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Abstract—Processing-In-Memory (PIM) is an effective tech-
nique that reduces data movements by integrating processing
units within memory. The recent advance of “big data” and
3D stacking technology make PIM a practical and viable
solution for the modern data processing workloads. It is
exemplified by the recent research interests on PIM-based
acceleration. Among them, TESSERACT is a PIM-enabled
parallel graph processing architecture based on Micron’s
Hybrid Memory Cube (HMC), one of the most prominent
3D-stacked memory technologies. It implements a Pregel-like
vertex-centric programming model, so that users could develop
programs in the familiar interface while taking advantage of
PIM. Despite the orders of magnitude speedup compared to
DRAM-based systems, TESSERACT generates excessive cross-
cube communications through SerDes links, whose bandwidth
is much less than the aggregated local bandwidth of HMCs.
Our investigation indicates that this is because of the restricted
data organization required by the vertex programming model.

In this paper, we argue that a PIM-based graph processing
system should take data organization as a first-order design
consideration. Following this principle, we propose GRAPHP,
a novel HMC-based software/hardware co-designed graph
processing system that drastically reduces communication
and energy consumption compared to TESSERACT. GRAPHP
features three key techniques. 1) “Source-cut” partitioning,
which fundamentally changes the cross-cube communication
from one remote put per cross-cube edge to one update per
replica. 2) “Two-phase Vertex Program’, a programming model
designed for the “source-cut” partitioning with two operations:
GenUpdate and ApplyUpdate. 3) Hierarchical communication
and overlapping, which further improves performance with
unique opportunities offered by the proposed partitioning and
programming model. We evaluate GRAPHP using a cycle
accurate simulator with 5 real-world graphs and 4 algorithms.
The results show that it provides on average 1.7 speedup and
89% energy saving compared to TESSERACT.

I. INTRODUCTION

Processing-In-Memory (PIM) is an effective technique
that reduces data movements by integrating processing
units within memory. While conceptually appealing, early
works [1], [2] only achieved limited success due to both
technology restrictions and lack of appropriate applications.
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However, with the recent advance of “big data” and 3D
stacking technology, both problems seem to become solv-
able.

On the application side, modern big data applications
operate on massive datasets with significant data movements,
posing great challenges to conventional computer architec-
ture. Among them, graph analytics [3], [4] in particular
received intensive research interests, because graphs nat-
urally capture relationships between data items and allow
data analysts to draw valuable insights from the patterns in
the data for a wide range of applications. However, graph
processing poses great challenges to memory systems. It
is well-known for the poor locality because of the random
accesses in traversing the neighborhood vertices, and high
memory bandwidth requirement, because the computations
on data accesses from memory are typically simple.

On the technology side, 3D integration [5] enables stack-
ing logic and memory chips together through TSV-based
interconnection, which provides high bandwidth with scala-
bility and energy-efficiency. One of the most prominent 3D-
stacked memory technologies is Micron’s Hybrid Memory
Cube (HMC) [6], which consists of a logic die stacked with
several DRAM dies. With this technology, it is possible
to build a system that consists of multiple HMCs, which
can provide /) high capacity of main memory that is large
enough for in-memory big data processing; and, more impor-
tantly, 2) memory-capacity-proportional bandwidth, which
is essential for applications with poor locality and high
memory bandwidth requirement.

As a result, due to the advances in both application
and technology, the research community and industry again
became increasingly interested in applying PIM to various
applications like machine learning [7], natural language
processing [8], [9], [10], social influence analysis [11], [12],
[13] and many others [14], [15]. Among these kinds of ap-
plications, PIM (e.g., HMC) is specially suitable for building
efficient architecture for graph processing frameworks.

TESSERACT [16] is a PIM-enabled parallel graph process-
ing architecture. It implements a Pregel-like vertex-centric
programming model [3] on top of the HMC architecture, so
that users could develop programs in the familiar interface
while taking advantage of PIM. The results show that
TESSERACT can be orders of magnitude faster than DRAM-



based in-memory graph processing systems.

Despite the promising results, TESSERACT generates ex-
cessive cross-cube communications through SerDes links,
whose bandwidth is much less than the aggregated local
bandwidth of HMCs. Such cross-cube communications de-
lay the executions in memory cubes, and eventually affect
HMC’s internal bandwidth utilization. In fact, the results in
[16] confirms this observation: the bandwidth utilization of
TESSERACT is usually less than 40%. Moreover, TESSER-
ACT adopts the Dragonfly topology to connect HMCs [6],
which provides higher connectivity and shorter diameter
than the simpler topology like mesh. However, Dragonfly
is still not fully symmetric, which means that the bandwidth
of certain critical cross-cube links may sustain much higher
throughput than the others, becoming bottlenecks that further
hampering TESSERACT’s performance.

Our investigation shows that this problem is due to a
missing consideration, — data organization, and the subop-
timal order in considering different aspects of the system.
To develop an efficient graph processing system, a careful
co-design of both the software and hardware components of
the systems is needed. Typically, we need to consider the
following four issues: /) programming model, which effects
the user programmability and algorithm expressiveness; 2)
runtime system, which maps programs to architecture; 3)
data organization, which determines the communication pat-
tern; and 4) architecture, which determines the efficiency of
execution; In TESSERACT, data organization aspect is not
treated as a primary concern and is subsequently determined
by the presumed programming model.

Specifically, TESSERACT follows the “vertex program”
programming model that first proposed by Pregel [3], where
a vertex function is defined for all vertices. This vertex
program takes the vertex’s value as parameter and updates
the outgoing neighbors, — the destinations of all outgoing
edges (potentially in different ways). If a vertex and all its
outgoing neighbors are in the same cube, the vertex function
is executed locally. Otherwise, the cross-cube messages are
incurred to remotely perform the reduce function. Let the
vertex be v and its k outgoing neighbors are {uy, us, ..., ug },
in TESSERACT, for any outgoing neighbor w; that is in a
different cube than v, a put message is sent from v’s cube
to u;’s cube, containing a reduce function and w;’s value
as the parameter. This message asks u;’s cube to perform
the reduce as a remote function. We see that, determined
by vertex program model, each cross-cube edge incurs a
cross-cube message, and hence the amount of cross-cube
communications is proportional to the number of cross-cube
edges.

In order to reduce this number, Junwhan et al. [16] have
tried to use METIS [17] to obtain a better partitioning for
TESSERACT, but the result is not that promising. Only very
small performance improvements are achieved for 3 out of
5 benchmarks tested; and the METIS-generated partitioning

even leads to worse performance for one of the rest two
benchmarks. Moreover, the complexity of METIS prohibits
its application in real-world large graphs.

To resolve the issue in the conventional design flow, we
argue that a PIM-based graph processing system should
take data organization as a first-order design consideration.
This principle is important because: /) data organization
affects cross-cube communication, workload balance, and
synchronization overhead, which directly translate into the
energy consumption; 2) if the programming model is decided
first, this fixed programming model may prohibit users from
using the optimal data partitioning method; 3) co-designing
data organization and interconnection structure can enable
extra opportunities and benefits such as broadcasting and
overlapping. Therefore, we propose a different order of
design consideration: one should first choose the proper
data organization with less communication, then design the
programming model based on it, finally, the architecture and
runtime optimizations could be applied to further improve
performance.

Following the above design principle, we propose
GRAPHP, a novel HMC-based software/hardware co-
designed graph processing system that drastically re-
duces communication and energy consumption compared to
TESSERACT. GRAPHP features three key techniques.

e “Source-cut” Partitioning. This algorithm ensures that
a vertex and all its incoming edges are assigned in the same
cube. As a result, if an edge (u, v) is assigned to cube ¢,
all the incoming edges of vertex v will also be assigned
to cube 7. But, at the same time, the source vertex u of
this edge may be assigned to other cubes. In such case,
for an edge with the source vertex in a remote cube, the
local cube maintains a replica of the source, which will
be synchronized with the master in remote cube in each
iteration. This mechanism fundamentally changes the cross-
cube communication from one remote put per cross-cube
edge to one update per replica. We show that it generates
strictly less communication compared to TESSERACT. More-
over, source-cut is a heuristic-based algorithm in which the
assignment of each edge can be processed independently.
As a result, the partitioning overhead is much less than
METIS [17].

e “Two-phase Vertex Program”, a programming model
designed for the “source-cut” partitioning with two opera-
tions: GenUpdate, which generates the vertex value update
based on all (local) incoming edges; and ApplyUpdate,
which applies the update to each vertex. The replica synchro-
nization is handled transparently by the software framework.
This model slightly trade-offs the expressiveness for less
communication. However, the real-world applications (e.g.,
pagerank) typically do not need the flexibility provided by
the general vertex program. We believe this model is suffi-
ciently expressive, in the worst case, it can be augmented to
express more general vertex function (see Section III-B).



e Hierarchical Communication and Overlapping. The
replica synchronization requires that the updates from master
to replicas are the same. This property enables the hierarchi-
cal communication which avoids sending the same messages
when possible, thus, reduces the communication amount in
certain bottleneck links between cubes. Moreover, two-phase
vertex program model naturally leads to an overlapping
mechanism, which can further hide the latency of cross-cube
communication.

According to our evaluation results, GRAPHP effectively
reduces the communication amount by 35% - 98% and
reaches 1.7x average, 3.9x maximum speedup and reduces
89% average, 96% maximum energy cost compared to
TESSERACT.

II. BACKGROUND AND MOTIVATION
A. Hybrid Memory Cube

Recently, 3D integration technology [5] is available to
enable Process-In-Memory (PIM) [18], we focus on Hybrid
Memory Cube (HMC) [6], which is one of the most promis-
ing implementations. Nevertheless, other alternatives, such
as JEDEC’s High Bandwidth Memory specification [19],
typically share similar principle as HMC, thus the proposed
techniques should also apply to them.

An HMC device (i.e., a cube) is a single chip stack that
consists of several memory dies/layers and a single logic
die/layer. Two kinds of bandwidth are defined: 1) Internal
bandwidth, which caps the maximum data transfer speed
between memory dies and the logic dies of a same cube;
and 2) External bandwidth, which is provided by a cube to
external devices (e.g., other cubes and the host processor).
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Figure 1. An Example Implementation of HMC.

Figure 1 depicts the architecture of a cube defined by
Hybrid Memory Cube Specification 2.1 [6]. Each cube
contains 32 vertical slices (called vaults), at most 4 multiple
serial links as the off-chip interface, and a crossbar network
that connects them. Each vault consists of a logic layer
and several memory layers, which can provide up to 256
MB of memory space (i.e., 8 GB space per cube). These
layers are connected through low-power Trough Silicon Via

(TSV). Since each TSV can provide up to 10 GB/s of
bandwidth, the maximum internal bandwidth of a cube is
32x10 = 320 GB/s. In contrast, if the default configuration
is used, each off-chip link will contain 16 input lanes and 16
output lanes for full duplex operation, which provide at most
480 GB/s external bandwidth (i.e., 120 GB/s per link).
Besides the capability of providing high density and band-
width, HMC also makes it possible to integrate computation
logics into its logical die/layer. In TESSERACT, a single-
issue, in-order core and a prefetcher are placed in the logic
die of each vault (i.e., 32 cores per cube). It is possible,
because the area of 32 ARM Cortex-AS processors including
an FPU (0.68 mm2 for each core [20]) corresponds to only
9.6% of the area of an 8 Gb DRAM die area (e.g., 226
mm?2 [21]). We use the same configuration in GRAPHP.

B. Interconnection

The key benefit that HMC can provide is memory-
capacity-proportional bandwidth, which is achieved by
using multiple HMCs. Typically, a system that contains
N HMCs can provide N x 8 GB memory space and
N % 320 GB/s aggregation internal bandwidth. However,
this aggregated bandwidth depends on the interconnection
network that connects these HMCs and host processors.

The straightforward design choice is “processor-centric
network”, which simply reuses the current NUMA architec-
ture and replaces traditional DIMMs with HMCs. Figure 2
(a) presents a typical system that has four processor sockets.
In this case, Intel QuickPath Interconnect (QPI) technology
is used to built a fully-connected interconnection network
among the processors, and each HMC is exclusively attached
to a particular processor (i.e., there isn’t a direct connection
between HMCs). Although this network organization is
simple and compatible with the current architecture, Kim
et al. [22] concludes that this processor-centric organization
does not fully utilize the additional opportunities offered by
multiple HMCs.

Since the routing/switching capacity can be supported
by HMC’s logic die, it is possible to use more sophis-
ticated topologies and connectivities that were infeasible
with traditional DIMM-based DRAM modules. To take
this opportunity, Kim et al. [22] proposes “memory-centric
network”, in which HMCs can directly connect to other
HMC:s and there is no direct connection between processors
(i.e., all processor channels are connected to HMCs and
not to any other processors). According to the evaluation,
the throughput of a memory-centric network can exceed the
throughput of a processor-centric network by up to 2.8x.

Moreover, Kim et al. [22] also evaluated various different
kinds of topologies to interconnect HMCs. Two of the most
prevalently used examples are presented in Figure 2 (b) and
Figure 2 (c). Among different topologies, Dragonfly [23] is
suggested as the favorable choice, because it /) has higher
connectivity and shorter diameter than simple topology
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like Mesh; 2) achieves a similar performance as the best
interconnection topology, named flattened butterfly [24], in
their evaluation of 16 HMCs; and 3) does not face the same
scalability problem as flattened butterfly.

In this paper, we will use the memory-centric network
and Dragonfly topology as suggested and used by previous
works [22]. However, the techniques proposed are not tightly
coupled with this particular architecture.

C. Bottleneck

Based on the HMC implementation discussed in Sec-
tion II-A, the maximum external bandwidth of a cube
(480 GB/s) is actually larger than its internal bandwidth
(320 GB/s). However, due to the limitation on the number
of pins, this external bandwidth does not scale with the
number of HMCs. Thus, the aggregation internal bandwidth
of a real system will largely surpass the available external
bandwidth.

Take the Dragonfly topology shown in Figure 2 (c) as an
example, it presents a typical HMC-based PIM system that
contains 16 HMCs. As we can see, since at most 4 off-chip
links are provided by a cube, it is impossible to achieve a
full-connection between the cubes. To be realizable, Dragon-
fly splits the total 16 HMCs into 4 groups and only achieves
the full connection within each group. In contrast, only one
link is provided for each pair of groups. As a result, the
bandwidth that caps cross-group communication is bounded
by the bandwidth of a link, which is only 120 GB/s. As a
comparison, the aggregation internal bandwidth of the entire
PIM system is 16 «+320 GB/s = 5.12 T B/s. It is why data
organization is extremely important for a HMC-based PIM
system and should be taken as the first-order consideration.
In TESSERACT, the simple partitioning strategy leads to
excessive cross-cube communications, which prohibits the
applications from fully utilizing the aggregation internal
bandwidth of HMC.

It is also notable that the load of different external links
are not equal. For example, if we assume that the amount of
communication is equal for each pair of two HMCs, each
of the cross-group link in the Dragonfly topology will need
to serve 4 * 4 = 16 pairs of HMCs communication (e.g., 4
HMCs in each group). As a comparison, the link between
HMC CO and HMC C1 only serves the communication
between (/) HMC CO and CI1 (1 pair) and (2) HMC CO
and the top-right HMC group (C2, C3, C6, C7) (4 pairs),
which is less than 1/3 of the 16 pairs formerly calculated.
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This implies that the links across groups can easily become
the bottleneck and should be particularly optimized.
Essentially, these bottleneck is rooted from the fact that
only limited external links are provided by each HMC,
which means that they cannot be simply avoided by using
other topologies. As an illustration, Figure 2 (b) presents
the Mesh topology. In this case, there are only four links
between HMC group (CO~C7) and HMC group (C8~C15),
so that each of them need to server 8 x 8/4 = 16 pairs of
HMCs’ communication, which is the same as the bottleneck
of the Dragonfly topology. Even worse, the number of these
bottleneck links is 8 in Mesh and only 6 in Dragonfly.

D. PIM-Based Accelerator

The current 3D-stacking based PIM technologies offer
great opportunities for graph analytics because: /) 3D-
stacking provides high density, which opens up the possibil-
ity of in-memory graph processing; 2) the memory-capacity-
proportional bandwidth is ideal for graph processing appli-
cations that lack temporal locality but require high memory
bandwidth; 3) various programming abstractions have been
proposed for graph processing to improve programmability,
for PIM-based accelerators, they can be naturally used to
hide architectural details.

1 count = 0;

2 do {

4 list_for (v: graph.vertices) {

5 value = 0.85 % v.pagerank / v.out_degree;

6 list_for (w: v.successors) {

7 arg = (w, value);

8 put(w.id, function(w, value) {

9 w.next_pagerank += value;

10 }, &arg, sizeof(arg), &w.next_pagerank);

13 barrier () ;

15 } whlle (diff > e &% ++count < max_iteration);
Figure 3.
TESSERACT is a 16-HMC system using Dragonfly
interconnection in Figure 2 (c). It provides users with
low level APIs which can conveniently be composed
to a programming model that similar to Pregel’s vertex
program. Figure 3 shows the PageRank computation using
TESSERACT’s programming interface, where the main
procedure is a simple two-level nested loop (i.e., ling 5
~ line 13). The outer loop iterates on all vertices in the
graph. For each vertex, the program iterates on all its
outgoing edges/neighbors in the inner loop and executes a
put function for each of them. The signature of this put

Pseudocode of PageRank in Tesseract.



function is put (id, void* func, voidx arg,
size_t arg_size, void* prefethc_addr). It
executes a remote function call func with argument arg
on the id-th HMC.

Specifically, for every vertex, the program first calcu-
lates the proper pagerank division based on the pagerank
sent to the vertex and out degree, the result is stored
in value (line 6). Then, a user-defined vertex function
is called for every outgoing edge to add value to the
corresponding destination vertex’s pagerank for the next
iteration (w.next_pagerank) (line 10). This function
is executed asynchronously and cross-cube communication
is incurred when the outgoing neighbor is in a different
cube. Finally, a barrier is applied to ensure that all
the updates performed by vertex functions in the current
iteration have been completed. It is easy to see that this API
is equivalent to Pregel’s [3] vertex program, which assures
the programmability of TESSERACT. For the cross-cube
remote function calls, blocking will lead to unacceptable
latency, therefore, TESSERACT implements them in a non-
blocking manner. A cube could also combine several remote
functions together to reduce the performance impact due to
interrupts on receiver cores.

Nevertheless, the optimization techniques in TESSERACT
are only used to hide cross-cube communication latency.
None of them can reduce the amount of cross-cube commu-
nication. Essentially, it is due to the inefficiency of TESSER-
ACT’s simple graph partitioning, which is constrained by
the vertex program model. Specifically, only edge-cut (i.e.,
the graph is partitioned in vertex granularity and a vertex
can only be assigned to one cube) can be used. The results
show that even the sophisticated METIS partitioner [17]
cannot improve performance much (in one case, even make
it worse). As another consequence, the bandwidth utilization
of TESSERACT is usually less than 40%.

III. GRAPHP ARCHITECTURE

In this section, we describe GRAPHP, a software/hardware
co-designed HMC-based architecture for graph processing.
First, we propose a new graph partitioning algorithm that
would drastically reduce cross-cube communication. Then,
a programming model is designed to match the partitioning
method. Finally, we discuss the optimization opportunities
offered by our approach, optimized broadcast and overlap-
ping, to further improve the performance.

A. Source-Cut Partitioning

Let us start with a detailed understanding of the graph
partition in TESSERACT through a matrix view. Consider
Figure 4 (a), A graph can be considered as a matrix, where
the rows and columns are corresponding to the source and
destination vertices. In TESSERACT, a graph is partitioned
among cubes, — each cube is assigned with a set of vertices
(i.e., vertex-centric partition), corresponding to a set of rows.

The edges are the non-zero elements in the matrix, denoted
as black dots. With the graph partitioned, the matrix could be
cut into grids, each of which contains edges from vertices
in cube ¢ to cube j. It is similar to the concept in Grid-
Graph [25]. With N cubes, the whole matrix is divided into
N? grids. The grids on the diagonal contain the local edges,
whose source and destination vertex are in the same cube.
As discussed earlier, each non-local edge incurs a cross-cube
communication in TESSERACT. They are essentially the
edges in the grey grids. Assume that edges distribute in the
graph uniformly, the amount of cross-cube communication
in one iteration is O(N(N — 1)%) = O(%UE‘D We
can see it is roughly the number of edges in the graph.

Next, we propose source-cut, in which a graph is parti-
tioned such that, when a vertex (e.g., v;) is assigned to a
cube (e.g., cube 1), all the incoming edges of v; are also
assigned to the same cube. The idea is shown in Figure 4
(b). Different from TESSERACT, the matrix is cut vertically,
— each cube is assigned with a set of columns, not rows.
To perform the essential operations in graph algorithm, —
propagating the value of the source vertex through an edge
to the destination, a replica (denoted as red e) is generated
if a cube only holds the edge and its destination vertex.
The masters (denoted as black e) are the vertices in a cube
that serve as the destination. With this data organization, the
column of v; corresponds to v;’s all incoming edges and
neighbors, therefore, v;’s update can be computed locally.
The sources of edges in a column can be masters (black e) or
replicas (o). Similar to earlier discussion, after the matrix is
divided into grids, the ones on the diagonal represent the
edges in a cube where both their source and destination
vertex are masters.

The communication in source-cut is caused by replica
synchronization, in which the value of master vertex is used
to update the replicas in all other cubes. In the matrix view, it
means that each master vertex in the diagonal grids updates
its replicas in other cubes in the same row. In Figure 4
(b), consider the master vertex v; in cube 0. In replica
synchronization, cube 0 needs to send v;’s value to both
cube 1 and cube 3, but not cube 2. Because cube 2 does not
have any edge from v;. Note that only one message is sent
from cube 0 to cube 1, even if there are three edges from v;
to different vertices in cube 1. This is the key property why
source-cut generates strictly less communication compared
to vertex-centric partition: in the same case, it will incur
three messages from cube 1 to cube 2 (refer to Figure 4
(a)). This property informally proves that: with the same
master-to-cube assignment, source-cut always generates less
or equal amount of communication compared to vertex-
centric partition.

In essence, source-cut generates one update per replica
while the graph partition for vertex program would incur
one put per cross-cube edge. It is illustrated in Figure 4
(c) in a graph view. Then, we can calculate the commu-
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nication amount of source-cut. We define the replication
factor, A, which includes both master and replicas. Then,
the communication amount due to replica synchronization
is O(N(A— 1)‘—]‘(,') = O((A —1)|V|). This is an estimation
as it assumes that each cube contains similar number of
vertices. The maximum value of A is (N — 1), therefore,
the maximum communication cost is O((N —1)|V|). Com-
paring it with the earlier calculated vertex-centric partition
estimation O(N (N — 1)|N£2|) = O((NN7_1)|E\), we see that
from the equations the communication amount of source-cut
is not strictly less than vertex-centric partition. We show that
there is no contradiction as follows.

For source-cut, to reach the maximum communication
O((N — 1)|V]), at least N*>(N — 1) edges are needed. In
particular, they are all in non-diagonal grids. For example,
assume N = 4,|V| = 16, and each cube contains 4 vertices,
we need at least 48 edges in the white grids in Figure 4
(b). Specifically, each grid contains 4 edges: from the 4
vertices corresponding to each row to any master vertex
in the column. In this way, 3 replica synchronizations are
needed for each row, with 16 rows, in total 48 cross-cube
communications. It is easy to see that, in vertex-centric
partition, the same amount of communication is incurred
as well, because the source and destination of each of the
48 edge are not in the same cube. However, if we put
|E| = 48, N =4 to O(%UZD, we would get only 36
communications. It is because the equation assumes that the
edges are uniformly distributed in all cubes, which is not
true in this case. Overall, this is an example that for certain
graph, source-cut can incur at most the same amount of
communication as vertex-centric partition.

The implementation of source-cut is much simpler than
the complex algorithm used in METIS [17]. One simple
implementation of source-cut is to define a hash function
hash (v) and assign an edge (u,v) to hash (v) %N,
where N is the number of HMCs (i.e., 16 in our system).
Note that, although source-cut ensures that all the incoming
edges of a vertex are assigned to the same HMC, it does not
provide any guarantee on the outgoing edges. As a result,
if an edge (u,v) is assigned to HMC 4, all the edges with
form (x,v) will also be assigned to HMC ¢, but some or
even all of the edges with form (u, *) are not assigned to
HMC <. In that case, we need to set up a replica of vertex

u in HMC i to store the newest value of vertex wu.

B. Two-Phase Vertex Program

Based on source-cut, we propose a new programming
model named “Two-Phase Vertex Program”, in which the
unit of data processing is the incoming edges in source-cut.
As discussed in Section I, the programming model and data
organization can interact with each other, therefore, a co-
design is required. Our “Two-phase Vertex Program” splits
a vertex program into two phases: /) Generate phase, where
all the incoming edges of a vertex and their corresponding
sources are read and used to generate an update for their
shared destination vertex; and 2) Apply phase, where the
update is applied to the corresponding vertex’s every replica.
Our new model is designed for source-cut. First, since each
vertex and all its incoming edges are in the same cube,
the Generate phase could be performed locally. Second, the
communication only happens before the Apply phase, which
provides “one update per replica”, instead of “one put per
cross-cube edge” in vertex-centric partition in TESSERACT.

Figure 5 shows a PageRank implementation that /) uses
the same set of APIs as TESSERACT; 2) is equivalent to the
implementation described in Figure 3; but 3) is programmed
in “Two-phase Vertex Program” model. As we can see, the
first loop iterates on all the replicas to calculate the proper
share given to each edge (by dividing new pagerank with
the outgoing degree of the corresponding vertex). In the
next two-level nested loop, the outer loop iterates on every
vertex. Then, for every vertex v, the program first iterates
all its incoming edges to calculate the new pagerank and
then broadcasts this new value to all its replicas. Due to
source-cut partition, all the computations during incoming-
edge iterations occur locally and hence do not incur any
communication.

While it is possible to express the operations of “Two-
phase Vertex Program” with TESSERACT’s AP, it is tedious
and the new model requires a number of internal data
structures that TESSERACT does not provide (e.g., the replica
list). Therefore, we propose our own APIs as the higher
level abstraction to enhance programmability. As shown in
Figure 6, users of GRAPHP only need to write two functions,
GenUpdate and ApplyUpdate, and all the other chores,
e.g., replica synchronization will be handled by our system.



list_for (r: graph.all_replicas) {
r.pagerank = r.next_pagerank;
r.value = 0.85 * r.pagerank / r.out_degree;

update = 0;
list_for (e: v.incoming_edges) {

1
2
3
4
5 list_for (v: graph.vertics) {
6
7
8 update += e.source.value;

10 list_for (r: v.replicas) {

11 put(r.id, function(r, arg) {

12 r.next_pagerank = arg

13 }, &update, sizeof (update), &e.
next_pagerank)

14 }

15 }

16 barrier ();
Figure 5. PageRank in Two-Phase Vertex Program.
Specifically, the input of GenUpdate function is the
incoming edges of a specific vertex and the output is the cor-
responding update. In contrast, the input of ApplyUpdate
function is the vertex property and the update generated
in this iteration. It does not have output. In each iteration,
GenUpdate function will be executed on every vertex once
and ApplyUpdate will be executed on every replica once.
One should note that both GenUpdate and ApplyUpdate
can be executed locally. The replica synchronization (i.e., the
broadcast of update to replicas) is transparently handled by
our software framework. In other words, the communication
pattern of our system is fixed. As we will see later in
Section III-C and Section III-D, this higher-level abstraction
not only ensures programmability but also provides the
flexibility to apply additional optimizations. Due to the fixed
communication pattern, it is possible to further optimize
the architecture to reduce cross-cube communication on the

bottleneck links.

1 GenUpdate (incoming_edges) {
2 update = 0;

}

9 ApplyUpdate (v, update) {
10 v.pagerank = update;
11 v.value = 0.85 % v.pagerank / v.out_degree;

23 Figure 6. Two-Phase Vertex Program.

To illustrate the effectiveness of source-cut and “Two-
Phase Vertex Program” model. Table I compares the amount
of cross-cube communication on three real-world graphs. For
every graph, we have tried three partitionings: /) Random,
which randomly assigns a vertex to an HMC; 2) METIS,
which takes advantage of the advanced partitioning applica-
tion METIS [17]; 3) Source-cut, which randomly assigns a
vertex and all its incoming edges to a cube. The first two are
vertex-centric partitions, which can be used in TESSERACT.
We report both the average and the maximum amount of
cross-cube communication for every case. We see that, when
Random is used, the skewness among all the 16 % 16 = 256
pairs of cross-cube communication is not large. In contrast,
although the advanced partitioner METIS can largely reduce
the average amount of cross-cube communication, it usually

3 list_for (e: incoming_edges) {
4 update += e.source.value;
5}

6 return update;

7

8

leads to excessive skewness (i.e., a large difference between
maximum and average communication). As a result, the
maximum amount of cross-cube communication produced
by METIS is sometimes much higher than Random. This
observation explains the reason why in TESSERACT’s evalu-
ation METIS does not improve the performance as expected.
Moreover, the cost of using METIS is huge: it not only takes
long time but also consumes large amount of memory. As
we note, the results of partitioning Twitter with METIS are
not given in the table. This is because the METIS program
failed for out of memory even when we use a machine with
1 TB memory.

For Source-cut, we assume that the argument size needed
for the remote function call is the same as the data size
of update generated by GenUpdate. From the results,
we see that Source-cut incurs only 18.8% to 39.9% of
communication compared with Random. Compared with
METIS, Source-cut incurs 55.9% communication on Orkut,
but it increases the communication on Livejournal graph by
54.4%. Note that it means source-cut must have a different
vertex-to-cube assignment than METIS, because otherwise
source-cut can be proven to generate less cross-cube com-
munication (see Section III-A). However, Source-cut has
much smaller maximum cross-cube communication: 68.4%
and 92.6% reduction compared to Random and METIS on
average, respectively. This leads to more balanced execution.
More importantly, the partitioning cost of METIS is much
higher than Source-cut.

Expressiveness of Two-Phase Vertex Program. Before
proposing further architecture optimizations, we compare
the expressiveness of the general vertex program and the
proposed Two-Phase Vertex Program. In Figure 7, con-
sider three vertices: {vy,v2} € HMC 0, {v3} € HMC
I; and two edges: (v1,vs3) and (vg,v3). In Two-Phase
Vertex Program, there are replicas of v; and vy in HMC
1, vs’s GenUpdate can generate the update based on
all v3’s incoming edges/neighbors. The restriction in Two-
phase Vertex Program model is that the GenUpdate has to
perform the same operation (e.g., defined as £ (vq,vs,...) for
all incoming edges/neighbors. In contrast, the general vertex
program semantically allows performing different operations
for each edge. For example, £1 (vy) and £2 (v2) and
then vs could reduce the two results and apply. However,
real-world applications (e.g., pagerank) do not need such
flexibility. In fact, the extra flexibility may do more harm
than good, — it may lead to many duplications (e.g., same
remote function is sent for all outgoing neighbors) that is
hard to be automatically removed. In contrast, Two-Phase
Vertex Program inherently avoids these duplications.

We believe our model is sufficiently expressive. More-
over, it is possible to express the general vertex program
with certain changes to the proposed model. Specifically,
the GenUpdate function can concatenate the list of in-
coming edges/neighbors, then in ApplyUpdate function,



Random METIS Source-cut
Average  Maximum Average Maximum Average Maximum
Orkut 457,754 470,959 187,532 843,270 107,206 109,706
LiveJournal | 269,506 289,519 79,224 352,341 107,789 115,594
Twitter 5735801 6374486 failed failed 1079390 1105802
Table 1

COMPARISON OF CROSS-CUBE COMMUNICATION.

different functions could be applied to different incoming
edges/neighbors. This change could perform the same com-
putations of general vertex program in Figure 7. The cost is
more complex function parameters and more memory space.
Overall, we believe our Two-Phase Vertex Program provides
an efficient mechanism to remove the redundant information
that is not required in most applications. We argue that
our approach is a sweet spot that balance the trade-off
between generalizability and communication/performance.

General Vertex Program

. . HMC 0 (HMC 1
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. . | T——®
Section II-B, since each @@l R
. vertex
HMC prOVIde Only 4 Two-Phase Vertex Program 41t replica
links, it is impossible to H1C 0 HC T _, crosscube |
. . v 1 ication |
achieve a full connection @ o) R s
between 16 HMCs. Due GenUpdatel) ‘
to the interconnection Figure 7.  Expressiveness of Two-
. . Phase Vertex Program.
topology, certain links

cross groups serve much

more cross-cube communication and could become the
bottlenecks. Specifically, the bottleneck links of Dragonfly
are the links between every pair of HMC groups. Each of
them needs to serve 16 pairs of HMCs communication.
As an illustration, Figure 9 presents: /) the average load
of inner-group links (e.g., link between CO and Cl);
and 2) the average load of cross-group links (e.g., link
between C5 and C10) for different graphs in GRAPHP.
We see that, although source-cut can significantly reduce
the communication load, it does not change the fact that
cross-group links serve much more communication than
inner-group links. As a result, these cross-group links
usually become the bottleneck and may potentially hinder
the performance and energy consumption.

C. Hierarchical Communication
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and Two-phase Vertex Program, - I '
where it is guaranteed that the
update sent to replicas of the

same vertex must be the same.
As a result, it is possible to sent

Group 3
Figure 8. Hierarchical Com-

munication

only one copy of the update for every HMC group, in
contrast of one copy per HMC.

Specifically, for every pair of HMC groups in the Dragon-
fly topology, we will build a broadcasting tree as illustration
by Figure 8. For a group, one HMC is selected as the
broker (e.g., HMC C5 and HMC C10 for group 0 and group
3 in the example) which is responsible for /) gathering
the needed update from its local group; 2) sending them
to the broker of the other group; and 3) scattering the
update inside a group as needed. As a simple example,
suppose hash (v_1) %16 = 0, the master of vy is at
HMC CO0, and C10, C11, and C14 contain v;’s replicas. In
the conventional point-to-point, the links between C5 and
C10 need transfer the duplicated updates three times. With
hierarchical communication, only one copy of the update
value is transferred with our broadcasting tree.

D. Overlapped Execution
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Figure 9. Averaged Communication. Inner Group Links v.s. Cross Group
Links

In an architecture with multiple HMCs, it is important
to hide the remote access latency of a cross-cube commu-
nication. To support this, TESSERACT uses non-blocking
communication, so that a local core can continue its ex-
ecution without waiting for the results. Moreover, since
the execution of non-blocking remote calls can be delayed,
it is possible to batch several such functions together so
that the core in the receiver cube is only interrupted once.
Otherwise, the performance will be significantly impacted
by the frequent context switches.

In GRAPHP, one option is to perform replica synchroniza-
tion at the end of each iteration, but it is also possible to over-
lap communications due to replica updates with the current
execution. The insights are the same as TESSERACT: when
a vertex finished the execution of GenUpdate, the cube
contains the master could start performing the broadcast of
the update immediately. The updates could be saved in the
local message queues and get processed in ApplyUpdate.



The replica updates could be stored in the receiver cube’s
message queue. When GenUpdate of all master vertices
are finished, a cube could process the earlier received replica
updates in batch. Therefore, only the executions due to
updates sent toward the end of an iteration may appear in
the critical path of execution.

While conceptually simple, one caveat needs to be con-
sidered to support the overlapped execution in GRAPHP.
Referring to Figure 4 (b), each cube has to follow the
“column-major order” so that the complete updates can be
generated continuously. It is because the whole column has
to be accessed to generate the update for a master vertex.
If “row-major order” is followed, we only generate the
“partial updates” for all master vertices before all edges are
processed. It means that the cube cannot send any updates
until the end of iteration, thus, the overlapped execution does
not apply.

On the other side, the choices of different orders may af-
fect performance due to locality. The “column-major order”
optimizes the write locality, since all edges in the same col-
umn incurs writes to the same vertex. However, it may incur
some non-sequential reads of the source vertices. The “row-
major order” optimizes the read locality, since the edges
from the same vertex are processed together. It is interesting
to investigate the interactions between locality and execution
overlapping. Our evaluation results in Section V-A provide
more insights to this trade-off.

To further improve the effectiveness of overlapping, sort-
ing the vertices by their incoming degree may be beneficial.
This means that the GenUpdate of the vertex is executed
with the smallest incoming degree first. This simple opti-
mization can make best use of the bandwidth. Due to text
limit, we will not go detail on the communication/execution
overlapping technique, and we leave it as an interesting
alternative that can be explored in the design space of
GRAPHP.

IV. EVALUATION METHODOLOGY

Simulation Configuration We simulate the HMC archi-
tecture by building an HMC simulator called hmc-zSim.
Specifically, we integrate an HMC interconnect component
into zSim [26], a fast and scalable simulator designed for
x86-64 multicores. We configure the simulator to have 16
HMC Cubes with each cube containing 32 in order cores.
Each core is configured to equip with a 64K, 4-way Set-
associative L1-D cache and 32K, 4-way Set-Associative L1-
I cache. We use 64 Byte cache line and 1000 MHz as
simulation frequency. The results are validated with [27].

Datasets Table II shows the graph dataset we use to eval-
uate GRAPHP. For each graph, we also show the replication
factor A. These data sets are retrieved from the Stanford
Large Network Dataset Collection (SNAP) [28] and are
representative of modern medium to large graphs, including
social networks from Twitter, Slashdot, and LiveJournal as

well as networks collected from other types of user activities,
like voting and co-purchasing.

Applications We implement four widely used applications
based on the two-phase vertex programming model, includ-
ing BFS(Breadth First Search), PageRank(An algorithm to
rank website pages), SSSP(Single Source Shortest Path) and
WCC(Weakly Connected Component).

Performance Evaluation Methodology In order to evalu-
ate the performance of GRAPHP, we run all the applications
against the graph dataset on top of hmc-zsim. For each run,
we get the cycle numbers of each core and the largest cycle
number among all cores is deemed as the cycle spent for
the entire run.

Energy Evaluation Methodology The energy consump-
tion of the HMC interconnect is estimated as two parts.
a) The dynamic consumption, which is proportional to the
number of flit transfer events that happen between each pair
of routers. b) the static consumption, which corresponds to
the energy cost when the interconnect is plugged in power
but in idle state (i.e., no transfer event happens). We use
hmc-zsim to count the number of transfer events and turn
to the router power/area modeling tool ORION 3.0 [33] to
estimate unit energy cost, i.e., the power, of the routers and
associating links in the interconnect. We also refer to McPAT
[34] and [35] to double check the power results to ensure
its correctness and reliability.

V. EVALUATION

A. Performance

As a first part of our evaluation, we first present the
overall performance of our system and compare it with the
TESSERACT-like system. Figure 10 and Figure 11 show our
results, which includes the speedup of source-cut algorithm
with and without the use of innner-group broadcasting (i.e,
hierarchical communication) and overlapping optimization
compared to the baseline.
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Figure 10. Performance of GRAPHP: 2DMesh
Our results show that GRAPHP (source-cut only) outper-
forms the TESSERACT-like system by an 1.7x on average
and 3.9x in maximum across all applications in our exper-
iment. We note that the inner-group broadcast optimization



Graphs #Vertices | #Edges A Note
Wiki-Vote (WV) 7.1K 104K 2.96 Wikipedia who-votes-on-whom network [29]
ego-Twitter (TT) 81K 2.4M 3.79 | Social circles from Twitter; Edges from all egonets combined. [30]
Soc-Slashdot0902 (SD) 82K 0.95M | 4.40 Slashdot social network from February 2009 [31]
Amazon0302 (AZ) 262K 1.2M 2.68 Amazon product co-purchasing network from March 2 2003 [32]
LiveJournal (LJ) 4.8M 6OM 4.18 LiveJournal online social network [31]

Table II
GRAPH DATASET
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Figure 11. Performance of GRAPHP: Dragonfly

only contributes to marginal performance improvement com-
pared with source-cut only. This is because communication
is not bottleneck for GRAPHP and the reduced communica-
tion amount will not affect performance.

The results of overlapping are somewhat disappointing
but interesting: in only one case (i.e., pagerank on WV), it
achieves best performance, in a few cases (e.g., bfs/wcc/sssp
on WYV), it achieves similar (but a little worse) speedups
compared to source-cut only (or with broadcast). Apparently,
it is due to the trade-off we discussed in Section III-D,
the different order of vertex/edge traversal leads to worse
locality that eventually hurts performance. We also see
that used with overlapping, broadcast always improves the
performance, but still not as good as without overlapping.

B. Cross Cube Communication

Figure 12 and Figure 13 show cross-cube communica-
tion amount of GRAPHP normalized to the TESSERACT
baseline. As we can see, source-cut only reduces 35% -
98% cross cube communications across all applications.
With the broadcast optimization, cross cube communication
is further reduced roughly 5/6 compared to the source-
cut only setting, which causes more than 90% reduction
compared to the TESSERACT baseline. We can also see that
inter-group and inner-group communications each accounts
for approximately half of total cross cube communications.
However, given the fact that there are far fewer inter-group
links compared to inner-cube links, the inter-group links
are still over-loaded and become the potential bottleneck as
reflected in Figure 9.

C. Bandwidth Utilization

As we have mentioned in Section III-C, the main reason of
our speedup is the reduction on cross-cube communication,
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Figure 13. Cross-Cube Communication: Dragonfly

especially the reduction on bottleneck links. To further
validate our argument, in this section, we present the data on
measured bandwidth utilization. Specifically, we evaluate the
utilization on /) aggregated internal bandwidth; 2) normal
inner-group cross-cube link; and 3) corss-group bottleneck
links. The first item is measured by calculating the division
between the total amount of local HMC read/write and the
total execution time. In contrast, the bandwidth on links is
calculated by the amount of communication divided by time.

Figure 14 and Figure 15 show the result of our evaluation
normalized to the TESSERACT baseline. As we can see
from these figures, the aggregated internal bandwidth of
each HMC of GRAPHP increases by from 1.1x to 46x.
Especially, for graph inputs TT, LJ and AZ, the internal
bandwidth utilization has increased by at least 5x. The
inner-group bandwidth and cross-group bandwidth are both
as expected: the source-cut algorithm enables an averaged
of 81% as well as maximum of 98% reduction in inner-
group link bandwidth. As for cross-group link bandwidth,
the source-cut algorithm also reaches 80%-average and 98 %-
maximum utilization reduction. Inner-group broadcasting
further reduces the inner-group and inter-group bandwidth



utilization to a marginal amount compared to the baseline.
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D. Scalability

Figure 16 and 17 evaluate the scalability of GRAPHP by
measuring the performance of 1/4/16-HMCs systems (i.e.,
32/128/512 cores), normalized to the performance of the 1-
HMC GRAPHP system. For all the applications, graph inputs
TT, LJ, AZ exhibit 2x-6x improvement for 4-HMCs and
2.5x-30x improvement for 16-HMCs. However, SD and WV
do not scale out as good as the other three graph inputs. The
actual reason for such behavior is still unclear. We conjecture
that it may be due to the these graphs’ inherent structures
themselves that hinder the computation from scale out. This
behavior suggests that graphs may need to be classified
properly so that each class of graphs can squeeze the HMC
resources. We leave the detailed investigation of this issue
as future work.
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Figure 17. Scalability of GRAPHP - DragonFly

E. Energy/Power Consumption Analysis

Figure 18 and Figure 19 demonstrate the energy consump-
tion of GRAPHP. Out of the four applications, source-cut
only setting of GRAPHP reduces energy cost by 30% to
95% while source-cut with inner-group broadcasting further
reduces energy cost for all the applications. For some graph
inputs like TT, LJ and AZ, the broadcasting optimization ac-
counts for more than 50% more energy reduction compared
with the naive source-cut algorithm.

E. Memory Overhead

Since GRAPHP replicates only vertices not edges, it only
increases the consumed memory from |V| x (vertexsize) +
|E|*(edgesize) to Ax|V|x(vertexsize)+|E|* (edgesize).

In a typical case that each vertex’s size is 4 bytes and each
edge’s size is 8 bytes, our technique only leads to (A —1)
4x|V|/(4]V ]+ 8|E|) additional memory. With this formula,
the calculated overhead for datasets [WV, TT, SD, AZ, LIJ]
are only [6.47%, 4.63%, 14.1%, 16.5%, 10.7%]. The average
overhead is only 10.4% and the largest is also smaller than
20%.

VI. RELATED WORK

Graph Processing Accelerators Mustafa er al. [36]
proposed an accelerator for asynchronous graph processing,
which features efficient hardware scheduling and depen-
dence tracking. To use the system, programmers have to un-
derstand its architecture and modify existing code. Graphi-
cionado [37] is a customized graph accelerator designed for
high performance and energy efficiency, based on off-chip
DRAM and on-chip eDRAM instead of PIM. Graphicionado
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Figure 19. Energy Consumption of GRAPHP: Dragonfly

uses specialized memory subsystem for higher bandwidth.
GraphPIM [38] demonstrates the performance benefits for
graph applications by using PIM for the atomic operations.
However, it does not focus on the inter-cube communica-
tions.

Large-Scale Graph Processing system There are many
distributed graph processing systems proposed by re-
searchers. Pregel [39] is the first distributed graph processing
system and proposes a vertex-centric programming model,
which is later inherited by many other graph processing
systems including TESSERACT [25], [40], [41], [42], [43],
[44], [45]. However, due to the problem of vertex-centric
programming model (e.g., the enforcing of 1D partition-
ing), many new kinds of partitioning algorithm and the
corresponding programming models (e.g., GAS proposed
by PowerGraph [40] and hybrid-cut proposed by Power-
Lyra [46]). Certain parts of GRAPHP are inspired by these
works, such as selective scheduling, removing the short sight
of a vertex [47], but we adapt them into a PIM architecture
and propose many more architecture-specific optimizations
(e.g., broadcasting, overlapping).

Besides distributed graph processing, there are also many
out-of-core graph processing systems that use disks. The key
principle of such systems is to keep only a small portion of
active graph data in memory and spill the remainder to disks.
Although it is reported that these works can sometimes com-
parable with distributed systems that have hundreds of cores,
it is also a well-known fact that all these works are bounded
by the bandwidth of disks. As a result, all these works focus
on how to enlarge the locality of disk I/O. In contrast, 3D
stacking technologies provide high density, which opens up

the possibility of in-memory big-data processing. Thus, the
most significant problem is changed from increasing locality
to reducing cross-cube communication in our work.

VII. CONCLUSION

This paper proposes GRAPHP, a novel HMC-based soft-
ware/hardware co-designed graph processing system that
drastically reduces communication and energy consumption
compared to TESSERACT. GRAPHP features three key tech-
niques. /) “Source-cut” partitioning, which fundamentally
changes the cross-cube communication from one remote put
per cross-cube edge to one update per replica. 2) “Two-phase
Vertex Program”, a programming model designed for the
“source-cut” partitioning with two operations: GenUpdate
and ApplyUpdate. 3) Hierarchical communication and over-
lapping, which further improves performance with unique
opportunities offered by the proposed partitioning and pro-
gramming model. We evaluate GRAPHP using a cycle ac-
curate simulator with 5 real-world graphs and 4 algorithms.
The results show that it provides on average 1.7 speedup
and 89% energy saving compared to TESSERACT.

ACKNOWLEDGMENT

This work is supported by the following grants:
NSF-CCF-1717754, NSF-CNS-1717984 and National
Key Research & Development Program of China

(2016YFB1000504), Natural Science Foundation of
China (61433008, 61373145, 61572280, U1435216,
61402198), National Basic Research (973) Program

of China (2014CB340402). Contact:
(zhangmx 12 @mails.tsinghua.edu.cn),
(wuyw @tsinghua.edu.cn).

Mingxing Zhang
Yongwei Wu

REFERENCES

[1] P. M. Kogge, S. C. Bass, J. B. Brockman, D. Z. Chen,
and E. Sha, “Pursuing a petaflop: point designs for 100 tf
computers using pim technologies,” in Frontiers of Massively
Parallel Computing, 1996. Proceedings Frontiers ’96., Sixth
Symposium on the, pp. 88-97, Oct 1996.

[2] P. M. Kogge, “Execube-a new architecture for scaleable
mpps,” in Proceedings of the 1994 International Conference
on Parallel Processing - Volume 01, ICPP ’94, (Washington,
DC, USA), pp. 77-84, IEEE Computer Society, 1994.

[3] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-
scale graph processing,” in Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data,
SIGMOD 10, (New York, NY, USA), pp. 135-146, ACM,
2010.

[4] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“Powergraph: Distributed graph-parallel computation on nat-
ural graphs,” in Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation, OSDI’12,
(Berkeley, CA, USA), pp. 17-30, USENIX Association, 2012.



(3]

(6]

(7]

8]

(91

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang,
G. H. Loh, D. McCaule, P. Morrow, D. W. Nelson, D. Pan-
tuso, et al., “Die stacking (3d) microarchitecture,” in 2006
39th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO’06), pp. 469—479, IEEE, 2006.

Hybrid Memory Cube Consortium, Hybrid Memory Cube
Specification 2.1. 2015.

W. Xiao, J. Xue, Y. Miao, Z. Li, C. Chen, M. Wu, W. Li, and
L. Zhou, “Tux?: Distributed Graph Computation for Machine
Learning,” in The 14th USENIX Symposium on Networked
Systems Design and Implementation, 2017.

A. Alexandrescu and K. Kirchhoff, “Data-driven graph con-
struction for semi-supervised graph-based learning in nlp.,”
in HLT-NAACL, pp. 204-211, 2007.

A. Goyal, H. Daumé III, and R. Guerra, “Fast large-scale
approximate graph construction for nlp,” in Proceedings of
the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language
Learning, pp. 1069-1080, Association for Computational
Linguistics, 2012.

T. Zesch and 1. Gurevych, “Analysis of the wikipedia category
graph for nlp applications,” in Proceedings of the TextGraphs-
2 Workshop (NAACL-HLT 2007), pp. 1-8, 2007.

W. M. Campbell, C. K. Dagli, and C. J. Weinstein, “Social
network analysis with content and graphs,” Lincoln Labora-
tory Journal, vol. 20, no. 1, pp. 61-81, 2013.

L. Tang and H. Liu, “Graph mining applications to social
network analysis,” in Managing and Mining Graph Data,
pp. 487-513, Springer, 2010.

T. Wang, Y. Chen, Z. Zhang, T. Xu, L. Jin, P. Hui, B. Deng,
and X. Li, “Understanding graph sampling algorithms for so-
cial network analysis,” in 2011 31st International Conference
on Distributed Computing Systems Workshops, pp. 123-128,
IEEE, 2011.

M. Gao and C. Kozyrakis, “HRL: Efficient and Flexible Re-
configurable Logic for Near-Data Processing,” in Proceeding
of the 22nd IEEE Symposium on High Performance Computer
Architecture (HPCA), Mar 2016.

M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis,
“TETRIS: Scalable and Efficient Neural Network Acceler-
ation with 3D Memory,” in Proceeding of the 22nd ACM
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), Apr
2017.

J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A
scalable processing-in-memory accelerator for parallel graph
processing,” in ACM SIGARCH Computer Architecture News,
vol. 43, pp. 105-117, ACM, 2015.

G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM Journal on
scientific Computing, vol. 20, no. 1, pp. 359-392, 1998.

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

G. H. Loh, N. Jayasena, M. Oskin, M. Nutter, D. Roberts,
M. Meswani, D. P. Zhang, and M. Ignatowski, “A processing
in memory taxonomy and a case for studying fixed-function
pim,” in Workshop on Near-Data Processing (WoNDP), 2013.

M. OConnor, “Highlights of the high-bandwidth memory
(hbm) standard,” in Memory Forum Workshop, 2014.

ARM, “ARM Cortex-AS5 Processor.” http://www.arm.com/
products/processors/cortex-a/cortex-aS.php.

M. Shevgoor, J.-S. Kim, N. Chatterjee, R. Balasubramonian,
A. Davis, and A. N. Udipi, “Quantifying the relationship
between the power delivery network and architectural policies
in a 3d-stacked memory device,” in Proceedings of the 46th
Annual IEEE/ACM International Symposium on Microarchi-
tecture, pp. 198-209, ACM, 2013.

G. Kim, J. Kim, J. H. Ahn, and J. Kim, “Memory-centric
system interconnect design with hybrid memory cubes,” in
Proceedings of the 22Nd International Conference on Par-
allel Architectures and Compilation Techniques, PACT 13,
(Piscataway, NJ, USA), pp. 145-156, IEEE Press, 2013.

J. Kim, W. Dally, S. Scott, and D. Abts, “Cost-efficient
dragonfly topology for large-scale systems,” IEEE micro,
vol. 29, no. 1, pp. 33-40, 2009.

J. Kim, W. J. Dally, and D. Abts, “Flattened butterfly: a
cost-efficient topology for high-radix networks,” in ACM
SIGARCH Computer Architecture News, vol. 35, pp. 126—
137, ACM, 2007.

X. Zhu, W. Han, and W. Chen, “Gridgraph: Large-scale graph
processing on a single machine using 2-level hierarchical
partitioning,” in 2015 USENIX Annual Technical Conference
(USENIX ATC 15), pp. 375-386, 2015.

D. Sanchez and C. Kozyrakis, ‘“Zsim: Fast and accurate
microarchitectural simulation of thousand-core systems,” in
Proceedings of the 40th Annual International Symposium on
Computer Architecture, ISCA 13, (New York, NY, USA),
pp. 475-486, ACM, 2013.

M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data
processing for in-memory analytics frameworks,” in 2015
International Conference on Parallel Architecture and Com-
pilation (PACT), pp. 113-124, IEEE, 2015.

J. Leskovec and A. Krevl, “SNAP Datasets: Stanford
large network dataset collection.” http://snap.stanford.edu/
data, June 2014.

J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Signed
networks in social media,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI
10, (New York, NY, USA), pp. 1361-1370, ACM, 2010.

J. McAuley and J. Leskovec, “Learning to discover social
circles in ego networks,” in Proceedings of the 25th Interna-
tional Conference on Neural Information Processing Systems,
NIPS’12, (USA), pp. 539-547, Curran Associates Inc., 2012.

J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney,
“Community structure in large networks: Natural cluster sizes
and the absence of large well-defined clusters,” Internet
Mathematics, vol. 6, no. 1, pp. 29-123, 2009.



(32]

(33]

[34]

(35]

(36]

(371

(38]

(39]

[40]

(41]

[42]

[43]

J. Leskovec, L. A. Adamic, and B. A. Huberman, “The
dynamics of viral marketing,” ACM Transactions on the Web
(TWEB), vol. 1, no. 1, p. 5, 2007.

A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, “Orion 2.0:
A power-area simulator for interconnection networks,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 20, no. 1, pp. 191-196, 2012.

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “McPAT: An Integrated Power,
Area, and Timing Modeling Framework for Multicore and
Manycore Architectures,” in MICRO 42: Proceedings of the
42nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture, pp. 469480, 2009.

P-A. Tsai, N. Beckmann, and D. Sanchez, “Jenga: Sotware-
defined cache hierarchies,” in Proceedings of the 44th Annual

International Symposium on Computer Architecture, pp. 652—
665, ACM, 2017.

M. M. Ozdal, S. Yesil, T. Kim, A. Ayupov, J. Greth, S. Burns,
and O. Ozturk, “Energy efficient architecture for graph
analytics accelerators,” in Computer Architecture (ISCA),
2016 ACM/IEEE 43rd Annual International Symposium on,
pp. 166-177, IEEE, 2016.

T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi,
“Graphicionado: A high-performance and energy-efficient ac-
celerator for graph analytics,” in Microarchitecture (MICRO),
2016 49th Annual IEEE/ACM International Symposium on,
pp. 1-13, IEEE, 2016.

L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim,
“Graphpim: Enabling instruction-level pim offloading in
graph computing frameworks,” in High Performance Com-
puter Architecture (HPCA), 2017 IEEE International Sympo-
sium on, pp. 457-468, 1EEE, 2017.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-
scale graph processing,” in Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data,
pp- 135-146, ACM, 2010.

J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“Powergraph: Distributed graph-parallel computation on nat-
ural graphs,” in Presented as part of the 10th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 12), pp. 17-30, 2012.

Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,
and J. M. Hellerstein, “Distributed graphlab: a framework for
machine learning and data mining in the cloud,” Proceedings
of the VLDB Endowment, vol. 5, no. 8, pp. 716727, 2012.

A. Roy, 1. Mihailovic, and W. Zwaenepoel, “X-stream: edge-
centric graph processing using streaming partitions,” in Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pp. 472-488, ACM, 2013.

S. Song, M. Li, X. Zheng, M. LeBeane, J. H. Ryoo, R. Panda,
A. Gerstlauer, and L. K. John, “Proxy-guided load balancing
of graph processing workloads on heterogeneous clusters,” in
2016 45th International Conference on Parallel Processing
(ICPP), pp. 77-86, Aug 2016.

[44]

[45]

[46]

[47]

S. Song, X. Zheng, A. Gerstlauer, and L. K. John, “Fine-
grained power analysis of emerging graph processing work-
loads for cloud operations management,” in 2016 IEEE Inter-
national Conference on Big Data (Big Data), pp. 2121-2126,
Dec 2016.

M. LeBeane, S. Song, R. Panda, J. H. Ryoo, and L. K.
John, “Data partitioning strategies for graph workloads on
heterogeneous clusters,” in SCI5: International Conference
for High Performance Computing, Networking, Storage and
Analysis, pp. 1-12, Nov 2015.

R. Chen, J. Shi, Y. Chen, and H. Chen, “Powerlyra: Dif-
ferentiated graph computation and partitioning on skewed
graphs,” in Proceedings of the Tenth European Conference
on Computer Systems, p. 1, ACM, 2015.

Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and
J. McPherson, “From think like a vertex to think like a graph,”
Proceedings of the VLDB Endowment, vol. 7, no. 3, pp. 193—
204, 2013.



