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Abstract—Many distributed graph processing frameworks have emerged for helping doing large scale data analysis for many
applications including social network and data mining. The existing frameworks usually focus on the system scalability without
consideration of local computing performance. We have observed two locality issues which greatly influence the local computing
performance in existing systems. One is the locality of the data associated with each vertex/edge. The data are often considered as a
logical undividable unit and put into continuous memory. However, it is quite common that for some computing steps, only some
portions of data (called as some properties) are needed. The current data layout incurs large amount of interleaved memory access.
The other issue is their execution engine applies computation at a granularity of vertex. Making optimization for the locality of source
vertex of each edge will often hurt the locality of target vertex or vice versa. We have built a distributed graph processing framework
called Photon to address the above issues. Photon employs Property View to store the same type of property for all vertices and edges
together. This will improve the locality while doing computation with a portion of properties. Photon also employs an edge-centric
execution engine with Hilbert-Order that improve the locality during computation. We have evaluated Photon with 5 graph applications
using 5 real-world graphs and compared it with 4 existing systems. The results show that Property View and edge-centric execution
design improve graph processing by 2.4X.

Index Terms—Graph Processing, Distributed System, Property Graph.

F

1 INTRODUCTION

G RAPH processing has been increasingly popular in
many areas, such as graph structure analytics, social

network analytics, and recommendation systems. There
have emerged many distributed graph processing frame-
works, such as Pregel [1], PowerGraph [2], GraphX [3],
PowerLyra [4]. They can handle graph data with extremely
large size and scale well on commercial clusters.

Although scalability is important for distributed graph
frameworks, the existing systems failed to provide a high
local computing performance. If the performance of each
server can be deeply exploited, we can achieve the same
performance with less servers. With the development of
network technologies, the network bandwidth has already
reached Gigabytes (10Gbps) per second [5]. In high per-
formance network, the ratio of time spent on computation
is larger than that of relative lower performance network
like Gbps Ethernet. Thus, the performance of single server
will greatly influence the overall performance. The locality
issues are critical factors affecting the single server perfor-
mance.

Better data locality is beneficial for improving cache
efficiency. As to graph, there are two kinds of data: data
associated with vertex/edge(property) and the graph struc-
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Fig. 1. Vertex View and Property View of Data Organization

ture. So the locality of graph processing is related to the
locality of properties and the locality of graph structure.

There are may graph algorithms that have many proper-
ties defined on vertex or edge, such as TrustRank [6], SVDPP
[7], Topic Sensitive PageRank [8], GeMV [9], AdPredictor
[10], etc. Property locality refers to the locality of static data
organization. It is apparent that we should store data contin-
uously if they are accessed continuously. To this end, exist-
ing systems always store the properties of a(n) vertex/edge
continuously, as they assumed that all the properties of a(n)
vertex/edge will be accessed as an indivisible unit. We de-
note it as Vertex View property organization. However, this
assumption is not true for many real-world cases. Taking
TrustRank as an example. There are two properties defined
for each vertex, one is the rank property that denotes the
final rank of this vertex (webpage), and the other is the score
property which represents the importance of this vertex.
During one computation phase of TrustRank, both of these
properties are accessed. However, for the other phase, only
the rank property is accessed. As the result, Vertex View
would introduce interleaved memory access. It will result
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in low cache efficiency due to the increased TLB misses and
unnecessary data cache loads.

We propose Property View to organize vertex data.
It stores each property separately. As Figure 1 shows, in
traditional frameworks, score and rank properties, are stored
together for each vertex. In contract, with Property View,
they are stored separately. Property score of all vertices
are packed together and so do all property rank. Thus,
interleaved memory access can be avoided when only rank
or only score is needed during computation.

As for graph locality, we mean the graph traverse order.
To apply user defined function to the whole graph, a graph
processing framework needs to traverse over all the vertices
and edges. If access sequence is ordered properly, cache
efficiency can be improved due to the reuse of vertex’s data
that has already loaded into cache. For a graph framework,
execution engine controls the graph traverse order. Current
distributed graph frameworks usually adopt the vertex-
centric execution engine, where computation are applied at
vertex granularity. It usually has better locality for vertices
on one side of an edge and poor locality for vertices on the
other side.

We propose an Edge-centric Execution Engine to im-
prove the graph locality. The computation is applied at an
edge granularity. Execution engine iterate over edges and
access vertex data on both sides of every edge. Properly
ordering the edges can achieve better locality for all vertices.
Applying Hilbert Order to all edges is good for locality,
but with the cost of sacrificing overlapping computation
and communication. Photon’s engine employed a striping
strategy to achieve both better locality and overlapping.

Based on the above techniques, in this paper, we first
make a comprehensive analysis of the locality and cache
efficiency of Vertex View and traditional vertex-centric exe-
cution engine. Then, we present Photon, a new distributed
graph processing framework that exploits cache to improve
performance. It employs both the Property View design and
edge-centric execution engine. The evaluations have shown
that Photon outperforms state-of-the-art graph processing
system 4X on average on real-world graphs for graph an-
alytics and MLDM (Machine Learning and Data Mining)
applications.

In summary, Photon aims to improve the locality of
graph processing. It makes the following contributions:

1) We propose Property View data organization to max-
imize property locality of graph processing. It stores each
property of vertex/edge data separately. With this design,
interleaved memory accessed is avoided.

2) We propose edge-centric execution engine to improve
graph locality. It also overlaps computation and commu-
nication in a distributed environment. This edge-centric
design enabled edge ordering. Hilbert Order is adopted to
achieve better locality for both source and target vertices of
an edge.

3) We have done comprehensive evaluations to demon-
strate the performance improvements of Photon.

2 BACKGROUND AND MOTIVATION

In this section, we first explain Vertex View property or-
ganization and vertex-centrix execution along with their

Gather(Dv, Du):
return Du.rank / Du.degree

Acc(a,b) :
return a+b;

Apply(Dv, acc) :
Dv.rank = 0.85 * acc + 0.15 * Dv.score

Scatter(Dv, Du):
if(!converged(Dv))

activate(u)

Fig. 2. Sample Code of TrustRank on PowerGraph

locality issues. Then, we illustrate why prior distributed
graph frameworks fall short.

2.1 Property Graph and Vertex Data Organization

In almost all the graph processing systems, the graph data
is modeled and represented by property graphs, where
there can be arbitrary number of user-defined properties
associated with each vertex or edge.

Vertex View is widely adopted in vertex-centric graph
frameworks such as Pregel, GraphLab, PowerGraph, and
PowerLyra. In these systems, all the property data are stored
in a collection of vertex data and each vertex data contains
many kinds of property data. Vertex View is a natural way to
express property data. However, for applications that only
access part of these properties, Vertex View may lead to
unsatisfactory cache performance.

Here we take TrustRank as an illustration of the dis-
advantages of Vertex View. TrustRank is a variation of
PageRank and is widely used for identifying spam web
pages. It recursively defines the rank of a webpage as Equa-
tion 1 shows. There are two properties for TrustRank, rank
and score. Ri and Scorei denote the rank and static score
of vertex i, respectively. Scorei will not change between
iterations. α is a constant value named decay factor. Degreei
denotes the out degree of vertex i.

Rj = (1− α)Scorej + α
∑

(i,j)∈G

Ri / Degreei (1)

GAS [11] is one of the programming models that takes
Vertex View data organization. It has three computation
stages, namely “Gather”, “Apply“ and “Scatter”. Figure
2 shows TrustRank algorithm expressed by GAS. During
Gather phase, each vertex reads data on neighbor vertices
and edges with user defined Gather function. Gathered data
can be accumulated by user-defined accumulate function
Acc. In Apply phase, each vertex updates its states by
executing function Apply with the data collected in Gather
phase. At last, each vertex can send message or activate
neighbor vertices in Scatter phase. As we can see, for
TrustRank, only the rank property is needed during Gather
phase, and at the Apply phase, all properties will be ac-
cessed. Interleaved memory access will be introduced by
Vertex View data organization in Gather phase. However,
the underlying CPU architecture is best suitable for access-
ing memory sequentially and successively.

We also tested the impact of interleaved memory access.
The results show that the bandwidth of it is about 2X to 4X
lesser than that of successive memory access. This is because
memory are accessed in a cache-line granularity. If data size
can not fill the whole cache line, interleaved access would
generate a lot of extra cache line reads and TLB misses.



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2652465, IEEE
Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

for u in all vertices :
for v in neighbors of u :

compute with vertex[u], vertex[v], edge[u][v]

(a) Vertex Centric Execution

for (u,v) in all edges :
compute with vertex[u], vertex[v], edge[u][v]

(b) Edge Centric Execution

Fig. 3. Vertex-centric vs Edge-centric Execution

Vertex View data organization will result in a nonoptimal
property locality, since it can lead to interleaved memory
access.

2.2 Vertex-Centric Execution

In graph processing, each vertex needs to access its neighbor
vertices’ data to update its own state. Current distributed
graph frameworks usually adopt a vertex-centric execution
as Figure 3a shows. Computation is applied at vertex gran-
ularity. During the processing, it first iterate over all the
vertices, then for each of them, iterate over all of its neighbor
vertices. Vertices in the first loop are usually sorted, i.e.
they are accessed sequentially. However, the vertices in the
second loop are accessed in a random way.

As we can see, vertex-centric execution achieves best
locality for vertices in one side of an edge(i.e. vertices in first
loop) and poor for the other(i.e. vertices in second loop).

2.3 Existing Systems and Issues

Many existing graph processing systems provide expressive
programming interface and are able to deal with very large
graphs. However, these systems have not addressed the
importance of cache efficiency. Cache efficiency is greatly
affected by locality. In the case of property locality, they
usually take Vertex View to organize graph data. In the case
of graph locality, they adopt vertex-centric execution engine.
In this section, we first give a brief introduce of existing
distributed graph processing systems. Then illustrate the
issues with them.

Pregel [1] and its various open source relatives [12],
[13], [14], employs “think like a vertex” philosophy and fol-
lows Bulk Synchronous Parallel (BSP) computation model.
Computation is encoded in the form of user-defined update
functions. Vertices communicate directly with one another
by sending messages. Combiner can be used to reduce the
message size sent to the same vertex.

GraphLab & PowerGraph also takes “think like a ver-
tex” philosophy. GraphLab encodes computation into up-
date functions, and for PowerGraph, the update function is
decoupled into Gather, Apply and Scatter functions. Users
can associate arbitrary data with each vertex or edge in
the graph. Those data are organized with Vertex View.
Different from Pregel, Graphlab and PowerGraph leverage
distributed object as the underlying layer that will replicate
vertex data (the replicated vertices are called mirror vertices)
across machines. For Graphlab, communication between
vertices is implemented by reading mirror vertices and
syncing master vertices to mirrors.

PowerLyra is a graph processing engine based on Pow-
erGraph. It is specially designed for natural graphs with

skewed distribution. To reduce communication cost, it pro-
poses a balanced p-way hybrid-cut algorithm that apply edge-
cut to low-degree vertices and vertex-cut to high-degree
vertices. The result shows that it can reduce the network
data transfer considerably.

GraphX is a graph processing framework built on top
of Apache Spark. It translates graph operators into dataflow
operators such as Join, Map, and Group-by. GraphX adopts
the vertex replication to reduce network data transfer and
uses a vertex-cut partition to load balance between machines
for skewed graphs. Graph data are wrapped by RDD (Re-
silient Distributed Dataset), and they naturally inherit the
fault tolerance of RDD.

CombBLAS is a distributed in-memory graph process-
ing framework. Since graph can be regarded as sparse
matrix and data on vertices can be regarded as vectors/ma-
trices, CombBLAS leverages matrix-vector/matrix-matrix
operations to do graph processing. It has a better computing
backend due to the linear algebra primitives.

However, Pregel’s open source relatives and GraphX rely
on the JVM (Java Virtual Machine) runtime, which makes
them hard to give system designer the chance of CPU
cache-level optimizations. In the case of vertex data orga-
nization, Pregel, GraphLab, PowerGraph, and PowerLyra,
all takes the Vertex View to organize properties. GraphX
and CombBLAS do not address the importance of property
organization. In the case of execution, all these systems takes
the vertex-centric execution.

3 PHOTON PROGRAMMING ABSTRACTION

Photon embraces both Property View and Edge-Centric
Execution Engine to improve the locality of graph pro-
cessing. In this section, we introduce Photon programming
abstraction. The programming APIs include the abstraction
for graph data as well as the operators. We will use a com-
prehensive example to show how to use the programming
abstraction of Photon.

3.1 Photon Data Model
In Photon data model, graph data is represented by graph
structure and data on vertices and edges. Graph structure
maintains the connectivity of vertices. Each data on vertex
and edge may hold many user-defined properties. With
the decoupled abstraction of graph data, different type of
property data can share the same graph structure. There are
four data types in Photon, namely Graph, Property Array,
Property Collection, Triplet.

Photon provides Graph (G) to represent the graph struc-
ture. G is a distributed data structure, each machine stores
a subgraph structure and maintains the connection between
others. Vertex/edge properties are co-located with the cor-
responding subgraph structure. The physical layout of data
structure G will be discussed in § 4.1.

Photon introduces Property Array (PA) to abstract prop-
erty data on vertices and edges. Property array takes Prop-
erty View to organize vertex/edge data. For each property
array, it holds a unique type of property for all the vertices
or edges. It is a distributed array data structure that each
machine stores a partition. In each partition, its elements are
organized in dense array format.
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For applications that deal with many properties, there
may be many property arrays. For the ease of programming,
Photon provides Property Collection (PC) which packs
multiple property arrays together. It is only a wrapper of
multiple property arrays and also keeps property view.
Property arrays in one property collection should either be
vertex properties or edge properties.

Photon provides another abstraction called Triplet
(T ). It has the form of 〈PCsrc, PCedge, PCdst〉, where
PCsrc, PCedge, PCdst denote the property collection for
source vertex, edge, and target vertex, respectively. Each
element of Triplet represent an edge with its source vertex
and target vertex and the properties associated with them.

3.2 Photon Operators
Photon provides two key operators for graph processing,
namely MAP and MRTRIPLET.

MAP(G :graph,
A :PAType,
F :(PAType) 7→ void)

For graph G, operator MAP applies the function F to
all elements in property array A. F is the user-defined
function that takes data type of elements in A as input.
Since elements of one property array are partitioned over
machines, each machine only applies F to its local partition
of A. This operator will not introduce any network traffic.

MRTRIPLET(G :graph,
T :triplet,

Fmap :(TripletType) 7→ (SrcMsgType, DstMsgType),
Fsrccmb :(SrcMsgType, SrcMsgType) 7→ SrcMsgType,
Fdstcmb :(DstMsgType, DstMsgType) 7→ DstMsgType,
Fsrcred :(SrcMsgType, SrcPCType) 7→ SrcPCType,
Fdstred :(DstMsgType, DstPCType) 7→ DstPCType)

MRTRIPLET operator works on the given graph G
and user-defined triplet T . SrcMsgType and DstMsgType
denotes the type of message for source and target vertices.
SrcPCType and DstPCType denote the property collec-
tion type of PCsrc and PCdst of triplet T .

There are three stages for operator MRTRIPLET, namely
map, combine and reduce. Firstly, it applies the user-
defined map function Fmap on the given Triplet T and
generates message for PCsrc and PCdst of T . Then, the
messages send to the same vertices can be combined by
the given combine function. Fsrccmb and Fdstcmb denote
the combine function for messages of SrcMsgType and
DstMsgType. At last, each property collection updates its
status with these messages by the given reduce function.
Fsrcred and Fdstred denote the reduce function for PCsrc

and PCdst. For applications that their source vertices do
not need to receive message, Fsrccmb and Fsrcred can leave
undefined. This operator works on both normal graphs and
bipartite graphs.

3.3 Programming Example
The TrustRank algorithm implemented with Photon op-
erators is as Figure 4 shows. We use the symbol “<”

// Define property array
PA_rank = new PA(double);
PA_score = new PA(double);
PA_deg = new PA(int64);
PA_ctb = new PA(double);
// Define property collection
PC_v = new PC(PA_rank, PA_deg, PA_ctb);
PC_src = new PC(PA_ctb);
PC_dst= new PC(PA_rank, PA_score);
// Define Triplet
T = new Triplet(PC_src, NONE, PC_dst);
// User defined functions.
def gen_contrib(<contrib, rank, deg>) :

contrib = rank / deg

def map(<contrib>, <NONE>, <rank, score>):
return <NONE>, <ctb>

def cmb(<msg1>, <msg2>) :
msg = msg1 + msg2
return <msg>

def red(<msg>, <rank, score>) :
rank = 0.85 * msg + 0.15 * score
return <rank, score>

// Main iteration
for(iter = 0; iter < niters; iter ++) {

MAP(gen_contrib, PCv)
MRTRIPLET(G, T, map, NONE, cmb, NONE, red)

}

Fig. 4. Sample Code of TrustRank with Photon Operators

and “>” to mark the data members of a property col-
lection. For TrustRank, there is no property defined on
edges. The PCedge of triplet T is marked as “NONE”.
rank, deg, score, contrib are used to denotes the rank prop-
erty, degree property, score property, and intermediate data.

In our implementation, MAP operation is used to gen-
erate intermediate data called contrib. Then, execute the
MRTRIPLET operation on the given triplet. Since there is
no message send to source vertex of an edge, the generated
message for source vertex is marked with NONE. Messages
to the same vertex are combined by the given cmb function.
When one message is received, it is used to update the ver-
tex’s rank by the red function. The combine function Fsrccmb

and reduce function Fsrcred are marked as “NONE”, since
source vertex of an edge does not receive messages.

4 THE PHOTON GRAPH PROCESSING SYSTEM

Photon’s design aims to improve the locality of graph pro-
cessing from two aspects : property locality and graph lo-
cality. Photon employs a locality oriented distributed graph
store, which maximizes the property locality. For graph
locality, Photon adopts an edge-centric execution engine,
where data are accessed at a fine-grained order. Photon’s
architecture is as Figure 5 shows.

4.1 Locality Oriented Distributed Graph Store
Photon’s design of graph structure store improves locality
from two aspects. On the one hand, the decoupled design
of graph structure and property data may reduce inter-
leaved data access. For MAP operator, graph structure is
not needed at computation. If graph structure and property
data stored as a whole and graph structure is not accessed,
it will introduce a lot of interleaved memory access. On



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2652465, IEEE
Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Graph
Structure 

Store

Vertex 
Property 

Store

…
Edge 

Property 
Store

messageEdge-centric
Execution

Engine

thread pool work queue

Fig. 5. Overview of Photon Architecture

3

u

v m
2

1

0

0 1 2 3

(a) Hilbert Curve

transfer chunk

…

strip

…

M

U

V

comp. square

interval

in
te

rv
al

(b) Graph Striping

Fig. 6. Hilbert Curve and Graph Striping
the other hand, Photon uses compact data structures to
represent graph structure and the mappings between sub-
graphs. Graph structure is stored as an array of edges in the
form of 〈V IDsrc, V IDdst〉. V ID denotes the vertex id of
local graph partition, which is only valid at local domain.
Since Photon adopts edge-cut [2] to partition graph into
subgraphs, one vertex may have different V ID at different
subgraphs. A local V ID to remote V ID mapping is needed
for data transfer. Photon represents this mapping with dense
array.

Photon’s property store employs Property View to or-
ganize property data defined on vertices and edges. Each
kind of property data is arranged in corresponding Property
Array. Data in Property Array are also stored as dense
arrays, each element is with the form of 〈D〉, where D
denotes the property data type. Elements in that dense array
are indexed by local vertex id V ID.

4.2 Edge-Centric Execution Engine
To improve graph locality, Photon has specially designed
an edge-centric execution engine. It follows an edge-centric
execution as Figure 3b shows. Computation is applied at
edge granularity. It iterates over all the edges and then apply
computation over data associated with this edge. Edges are
sorted in Hilbert Order. With this design, the locality of both
sides vertices of an edge can be taken into account. And as
a distributed graph processing system, it overlaps computa-
tion and communication to hide the communication latency.

4.2.1 Hilbert Order and Challenges
Graph and matrix are equivalent and they can be repre-
sented by each other. Edges in a graph can be regarded as

the elements of matrix in the form of 〈row id, column id〉.
Source and target vertex of an edge can be considered as
row and column of an elements in matrix, respectively.
Thus, iterate over edges is equivalent to matrix traverse.
Hilbert Order is widely used in matrix traverse because
its locality-preserving property. The traverse sequence of
elements in Hilbert Curve [15] is Hilbert Order. Figure 6a
shows an example of Hilbert Curve within 4 × 4 matrix.
From the view of a matrix, graph traverse with vertex
ordering is equivalent to matrix traverse with row order
or column order. Since Hilbert Order has proven [16] has
better locality-preserving behavior than other orders, it can
be used to order edges of the graph to improve the graph
locality.

Unfortunately, due to one vertex’s neighbor vertices are
not adjacent in Hilbert Order, if it applied to the whole
graph directly, computation and communication can not be
overlapped. We take the Hilbert Order of Figure 6a shows as
an example. v and u can be considered as source vertices and
target vertices. When processed the first four edges (lower
left quarter of m), data for u0 and u1 are updated but they
can not be transmitted, because these value will also be used
for the next four edges (upper left quarter of m).

4.2.2 Engine Implementation

Photon’s edge-centric execution engine embraces the bene-
fits of both Hilbert Order and overlapping by employing a
striping strategy.

Graph Striping: Since graph is equivalent to matrix,
for the ease of understanding, we illustrate striping strat-
egy from the matrix view. Triplet in graph view can be
considered as 〈PCrow, PCm, PCcol〉 in matrix view, where
PCrow, PCcol and PCm denotes the property collection
associated with row, column and matrix elements. Photon
first cuts columns of M into intervals, as Figure 6b shows.
Each interval has the same size and contains a range of
continuous elements ordered by its column id. M can be cut
into stripes by assigning elements whose column id belongs
to the same interval. Each stripe has one corresponding
column interval. Think about performing the MRTRIPLET
operator on property collections associated with row set
V, column set U and matrix M. Matrix M is cut into a set
of stripes mi (0 ≤ i < n, where n denotes the number
of stripes). U can also be cut into small units ui which
associated with the interval i. Our engine executes user-
defined functions stripe by stripe. When the data of ui is
ready, the results can be transmitted immediately. Alterna-
tively, when the data of ui which sent from other machines
arrived, the computation can get executed immediately.
Through this way, the computation and communication can
be overlapped.

Computation Squares. Each computation square is an
|I| × |I| square matrix, where |I| denotes the interval
size. Thus each stripe contains many computations squares.
Hilbert Order is applied on the non-zero elements in each
computation square.

With the stripped design of Photon’s execution engine,
locality can be held inside each computation square and
overlapping of computation and communication can be
achieved among stripes.



0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2652465, IEEE
Transactions on Computers

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

8 16 32 64 128
# of workers

PageRank(Live)

100

101

102

103

O
v
e
ra

ll 
R

u
n
ti

m
e
(s

e
co

n
d
)

8 16 32 64 128
# of workers

PageRank(Twitter)

102

103

104

105

O
v
e
ra

ll 
R

u
n
ti

m
e
(s

e
co

n
d
)

8 16 32 64 128
# of workers

PageRank(UK2007)

102

103

104

105

106

O
v
e
ra

ll 
R

u
n
ti

m
e
(s

e
co

n
d
)

8 16 32 64 128
# of workers

TrustRank(Live)

100

101

102

103

O
v
e
ra

ll 
R

u
n
ti

m
e
(s

e
co

n
d
)

8 16 32 64 128
# of workers

TrustRank(Twitter)

102

103

104

105

O
v
e
ra

ll 
R

u
n
ti

m
e
(s

e
co

n
d
)

8 16 32 64 128
# of workers

TrustRank(UK2007)

102

103

104

105

106

O
v
e
ra

ll 
R

u
n
ti

m
e
(s

e
co

n
d
)

8 16 32 64 128
# of workers

ALS(d=8)(Netflix)

101

102

103

104

O
v
e
ra

ll 
R

u
n
ti

m
e
(s

e
co

n
d
)

8 16 32 64 128
# of workers

ALS(d=8)(Yahoo)

102

103

104

105

O
v
e
ra

ll 
R

u
n
ti

m
e
(s

e
co

n
d
)

8 16 32 64 128
# of workers

SGD(d=8)(Netflix)

101

102

103

O
v
e
ra

ll 
R

u
n
ti

m
e
(s

e
co

n
d
)

8 16 32 64 128
# of workers

SGD(d=8)(Yahoo)

101

102

103

104

O
v
e
ra

ll 
R

u
n
ti

m
e
(s

e
co

n
d
)

8 16 32 64 128
# of workers

SVDPP(d=8)(Netflix)

101

102

103

104

O
v
e
ra

ll 
R

u
n
ti

m
e
(s

e
co

n
d
)

8 16 32 64 128
# of workers

SVDPP(d=8)(Yahoo)

102

103

104

105

O
v
e
ra

ll 
R

u
n
ti

m
e
(s

e
co

n
d
)

Photon PowerLyra PowerGraph GraphX CombBLAS

Fig. 7. Overall runtime(includes preprocessing time) comparison of Photon, PowerGraph, PowerLyra, GraphX, and CombBLAS. Each algorithm run
for 50 iterations. X-axis denotes the number of workers, and y-axis is the execution time in seconds in log scale.

TABLE 1
A Collection of Real World Graphs

Graph |V | |E| Pre-Time(s) Sort-Time(s)
LiveJournal [17] 4.85M 69.0M 7.95 0.33

Twitter [18] 42M 1.5B 210.62 7.11
UK-2007 [19] 105.9M 3.7B 313.59 14.34
Netflix [20] 0.5M 100M 15.50 0.92

YahooMusic [21] 1.9M 717M 43.58 7.23

5 EVALUATION

In this chapter, we present the detailed evaluation results
to support our design choices. Also, we compare our sys-
tem with state of the art graph processing frameworks to
demonstrate the efficiency of Photon.

We first introduce the experiment setup. Then, the rest
sections answer the following questions: 1) Comparing to
the existing systems, how well does Photon perform? 2)
Comparing to Vertex View, how much does Property View
benefits the computing? 3) What about the performance
of Photons edge-centric execution engine? 4) What is the
impaction of overlapping communication and computation
in Photon? 5) What is the scalability of Photon?

5.1 Experiment Setup

We evaluate Photon on a cluster of commodity multi-core
machines. Each machine has two Intel Xeon CPU E5-2640
v2 (16 physical cores share 20MB LLC, hyper-threading is
disabled), 96GB of memory. Each machine has one 1Gbps

Ethernet NIC and one 40Gbps Mellanox MT27500 Infini-
Band NIC for communication. The operating system is
Ubuntu 14.04 with kernel version 3.13. Photon runs on top
of MPICH-3.14.

We choose five graph algorithms as our testing appli-
cations, namely PageRank, TrustRank, Alternating Least
Squares (ALS), Stochastic Gradient Descent (SGD), and Sin-
gular Value Decomposition Plus Plus (SVDPP). The latter
three are collaborative filtering (CF) algorithms widely used
in recommendation systems. For each algorithm, we run
50 iterations and report the overall runtime, including pre-
processing time.

For most of the collaborative filtering algorithms, one
property on the vertex data is a vector denoted as feature
vector, the size of feature vector is denoted as latent dimension
(d). Higher d will produce higher algorithm accuracy of
prediction while on the other hand will increase the com-
putation and communication cost.

We take 5 real-world graphs as the testing set for show-
ing the performance results. Among these graphs, LiveJour-
nal, Twitter, UK-2007-05 are social network graphs, which
can be used to benchmark applications such as PageRank,
TrustRank. The other two are user-item rating graphs (bipar-
tite graph) and are used for evaluating the CF algorithms.
Details of the graphs can be found in Table 1.

The preprocessing time is also evaluated(noted as Pre-
Time), as Table 1 shows. Graph preprocessing includes
graph partition, building local graphs and sorting edges
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with Hilbert Order. We also evaluated preprocessing time
of other frameworks. PowerGraph performs best in prepro-
cessing, and that time for the five graphs are 8.24, 179.9,
270.9, 14.49, 30.98. We can see our preprocessing time is
acceptable. Since Hilbert Order is applied to computation
squares not the whole graph, the edge sorting time is not
an issue. Moreover, the graph preprocessing time can be
amortized over iterations of computation.

5.2 Overall Performance Comparison

We have conducted the comparison between Photon and
the existing systems. The results of overall performance
comparison are shown in Figure 7 1. The evaluation is
performed on 8 machines, and we increase the number of
workers (cores) on each machine.

As shown in the figure, Photon outperforms these sys-
tem from 1.58X up to 10X in overall runtime. Some of these
performance improvements come from the use of compact
data structures in our implementation. To better illustrate
the benefits of Property View and Edge-Centric Execution
engine, we have done performance breakdown as following
sections shows. On single server, Property View and Edge-
Centric Execution engine brings 1.8X and 1.37X speedup,
respectively, and they lead to a 2.4X performance speed up
in total.

5.3 The Effectiveness of Property View

Here, we take TrustRank as an example. We compare the
performance of the two algorithms implemented in Photon
with Property View and Vertex View. In the Vertex View
version, Photon manually defines those properties in one
data structure, i.e. Vertex, and then treat the data structure
as one property. The other version takes the property view
and stores properties separately. We evaluated TrustRank on
Twitter graph with multi-thread and distributed configura-
tions. The multi-thread configuration evaluates TrustRank
in a single machine with the number of threads increases.
The distributed evaluation is performed on 8 machines and
increases the number of threads on each machine. Results
are in Figure 9. The label on each bar denotes the perfor-
mance boost of Property View compared to Vertex View.
From the results, we can see that Property View outperforms
Vertex View up to about 1.8X.

The improvement from Property View over many prop-
erties mainly depends on the property size and the ra-
tio of accessed properties during computing stages. For
TrustRank, at the scatter computation stage, only half of
properties are accessed, and this stage dominates the overall
computation time. Thus, theoretically, the property view
can have nearly 2X performance improvement at most.
In our evaluation, single thread implementation has 1.8X
performance improvement, which is acceptable. There will
be more improvement while less portion of properties is
accessed during computation.

1. CombBLAS only works on square number of processes. Due to
the limitation of its interface, only PageRank and TrustRank can be
implemented. CombBLAS failed to run on UK2007 graph because of its
huge memory cost.
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5.4 Edge-Centric Execution Engine
We evaluate Photon’s edge-centric execution engine from
two aspects : single server performance to show photon’s
edge-centric design and distributed performance to show
the effect of overlapping.

We take the PageRank algorithm on LiveJournal graph
to benchmark the efficiency of single server performance.
We compared Photon (Pho-Hilbert) with PowerLyra, Comb-
BLAS and edges sorted by target vertex id (Pho-Target). Fig-
ure 8 shows the results2. We take Pho-Hilbert as the baseline,
and the labels on the bars denote the normalized execution
time. From the results we can see, the edge-centric execution
engine of Photon outperform PowerLyra at all configura-
tions and outperform CombBLAS in most configurations.
Furthermore, it scale well in the multi-thread environment,
whereas PowerLyra and CombBLAS does not scale well
with the thread number increases. With the comparison of
Pho-Target and Pho-Hilbert, we can see, by taking Hilbert
order, it brings about 1.3X performance improvement. From
these observations, we conclude that the edge-centric design
and Hilbert Order integrated with Photon’s edge-centric
execution engine bring notable benefits.

We implemented another version of Photon that do
not overlap computation and communication. It records
the time cost of computation and communication sep-
arately. Since different applications may have different
computation-communication ratio, we benchmark two algo-
rithms (PageRank and SVDPP with d = 128) to evaluate how
much overlapping can benefit each algorithm. The result
is in Figure 10. The x-axis shows the number of machines
× thread number on each machine. We break the execution
time into computation phase (gray bar) and communication
phase (dark bar). We can see that with the number of
threads increases, the proportion that communication takes
increases. If the computation phase time is greater than the

2. CombBLAS only works with square number of processes.
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Fig. 10. Overalap of Computation and Communication of PageRank(on
UK2007 Graph) and SVDPP(on Netflix Graph)
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Fig. 11. Scale-up and Scale-out for PageRank on Twitter Graph

communication phase (for the SVDPP case), this means the
communication can not be fully masked by computation.
For PageRank, in our computer cluster, communication can
be fully overlapped by computation.

5.5 Scalability of Photon
We evaluate the scalability of Photon from two aspects:
scalability by using more threads on a single machine and
scalability by adding more machines to the system. In the
single machine configuration, there will be no data transfer
over networking. Figure 11 shows the scalability of Photon
for PageRank on Twitter graph. Photon has good scalability
in both single machine configuration and distributed con-
figuration.

6 CONCLUSION

This paper aims to improve the locality of graph processing
from two aspects : property locality and graph locality. As
for property locality, we proposed Property View property
organization. It organizes each properties separately. Com-
pared with Vertex View property organization, Property
View reduces the interleaved memory access during com-
putation. As for graph locality, we proposed edge-centric
execution engine, where computation are applied at an edge
granularity. It enables edge ordering and Hilbert Order
can be applied to improve the graph locality. We have
implemented a distributed graph processing system named
Photon. Photon embraces both Property View and Edge-
Centric Execution Engine to improve the cache efficiency of
graph processing. Results shows that Property View brings
upt o 1.8X speedup and Edge-Centric Execution Engine
brings up to 1.37X speedup.
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