rather
than one.

Moreover, although it is not used in the above exam-
ple, users of UPPS may want to have a complete view
of the whole vector property of vertices/edges. In 3D
partitioning, this intention results in a new kind of inter-
layer communication, which inevitably leads to addi-
tional APIs (our Update operations). Examples of the
usages of these new APIs are given in the next section.

Algorithm 1 Program for GD.

Data:
Sc:—D
DShare, — NULL; DShare,_, :— {double Rate, double Err}
DColle,, DColle,_, :— vector<double>(S¢)

Functions:
Fi (uj,vi,e;) -— {return u;.DColleli] xv;.DColleli];}
Fy(e) i—{
e.DShare.Err := sum(e.DColle) — e.DShare.Rate;
return e;

}
F3(uj,e;) :— {return e;.DShare.Erru;.DColleli]; }

Fy(vi,X) :— {return vi.DColle[i] + o % (£ — ot x v;.DColleli]);}
Computation for each iteration:

Sink(F);

UpdateEdge(F);

Pull(F3, Fy, +);
Push(F3, Fy, +);

3.6 Examples

For showcasing the usages of UPPS, we implemented
two different algorithms that both solve the Collabora-
tive filtering (CF) problem. The two algorithms together
cover the usage of all operations in UPPS. In this section,



we only explain at a high-level what UPPS operations do.
The detailed implementation of each UPPS operation is
given in Section

CF is a kind of problems that estimate the missing
ratings based on a given incomplete set of (user, item)
ratings. Specifically, if we use N to denote the number
of users and M to denote the number of items, input of
CF is R = {R,, }nxm, Which is a sparse user-item ma-
trix where each item R, , represents the rating of item v
given from user u#. The output of CF is two matrices P
and Q, which are the user feature matrix and item fea-
ture matrix, respectively. P, and Q, are feature vectors
of user u and item v, and each of them has a size of D.
If we use Err,, to represent the current prediction error
of user-item pair (u,v), it is calculated by subtracting the
dot product of the corresponding feature vectors with the
actual rate, i.e., Err,, = <P,, OI'> — R,,. The object

function of CF is minimizing Y., , g Err -

GD Gradient Descent (GD) algorithm [20] is a classi-
cal solution to solve CF problem, which involves ran-
domly initializing feature vectors and improving them it-
eratively. The parameters of this algorithm are updated
by a magnitude proportional to the learning rate ¢ in the
opposite direction of the gradient, which results in the
following update rules:

Pinew ::Pi+a*(Erri,j*Qj7a*Pi)
Q;gew = Qj+a*(Errl;j*P,~fa*Qj)

The program of GD implemented in UPPS is given by
Algorithm[I] in which + is an abbreviation of the simple
“sum” function. For simplicity, we do not show regular-
ization code used to impose non-negativity on P and Q.
In Algorithm |1} the collection size Sc is set to D, hence
each vertex/edge’s DColle part is a vector of double with
length D. For vertices, which are used for modeling the
users and items, these vectors are used to store the corre-
sponding feature vector of the user/item. For edges, these
vectors are temporary buffers for reserving partial results
of the dot production. As for shared data, the DShare
part of each edge (u,v) is a pair of {double Rate, double
Err}, which represents the rating given to item v from
user u and the current error in predicting this rating. In
contrast, DShare for vertices are not used.

With the data defined as above, the computation of
Algorithm [T] is almost an one-to-one translation of the
above equations. In the first step, Algorithm [I] calculates
prediction errors Err, , for every given rating (i.e., every
edge) by: ) using a Sink operation to compute the pro-
duction of every aligned feature elements and store the
result in the edge’s DColle vector; and 2) using an Up-
dateEdge operation to sum up each edge’s DColle vec-
tor (i.e., <P,, QVT>) and subtract it with the correspond-
ing Rate. After calculating the current errors, the updat-
ing formulas mentioned above can be implemented in a

straightforward way (the Pull and the Push operation in
Algorithm T).

As shown in Algorithm (I} programmers only need
to define the Push, Pull and Sink operation on one el-
ement of the DColle vector (i.e., the user-defined func-
tions operate only one index i), while the UpdateEdge
and UpdateVertex reads or writes all vector elements.
Importantly, programmers do not need to specify “which
sub-vertex/edge contains which DColle elements”. The
details such as indexes of data elements for each layer
are specified in a decoupled manner and automatically
handled by the framework (Section 4.4).

ALS Alternating Least Squares (ALS) [38]] is another
algorithm to solve CF problem. It alternatively fixes one
unknown feature matrix and solves another by minimiz-
ing the object function Y., ,)er Erriv. This approach
turns a non-convex problem into a quadratic one that can
be solved optimally. A general description of ALS is as
follows:

Step 1 Randomly initialize matrix P.

Step 2 Fix P, calculate the best Q that minimizes the
error function. This can be implemented by setting O, =
(Z(Luv)éR PuTPM)_l (Z(u,v)ER RLL,VPuT)'

Step 3 Fix Q, calculate the best P in a similar way.

Step 4 Repeat Steps 2 and 3 until convergence.

As a typical bipartite algorithm, we implement ALS
with the specialized APIs described in Section 3.4. Al-
gorithm 2] presents our program, where the regularization
code is also omitted. In ALS, the collection size S¢ is set
to “D + D x D” rather than just D. Each of the DColle
vector contains two parts: /) a feature vector Vec with
size D that stores the corresponding feature vector; and
2) a buffer Mar with size Dx D, which is used to keep the
result of VecT x Vec.

kVeck- Mat - R kveck Mat
Userg |1|2]?|?]?]? 1 - ?1?|?]?|?|? | temo
usen 2[[2122[2] |2 3| [[2[2[2[2]2]tems

J/ UpdateVertexU

Userg m Push m‘ Itemg
Figure 3: An illustration of ALS’s Step 2. In this example,
there are two users, two items, and three given ratings.

Figure [3| presents a typical example of ALS’ Step 2.
First, only the users’ feature matrix P is initialized, so
that only the feature vector of every vertex in U con-
tains valid data; and the others are ‘?’. Then, an Update-
VertexU operation is used to calculate Vec! * Vec for ev-
ery vertex in U, and the results are stored in the cor-
responding Mat area. After that, a Push operation is
used to aggregate the corresponding values. For each
v eV, YuyerRuyPl and ¥, ,)er Pl Py are calculated
and stored in v’s Vec (i.e., DColle[0:D-1]) and Mat (i.e.,
DColle[D:D+D?-1]) area, respectively. Finally, the opti-
mal value of Q, is calculated by solving a linear equation,



which is implemented by calling the DSYSV function
in LAPACK [2] (not illustrated in Figure E]) Similarly
to Step 2, Step 3 of ALS can be implemented with the
symmetrical call of UpdateVertexV, Pull, and Update-
VertexU.

Algorithm 2 Program for ALS.

Data:
Sc:—D+DxD
DShare, — NULL;  DShare,_,, :— {double Rate}
DColle, — vector<double>(Sc); DColle,_, :— NULL
Functions:
F(v) —{
foreach (i, j) from (0,0) to (D—1,D—1) do
v.DColle]D+ i D+ j| := v.DColle[i] * v.DCollel];
return v;
}
Py (uiye;) i—{
if i <D do return e;.DShare.Rate x u;.DColleli];
else rerurn ui.DCollelil;
}
F3(v) :— { DSYSV(D, &v.DColle[0], &v.DColle|D)); return v;}
Computation for each iteration:
UpdateVertexU(F);
Push(F, +, +);
UpdateVertexV(F3);
UpdateVertexV(Fy);
Pull(Fy, +, +);
UpdateVertexU(F3);

4 CUBE

To implement UPPS model, we build a new graph com-
puting engine, CUBE. It is written in C++ and based on
MPICH2.

4.1 Graph Loading and Partitioning

In CUBE, each node starts by loading a separate subset of
the graph. The 3D partitioning algorithm in CUBE con-
sists of a 2D partitioning algorithm P and a layer count
L, in which L is assigned by users. Thus, after loading,
the 2D partitioner P is used to calculate an assignment
of edges (i.e., E; defined in Section @); and, similarly,
a random partitioner is used to partitioning the vertices
(i.e., V;). With these assignments, a global shuffling
phase is followed to dispatch the loaded data to where
they should be according to the partition policy given
in Section After shuffling, each Node; ; contains a
copy of Dy [k] and Dy,_,.[k], if vertex a € V;, edge (b —
c) € Ej, and LowerBound (i) < k < LowerBound (i +1).
Moreover, we use Hybrid-cut [10] as the default 2D par-
titioner and Bi-cut [11] is used for bipartite graphs, as
they work well on real-world graphs.

4.2 Update

In an Update, all the elements of DColle properties are
needed. To implement this kind of operation, each vertex
or edge is assigned a node as the master to perform the

Update, which needs to gather all the required data be-
fore execution. The master node then iterates all data el-
ements it collected, applies the user-defined function and
finally scatters the updated values. For bipartite graph
oriented operations, UpdateVertexU and Update VertexV,
only a subset of vertex data is gathered.

As defined before, E; and V; are the subset of edges
and vertices in j* partition determined by a 2D parti-
tioning algorithm, and Node, ; is the set of nodes in all
layers to process E; and V;. In Update, each edge or ver-
tex in E; (or V;) should have one master node Node; j,
i € [0,L) among Node, ; that needs to gather all data ele-
ments for the edge or vertex to perform update operation.
We define the set of edges or vertices of which the master
node is Node; j as E; j or V; j. So we have U,I;_ol Ei;j=E;
and Uf‘;ol Vi,j = V;. For simplicity, we randomly select a
node from Node, ; for each edge and vertex in £; and V.
The inter-layer communications are incurred in Update
by gathering and scattering, which are implemented by
two rounds of Al[ToAll communication among the same
nodes in different layers (i.e. Node, ;).

For certain associative operations (e.g. sum), only
the aggregation of the elements in a node is needed.
For example, GD algorithm (Algorithm [I)) only requires
the sum of each node’s local DColle elements. We al-
low users to define a local combiner for Update oper-
ations. With the local combiner, each node reduces its
local DColle elements before sending the single value to
its master. Local combiner further reduces communica-
tion because the master node only needs to gather one
rather than S¢/L elements from each node in all other
layers. For operations that can be specified by a cus-
tom MPI_OP, we leverage the existing MPI_AllReduce
operation instead of gather and scatter to further reduce
network traffic.

4.3 Push, Pull, Sink

A replica for D,[i] exists at node Node; j if Iv: (u,v) €
Ejor 3v: (v,u) € E;. The execution of each operation
starts with replica synchronization within each layer. It
could be implemented by executing L AllToAll commu-
nications among Node; , concurrently in each layers.

After synchronization, for Push and Pull, the user-
defined gather function § is used to calculate the gather
result for each vertex; for Sink, the user defined func-
tion J{ is applied to each edge. After that, for Push or
Pull, another L AllToAll communications among Node; .
are used to gather the results reduced by the user defined
sum function & and then the user defined function A up-
dates the vertex data. Similar to the Update, the sum
function @ is also used as a local combiner, so that the
gather results are locally aggregated before sending. In
bipartite mode, only a subset of vertex data is synchro-
nized in Push and Pull.



Table 2: A collection of real-world graphs.

[ Dataset [ 0] V| |E]| | Best 2D Partitioner | Description ]
Libimseti 135,359 168,791 17,359,346 Hybrid-cut Dating data from libimseti.cz. [[7]
Last.fm 359,349 211,067 17,559,530 Bi-cut Music data from Last.fm. [9]
Netflix 17,770 480,189 100,480,507 Bi-cut Movie review data from Netflix. [38]

4.4 Matrix-based data structure

Vertex-centric programming models are productive for
developing graph programs. But, according to recent
investigations, the performance of a naive vertex-cenric
implementation can be 2 X —6x lower than matrix-based
execution engines [19} 34, 37)]. Therefore, CUBE uses
matrix-based backend data structures.

In CUBE, both edge and vertex data are stored contin-
uously. The edges are modeled as a sparse matrix and
stored in coordinate list (COO) format, which is a list
of (source vertex ID, destination vertex ID, edge value)
tuples. The vertex data are simply stored in a continu-
ous array. Since each worker only maintains a subset of
graph data, the global ID of its vertices may not be con-
tinuous (e.g., vertex C is missing in sub-graph 1 of Figure
[@). Thus we need to implement an efficient mechanism
for index conversion. Many traditional graph engines use
the inefficient hash map based data structure for index-
ing. Instead, CUBE maps the non-continuous global ID
to continuous local ID for each worker. The mechanism
is shown in Figure E} In each worker, the vertex data
are stored in a dense vector indexed by its local ID; the
row/column ID of its sub-graph is substituted by local ID
to ensure quick and straightforward location of the cor-
responding vertex data for each edge. Moreover, rather
than using the simple dictionary order, we sort the edge
data in Hilbert order [6], which is akin to ordered edges
(a,b) by the interleaving of the bits of a and b. It has
been shown that Hilbert order exhibits locality in both
dimensions rather than one dimension as in the dictio-
nary order, and hence incurs much fewer cache misses.
Note that all the mapping and sorting procedures are per-
formed in the initial preparing stage before the following
many computing iterations. Therefore, the cost of the
preparing procedure is amortized. The system records
all data exchanging information at the preparing phase,
so there is no need for global/local ID converting during
the computation.

Sub-Graph 1
A B C D
N @ 4,. AT - - - LocalD: 0 1 2
Original Graph T Bl - - - - Global ID: A B D
o ([:) : - : : Mapped Edges: {(0, 1), (2, 1)}
/ T Sub-Graph 2
o a2’
‘?: Al- - - - LocalID: 0 1 2
/ Bl - - » - Global ID: B C D
c| - - - Mapped Edges: {(0, 1), (1, 2)}

—: Zero elements

Figure 4: An illustration of the mapping between local
and global IDs.

: Non-zero elements, i.e., the assigned edges

5 Evaluation

This section presents evaluation results of CUBE and
compares it with two existing frameworks, Power-
Graph [15] and PowerLyra [10]. For each case, we pro-
vide: 7). Mathematical equations that calculate the com-
munication traffic; 2). Experimental performance results
that validate the prediction based on communication traf-
fic. To get a thorough understanding of CUBE, we also
discuss other aspects such as scalability, memory con-
sumption, partitioning cost, and COST metric.

20 ‘

T T T
Libimseti (Hybrid-cut) —=—
LastFM (Bi-cut) -
Netflix (Bi-cut) —«—

Replication factor (A)

1 2 4 8 6 32 64
# of partitions
Figure 5: The best replication factor of each dataset.

5.1 Evaluation setup

We conduct the experiments on an 8-node Intel® Xeon®
CPU E5-2640 based system. All nodes are connected
with a 1Gb Ethernet and each node has 8 cores running
at 2.50 GHz. We use a collection of real-world bipar-
tite graphs gathered by the Stanford Network Analysis
Project [1]. Table 2] shows the basic characteristics of
each dataset.

Since our 3D partitioning algorithm relies on a 2D
partitioner within each layer, we first select the best 2D
partitioner for each dataset. To do so, we evaluated all
existing 2D partitioning algorithms in PowerGraph and
PowerLyra. This includes the heuristic-based Hybrid-cut
[LO], the bipartite-graph-oriented algorithm Bi-cut [[11]]
and many other random/hash partitioning algorithms.
We calculated the average number of replicas for a vertex
(i.e., replication factor, A) for each algorithm. A includes
both original vertices and the replicas. We consider the
best partitioner as the one that has the smallest . To
capture the number of partitions, we use A, to denote the
average number of replicas for a vertex when a graph is
partitioned into x sub-graphs (e.g., 4; = 1). Table 2]also
shows the best 2D partitioner for each data set: Hybrid-
cut is the best for Libimseti, while Bi-cut is the best for
LastFM and Netflix. For LastFM, source set (i.e., U)
should be used as the favorite subset, while for Netflix,
target set (i.e., V) should be used as the favorite subset.
Here, “favorite subset” is an input parameter defined by
Bi-cut that usually should be set to the larger vertex set
of the bipartite graph.
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Figure 6: The impact of layer count on average execution time for running the micro benchmarks with 64 workers.

Figure [5] shows the replication factor of each dataset
for the best 2D partitioning algorithm. We see that Bi-cut
is effective if the size of two vertex subsets in a bipar-
tite graph is significantly skewed. It is indeed the case
for Netflix: the size of its target subset (i.e., |V]) is 27
times more than its source subset (i.e., |U|). Therefore,
the replication factor grows moderately with the number
of partitions (e.g., Ags of Netflix is only 3.09). On the
other side, LastFM is more balanced and its replication
factor grows faster. We show in later sections that, the
faster the replication factor grows the better speedup our
3D partitioning algorithm can achieve. Therefore, the
improvement is the most significant for Libimseti and the
least for Netflix.

5.2 Micro Benchmarks

CUBE allows users to specify the layer count L which is a
key factor determining the tradeoff between the amount
of intra-layer and inter-layer communication. Two ex-
treme values for L are: 1, where the inter-layer com-
munication is zero and 3D partition degenerates to 2D
partitioning; and N (the number of workers), where the
intra-layer communication is zero. In general, as L be-
comes larger, the intra-layer communication decreases
and inter-layer communication increases.

We present the equations to calculate communication
traffic for three micro-benchmarks and show the perfor-
mance results as L changes from 1 to 64. The reason why
we use micro-benchmarks first before discussing full ap-
plications is two-fold. First, each micro-benchmark only
requires a single operation in UPPS so that we can iso-
late it from other impacts. Second, the equations ob-
tained for each case can be used as building blocks to
construct communication traffic equations for real appli-
cations. We will show that the performance results can
be indeed explained by the traffic equations.

52.1 SpMM

The Sparse Matrix to Matrix Multiplication (SpMM)
multiplies a dense and small matrix A (size DxH) with
a big but sparse matrix B (size HxW), where D < H,
D < W. This computation kernel is prevalently used in
many MLDM algorithms. For example, in training phase
of some certain kinds of Deep Learning algorithms [14]],
the big sparse matrix B is used to represent the network

parameters and the small dense A is a minibatch of train-
ing data, in which D is the batch size (usually ranges
from 20 to 1000).

In UPPS, this problem could be modeled by a bipartite
graph with |V| = H+ W, where |U| = H and |V| = W.
The non-zero elements in the big sparse matrix are rep-
resented by an edge i—j (from a vertex in U to a vertex
in V) with DShare;_,; = b; ; and DColle;_,; = NULL.
On the other side, the dense matrix A is modeled by ver-
tices: the i column of A is represented as the DColle
vector associated with vertex i in U, where S¢c = D and
DShare = NULL. The computation of a SpMM opera-
tion is implemented by a single Push (or Pull) operation.

Figure [6a shows the execution time of SpMM on 64
workers with L from 1 to 64. Since the computation
of SpMM is always equally partitioned into each node,
the reduction on execution time is mainly caused by the
reduction on network traffic. Formally, if a 3D parti-
tioner (P,L) is used for partitioning the graph into N
nodes, a total of Ay, * [V| replicas will be used in each
layer. Since the communication of each Push/Pull oper-
ation only involves intra-layer communication and only
the DColle elements of vertices are needed to be syn-
chronized, the total network traffic can be calculated by
summing the number of DColle elements sent in each
layer, which is (Sc/L) * (Ay;, — 1) %[V

For the bipartite graph in SpMM, synchronization is
only needed among replicas in the sub-graph where the
vertices are updated (U or V). If SpMM is implemented
as a Push, the network traffic is (S¢/L) * (llf‘,’/L —1)*|V[;
if it is implemented as a Pull, the network traffic is
(Sc/L) * ().IE[,J/L — 1) *|UJ. Here AZE,J/L and ).X/L are repli-
cation factor for U and V, respectively.

As a result, the amount of network traffic in a SpMM
operation can be calculated by the following equations,
in which S denotes the size of each DColle,[i]. The traf-
fic is doubled because two rounds of communications
(gather and scatter) are needed in replica synchroniza-
tion.

M
(@)
For a general graph, |V| is the total number of syn-
chronized vertices. Thus, we have:
Traffic(Push/Pull) = 2+ S Sc * (Ay/, — 1) *|V|

Traffic(SpMMpysh) = 2% S * Sc * (A, — 1) %[V
Traffic(SpMMpy ) = 2% S %S¢ * (l},}/L —1)x|U|

3



Our results show that, with Hybrid-cut used as P in
partitioning the Libimseti dataset, A, equals to 1.93 and
A4 equals to 11.52. Hence 1 —(0.93/10.52) = 91% of
the network traffic is reduced by partitioning the graph
into 32 layers (so that in each layer just has 2 partitions)
rather than 1. Figure [6a] shows that the reduction on net-
work traffic incurs a 7.78x and 7.45x speedup on av-
erage execution time when S¢ is set to 256 and 1024,
respectively.

5.2.2 SumV
In SpMM, the best performance is always achieved by
having as many layers as possible (i.e. best L is the num-
ber of workers). This is because SpMM incurs only intra-
layer communications. In contrast, for operations that
require inter-layer communications, the network traffic
and execution time will increase with large L. To under-
stand this aspect, we consider a micro benchmark SumV,
which computes the sum of all elements in DColle vector
for each vertex and stores the result in the corresponding
DShare of each vertex (i.e., DShare, := sum(DColle,)).
SumV can be implemented by a single UpdateVertex. As
we have mentioned in Section .2} a local combiner can
be used to reduce the network traffic of SumV. However,
this optimization is not used in our experiments since we
intend to measure the overhead of general cases.
Figure [6b| provides the execution time of SumV on 64
workers with L from 1 to 64. We see that as L increases,
the execution time becomes longer, this validates our pre-
vious analysis. We also see that the slope of this curve is
decreasing when L becomes larger. To explain this phe-
nomenon, we calculate the exact amount of network traf-
fic during the execution of one SumV. Specifically, for
enabling an UpdateVertex operation, each master node
Node; j needs to gather all elements of DColle of v, if v €
Vi,j- Since V; j C V;, the total amount of data that Node; ;
should gather is S¢ * |V; ;| — STC *|Vi il = LT_I *Sc |V jl.
Then, all master nodes perform the update and scatter a
total amount of (L — 1) *|V| DShare data. As a result, the
total communication cost of a SumV operation is

Traffic(SumV) = Traffic(Update Vertex)

L—1 “

=2%S* *Sc*|V|+Sx(L—1)*|V|

We see that if Sc is large enough, the communication
cost will be dominated by the first term, which has an up-
per bound and the slope of its increase becomes smaller
as L becomes larger. Since the execution time is roughly
decided by network traffic, we see the very similar trend
in Figure [6b]

5.23 SumE

SumE is a similar micro benchmark to SumV, it does
the same operations for all edges. Figure [6¢c| presents
the average execution time for executing a single Up-
dateEdge, which performs the equation “DShare,_,, :=

sum(DColle, ,)”. The communication cost of SumE is
almost the same as SumV, except that DColle of edges
rather than vertices are gathered and scattered. As a re-
sult, the communication cost of a SumE operation is:

Traffic(SumE) = Traffic(UpdateEdge)

L (6))

—1
7 *Sc*|E|+S*(L—1)*|E|

As we can infer from the equation, data lines in Figure
share the same tendency of the lines in Figure [6b]

=2xSx

5.24 Summary

We see from the micro benchmarks that, Update be-
comes slower as L increases while Push/Pull/Sink be-
comes faster. Given a real-world algorithm which uses
the basic operations in UPPS as building blocks, pro-
grammers should first obtain the replication factor of the
graphs and plug it into the equations to estimate the best
L that achieves lowest communication cost.

5.3 Real Applications

Besides the micro-benchmarks described above, we also
implemented the GD and ALS algorithm that we ex-
plained in Section [3.6] ALS involves intra-layer com-
munications due to Push/Pull and inter-layer communi-
cations due to UpdateVertex. GD combines the intra-
layer operation Sink with the inter-layer operation Upda-
teEdge. The UpdateEdge of GD can be optimized by the
local combiner while ALS cannot. ALS explores the spe-
cialized APIs for bipartite graphs while GD uses the nor-
mal ones. As a conclusion, the implementation of these
two algorithms covers all common patterns of CUBE, and
hence many other algorithms can be considered as some
weighted combinations of GD and ALS. For example,
the back-propagation algorithm for training neural net-
works can be implemented by combining an ALS-like
round (for calculating the loss function) and a GD-like
round (that updates parameters).

In the following sections, we first demonstrate the per-
formance improvements of CUBE over the existing sys-
tems PowerGraph and PowerLyra. Then, we present a
piecewise breakdown of our performance gain by calcu-
lating the network traffic reductions as in Section[5.2]

5.3.1 Implementation

Both PowerGraph and PowerLyra have provided their
implementation of GD and ALS, we use oblivious [15]
for PowerGraph and the corresponding best 2D partition-
ers (as listed in Table[2) for PowerLyra.

In CUBE, the implementation of GD and ALS are sim-
ilar to those given in Section [3.6] However, some op-
timizations for further reducing network traffic are ap-
plied. For GD, we enable a local combiner for the
UpdateEdge operation. For ALS, we merge successive
UpdateVertexU and UpdateVertexV operations into one
(e.g., the two UpdateVertexV operations at line 4 and line



Table 3: Results on execution time. Each of the cell gives
data in the format of “PowerGraph / PowerLyra / CUBE” (in
Second/Iteration). The number in parenthesis is the chosen L.

D #of Libimseti

workers GD ALS

8 9.78 / 9.56 / 2.04(2) 70.8 / 704 / 46.7(8)
64 16 8.04/ 8.16 / 1.95(4) 72.6 / 71.5 [/ 37.6(16)

64 682/ 689 /25914 87.0 / 86.8 / 28.7(64)

8 1499 / 1494 / 3.87 (2) 261 / 258 / 193 (8)
128 16 12.81 / 1291 / 2.62 (4) 270 / 270 / 135(16)

64 11.64 / 11.62 / 3.33(8) 331 / 331 / 109 (64)
D #of LastFM

workers GD ALS

8 12.0 / 898 / 3.45(2) 124 / 73.5 / 70.9 (8)
64 16 105/ 822 / 2.59(2) 128 / 69.5 / 61.6(16)

64 104/ 9.86 / 2.48(4) 158 / 111 [/ 57.6 (64)

8 19.0 / 13.8 / 474 (2) 465 / 263 / 270 (4)
128 16 17.6 / 13.5 / 3.35(4) 490 / 253 / 200 (16)

64 18.6 / 17.8 / 3.47(8) Failed / Failed / 230 (64)
D #of Netflix

workers GD ALS

8 344/ 277 / 6.03(1) 256 / 204 / 110(2)
64 16 267/ 17.3 /3.97(1) 186 / 107 / 60.4(2)

64 183/ 742 / 4.16(1) 179 / 66.0 / 42.5(8)

8 51.8 / 38.6 / 9.65(1) 865 / 657 [/ 463 (1)
128 16 419/ 23.0 / 6.59 (1) 669 / 340 / 258 (2)

64 30.6 / 11.3 / 6.55(2) Failed / 239 / 118(8)

5 of Algorithm2]is actually implemented as one Update-
VertexV operation whose input function successively ex-
ecute F3 and Fy). The 2D partitioning algorithm P used
for consisting our 3D partitioner is the listed in Table
and hence is the same as PowerLyra.

5.3.2 Execution Time

Table 3] shows execution time results. D is the size of
the latent dimension, which gives opportunities that were
not exploited in previous systems. In general, a higher D
produces higher accuracy of prediction with higher both
memory consumption and computational cost. We report
the execution time of GD and ALS on three datasets (Li-
bimseti, LastFM and Netflix) with three different number
of workers (8, 16 and 64). For each case, we conduct the
evaluation on three systems: PowerGraph [15], Power-
Lyra [[10] and CUBE, the results are shown in the same
order in the table. The number in parenthesis for CUBE
indicates the chosen L for the reported execution time,
which is the one with best performance. “Failed” means
that the execution in this case failed due to exhausted
memory.

As a summary of the results, CUBE outperforms Pow-
erLyra by up to 4.7x and 3.1x on the GD and ALS
algorithm respectively. The speedup over PowerGraph
is even higher (about 7.3 x —1.5x). According to our
analysis, the speedup on ALS is mainly caused by the
reduction on network traffic, while the speedup on GD
is caused by both the reduction on network traffic and
the increasing of data locality. This is because that the
computation part of the ALS algorithm is dominated by

the DSYSV kernel, which is a CPU-bounded algorithm
that has an O(N?) complexity. In contrast, the GD algo-
rithm is mainly memory bandwidth bounded and hence
is sensitive to memory locality. Next, we quantitatively
discuss the network traffic of the two applications.

5.3.3 Communication Cost

As we have mentioned above, the improvement of CUBE
is mainly from two aspects: /) reduction on network
communications; and 2) the adoption of a matrix back-
end. Thus, in order to further understand the perfor-
mance gain, we performed a detailed analysis on the ef-
fect of network reductions, and the rests are resulted from
the matrix backend.

2
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Figure 7: Reduction on GD (64 workers, D = 128).

GD The network traffic of a CUBE program can be cal-
culated with the equations given in Section [5.2] But,
since a local combiner is used for UpdateEdge, its com-
munication cost is only 2 * 8byte x (L — 1) % |[E |[ﬂ The
network traffic for a Sink is half of Push/Pull. As a re-
sult, communication cost of each GD iteration is:
Traffic(GD) = (2+2+ 1) *8byte * (Ay/, — 1) *Sc V|
+2x8bytex (L—1) % |E|

The reduced network traffic is plotted in Figure
which are both the results of mathematical derivation
and experimental evaluation. This is because that, as the
metadata exchanged by workers account for only a neg-
ligible part of the whole communication cost, the mea-
sured results are almost identical to the number calcu-
lated by formulas. As we can see from the figure, the
network traffic reduction for GD is related to replication
factor, density of graph (i.e. |E|/|V|) and Sc. If the den-
sity large enough (|E|/|V| > Sc¢), the best choice is to
group all nodes into one layer. It happens to be the case
for Netflix dataset, which has a density of more than 200.
Therefore, the best L is almost always 1 for a small D
(except when D=128 and worker count is 64, i.e., the il-
lustrated case in Figure E]) In contrast, for Libimesti,
whose density is only 57, our 3D algorithm can reduce
about 64% network traffic.

In order to further understand the effectiveness of
our 3D partitioner, we have also performed a piecewise

(©)

3This result is based on Equation in which § = 8. The first term is
divided by D/L because we use a local combiner, and the second term
is zero because DShare is NULL
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Figure 8: Evaluating the speedup caused by network re-

duction only for running GD on Libimesti with D = 128.

breakdown analysis of the speedup achieved by CUBE.
This is possible, because we can estimate the perfor-
mance improvements gained by 3D partitioning only
through comparing CUBE with itself that has layer count
L be fixed to 1. Figure []illustrates the results on Libi-
mesti. As we can see, 3D partitioner accounts for about
half of the whole speedup (up to about 2x). The results
on Lastfm are quite similar to Libimesti but, as we can
also infer from Figure [/} most of the speedup for Net-
flix is resulted from our matrix backend. This is why, in
Table 3] the best layer count for running GD on Netflix
is usually set to 1. However, if D is set to 2048, even
for Netflix, the best L becomes 8 with 64 workers, which
achieves a 2.5x speedup compared to L = 1.

Moreover, since we use a matrix-based backend that is
more efficient than the graph engine used in PowerGraph
and PowerLyra, the total speedup on memory-bounded
algorithms, such as GD, is still up to 4.7x. A similar
speedup (1.2 x —7x) is reported by the single-machine
graph engine GraphMat [34], which also maps a vertex
program to matrix backend.
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Figure 9: Reduction on ALS (64 workers, D = 128).
ALS As discussed in Section we merged the suc-
cessive UpdateVertexU and UpdateVertexV in ALS for
reducing synchronizations. After the merge, each itera-
tion of the ALS algorithm only needs to execute each of
the four operations (i.e., UpdateVertexU, Push, Update-
VertexV and Pull) in bipartite mode once. Thus, based on
the estimating formulas given in Section (i.e, Equa-
tion [I] Equation [2] and Equation [d)), the network traffic
needed in each iteration is:

Traffic(ALS) =2 +8byte x (A, — 1 + Lz Ly« Sex (U + V) (

+8bytex (L— 1) % (|U[+|V])

7

According to Equation [/} we can infer that our 3D

partitioner can achieve more significant network traffic
reduction on a graph if it is hard to reduce replicas (i.e.
Ay is large). Figure E] shows the relation between layer
count L and the proportion of reduced network traffics
when executing ALS with 64 workers and D = 128. For
example, Agg = 11.52 for Libimseti (Figure , thus net-
work traffic is drastically reduced by 90.6% by partition-
ing the graph into 64 layers. Table 3| shows that such re-
duction leads to about 3x speedup on the average execu-
tion time. In contrast, the replication factor for the other
two datasets is relatively small and hence the speedup is
also not as significant as the speedup on Libimseti.

Similar to GD, we have also performed the piecewise
breakdown analysis for ALS, the results show that al-
most all (> 90%) of the performance improvements are
from 3D partitioning. As we have mentioned in Sec-
tion this is because that the computation part of
the ALS algorithm is dominated by the DSYSV kernel.
DSYSYV is a CPU-bounded algorithm that computes the
solution to a real system of linear equations, which has
an O(N?) complexity and its state-of-the-art implemen-
tation has already efficiently explored its inner-operation
locality. As a result, there is not much help of adopting a
matrix backend.

5.4 Scalability

For many graph algorithms, the communication cost
grows with the number of nodes used. Therefore, the
scalability could be limited for those algorithms on small
graphs. This is because that the network time may soon
dominate the whole execution time, and the reduction of
computation time could not offset the increase of net-
work time.

While the potential scalability limitations exist, since
our 3D partitioning algorithm reduces the network traf-
fic, CUBE scales better than PowerGraph and PowerLyra.
As we can see from Table 3] for Libimseti and LastFM,
the execution time of PowerLyra actually increases af-
ter the number of workers reaches 16, while CUBE with
lower network traffic can scale to 64 workers in most
cases. Although the scalability of CUBE also becomes
limited for more than 16 workers, we believe that it is
mainly because that the graph size is not large enough.
We expect that for those billion/trillion-edge graphs used
in industry [13]], our system will be able to scale to hun-
dreds of nodes. To partially validate our hypothesis,
we tested CUBE on a random generated synthetic graph,
which also follows the power law and contains around
one billion edges. The results show that CUBE can scale
to 128 workers easily (a further 2.2 x speedup is achieved
with 128 vs. 32 workers.). Moreover, existing techniques
[13,121] that could improve Pregel/PowerGraph’s scalabil-
ity can also be used to improve our system.



5.5 Memory Consumption

Table [3|shows that, L for the best performance of ALS is
almost always equal to the number of workers on Libi-
mesti and LastFM dataset. However, L affects the total
memory consumption in different ways. On one side,
when L increases, the size of memory for replicas of
DColle is reduced by the partition of property vector.
On the other side, the memory consumption could in-
crease because DShare needs to be replicated on each
layer. Specifically, since each edge has DShare data with
type double in our case, the total memory needed in ALS
is (A *Sc*|V|+Lx |E|)*8 bytes, where S¢c = D* +D.
For example, Figure [I0] shows the total memory con-
sumption (the sum of the memory needed on all nodes)
with different L when running ALS on Libmesti with 64
workers.

Total Memory Needed (GB)
]
=}
T

0 10 20 30 40 50 60 70
# of layers (L)

Figure 10: Total memory needed for running ALS with
64 workers and D = 32, S¢c = 1056.

We see that the total memory consumption first de-
creases, but after a point (roughly L = 32) it slightly in-
creases. The memory consumption with L = 64 is larger
than L = 32, because the reduction on replicas of DColle
data cannot offset the increase of shared DShare data.
Therefore, L = 64 is the parameter for the best perfor-
mance at the cost of a slightly increased memory con-
sumption. Nevertheless, we see that the total memory
consumption at L = 1 is much larger than cases when
L > 1. Therefore, CUBE using a 3D partitioning algo-
rithm usually consume less memory than PowerGraph
and PowerLyra.

5.6 Partitioning Time

Some works [[18] indicated that intelligent graph par-
titioning algorithms may have a dominating time and
hence actually increase the total execution time. How-
ever, according to Chen et al. [[10], this is only partially
true for simple heuristic-based partitioning algorithms.
As we can deduce from the definitions given in section
[3.2] the partitioning complexity of a 3D partitioner is al-
most the same as the 2D partitioning algorithm. Thus
it only trades a negligible growth of graph partitioning
time for a notable speedup during graph computation.
Moreover, for those sophisticated MLDM applications
that CUBE focuses on, the ingress time typically only
counts for a small partition of the overall computation
time. As a result, we believe that the partitioning time of
CUBE is negligible.

Specifically, the whole setup procedure of CUBE can
be split into three phases namely loading, assigning and
re-dispatching. 7). In the loading phase, each node reads
an exclusive part of graph data, which is the same as most
existing systems. 2). In the assigning phase, the assign-
ment of each edge is calculated by the 2D partitioner P.
Since both hybrid-cut and bi-cut can calculate the assign-
ment for each edge independently, this phase is also very
fast (at least its cost is not larger than PowerLyra). Fi-
nally, 3). in the re-dispatching phase, each node sends
its loaded data to other nodes if it is necessary (accord-
ing to the data partition policy detailed in Section [3.2).
Typically, the cost of sending edge data is proportional
to L, while the cost of sending vertex data is negatively
related to L as there are fewer replicas. If there are initial
data for vertexes, the total sending cost is approximately
equal to the total memory consumption. As illustrated by
Figure[I0] this means that setting L > 1 may actually re-
duce the cost. In contrast, if vertexes data are randomly
initialized, we do have a larger cost with larger L. But,
as mentioned in above, typically this cost will not exceed
the communication cost of one computing iteration, and
hence is acceptable.

5.7 Discussion

COST A recent study [25] shows that some distributed
systems may only scale well when its single-threaded
implementation has a high cost. The paper proposes a
new metric COST (i.e. Configuration that Outperforms a
Single Thread) to capture this type of inefficiency. If the
COST of a system is ¢, it means that it takes ¢ workers for
this system to outperform a single-threaded implementa-
tion of the same algorithm. We also conduct COST anal-
ysis for CUBE. To do so, we built single-threaded imple-
mentations of both GD and ALS, which are just straight-
forward transformations of the algorithms described in
Section[3.6]to BLAS operators. Based on them, we eval-
uate the COST of CUBE and find that it is only up to
4, which is moderate. In comparison, McSherry et al.
[25] indicates that the data-parallel systems reported in
recent SOSP and OSDI either have “a surprisingly large
COST, often hundreds of cores, or simply underperform
one thread for all of their reported configurations”. Our
results align with recent investigations [31} [34]], which
shows that matrix-centric systems usually have a much
better COST than vertex-centric systems.

Faster Network The interconnect of our platform is
using 1Gb Ethernet, which is a common configuration
used in several recent papers [10]. Readers may won-
der that whether the speedups presented is reproducible
on a faster experimental setup, which is becoming more
and more popular. However, according to our evaluation,
when we use 10Gb network, the execution time of Pow-
erGraph/PowerLyra is only reduced by up to 30%, such



reduction is smaller than our MPI_Alltoallv based sys-
tem. For example, when running ALS on Netflix dataset
with 64 nodes and D = 128, the execution time of Pow-
erLyra only reduces from 239s/iter (1Gb) to 187s/iter
(10Gb). In contrast, our CUBE is accelerated from
118s/iter (1Gb) to 63.9s/iter (10Gb) (in which the time
consumed by MPI_AllToAllv is reduced from 73.1s/iter
to 17.8s/iter). Although counter-intuitive, it seems that
PowerGraph/PowerLyra cannot fully utilize the network
optimization and hence the speedup of CUBE over Pow-
erGraph/PowerLyra is even bigger over a 10Gb network.

Impact of Graph Structure As mentioned in Section
structure of the input graph does have a great im-
pact of the speedup that can be achieved by our 3D par-
titioning algorithm. Essentially, less skewness in graphs
means that there are fewer opportunities for existing 2D
partitioner (e.g., hybrid-cut, bi-cut) to exploreﬂ Thus,
the replica factor A, increases more faster with the num-
ber of sub-graphs x, which leads to a better speedup of
using 3D partitioning. This is the reason that why we
call a 2D partitioner “better” and use it in the evaluation
if it produces fewer replicas. We want to make sure that
the speedup we achieved is not based on a poor P.

Comparison with Other Systems There are currently a
variety of graph-parallel systems. Here we only concen-
trate on comparing with PowerLyra because its partition-
ing algorithm produces significant fewer replicas than
the others and hence it incurs the lowest network traffic.
Moreover, according to Satish et al. [31]], Giraph and
SociaLite [32]] is slower than GraphLab, and hence will
be much slower than PowerLyra. As for CombBLAS [8]],
due to the restriction of its programming model, both the
ALS and GD algorithm can only be implemented by S¢
times of SpMV in ComBLAS [31]], which is extremely
slow when S¢ is large.

Scope of Application In general, our method is appli-
cable to algorithms analyzing relations among divisible
properties. The algorithms presented in this paper are
only examples but not all we can support. As an illustra-
tion, the matrix to matrix multiplication and matrix fac-
torization examples presented above are building blocks
of many other MLDM algorithms. Thus, these problems
(e.g., neural network training, mini-batched SGD, etc.)
can also benefit from our method. Moreover, some algo-
rithms, whose basic version have only indivisible proper-
ties, have advanced versions that involve divisible prop-
erties (e.g., Topic-sensitive PageRank [[17], Multi-source
BFS [35], etc), which obviously can also take advantage
of a 3D partitioner.

4Many state-of-the-art 2D partitioning algorithms take advantage
from the fact that most real-world graphs follow power law, hence they
may not work well if the data is not that skewed.

6 Other Related Work

Several graph parallel systems [8}[10} [12} [15 16} 26} 27,
2812911305136, 139] have been proposed for processing the
large graphs and sparse matrices. Although these sys-
tems are different from each other in terms of program-
ming models and backend implementations, our system,
CUBE, is fundamentally different from all of them by
adopting a novel 3D partitioning strategy. As shown in
Section [2| this 3D partitioning reduces network traffic
by up to 90.6%. Besides graph partitioning, there are
also many algorithms have been proposed for partition-
ing large matrices [4} 5]. Our 3D partitioning algorithm
is inspired by the 2.5D matrix multiplication algorithm
presented by Solomonik et al. [33]]. However, the 2.5D
algorithm is designed for multiplying two dense matrices
and hence cannot be used in graph processing. Regarding
the backend execution engine, GraphMat [34]] provides
a vertex programming frontend and maps it to a matrix
backend. However, it is based on a single-machine sys-
tem that cannot scale out by adding more nodes. Our
system adopts the same strategy as GraphMat while ex-
tending it to a distributed environment.

7 Conclusion

We argue that the popular “task partitioning == graph
partitioning” assumption is untrue for many MLDM al-
gorithms and may result in suboptimal performance. For
those MLDM algorithms, instead of a single value, a vec-
tor of data elements is defined as the property for each
vertex/edge. We explore this feature and propose a cate-
gory of 3D partitioning algorithm that considers the hid-
den dimension to partition the property vector to differ-
ent nodes. Based on 3D partitioning, we built CUBE,
a new graph computation engine that /) adopts the novel
3D partitioning for reducing communication cost; 2) pro-
vides the users with a new vertex-centric programming
model UPPS; and 3) leverages a matrix-based data struc-
ture in the backend to achieve high performance. Our
evaluation results show that CUBE outperforms the ex-
isting 2D and vertex-based frameworks PowerLyra by up
to 4.7x (up to 7.3 speedup over PowerGraph).
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