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Abstract

Erasure coding is widely used in building reliable distributed
object storage systems despite its high repair cost. Regen-
erating codes are a special class of erasure codes, which
are proposed to minimize the amount of data needed for
repair. In this paper, we assess how optimal repair can help
to improve object storage systems, and we find that regener-
ating codes present unique challenges: regenerating codes
repair at the granularity of chunks instead of bytes, and the
choice of chunk size leads to the tension between streamed
degraded read time and repair throughput.

To address this dilemma, we propose Geometric Partition-
ing, which partitions each object into a series of chunks with
their sizes in a geometric sequence to obtain the benefits
of both large and small chunk sizes. Geometric Partitioning
helps regenerating codes to achieve 1.85X recovery perfor-
mance of RS code while keeping degraded read time low.
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1 Introduction

Object storage systems such as Haystack [6], Amazon S3 [3]
are widely used to store immutable Binary Large Objects
(BLOBS), including photos, videos, archives, and documents.
Erasure coding is widely used in such production systems
(e.g., at Facebook [29], Microsoft [11, 20]) to achieve reliabil-
ity at a reduced storage cost compared to replication. The
amount of data needed for repair due to data loss is referred
to as repair cost. Erasure codes, however, suffer from high
repair cost, and there are many previous works trying to ad-
dress this problem [8-10, 15, 18-20, 22, 25, 26, 28, 33, 37, 38,
41, 43, 44, 48]. Regenerating codes [15] are a special family
of erasure codes designed to minimize the repair cost. Some
of the regenerating codes, such as MSR (Minimum Storage
Regenerating) codes, can achieve theoretically optimal re-
pair cost while providing the same storage efficiency and
reliability guarantees.

Recovery efficiency, which measures how fast the system
can restore its original fault tolerance under certain hardware
resource constraints by repairing from the available pieces to
recover from data loss due to failures, and degraded read time,
which measures the time to read an object in a degraded case
when an object needs to be repaired as the server storing the
object requested fails, are two important design metrics for
erasure coding, and have been addressed by many previous
works [13, 15, 20, 22, 26, 28, 29, 33, 37, 38].

Optimality in repair cost, however, does not necessarily
improve recovery efficiency or reduce degraded read time in
a practical object storage system using regenerating codes.
Regenerating codes repair at the granularity of chunks [33,
37, 38], and each chunk is further divided into many small
sub-chunks. These sub-chunks are correlated in a complex
encoding structure. To repair a chunk, only a small portion of
sub-chunks is read from corresponding disks. This dispersed
disk access pattern causes fragmentation, leading to reduced
disk performance and thus recovery efficiency.

The chunked repair granularity also leads to increased
degraded read time. If we repair at the granularity of bytes
like RS code (Reed-Solomon code), we can parallelize repair-
ing and transferring repaired bytes to the client. However,
for regenerating codes, we need to wait for the repair of
the first chunk before transfer it back to the client, which
can take as much time as repairing the object. Even worse,
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when reading an object whose size is smaller than the chunk
size, unnecessary data is also repaired, which leads to read
amplification and longer degraded read time.

When using regenerating codes, an object storage sys-
tem often chooses a single chunk size as the unit for encod-
ing [33, 38, 44]. Objects are then split into chunks before
encoding. The choice of chunk size has fundamental impli-
cations on practical performance and must balance inherent
trade-offs between degraded read time and recovery effi-
ciency. A larger chunk size can help to reduce fragmentation
and discontinuous reads for disk access, increasing recovery
efficiency. But a large chunk size can increase the time to
wait for the first repaired chunk and increase the chance
of read amplification. As a result, the choice of chunk size
becomes a dilemma.

Nevertheless, we find that low degraded read time and
high recovery efficiency can be achieved simultaneously. The
key is to use variable chunk sizes inside each object so that
we can obtain the benefits of large and small chunks for
each object, and optimize for both recovery efficiency and
degraded read time. We start to repair from a small chunk
size to avoid unnecessary waiting for the repairing of the
first chunk, then we limit the ratio of adjacent chunk sizes so
that the repair of the current chunk can predate the transfer
of the previous chunk. Finally, we employ the largest possible
chunk sizes under the above constraints.

Then we have Geometric Partitioning, which partitions
each object into chunks with sizes in a geometric sequence(e.g.,
4MB, 8MB, 16MB, 32MB, 64MB, and so on), and group chunks
from different objects into buckets for encoding. We show
that Geometric Partitioning resolves the inherent tension be-
tween recovery efficiency and degraded read time. The use of
larger chunk sizes later in the sequence achieves high recov-
ery efficiency with efficient continuous sequential reads. The
use of earlier small chunk sizes helps to lower the degraded
read time. We pack the fronts of objects, which are smaller
than the smallest chunk size, but use RS code rather than
regenerating codes to eliminate read amplification as they
only consume a small portion of total space.

In summary, we make the following contributions:

e We point out the gap between theory and practice
in the use of regenerating codes and show the inher-
ent tension between degraded read time and recovery
efficiency for regenerating codes when used in a large-
scale storage system.

e We propose Geometric Partitioning, a novel method
that introduces variable chunk sizes inside each object,
elegantly resolves the tension.

e We build RCStor, a storage system for storing immutable
objects, which is specially optimized for regenerating
codes. We show that with Geometric Partitioning re-
generating codes are efficient enough to be used in
object storage systems: RCStor improves the recovery
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performance of Clay code to 1.30x of the recovery per-
formance of LRC and 1.85X the recovery performance
of RS code.

2 Background
2.1 Repair, Degraded Read and Recovery

In this paper, we use the term repair to describe the follow-
ing procedure: collect necessary data from other nodes and
decode the collected data to obtain original unavailable data.

For an object storage system, there are two important oper-
ations in relation to repair : (i) degraded reads to temporarily
unavailable objects (e.g., system maintenance, network fail-
ures), (ii) recovery of a crashed disk or a failed node. They
can occur hourly to daily, depending on the size of the clus-
ter [42].

The time of degraded read, which can affect user expe-
rience and service’s SLO (Service Level Objective), is an
important metrics for object storage system [11, 13, 26, 28].
To read a temporarily unavailable object, a user issues an
HTTP request to the object storage system, the HTTP server
then repairs the object and transfer the object back to the
client. It is obvious that repairing and transferring can be
pipelined and conducted in parallel with each other. So de-
graded read time depends on the time to repair, the time to
send the repaired object back to the client, and how they are
pipelined. It should be noted that the network edge band-
width is limited (e.g. 1Gbps) because there are often many
clients competing for limited total edge bandwidth. Thus the
total degraded read time can be easily dominated by transfer
time plus the repair time of the first chunk.

With regard to recovery, efficient recovery can reduce
MTTL (Mean Time to Loss), increasing the durability of the
system [12, 20]. Efficient recovery can also reduce the num-
ber of degraded reads, lightening the burden of the system.
Unlike degraded read time, which is mainly determined by
latency (the time to repair the first byte), recovery efficiency
is determined by throughput. For modern data centers where
high-speed network is common [2], disk bandwidth is becom-
ing the determinant factor for recovery throughput, since
disk bandwidth is more difficult to be fully utilized.

2.2 Repair for Different Codes

A replication-based system can repair simply by copying
as in Figure 1(a). But erasure-coded systems need to repair
the lost data and is much more complicated. A (k,r) code
generates r parities from k data nodes. For a fair compar-
ison, we set all erasure codes with k = 10 data disks and
r = 4 parity disks, which is a common practice in production
systems [29, 44]. Denote there are 10 data nodes from D; to
Dy, 4 parity nodes from P; to Ps. An illustration of repair
procedure from a single node failure is given in Figure 1.
The quantitative comparison of these codes is in Table 1. We
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Figure 1. Repair patterns for different methods.

mainly focus on single-node failures because it is the domi-
nating (> 98%) case in practice [22, 42]. It’s still important to
repair from multi-nodes failures for reliability, but we care
less about its efficiency.

Repair for RS code. RS code is a common and widely
used erasure code [40]. Figure 1(b) shows the repair of RS
code. To repair from a single-node failure, we need to gather
all data from k survived nodes. Then the lost data will be
repaired by decoding or re-encoding. The process is time-
consuming and involves significant disk I/O and network
traffic. The reliability of RS code is high because RS code is
an MDS (Maximum Distance Separable) code. MDS codes are
codes that can repair from the failure of any combinations
of r nodes.

Table 1. Codes Comparison. Read traffic represents the
ratio of disk/network traffic to the amount of data re-
paired.

Storage | MDS | Read traffic | Sub-packetization
RS(10,4) 140% Yes 10 1
LRC(10,2,2) | 140% No 5711 1
Clay(10,4) | 140% | Yes 3.25 256

Repair for LRC codes. LRC [20] (Local Reconstruction
Codes) reduces the network traffic and disk I/O during repair
by connecting to fewer nodes. Figure 1(c) shows the repair
of LRC codes, where P, and P, are two local parity nodes.
LRC codes divide nodes into multiple groups, generate local
parities for each group, and then generate global parities to

ITwo global parities need to read 10x of data to repair, while other nodes

only need to read 5x of data for repair. So the average read traffic of LRC is
10X245x12 5 71,

(0)uonezneyoed-qng
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improve reliability. When a node fails, only nodes from the
same group need to be accessed, thereby reducing both disk
I/O and network traffic. However, LRC codes do not have
the same storage-reliability trade-off as RS code because
LRC codes are not MDS codes. LRC codes cannot tolerate all
failure node combinations, weakening their reliability.

Repair for Regenerating codes. Unlike LRC codes that
reduce I/O by connecting to fewer nodes, regenerating codes
need to read from d (d > k) nodes. Regenerating codes
reduce I/O by introducing finer-granularity sub-chunks and
more complex connections between them.

The repair pattern of regenerating codes is shown in Fig-
ure 1(d). Regenerating codes organize a data chunk into
multiple sub-chunks. When a node fails, only a small num-
ber of sub-chunks from d nodes are needed during data
repair. The number of sub-chunks stored in each node is
called sub-packetization denoted as . The number of sub-
chunks required for each node during repairing is denoted as
B. These are two critical parameters for regenerating codes
and will influence the design of regenerating coded object
storage systems.

In general, a small value for & or f is preferred because it
can provide better locality. For example, given a = 64, f =
16, there will be 16 discontinuous sub-chunks in each node
during repair in the worst case. Reducing the parameters
to a = 16, f = 4, the disk I/O remains the same (the data
needed during repair kept the same), but the number of
discontinuous sub-chunks in the worst case can be reduced
to 4.
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Figure 2. Repair patterns of a chunk for Clay(10,4)
code when different disks fail. Case 1 shows sub-
chunks that need to be read when D1-D4 fails, Case
2 shows sub-chunks for D5-D8, and so on. Each col-
ored block represents 64 sub-chunks for Case 1, 16 sub-
chunks for Case 2, 4 sub-chunks for Case 3, and 1 sub-
chunk for Case 4. When a disk failed, sub-chunks with
the same color need to be read for repair.



There are various kinds of regenerating codes, including
MSR codes [17, 25, 33, 37, 43, 44], MBR (Minimum Band-
width Regenerating) codes [39], Hitchhiker code [38], Sim-
ple Regenerating codes [34], etc. Among them, MSR codes
are the most attractive because they keep the same storage-
reliability trade-off as RS code while providing optimal repair
cost.

In this paper, we mainly focus on a recently constructed
MSR code, Clay code [44]. Clay code has many nice proper-
ties including flexible coding parameter settings, less com-
puting complexity. Clay code is one of the regenerating codes
that require the minimum possible amount of data to be read
from disk during a repair, and it is proved that Clay code has
a minimum possible @ among these codes [5]. Clay code also
provides a good locality to be used in a real-world storage
system. The rest of the paper will mainly use Clay code by
default, but our method is suitable for all regenerating codes.

Figure 2 shows the recovery pattern for a data chunk in
Clay(10,4) code, where d = 13, a = 256 and 8 = 64. The 256
sub-chunks on each disk can be indexed into four quaternary
digits (so, $1, S2, 53). When D; (P; can be seen as Dg.;) fails,
we need to read all sub-chunks that satisfy

spizty =i—1(modr)

1

from the remaining 13 disks. In short, we should read g =7

amount of data from each survived node.

3 Challenges for Applying Regenerating
Codes

In this section, we study the challenges of applying regenerat-
ing codes in an object storage system, and why low degraded
read time and high recovery efficiency are unattainable si-
multaneously in storage systems.

3.1 The Effect of Chunk Size

Regenerating codes are used together with the sub-chunking
(also called hop-and-couple) technique to reduce disk I/O [33,
37, 38]. Data is organized into chunks before encoding, and
regenerating codes repair data at the granularity of chunk.
This means that you cannot encode using a large chunk size
and decode using a smaller chunk size without incurring
read amplification like RS code. Such phenomenon makes
the choice of chunk size challenging.

Large Chunk Size Benefits Recovery. Though regener-
ating codes greatly reduce the amount of data to be read, they
introduce fragmentation and discontinuous reads. Take case
3 from Figure 2 as an example. To repair a chunk, you need
to read 64 sub-chunks, which are 16 discontinuous reads,
and the I/O size of each read is the size of 4 sub-chunks. If
the I/O size is 4KB and the size of sub-chunk is 1KB, the cor-
responding chunk size will be 4KB X 64 = 256K B. For case 4,
the corresponding chunk size is as large as 1IMB. Any chunk
size smaller than that will result in reduced performance.
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The requirement for chunk size is much higher to fully
utilize the bandwidth of HDD. For an HDD, the I/O size
needs to be as large as 4MB (the corresponding chunk size is
256MB for case 3) or even 8MB to amortize I/O latency and
utilize disk bandwidth better [30].

Overly Large Chunk Size Harms Degraded Read. How-
ever, it’s infeasible to increase chunk size indefinitely, because
a chunk size larger than object size can cause read amplifi-
cation and increase degraded read time. An object storage
system contains objects of various sizes, from several KBs to
multiple GBs. If we choose a 256MB chunk size, we need to
repair the whole 256MB chunk only to read a 64MB object
in that chunk. In fact, degraded read requests whose sizes
are smaller than chunk size can lead to additional disk read.
A smaller chunk size can reduce such phenomenon.

RS Code

Regenerating Code

| | |
271 Repair = Transfer ;

Figure 3. An illustration of degraded read time of RS
Code and Regenerating Codes.

Small Chunk Size Benefits Degraded Read. The pro-
cess of degraded read can be divided into two steps: repair
the necessary data from storage servers and transfer the re-
paired object from the server to end-users. For large objects,
by dividing the process into multiple small steps, read time
can be greatly reduced by pipelining as in Figure 3. This is
natural for RS code. However, for regenerating codes, the
whole process will be blocked by the repair of the first chunk
when chunk size is large. For example, most objects can not
be pipelined when chunk size is as large as 256 MB. A small
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Figure 4. Average degraded read time to read a 64MB
object at different chunk sizes, together with the cor-
responding average utilized disk read bandwidth for
recovery using Clay(10,4) code on a HDD.



chunk size can reduce blocking time and benefit degraded
read.

Conclusion. Figure 4 shows the trade-off between de-
graded read time and recovery efficiency at different chunk
sizes using Clay(10,4) code. We use the average disk read
bandwidth (the harmonic mean of 4 cases in Figure 2) to mea-
sure recovery efficiency because it can measure the effect of
discontinuous read quantitatively. When chunk size is larger
than object size, the extra repaired data is discarded. The
degraded read time for a client to read a 64MB object over a
1Gbps network increases from 700ms to over 1,300ms when
we increase chunk size from 4MB to 256MB, but the disk
read bandwidth increases from 40MB/s to over 170MB/s.

Our study shows a fundamental trade-off between de-
graded read time and recovery efficiency, where chunk size
plays a key factor. A large chunk size can improve recovery
efficiency, at the cost of more severe read amplification and
increased blocking time, leading to longer degraded read
time, and vice versa.

3.2 Case Study: Applying Regenerating Code into
Existing Data Layouts

In this section, we study two common data layouts in Fig-
ure 5, and show how degraded read time and recovery effi-
ciency will be affected by the introduction of regenerating
code.

Contiguous Layout. Contiguous layout packs multiple
objects together to form equal-sized large files, which are
encoded together with each file as a whole. As a result, parity
is generated from data in different objects. A normal read to
Contiguous layout only goes through a single disk. Facebook
f4 [29], for example, adopts Contiguous layout.

To apply regenerating codes into Contiguous layout, an
arbitrary large chunk size can be selected to make recovery
highly efficient. However, Contiguous layout can have severe
read amplification because objects are not aligned to each
encoding chunk and several objects can be packed into a
single chunk. Thus a degraded read of a small object may
span to a whole or multiple chunks, leading to increased
degraded read time.

Stripe Layout. Stripe layout is widely used by systems
such as HDFS 3.0 [16] and QFS [32]. Stripe layout splits each
object into small stripes, spreads each stripe into multiple
nodes, and generates the corresponding parities as Figure 5
(b) illustrates. A read request is processed by invoking k
small requests and merging responses.

For Stripe layout, chunk size can be set as strip size (also
called as stripe depth) so that degraded read requests to differ-
ent stripes can be pipelined. To increase recovery efficiency,
chunk size can be set to as large as % of the object size at the
cost of less efficient pipelining. Any chunk size larger than
that will cause read amplification. Thus, the chunk size of
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Figure 5. Contiguous layout and Stripe layout.

a 100MB object is limited to 10MB, and the corresponding
sub-chunk can be as small as 40KB. We can find from Figure 4
that such a small chunk size is far from fully utilizing disk
bandwidth.

In summary, we find that none of the existing layouts can
achieve low degraded read time and high recovery efficiency
simultaneously when regenerating codes are applied.

4 Geometric Partitioning

From the previous analysis, we can conclude that a fixed
chunk size cannot utilize regenerating codes well. A natu-
ral consideration is to use different chunk sizes for different
objects. Yet this solution still faces the same dilemma: pipelin-
ing will be less efficient if a large chunk is selected, recovery
will be less efficient if a small chunk is selected.

The design of Geometric Partitioning is based on the fol-
lowing principle: if a single object can be partitioned into
chunks with variable sizes, then we can then use smaller
chunks to reduce degraded read time through pipelining and
use larger chunks to achieve efficient sequential reads, then
we can obtain the benefits of both small and large chunk
sizes.

Figure 6 illustrates the overall design of geometric par-
titioning, which partitions an object into multiple chunks,
each to its corresponding bucket. All chunks of an object
are put into a single disk. Each bucket is a large file on a disk,
containing equal-sized chunks from different objects. The
sizes of these buckets form a geometric sequence. Buckets
from k + r disks are encoded together using regenerating
code.



There are two predefined parameters for Geometric Parti-
tioning, so and g, where s is the initial value of the geometric
sequence and q is the common ratio of the sequence. An ob-
ject with size S can thus be represented by the combination
of the sequence, such that S = R+ )1, a; - soqi_l, where
R =S mod s, a; is the number of chunks that fall into a
specific bucket, and n is the number of chunks that the object
is partitioned into.

Stepl:
Partition

Step2:
Put to Buckets

ing Code 17

ting Code
8MB Buckets

Regenerating Code
128MB Buckets

RS Code

Small Size Buckets 4MB Buckets

Figure 6. An illustration of Geometric Partitioning.

The design of Geometric Partitioning is detailed below.

4.1 Cut Front to Eliminate Read Amplification

Section 3.1 tells us that read amplification is caused by read
requests whose sizes are smaller than the chunk size. Section
3.2 tells us that such requests are brought by the lack of
object alignment. A naive way to align objects is to encode
objects of the same size. However, it is hard to find enough
objects (e.g., 10 for a Clay(10,4) code) of the same size.

A smarter way is to cut the front of each object. For each
object, we subtract a portion of it such that the remaining
size of this object is a multiple of s, and put that portion
into a separate bucket, called small-size-bucket. Since the
remaining size of the object is a multiple of ¢, as long as sg
is large enough (e.g., 4MB), it is much easier to find a chunk
with the same size. Read amplification can thus be eliminated
for the remaining part of the object.

Small-size-buckets are used to store the front portion of
objects. Objects smaller than s are also placed directly into
small-size-buckets. Unlike other buckets, there is no specific
bucket size for small-size-buckets, and the size of different
objects in a small-size-bucket can vary. Small-size-buckets
are encoded by RS code so that read amplification in small-
size-buckets can be eliminated. In addition, the presence
of RS-coded small-size-buckets will allow the pipeline of
degraded reads to begin almost immediately, reducing the
time for degraded reads.

Based on our investigation of a production trace in Fig-
ure 7, we find that storage capacity is dominated by larger
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Figure 7. Trace from Alibaba Cloud Object Storage
Service which contains videos, images, photos, docu-
ments, archives, etc. The trace is available at https:
//github.com/rcstor/ali-trace.

objects (> 97.7% capacity is consumed by objects larger than
4MB). Traces from Facebook [36] and Microsoft [11] also
support this observation.

The storage capacity consumed by small-size-bucket is
small when a proper s, is selected, indicating that the disk
and network traffic incurred by the recovery of small-size-
bucket is small. This implies that the existence of small-size-
bucket has a limited impact on recovery efficiency.

4.2 Partition Objects Geometrically to Benefit
Recovery and Degraded Read

|4M|4M| M |

|4M|4M|

Figure 8. Two potential cases for pipelining in Geomet-
ric Partitioning.

To improve recovery efficiency, we should increase chunk
sizes. Theoretically, the best way to partition an object is
to not partition, so that chunk sizes are maximal. However,
without partitioning, degraded read time on large objects
will suffer due to the lack of pipelining.

The introduction of variable chunk sizes helps to do pipelin-
ing more efficiently while putting most bytes of an object
into larger chunks. The main ideas are as follows: (i) start to
repair from a small chunk size to avoid unnecessary waiting
for the repairing of the first chunk, (ii) the ratio of adjacent
chunk sizes (i.e. —) should be limited so that the repair of
the current chunk can predate the transfer of the previous
chunk as in Figure 8, (iii) employ largest possible chunk sizes
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under the above constraints. The above three principles in-
spire us that chunk sizes should grow exponentially, which
leads to the design of Geometric Partitioning.

Geometric Partitioning partitions front-cut-objects into
chunks with sizes forming a geometric series, starting from s;.
An illustration of it is given in Figure 8. For example, a 32MB
object can be partitioned into four chunks, 4MB, 4MB, 8MB,
and 16MB. To repair the object, the first 4MB chunk is sent
to the user as soon as it is reconstructed. The regeneration
of subsequent chunks can be processed together with the
transfer of the previous chunk. From Figure 8, we can see that
degraded read time is close to transfer time when transfer
is less blocked by the repairing of chunk. When transfer
is blocked by repair, though not optimal, the pipelining of
Geometric Partitioning still helps to reduce degraded read
time.

Besides the benefit of pipelining, geometric bucket sizes
also allow large objects to put most of their data in buckets
with large chunk sizes, resulting in better efficiency. By using
a geometric sequence, instead of an arithmetic sequence or
a constant sequence, we can limit the number of partitioned
chunks to the logarithm of the object size, rather than linear
or polynomial to the object size. This can help to increase
the average chunk size.

4.3 Help Pipelining by 2-pass Scan

To better utilize pipelining and reduce blocking time, we
need to make sure the coefficient of each chunk, a;, is non-
zero. For instance, assuming sy = 4MB and q = 2, if we
partition a 20MB object into 4MB+16MB chunks, these 2
chunks may not be properly pipelined since their size gap
is large, resulting in a slow read. If the coeflicient of each
chunk is non-zero, the size gap between adjacent chunks
will be limited, resulting in a situation similar to Figure 8.
The coefficients can be found by Algorithm 1.

Algorithm 1 scans the geometric sequence twice to de-
termine the coefficients. The first scan subtracts the size of
every bucket until the remaining size is too small to be filled
into a bucket. The subsequent scan uses a greedy policy, try-
ing to choose the largest possible chunk size until no bucket
can be filled.

For example, suppose the size of an object is 73.5MB. The
first pass will split the object as 4MB + 8MB + 16MB + 32MB.
And the remaining size will be split as 8MB + 4MB + 1.5MB
in the second pass. Thus, the final result will be 73.5MB =
1.5MB + 2x4MB + 2x8MB + 16MB + 32MB.

4.4 Parameter Setting

Geometric Partitioning has two parameters to tune. A larger
so can enlarge chunk sizes, thereby increasing average disk
read bandwidth, at the cost of increased disk/network traf-
fic due to RS code. A larger sy may also add overhead to
pipelining since the first chunk cannot be pipelined, increas-
ing degraded read time. With respect to the selection of g, a
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Algorithm 1: Geometric Partitioning
Data: The object size S.
Result: R, n, a = (a,az, -, an)
1 begin
i—1;
while S > s - ¢! do
a; < 1;

S—S—s0-¢7}

A G e W N

i—i+1;
ne«i
8 while i > 1 do
9 while S > sy - ¢! do
10 LS&S—so-qi_l;

i—i—1;

R=S;

11 a; «— a; +1;
12

13

small g can help repair predate transfer easier for pipelining.
But a small g may not be optimal for recovery efficiency.
So both sy and g should be tuned through the sampling of
target workloads to achieve balanced performance between
degraded read latency and recovery efficiency. Grid search
can be used to collect performance data and help set param-
eters for preferred characteristics (better recovery or better
degraded read time).

5 System Design and Implementation
5.1 System Design

Architecture. We have designed and implemented RC-
Stor, a storage system for storing immutable objects, to show
the effectiveness of Geometric Partitioning. The system con-
tains 3 roles including Directory Server, Storage Server and
HTTP Server. HT'TP Servers are responsible to handle user
requests. Directory Servers store meta information and mon-
itor the whole system. Storage Servers store and manage the
objects and also store index files to track objects. Each Stor-
age Server is bound to a specific disk. Multiple processes of
Storage Servers can run on the same machine with multiple
disks. Recovery tasks are dispatched by Directory Server to
Storage Servers. The reliability of Directory Server can be
achieved by using a replicated state machine [31].

Placement Groups. To utilize the bandwidth of more
disks and NICs for recovery, we use a similar concept of
PG (Placement Group) as in Ceph [45]. Our system contains
thousands of PGs, where each PG is a group of k + r = 14
disks on 14 different nodes, representing the set of disks to be
encoded. The information about PGs is stored on Directory
Servers. Each disk can belong to multiple PGs and each PG
can recover independently. When one disk fails, all PGs that
are related to the failed disk will begin to recover. So instead



of using only d = 13 disks to recover, there will be more
disks utilized to accelerate recovery. The Direcotory server
assigns disks to PG so that the maximal amount of disks are
correlated to recovery when a disk fails. An object is first
mapped to a PG based on the hash of its ID. Then, the disk
with the least capacity consumed for that PG is selected to
put the object. Finally, the object is partitioned into chunks
and put into its corresponding buckets.

Metadata Management. For each PG, r + 1 out of r + k
disks are randomly selected to store the replicated index of
that PG. Each index file tracks the metadata of all objects in
that PG and is loaded into memory when the Strorage Server
restarts. Each record of the index file includes object ID,
size, disk ID, checksum, and positions of partitioned chunks
of the object. Since all chunks in a bucket are aligned, the
position of a chunk can be stored within 2 bytes except for
the small-size-bucket. As a result, the average metadata size
of an object is about 40 bytes, which is small enough to be
kept in memory.

Put and Get. RCStor provides streaming HTTP inter-
faces to end-users by specifying HTTP Content-Type as
application/octet-stream.

To put an object, we first put it into a replication-based
object storage system. Then, we export these objects from
the replication-based storage system into the erasure-codes-
based storage system using background processes. This de-
sign is similar to Facebook F4 [29]. By exporting these objects
in batch, we can avoid the costly overhead of parity updating.

To get an object, HTTP Server fetches the index from that
PG’s corresponding Storage Server. If it is a degraded read
request (the corresponding disk is offline or error occurred
during normal read), HTTP Server will collect the necessary
data from Storage Servers, regenerate and transfer (which is
pipelined) that object to the client. Otherwise, the object will
be transferred to the client directly (which is also pipelined).

Although Geometric Partitioning requires reading from
multiple locations rather than reading from a contiguous
area, the performance penalty for normal reads can be small
(as evaluated in Section 6.2) because the chunk size is large
enough to amortize the extra time consumed on disk seeks.

IO Scheduling. On every Storage Server, there is a FIFO
request queue bound to multiple threads that pull from it
continuously. Each normal or degraded read request contains
the offsets and sizes of all correlated chunks of an object,
so that request does not have to be queued more than once
for different chunks of a single object. To handle a request,
Storage Server will read all correlated data into 256KB (or
smaller) packets and push them to HTTP Server. Background
requests (recovery, data importing, etc.) to Storage Server are
put into separate queues and processed in a lower priority.

Paralleled Recovery. To recover a node, RCStor do not
recover at the granularity of objects, but at the granularity of
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chunks. The chunks of an individual object can be recovered
concurrently. There is a global queue on Directory Server,
managing all the chunks that are pending recovery. Each
recovery task contains the position information of a single
chunk. HTTP Servers pull these tasks from Directory Server
continuously and recover these chunks concurrently. Recov-
ery tasks are weighted by their chunk sizes (e.g. 1 for 4MB
chunk, 64 for 256MB chunk), and there is a global weight
representing the maximal possible total chunks size of con-
current repairing chunks (e.g. If global weight is 512, we can
recover eight 256MB chunks concurrently, or we can recover
four 256MB chunks and eight 128MB chunks concurrently).

5.2 Implementation

We have implemented RCStor using 10,694 lines of Golang
code. There are some implementation details as below:

Encoding Optimization. We implement Clay code us-
ing C. Dedicated optimization is made to minimize the time
encoding/decoding consumed. Standard optimizations such
as SIMD instructions[35] and loop unrolling are used to
improve the performance. We also exploit software prefetch-
ing, streaming write instructions to reduce the overhead of
memory access. We have achieved 22.3GB/s for encoding,
18.5GB/s for decoding, and 5.0GB/s for regenerating using
multiple threads on a 12-core server for Clay(10,4) code.

Memory Management. There is a memory pool for HTTP
Server to manage repaired chunks. Each repaired chunk can
remain in memory for a certain amount of time (should be
decided by the memory of the server), after that the repaired
chunk is flushed to disk. Further requests to that chunk are
redirected to disk. We can prevent slow clients from consum-
ing too much memory in this way. Furthermore, we only
allow allocating chunks smaller or equal to 256MB to avoid
unnecessary large chunks.

Range Access Support. In some cases, the system needs
to support range access where users can download a portion
of a large object by specifying offset and length. RCStor sup-
ports ranged degraded read by reading from the first related
chunk and discarding unnecessary data.

6 Evaluation
6.1 Evaluation Setup

Hardware Setup. We use a cluster of 16 servers, each
equipped with dual Intel Xeon E5 2643 v4 CPU, 128GB 2133
MHZ DDR4 RAM, a 512GB SATA3 SSD, and 6x 8TB 7200rpm
SAS HDD. All servers are running CentOS 7.8. Servers are
connected via a 56Gbps Infiniband network running IPoIB.
All servers are acting as both an HTTP server and a Storage
Server. We choose three servers to act as the Directory Server.
XFS is used as the underlying file system, and all file system
cache is cleared at the beginning of all experiments.



Table 2. Description of workloads.

Workload | Object Size | Avg Object Size | # Objects | Avg Request Size | Hardware | Total Capacity | Capacity per Disk
Wi 4MB~4GB 102.8MB 170000 148.5MB 16 X 6 HDDs 24.4TB 255GB
W, 4KB~4MB 101.3KB 500000 72.0KB 16 X 1 SSDs 70.9GB 4.4GB

We run clients on the same machine running servers. Each
machine runs at most 8 clients. We set the network band-
width of each client to 1Gbps. This is a common bandwidth
for network edge [26]. We also evaluate how Geometric Par-
titioning performs when client bandwidth varies.

Workloads. We evaluate our system on HDD and SSD
respectively to show the generality of Geometric Partitioning.
We evaluate two workloads, both sampled from the trace in
Figure 7. W; contains objects from 4MB to 4GB, representing
a workload with larger objects (e.g., archives, docker images,
videos), and we use 16 X 6 HDDs to store them. W, contains
objects from 4KB to 4MB, representing a workload with
smaller objects (e.g., photos, documents), and we use 16 X
1 SSDs to store them. The detailed description of the two
workloads is in Table 2. Production system like Giza [11]
employs a similar method to separate objects into different
systems.

W, reveals how Geometric Partitioning perform for large
objects on HDDs, W, reveals how Geometric Partitioning
perform for small objects on SSDs. Geometric Partitioning
is not suitable for storing large objects on SSDs or storing
small objects on HDDs, as naive solutions like striping or
using RS code can provide comparable performance.

Parameter Settings. For W;, we set 5o = 1MB, 4MB, 16MB
and q = 2 for Geometric Partitioning, strip size as 256KB for
Stripe layout, and we choose three chunk sizes: 16MB, 64MB
and 256 MB for Contiguous layout. For W;, we set so = 128KB,
256K and q = 2 for Geometric Partitioning, strip size as 32KB
for Stripe layout, and we choose two chunk sizes: 128KB and
512KB for Contiguous layout.

We use parameter settings (10,4) for Clay code and RS
code, (10,2,2) for LRC code. We also add Stripe-Max as a
comparison. Stripe-Max is a special type of Stripe layout
where the strip size of each object is the size of that object
divided by k. We also evaluate ECPipe [26], a pipelining
technique designed to reduce network congestion. We use
RS code as its underlying code because ECPipe only applies
to erasure codes with addition associativity, which does not
hold for Clay code. We set the packet size of ECPipe the same
as the strip size of Stripe layout.

We set the global weight as 512 so that each HTTP server
can recover up to 512 chunks concurrently. We have 16
servers, so we can recover up to 8192 chunks at the same
time.

In all the following experiments for different layouts, Clay
code is used. And for RS code and LRC code, we choose Stripe
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layout, because the three challenges solved by Geometric Par-
titioning do not exist for RS code and LRC code, and the use
of Stripe layout helps these codes get the best performance.
We also evaluate Hitchhiker code, a non-optimal regenerat-
ing code, as a baseline. We use Geometric Partitioning as its
layout. We set sy = 4MB for Wy, 5o = 128KB for W5, and set g
= 2 for Hitchhiker code.

Implementation Optimizations for Baselines. For the
recovery of Stripe/RS/LRC, instead of recovering the whole
disk stripe by stripe, I/O requests are batched to 4MB data
blocks (we find that 4MB block size can maximize perfor-
mance) to reduce the cost of synchronization and software
overhead. It is worth noting that, for stripe layout, due to
the inherent property (sub-chunking) of regenerating codes,
the scattered disk read pattern remains unchanged when
this optimization is applied as the underlying data layout
remains unchanged.

To further reduce the degraded read time of Stripe/RS/LRC,
we send n instead of k requests to storage servers and begin to
rebuild once receiving the first k responses for Stripe/RS. We
may need to receive the first k + 1 responses for LRC because
LRC codes are not MDS codes. This optimization makes
degraded reads of Stripe/RS/LRC resilient to background
load imbalance and unforeseen stragglers.

6.2 Evaluation on Production Trace

Methodology. We evaluate recovery efficiency by turning
off one disk, starting recovery manually, and measuring the
time to complete recovery. We recover all the failed PGs
concurrently to measure the maximal recovery throughput
of our system. Though we only turn off one disk, we are
testing the average recovery time of all 4 cases in Figure 2
because there are multiple PGs on a single disk.

We also evaluate the average degraded read time before
RCStor begin to recover. We send requests to unavailable
objects following the distribution in Figure 7 and measure
the time to get the last byte of these objects. We exclude
degraded read requests to the same object to eliminate the
effect of page cache. For Stripe, Stipe-Max, RS, LRC, and
EC-Pipe, though only a part of an object is unavailable, we
evaluate the degraded read time to read the whole object. For
Geometric Partitioning, Hitchhiker, and Contiguous layout,
we only evaluate the degraded read time of fully unavailable
objects. Results are evaluated when the system is idle and
when there are foreground workloads respectively. We use 15
nodes, 8 clients on each node, making requests continuously
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Figure 10. Recovery time and degraded read time for W,.

following the distribution in Figure 7, to simulate the fore-
ground workload. The disk bandwidth fluctuates between
~30MB/s to ~100MB/s for W, fluctuates between ~30MB/s
to ~70MB/s for W, under this foreground workload.

Normal Reads. We test the average time of normal read
requests. Our results show that Contiguous layout, Stripe
layout and Geometric Partitioning have close normal read
time (1190ms + 20ms for Wy, 2.8ms + 0.2ms for W, when the
system is idle; 1220ms + 30ms for Wy, 3.7ms + 0.3ms for W,
when the system is busy). We draw the mean normal read
time for these layouts in Figure 9 and Figure 10.

Degraded Read Time and Recovery Time. In Figure 9
and Figure 10, we compare the recovery time and degraded
read time for different layouts, different parameter settings
and different erasure codes on W; and W, respectively. All
layouts and codes in Figure 9 and Figure 10 occupy similar
amount of storage capacity (+%1). The result of the same lay-
out and different parameter settings are connected by dotted

lines. We vary sy for Geometric Partitioning, vary chunk size
for Contiguous layout, and vary strip size for Stripe layout.

The recovery performance of Contiguous layout depends
on the selection of chunk size. With a large enough chunk
size, Contiguous layout can have a better recovery perfor-
mance than Geometric Partitioning, at the cost of much longer
degraded read time.

The performance of Stripe layout also depends on the
selection of chunk size. With chunk size is as small as 256KB,
the recovery performance is unacceptable. When we select
the maximal possible chunk size as in Stripe-Max, recovery
is much better, at the cost of increased degraded read time.
Even so, Stripe-Max still costs about 1.37x of time to recovery
Geo-4M for W;.

By combining with Geometric Partitioning, the recovery
of Clay code achieves 1.73GB/s for Wi, which is 1.85X com-
pared to RS code, 1.30x compared to LRC. And the average
degraded read time is only 1.02x normal read time. Without
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Geometric Partitioning, Clay code cannot have better recov-
ery performance than LRC code with acceptable degraded
read time. For W;, Clay code achieves 1.53GB/s, which is
2.01x compared to RS code. Though Geometric Partitioning
reads more data during degraded read than normal read, their
time is close because the repair time is hidden by transfer
time through pipelining,.

We read the same amount of data for RS and LRC be-
cause they all use Striping. However, LRC codes may need
more requests because LRC codes are not MDS codes, so the
degraded read time of LRC can be longer than RS code.

We’ve also varied sy for Geometric Partitioning. The results
indicate that the choice of sy can affect the trade-off between
degraded read time and recovery efficiency. When the system
is idle, selecting a smaller sy can help pipelining and reduce
degraded read time. However, when the system is busy, a
larger sy can reduce the number of chunks to be read, thus
reduce the possibility of I/O contention and the read time.

6.3 Performance Breakdown

Size of Small-size-buckets. Small-size-buckets for Geo-
metric Partitioning occupies 1.7%, 3.7%, 9.4% of the total stor-
age capacity for sy = 1MB, 4MB, 16MB respectively on Wj.
Small-size-buckets for Geometric Partitioning occupies 26.7%,
35.4% of the total storage capacity for s, = 128KB, 256KB
respectively on W;.

Average Chunk Sizes. Though a larger average chunk
size does not necessarily imply more efficient recovery (two
different workloads with the same average chunk size can
have different recovery efficiency), it’s still an important
indicator to show the fragmentation of disk reading.

For W, the average chunk size is 14.8MB for Geo-1M,
25.0MB for Geo-4M, 56.4MB for Geo-16M, while the average
chunk size is only 10.3MB for Stripe-Max layout. To recover,
Stripe-Max needs 2.4x the number of disk seeks compared to
Geo-4M. Thus Geometric Partitioning can utilize disk better
than Stripe-Max during recovery. For W, the average chunk
size is 324.8KB for Geo-128K, 622.4KB for Geo-256K.

Network and Disk Bandwidth for Recovery. We mea-
sure the average disk bandwidth and average network band-
width for recovery in Table 3. Average disk bandwidth is
the average amount of data read and write to a disk divided
by repair time. Average network bandwidth is the average
amount of network transfer to a node divided by repair time.

The gap between the measured and ideal disk bandwidth
in Figure 4 is due to unbalanced (both spatial and tempo-
ral) and congested disk I/O, discontinuous reads, and extra
software overhead in RCStor. We can see that network is far
from full utilization, indicating that the network is not the
bottleneck for recovery. Geometric Partitioning has higher
disk bandwidth than Stripe layout, this is because Geometric
Partitioning has larger chunk sizes. Geometric Partitioning
recovers faster than RS code, Hitchhiker code, LRC code, but
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Table 3. Disk and network bandwidth (in MB/s) by dif-
ferent schemes for W; and W, during recovery.

Scheme Disk ‘ Network || Disk ‘ Network
W W,
Geo-1M 65 298 - -
Geo-4M 79 369 - -
Geo-16M 86 413 - -
Geo-128K - - 532 451
Geo-256K - - 568 473
Con-16M 53 246 - -
Con-64M 71 329 - -
Con-256M 87 404 - -
Con-128K - - 398 304
Con-512K - - 420 322
Stripe 25 115 120 92
Stripe-Max 57 263 264 202
RS 110 599 524 476
HH 89 466 493 427
LRC 95 487 549 467
ECPipe [ 113 [ 616 | 534 [ 485

uses less network bandwidth, implying that the recovery of
Geometric Partitioning is more efficient.

Degraded Read Time by Sizes. We test the degraded read
time for different workloads, layouts, and object sizes. We
evaluate the 5th, median, and 95th time respectively. We
show the impact of different layouts in Figure 11 and Fig-
ure 12. We can find that Geometric Partitioning provides not
only good median degraded time but also good tail (95th)
degraded read time, for different object sizes.

Pipelining by Client Bandwidth. We vary the band-
width of the client to show how Geometric Partitioning ben-
efits from pipelining under different network conditions.
Figure 13 shows the average time to send repaired object to
the client, the average time to repair an object, and the aver-
age time to degraded read an object when client bandwidth
is 1Gbps, 2Gbps, and 4Gbps respectively. Figure 13 indicates
that the degraded read time of Geometric Partitioning can be
close to transfer time when network bandwidth is relatively
low, close to repair time when network bandwidth is higher.
The average degraded read time is reduced by 23.4%-35.9% by
pipelining. For W5, repair time dominates the total degraded
read time (due to I/O latency, synchronization, software, etc.
), so pipelining is less significant. However, Geometric Par-
titioning still helps by eliminating read amplification and
enlarging chunk sizes.

Degraded Read Time for Range Access. We randomly
specify a length and find a random corresponding offset
to measure the average degraded read time of Geometric
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Figure 13. Average transfer time, repair time, and de-
graded read time of Geo-4M for different client band-

width for W;.

Partitioning for range access. The lengths we use to evaluate
range accesses follow a uniform distribution, so the average
length of a range access is half the size of the object. We
measure the average degraded read time for W; when the
system is idle, and we found that the degraded read time of
Geo-4M is 67.6% of Con-16M, 55.3% of Stripe-Max. For W5,
the degraded read time of Geo-128K is 68.1% of Con-128K,
66.2% of Stripe-Max. As Table 4 shows, Geometric Partitioning
only reads a portion of an object, while Stripe-Max needs
to read the whole object and Contiguous need to read extra
large chunks for degraded rage access. Geometric Partitioning
also provides better pipelining than Stripe-Max layout.
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Figure 14. Average chunk size of Geo-4M for W;, Geo-
128K for W, under different q.

Varying q. We vary q to show how g affects recovery. We
can conclude from Figure 14 that the average chunk size
peaks when g = 2 or g = 3. Thus setting q as 2 is a proper
choice.

7 Related Work

Applying Regenerating Codes into Practice. There have
been many attempts to apply regenerating codes into real
storage systems [25, 27, 33, 38, 44]. However, they mainly fo-
cus on applying some specific regenerating codes into batch
processing systems like HDFS [16], and lack the considera-
tion for degraded read time and pipelining. Vajha et al. [44]
attempt to implement Clay code in Ceph, where they found
that disk I/O is saved when the system contains only 64MB
objects. When there are objects of different sizes, disk I/O is
not saved anymore due to read amplification.

Hybrid Strategies. Panasas [46] employs different RAID
schemes for different objects. Giza [11] advocates using era-
sure codes only for objects larger than 4MB. EC-store [1],
AutoRAID [47] hybrids erasure coding and replication to
improve performance. These techniques focus on traditional
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Table 5. Comparison of different layouts.

Geometric || Stripe Contiguous
Chunk Size Small \ Large Small \ Large
Pipelining Efficient Efficient | Not efficient || Medium | Not efficient
Read amplification No No No Medium | Severe
Disk throughput for recovery || High Low Medium Medium | High

RS codes and are not able to solve the challenges for regen-
erating codes.

Xia et.al. [48] proposes to use a code with faster recovery
and lower storage efficiency for hot data and use a compact
code with higher storage efficiency and slower recovery for
cold data. In fact, MSR codes like Clay code are both optimal
for storage efficiency and repair, so such kind of hybrid is
not necessary anymore.

Geometric Sequences. Buddy system [23] exploits geo-
metric sequences to support dynamic memory allocation.
Dartmouth [24] uses a buddy allocator to manage disk space
in its file system. Geometric Partitioning differs from buddy
systems by introducing object partition. Buddy system par-
titions continuous regions to fit objects, while Geometric
Partitioning partitions object to fit continuous regions.

Network Pipelining. PPR [28] and ECPipe [26] reduce
repair time by eliminating network congestion on the data
collection node. Instead of trying to reduce network band-
width consumption, they reduce repairing time by distribut-
ing network traffic more evenly across the cluster. However,
they are designed for erasure codes that satisfy addition
associativity, which does not hold for Clay code.

8 Discussion

Geometric Partitioning needs to read more data than Stripe
layout for degraded reads. However, they can be hidden by
the transfer time through an efficient pipelining design, and
as a result, the degraded read time of Geometric Partitioning
can be much less than Stripe-Max. In addition, Geometric
Partitioning puts each object into a single disk instead of
k disks. As a result, if there are k degraded read requests
for Stripe layout, there will be only 1 degraded read request
for Geometric Partitioning. Thus Geometric Partitioning puts
much less burden on CPU than Stripe layout, and its extra
burden on disk and network for degraded read is compen-
sated by much faster recovery because read requests will be
degraded in a shorter period.

RCStor is designed to store immutable objects. It is possible
to build key-value stores or databases by using object storage
as the underlying storage engine to store tables and logs [4, 7,
14]. More effort is definitely needed to improve performance.

Though regenerating codes consume less network band-
width than LRC codes and can recover at a higher efficiency,
LRC codes can provide better locality. This is useful for cases
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like cross-data-center erasure coding because of reduced
cross data center network traffic. Regenerating codes can still
help by using LRC codes on top of regenerating codes [21],
providing both better locality and less network bandwidth
consumption. Our work is orthogonal to these works.

9 Conclusion

After revealing the practical gaps of applying regenerating
codes in large-scale object storage systems, we propose geo-
metric partitioning that split each object into chunks with
sizes from a geometric sequence. It resolves the conflict be-
tween degraded read time and recovery efficiency. Table 5
summarizes the comparison of different layouts. We validate
its advantages experimentally using real-world traces.
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