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ABSTRACT

Recent studies have shown the promise of directly processing com-

pressed graphs. However, its benefits have been limited by high

peak-memory usage and unbearably long compression time. In this

paper, we introduce Laconic, a novel rule-based graph processing

solution that overcomes the challenges of restricted memory and

impractical compression time faced by existing approaches. La-

conic, for the first time, ensures minimal memory overhead during

compression and significantly reduces graph sizes, thus reducing

peak memory demand during computations. By employing an effi-

cient parallel compression algorithm, Laconic achieves a remarkable

reduction in compression time. In our experiments, we compare La-

conic with state-of-the-art solutions. The results demonstrate that

Laconic outperforms other methods, reducing peak memory con-

sumption by an average of 70% during compression and 66% during

computation. Additionally, Laconic reduces rule compression time

by an average of 93% compared to traditional rule-based compres-

sion, achieving a 2.47× higher compression ratio, and providing a

2.12× performance speedup.
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1 INTRODUCTION

The ever-increasing graph sizes have fueled a surge in graph com-

pression research [5, 9, 10, 12, 22, 25, 31, 49, 69, 70, 90, 91, 94, 96].

Recent studies have highlighted the potential of direct processing

on compressed graphs [13, 25], yielding promising results in terms

of enhancing graph analytics efficiency. However, despite the effi-

ciency advantages inherent in these methods, a notable oversight

persists concerning the consideration of memory consumption

and compression time. Typically, these methods demand several

times the original graph’s size in memory resources and necessi-

tate extended compression time. For example, Figure 1 illustrates

the memory consumption of the state-of-the-art in-memory graph

computing system Ligra [91] and its implementation with a com-

pression module, Ligra+ [92], during the execution of the PageRank

computation and compression tasks on the 28.65 GB uk-2007-05

graph, respectively. Although Ligra+ effectively reduces the size

of the graph, there is no significant decrease in peak memory us-

age, which is 121.85GB, 4.2 times the size of the original graph,

during the transition from compression to computation. Moreover,

Ligra+ needs 605 seconds to compress uk-2007-05 graph, which

is unbearable in practice. Similar limitations also exist in Com-

pressGraph [20], the state-of-the-art rule-based graph compression

framework, whose peakmemory usage is 65.38 GB and compression

time is 700 seconds handling uk-2007-05. This resource overhead

hinders their broad adoption. In order to fully harness the potential

of direct computation techniques, there is an urgent need for an

effective solution that concurrently minimizes memory utilization

and compression time.

Direct processing compressed graphs in resource-constrained

environment yields three compelling advantages. First, performing

computations directly on compressed data has been demonstrated

to significantly enhance graph analytics performance [3, 34, 53, 74,

75]. On one hand, analytical algorithms can leverage the precom-

puted results from redundant data, thereby reducing computational

overhead. On the other hand, compressed graphs can be stored



Figure 1: Memory consumption on uk-2007-05 during graph

processing.

more efficiently in CPU caches, thus improving data locality. Sec-

ond, compressed graph data structures typically demand substan-

tially less memory compared to their uncompressed counterparts.

When appropriately designed, these structures enable the analysis

of larger graphs on systems that would otherwise be constrained

by memory limitations, thereby improving scalability. For exam-

ple, Ligra+ needs more than 600GB memory to manage uk-2014

dataset, while we can reduce the peak memory consumption to

less than 300GB memory with no performance loss. Third, storing

compressed graph data occupies less disk space, which can result

in reduced storage costs, especially for applications dealing with

large-scale graph datasets. For example, upon applying our com-

pression technique, the uk-2007-05 dataset, originally occupying

28.65 GB, is reduced to a mere 3.48 GB of storage space (detailed in

Section 5.4).

Enabling direct processing of compressed graphs in resource-

constrained environments presents three key challenges. First, both

the compression and computation processes necessitate the allo-

cation of memory for auxiliary structures, introducing complexity

into memory optimization. Second, the intricate balance between

minimizing memory usage and maximizing computational effi-

ciency presents a significant challenge. High compression ratios

achieved by certain graph compression methods often lead to no-

table compression time overhead, whereas the use of lightweight

compression methods may compromise compression effectiveness,

resulting in increased peak memory consumption. Third, while rule-

based compression and reference compression [10] (a technique

that identifies and encodes the common neighbors of two vertices

using reference coding) algorithms achieve a reasonable trade-off

between compression ratio and graph processing efficiency, they

often result in prolonged compression durations and increased

memory usage. The reduction of compression overhead through

meticulous design remains a challenging task.

Many compressionmethods have been proposed in recent years [1,

4–6, 10, 12, 15, 20, 25, 27, 28, 32, 46, 51, 59, 72, 73, 79, 80, 83, 86, 88, 92,

98–100, 112–114, 116]. However, none has successfully addressed

the aforementioned challenges. For example, Brisaboa et al. [12]

proposed a method based on 𝑘2𝑡𝑟𝑒𝑒 to store the adjacency ma-

trix, which effectively reduces redundancy in the graph. However,

the compression based on the adjacency matrix does not yield a

favorable compression ratio. Moreover, Ligra+ [92] is a novel frame-

work that explores high-speed processing on compressed graphs

using encoding-based compression in the adjacency list. Unfortu-

nately, it does not effectively reduce the size of the vertices and

edges in the graph, resulting in high peak memory usage during

compression and computation. Recently, numerous rule-based com-

pression works, such as TADOC [116], have demonstrated promis-

ing prospects for reducing redundancy and enabling computation

without decompression. However, rule-based compression incurs

significant time and space overhead during compression, making it

unsuitable for resource-constrained application scenarios.

We present a low-overhead, high-ratio, and expressive compres-

sion engine, Laconic, which effectively addresses these challenges.

First, we propose an adaptive block hybrid compression based on

encoding and rule compression, facilitating data partitioning at

arbitrary granularities. Laconic can handle a wide range of graphs

through fine-grained data segmentation, limiting the peak memory

consumption while ensuring algorithm flexibility. Second, directly

fusing the encoding- and rule-based compression can incur low

compression ratios. Therefore, we incorporate two sub-modules, in-

cluding a locality recovery submodule and a parallel encoding com-

pression submodule, between the steps of the hybrid compression

method to further optimize compression. This approach effectively

reduces memory and time overhead in graph computations while

eliminating redundancy. Third, we introduce a parallel compres-

sion algorithm specifically designed for time-consuming rule-based

compression modules, which significantly reduces compression

time while adhering to peak memory limitations.

We use five graph algorithms with 12 diverse graphs for evalua-

tion. Experiments show that compared to the state-of-the-art solu-

tions, Laconic reduces averagely 70% and 66%memory consumption

during compression and computation, respectively. Meanwhile, La-

conic reduces 93% compression time on average while achieving

over 2.47× compression ratio with 2.12× performance speedup.

We make three primary contributions in this paper.

• We propose Laconic, a compressed graph computation engine

capable of performing graph compression and computation in

memory-constrained environments, requiring at most 80% the

size of the graph.

• We introduce a compression approach that combines parallel

rule compression with encoding compression, achieving an 11×
improvement in compression speed and a 58% increase in com-

pression ratio compared to the state-of-the-art rule-based com-

pression methods.

• We conduct comprehensive experiments to demonstrate the per-

formance benefits of Laconic over the state-of-the-art solutions.

2 BACKGROUND

Graph compression [5, 9, 10, 12, 20, 22, 25, 31, 49, 69, 70, 90, 91, 94]

plays a crucial role in reducing the overhead of graph analytics by

reducing the graph size.

2.1 Existing Graph Compression

In the context of graphs, redundancies refer to repeated information,

such as common neighbors within the graph structure. Redundan-

cies exist in a wide range of graph applications [7, 36, 41, 54, 84, 106].

These redundancies can lead to inefficiencies in storage, processing,

and analytics of the graph data.



Utilizing compression to process graph data can efficiently elim-

inate these redundancies. Most graph compression schemes are

based on two graph representations – adjacency matrix [12, 31, 70,

93, 94] and adjacency list [9, 10, 20, 22, 92]. Although they have good

compression ratios, the compressed result of the adjacency list is

more convenient for subsequent graph analytics than the adjacency

matrix format. The reason is that, in graph computing, visiting all

neighbors of a single vertex is the most basic operation, which is

more suitable for an adjacency list. We next show current popular

graph compressions, including encoding-based compression and

vertex reuse compression.

Encoding-based compression. Encoding-based compression

methods encode vertices with few codes, thus achieving significant

memory savings. Among them, we utilize variable length coding

and delta encoding in Laconic.

Variable length coding methods change the fixed-length repre-

sentation of vertices in the adjacency list. Some methods, such as

Huffman coding [28, 51, 92], adjust the cost of storing different

vertices based on their occurrence frequency to reduce storage

overhead. Other methods target different data characteristics. For

example, Elias Gamma encoding and Elias Delta encoding [32]

are suitable for compressing small numbers. Null Suppression [4]

achieves compression by removing leading zeros in elements.

Delta encoding [86] changes the original graph data by encoding

the number as the difference between its value and the previous

value. By combining variable-length coding, data size can be signif-

icantly reduced to achieve high compression ratios.

For the other methods, Run length encoding [1] represents con-

tinuously repeated intervals in the adjacency list as a regular coding

form. Bitmap encoding [27, 98, 99] is suitable for graphs whose data

values have only a few possibilities. It can be mapped to intervals

with low encoding costs.

Rule-based compression. Rule-based compression is a data

compression technique that entails identifying recurring patterns

within the data and encoding them as rules. Here, a “rule” is char-

acterized as a consecutive sequence of neighbors with a length of

two or more that is repeated multiple times.

Rule-based compression has been demonstrated as a major ac-

complishment in the field of data science [25, 79, 80, 112–114, 116].

CompressGraph [20] represents the state-of-the-art approach in

the field of graph rule compression. It leverages rule vertices to

replace repeated adjacent edges in adjacency lists. This method

not only effectively eliminates redundancy within the graph, but

also demonstrates promising results in processing compressed data

directly, thus bypassing the need for decompression.

Example. Figure 2 illustrates a rule-based compression instance

of CompressGraph, where each number represents a vertex in the

graph. Figure 2 (a) shows the adjacency list of the graph, where ver-

tices 1 and 2 have a common set of repeated neighbors (vertices 3, 4,

and 5). CompressGraph is capable of capturing such redundancy by

encoding these repeated neighbors as virtual rule vertices, reducing

the representation of duplicated edges. As shown in Figure 2 (b),

the set of recurring neighbors {3, 4, 5} is represented as rule R1.

Since rule compression does not disrupt the connectivity of the

graph, CompressGraph modifies graph algorithms to ensure that

most algorithms, such as BFS and PR, can operate correctly within

the compressed graph, thereby avoiding decompression overhead.

More details can be found in [20].

1
2

3
4

5

1
2

3
4

5

(a) Input graph in adjacency list format (b) Compressed graph in rule-based representation

1   →  2  3  4  5
2   →  3  4  5

1     →  2  R1
2 →  R1
R1  →  3  4  5 

R1

Figure 2: An example of rule and rule-based compression.

2.2 Trade-off Compression Ratio and Time

Compression and decompression time plays an important role

among graph systems. Current graph compression techniques [5, 9,

10, 12, 22, 25, 31, 49, 69, 70, 90, 94] offer high compression ratios, but

the encoding and decoding processes of heavyweight compression

algorithms are excessively complex, resulting in significant time

overhead. Graph analytics systems [18, 21, 33, 35, 47, 52, 56, 67, 71,

77, 85, 91, 103, 105, 111, 118–120] often require real-time processing

and low latency, and cannot tolerate prolonged delays. Upon explor-

ing heavyweight compression algorithms in graph analytics systems,

we observe that while they can achieve higher compression ratios,

they are accompanied by longer compression and decompression

time, which do not significantly enhance the overall performance

and stability of the system.

Lightweight compression [1, 4, 27, 32, 83, 86, 89, 98, 99] is a

trade-off approach between compression ratio and compression

time. The compression methods used in lightweight compression

are relatively simple. In comparison to heavyweight compression

algorithms, they sacrifice higher compression ratios in favor of

faster compression and decompression.

In recent years, rule-based compression algorithms have been

proven capable of performing direct computations and queries [20,

25, 112–114, 116] without decompression, making rule compression

unnecessary to decompress after reduction. However, the initial

compression time of rule-based compression is still too long, even

hundreds of times the graph computation time, not to mention the

high memory overhead.

3 REVISITING PREVIOUS GRAPH

COMPRESSION SOLUTIONS

In this part, we revisit previous graph compression techniques to

explain the rationale behind our novel graph compression design.

Our approach focuses on achieving low compression peak memory,

low computational peak memory, and minimized compression time.

Why compress graphs before computation? For small graphs

in graph computing tasks, the most efficient and cost-effective ap-

proach is to directly load the graph into memory and perform

computations. However, with the growth of the graph size and

auxiliary memory overhead during computation, processing large

graphs directly in memory necessitates a substantial memory allo-

cation. The mainstream methods to address this problem include 1)

in-memory compression [5, 9, 10, 12, 22, 25, 31, 49, 69, 70, 90, 91, 94],

2) disk-based computation [21, 35, 56, 71, 77, 120], and 3) distributed



computation [52, 76, 118, 119]. Disk-based computation requires

minimal hardware and maintenance overhead, but it suffers from

high I/O time overhead. Conversely, distributed computation offers

excellent time performance but demands higher development and

maintenance costs. In contrast, compression before computation

can significantly reduce the size of the graph, decreasing or avoid-

ing I/O overhead during subsequent computations, while keeping

costs low.

Why don’t existing compression algorithms for graphs

apply? Unlike other compression tasks, graph compression for

computation demands three essential principles: low peak mem-

ory usage, low compression time, and low computation overhead.

Existing compression algorithms face several limitations. First, algo-

rithms with high compression ratios such as WebGraph [5, 10] and

𝐾2-tree [12] are heavyweight, increasing the computational burden

during graph processing due to their high decompression over-

heads. Second, lightweight compression algorithms such as RLE [1],

delta [86] exhibit low compression efficacy. Third, while rule-based

compression has been proven to accomplish graph computation

tasks without decompression, it requires high peak memory usage

as it needs to store a vast number of intermediate results, and it

has a high compression complexity. Ensuring low spatiotemporal

overheads for both compression and computation has become a

primary reason limiting the deployment of compression algorithms

in real-world graph applications.

4 SYSTEM DESIGN

4.1 Overview

We present an overview of Laconic in Figure 3. Unlike other graph

compression systems, Laconic takes both the original graph𝐺(𝑉 , 𝐸)
in the CSR format [107] and the available memory 𝑀 for compres-

sion as input. The output is the compressed CSR result𝐺(𝑉𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 ,
𝐸𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 ), similar to previous graph compression systems [10, 20,

91].

Modules. Laconic consists of three main modules: 1) memory-

aware adaptive graph slicing module, 2) parallel rule-based sub-

graph compression module, and 3) graph expression recovery mod-

ule. The memory-aware adaptive graph slicing module adaptively

partitions the original graph based on the relationship between the

input memory and the graph. The parallel rule-based subgraph com-

pression module effectively compresses each sliced subgraph, elim-

inating redundancies in the original graph. The graph expression

recovery module includes three main steps: compressed subgraph

merging, vertex reordering, and parallel encoding compression.

These steps collectively augment the expressive capacity of the

compressed graph while reducing peak memory usage during com-

putation.

Novelties. Laconic introduces several novel aspects. First, La-

conic employs a memory-aware adaptive graph-slicing approach

before compression. This reduces memory usage during the com-

pression process and increases the maximum graph size that the sys-

tem can handle. Different from traditional graph analytics methods,

Laconic considers the additional space overhead during rule com-

pression and provides a customizable configuration, allowing for

precise control over the peak memory usage of the compression pro-

cess. Second, Laconic presents a parallel rule-based subgraph com-

pression method that accelerates the otherwise time-consuming

rule-based compression process. This represents the first paral-

lelized rule-based graph compression work. Third, Laconic uses

a graph expression recovery module with a hybrid compression

scheme that combines rule-based compression with other compres-

sion methods. This approach effectively utilizes redundancies at

different levels within the graph and resolves conflicts between the

two compression methods. This results in higher compression ra-

tios and lower memory and time overhead, which, to the best of our

knowledge, is the first work to integrate rule-based compression

with other compression methods efficiently in memory constrained

environment.

4.2 Memory-Aware Adaptive Graph Slicing

Module

In this part, we present Laconic’s memory-aware adaptive graph-

slicing module in Figure 3. First, Laconic calculates the number

of subgraphs and their sizes required to complete the graph an-

alytics task under the constrained memory size provided by the

user. Second, to maintain graph locality, ensure the effectiveness of

subsequent compression, and avoid introducing edges that connect

different subgraphs during the slicing process, we choose to par-

tition vertices and their neighbors into different subgraphs based

on the IDs in the original graph’s𝐶𝑆𝑅𝑣𝑙𝑖𝑠𝑡 . We show an example in

Figure 3 (a). The edge marked by the dashed line shall be partitioned

into the same subgraph as its source vertex. This is because this

edge is only recorded in the adjacency list of the source vertex,

offering the benefit of preventing edges from crossing different

subgraphs.

To ensure that the partitioned subgraphs do not exceed the given

memory limit during compression, the key is to find the appropri-

ate subgraph size. Subgraphs that are too small cannot capture the

redundancy in the graph, leading to poor compression ratios. Con-

versely, subgraphs that are too large result in excessively high peak

memory during compression. Next, we demonstrate the maximum

subgraph size for which the compression task can be performed

stably.

Peak memory guarantee. In a graph without duplicate edges,

when the neighbors of a vertex form a specific permutation𝑎1, 𝑎2, ...,
𝑎𝑛 , the theoretical upper limit on the number of rules during the

compression process is the number of all its subsets with a size

greater than 1. Moreover, storing each subset of size |𝑆 | requires
an auxiliary space of size |𝑆 |. Therefore, the additional memory

required to store all possible rules is
∑ |𝑉 |

|𝑅 |=2(𝑅 · 𝐶 |𝑅 |
|𝑉 | ), where |𝑉 |

represents the number of vertices in the graph, and |𝑅 | denotes the
size of the rules. When the number of vertices |𝑉 | is equal to 20, the
peak memory can reach 40 MB. When the number of vertices |𝑉 | is
equal to 30, the peak memory can reach 60 GB. Although real-world

graphs typically do not contain all possible rules, existing rule-based

compression methods often encounter scenarios where the memory

required to store the rules far exceeds that required to store the

original graph itself. Therefore, limiting the size of the rules to

reduce the peak memory during compression becomes both urgent
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Figure 3: Laconic overview.

and important. We find that the peak memory can be significantly

reduced by satisfying the following three requirements:

• Retaining only the smallest rules of size 2 (we only count the oc-

currence frequency of two adjacent elements within a vertex’s

neighbors) in each compression.

• Ensuring the orderliness of vertex neighbors.

• Considering only two consecutive elements that appear in a

vertex’s adjacency list as legal rules.

We introduce a concept called “gap” as the difference between

two adjacent neighboring elements in a pair, and the term “gaps”

refers to the total sum of differences between two adjacent neigh-

boring elements in all pairs in our proof. For instance, if a vertex’s

adjacency list is {1,4,5,6}, then the “gaps” within this list would be

3+1+1=5, while the “gap” between the neighboring element pair

{1,4} being 3. It can be observed that in an ascending adjacency

list, the “gaps” shall not exceed |V|-1, where |V| represents the total

number of vertices in the graph.

Proof. We demonstrate that by limiting the size of the parti-

tioned sub-graphs, we can constrain the peak memory consumption

during the rule compression process. Assuming the graph has |𝑉 |
vertices, among all possible rules, there are at most |𝑉 |−1 rules with
a “gap” of 1: {0,1},{1,2}...{|𝑉 |−2, |𝑉 |−1}. There are at most |𝑉 |-2 rules
with a gap of 2, and so on. Therefore, the number of all rules will not

exceed
|𝑉 |2
2 . Furthermore, we partition the original graph into mul-

tiple subgraphs with the same number of vertices to further reduce

the memory required to store the rules. For example, assuming we

set the number of vertices in each subgraph as 𝐾 , in this case, the

“gaps” that these 𝐾 adjacency lists can provide is at most 𝑂(𝐾 |𝑉 |).
Moreover, even if the rules appear in the order of increasing “gap”,

the total number of rules can be at most
∑√

2𝐾
𝑔𝑎𝑝=1 𝑔𝑎𝑝 · (|𝑉 |−𝑔𝑎𝑝)

(this is because 1 + 2 + ... +
√
2𝐾 = 𝐾 ). Thus, for a specific value of

𝐾 , the maximum number of rules generated is only 𝑂(
√
2𝐾 ∗ |𝑉 |).

Following the aforementioned analysis, we can derive the following

lemma:

Lemma1. By adjusting the size of the divided subgraph𝐺sub(|𝑉sub |,
|𝐸sub |) to satisfy 𝑂(

√
|𝑉sub | · |𝑉 | + |𝐸sub |) ≤ 𝑀 , where 𝑀 represents

the available memory, we can complete the graph compression under

memory constrained environment.

Insight. It has been observed that the upper bound on the sum

of differences in all pairs of neighboring elements (referred to as

“gaps”) in a sorted adjacency list of a vertex does not exceed N-1.

Laconic’s memory-aware adaptive graph slicing scheme has two

major innovations. First, we use this upper bound to deduce the

maximum number of binary rules that can occur within a given

“gap”, thereby reducing the peak memory for rule compression from

the exponential level of the vertex to a polynomial level, specifically

bringing it down to a (𝑂(
√
2𝐾∗|𝑉 |)) level. Second, since the selection

of the parameter 𝐾 is configurable, we can ensure complete control

over the peak memory of the compression process by adjusting the

parameter 𝐾 .

4.3 Parallel Rule-Based Subgraph Compression

Module

4.3.1 General Design. Laconic’s rule-based parallel subgraph

compression module differs from traditional rule-based compres-

sion in two ways. First, for the consideration of low peak memory

usage, Laconic only captures rules of size 2 in each iteration. To

capture larger rules, Laconic needs multiple iterations of parallel

rule compression. Second, during rule capturing and frequency

counting, Laconic does not maintain a global rule list for the in-

coming graph, as doing so would incur significant synchronization

overhead.

We show an instance in Figure 3 (b). Laconic’s parallel rule-based

subgraph compression module processes the subgraphs received

after graph partitioning. While the previous graph partitioning

in Section 4.2 is primarily aimed at preventing the graph’s peak

memory from exceeding the machine’s memory capacity, Laconic

goes a step further to accelerate the rule-based compression. In

this process, Laconic further subdivides the input subgraphs. For

the given example in Figure 3 (b), the input subgraph is split into

two parts: vertices 1, 2, 3 and their outgoing edges are assigned to

thread 1 for compression, whereas vertices 4, 5 and their outgoing

edges are assigned to thread 2 for compression. After compression,

Laconic merges the compressed subgraphs.

4.3.2 Example. In this section,we introduce the differences be-

tween Laconic’s rule-based compression module and traditional

rule-based compression, and illustrate the contrast between them



using an example. Laconic’s rule-based compression module dif-

fers from traditional rule-based compression in two main aspects.

First, traditional rule-based compression adopts a global traversal

approach to mine rules. However, this increases the complexity of

rule capture and replacement. For instance, when we plan to replace

{1, 2} in {0, 1, 2, 3, 4} with {𝑅1}, traditional rule-based compression

not only needs to modify the occurrence counts of {0, 1} and {2, 3},

but also decreases the occurrence counts of all rules that include

{1} and {2}, such as {1, 2, 3, 4}. In contrast, Laconic employs a pro-

gressive rule traversal approach, which captures only binary rules.

A binary rule is two consecutive vertices that frequently appear

in the adjacency list. Second, in typical scenarios, traditional rule

traversal replaces the most frequent rule sequentially. This restric-

tion affects the parallelism of the rule compression process. On the

other hand, Laconic’s progressive rule traversal can traverse all

frequent rules in a single round. We provide an example in Figure 4

to illustrate the differences between the progressive rule traversal

and the traditional rule traversal. Figure 4 (a) and Figure 4 (b) show

the original graph and its adjacency list format, while Figure 4 (c)

demonstrates the rule compression process based on progressive

rule traversal and traditional traversal.

As shown in Figure 4 (c), using traditional rule traversal, the first

batch of replacement rules is just {0, 1}, and the second batch is

just {4, 5}. In contrast, progressive rule traversal allows all binary

rules to be added to the rule capture queue at once, regardless of

their frequency. This approach captures multiple rules at a time

in any compression snapshot. In this example, at the first level,

the captured rules are {0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, and

{6, 7}. In the second level, two new rules {𝑅1, 𝑅3} and {𝑅4, 𝑅6} are
captured. This significantly reduces the number of rule capture

rounds, and since multiple rules can be replaced in each round, we

can assign the rules to be replaced to different threads, achieving

parallelization while avoiding conflicts caused by different threads

replacing the same rule.
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Figure 4: Rule generation comparison between Laconic and

traditional rule-based compression.

4.3.3 Algorithm Details. We illustrate the algorithm of parallel

rule-based subgraph compression in Algorithm 1. Specifically, upon

receiving the input graph, we first partition it into subgraphs for

overall initialization. At the beginning of each iteration, we clear

𝐵𝑢𝑐𝑘𝑒𝑡𝑠 generated from the previous iteration. We design three

stages of parallelism and synchronization mechanisms for each

iteration. The first parallel stage (lines 13-18) counts all adjacent

pairs of in the input adjacency list and their occurrences. The second

parallel stage (lines 19-23) performs preliminary filtering on these

binary elements to exclude infrequent rules (i.e., rules that occur

less than a certain number of times, default being 4) and forms

preliminary rules. The third parallel stage (line 9) conducts rule

replacement on the input graph based on the generated rules in

parallel. After completing the three parallel stages, we pass the

iteration results to the next iteration to complete the entire iteration

process. After completing all iterations, we first apply the filtering

of infrequent rules to all subgraphs and then merge the individual

subgraphs to achieve compression for the entire graph.

𝐻𝑎𝑠ℎ_𝑃𝑎𝑖𝑟_𝑡𝑜_𝐵𝑢𝑐𝑘𝑒𝑡𝑠 is the first parallel stage of the algorithm.

Upon receiving the incoming uncompressed graph, we partition it

into equally sized subgraphs and assign each subgraph to different

threads. We use hashing to map each adjacent pair of elements in

each subgraph to different buckets. We ensure that any adjacent

pair of elements does not appear in two or more buckets, avoiding

write conflicts during parallel frequency counting of element pairs.

𝐹𝑖𝑙𝑡𝑒𝑟_𝑎𝑛𝑑_𝐴𝑠𝑠𝑖𝑔𝑛_𝑅𝑢𝑙𝑒_𝐼𝐷𝑠 is the second parallel stage of the

algorithm. We assign the generated buckets from the first paral-

lel stage to different threads. This process consists of two steps.

First, we count the occurrences of all element pairs in the buck-

ets and remove all pairs with frequencies below the predefined

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . Second, we traverse all element pairs in the

buckets and assign rule IDs to each of them.

𝐹𝑖𝑛𝑑_𝑎𝑛𝑑_𝑅𝑒𝑝𝑙𝑎𝑐𝑒_𝑅𝑢𝑙𝑒 is the third parallel stage of the algo-

rithm. We reassign the subgraphs partitioned during the first paral-

lel stage and the hashed buckets processed during the second stage

to different threads. Each subgraph is traversed using a sliding win-

dow approach, and rule replacements are performed using regular

expression matching.

Algorithm 1: Parallel rule-based subgraph compression

1 Function lock_free_rule_based_compression(𝐺 = (𝑉 , 𝐸),
iterations_num 𝛾 , frequent_threshold 𝛿 , thread_num 𝜆):

2 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠[]← split_graph(𝐺 )

3 𝑏𝑢𝑐𝑘𝑒𝑡𝑠 ← create a mapping from a pair to 0..𝜆
4 for 𝑖 ← 0 to 𝛾 do
5 init_hash_buckets(𝑏𝑢𝑐𝑘𝑒𝑡𝑠)
6 for 𝑠𝑔 in 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 do
7 hash_pair_to_buckets(𝑠𝑔, 𝑏𝑢𝑐𝑘𝑒𝑡𝑠)
8 filter_and_assign_rule_ids(𝑏𝑢𝑐𝑘𝑒𝑡𝑠 , 𝛿)
9 𝑠𝑔← find_and_replace_rules(𝑠𝑔, 𝑏𝑢𝑐𝑘𝑒𝑡𝑠)

10 filter_infreq_rules(𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠)
11 𝐶𝐺 ← merge_all_subgraphs(𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠)
12 return𝐶𝐺

13 Function hash_pair_to_buckets(𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ, 𝑏𝑢𝑐𝑘𝑒𝑡𝑠):
14 for 𝑣 in 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ do
15 𝐷 ← degree[𝑣]
16 𝑎𝑑 𝑗 ← adjacency list of 𝑣
17 for 𝑖 ← 0 to 𝐷 − 1 do
18 𝑏𝑢𝑐𝑘𝑒𝑡𝑠 .insert(pair_hash(𝑎𝑑 𝑗[𝑖], 𝑎𝑑 𝑗[𝑖 + 1]))

19 Function filter_and_assign_rule_ids(𝑏𝑢𝑐𝑘𝑒𝑡𝑠 , 𝛿):
20 for 𝑏𝑢𝑐𝑘𝑒𝑡 in 𝐵𝑢𝑐𝑘𝑒𝑡𝑠 do
21 count_freq_and_remove_infreq(𝑏𝑢𝑐𝑘𝑒𝑡 , 𝛿 )
22 for pair in 𝑏𝑢𝑐𝑘𝑒𝑡 do
23 assign_id_to_rules(𝑝𝑎𝑖𝑟 )



𝐹𝑖𝑙𝑡𝑒𝑟_𝐼𝑛𝑓 𝑟𝑒𝑞_𝑅𝑢𝑙𝑒𝑠 filters infrequent rules before merging all

subgraphs. We traverse in parallel each subgraph obtained after

the final iteration of compression and count the occurrences of

rule vertices in the neighbors of the original graph. We then delete

infrequent rules and restore their occurrences in the adjacency lists

of all original vertices as neighbors of those rules.

Complexity analysis. Next, we analyze the complexity of each

parallel stage in every iteration. (1) In the first parallel stage, a hash

operation has to be performed on adjacent element pairs in each

sub-graph, resulting in a complexity of O(E-V). This is due to, in

CSR representation, an adjacency list containing𝐾 elements having

𝐾 − 1 adjacent element pairs, and each vertex possessing one such

adjacency list. (2) In the second parallel stage, all elements within

the bucket need to be scanned twice: one to count the occurrences

of all element pairs and the other to filter out infrequent rules and

allocate rule IDs for frequent rules. Since the number of elements

in the bucket is O(E-V), this step’s complexity is also O(E-V). (3)

In the third rule-replacement stage, all neighbors of every vertex

need to be traversed. Pairs of neighbors appearing more than a

given threshold are then replaced with their corresponding rule

IDs. Both traversal and replacement operations have a complexity

ofO(1), resulting in an overall complexity ofO(V+E) for this process.

(4) Finally, the rule-filtering procedure preceding the sub-graphs

merge only requires a single traversal of all vertexes and edges in

the sub-graphs. Similar to (3), but the replacement action changes

from replacing vertex pairs with rules to restoring infrequent rules

to vertex pairs. Thus, this step also has a time complexity of O(V+E).

The complexity for merging sub-graph stands atO(1). Consequently,

the overall time complexity of the algorithm is O(T(V+E)), where 𝑇
denotes the number of algorithm iterations.

4.3.4 Theoretical Guarantee. In this part, we provide a theoret-

ical guarantee of the compression ratio for the parallel rule-based

compression algorithm and demonstrate its correctness in paral-

lelization.

Validity. Estimating the compression ratio for rule-based com-

pression poses a challenging task. All rule-based compression algo-

rithms aim to solve the problem of obtaining the minimal context-

free grammar that generates a given string. However, finding the

optimal solution is not straightforward due to the NP-completeness

of the decision version of this problem [16].

In parallel rule-based compression, when multiple rules are re-

placed simultaneously, the previously replaced rules can affect the

occurrence frequency of other rules, as shown in Figure 4 (c). Dur-

ing parallel graph compression, a significant number of occurrences

of {0,1} and {1,2} are replaced by 𝑅1 and 𝑅3, respectively, resulting in
the original rule 𝑅2 being replaced only once in the actual compres-

sion process. We refer to rules in the original graph that meet the

specified frequency threshold but are replaced fewer times than the

threshold during parallel compression as “fake rules”. The presence

of “fake rules” may negatively impact compression because storing

the rules themselves also incurs a certain cost. Although during iter-

ative compression, we cannot anticipate whether a certain rule will

become a “fake rule” when counting its occurrences, we can obtain

a simpler guarantee: In each iteration of the parallel rule-based sub-

graph compression module running in Laconic, the graph obtained

can be smaller than the previous one. The fundamental idea behind

Laconic’s rule compression is to set a frequency threshold and only

retain rules in the bucket that appear more frequently than this

threshold, thereby ensuring the effectiveness of rule substitution.

In the following proof, we derive the “stable frequency threshold”.

This threshold guarantees that any parallel compression with a

frequency threshold greater than the stable frequency threshold

can result in a reduction of the graph size in each compression step.

Proof to validity. Calculating the contribution of a single rule to

reducing redundancy is challenging, but we can express the space

savings brought about by all rule replacements during an itera-

tion of compression as:
∑
𝑗∈replace 𝑗 · single_replace − ∑

𝑖∈freq 𝑖 ·
single_cost. “

∑
𝑗∈replace 𝑗 · single_replace” represents the space sav-

ings from removing all edges that have been replaced by rules, and

“
∑
𝑖∈freq 𝑖 · single_cost” represents the space overhead required to

store all newly added rules.

Any captured binary rules are added as a new row to the adja-

cency list of the original graph. For an input in the CSR format, the

cost of adding a rule vertex and two neighbors is 1 (from 𝐶𝑆𝑅𝑣𝑙𝑖𝑠𝑡 )
+ 2 (from 𝐶𝑆𝑅𝑒𝑙𝑖𝑠𝑡 ), which is 3. Since we use a replacement method

similar to leftmost reduction when replacing rules, the replaced

rules do not affect the rules before them. For example, replacing

the neighbor pair {1,2} of a vertex with 𝑅1 does not decrease the re-
placement count of {0,1}, because if {0,1} is recorded in all rules and

also in the neighbor list of that vertex, {0,1} shall be replaced before

{1,2}, which contradicts the replacement of {1,2}. However, it affects

the rules behind it. Therefore, a one-time replacement of a rule can

reduce the occurrence of other rules by at most one occurrence.

This means that if the total occurrence count of a recorded rule is

𝑗 , there will be at least 𝑗
2 rule replacements happening. Thus, the

number of replacements is at least (frequency threshold)×(number

of rules) / 2. We can set the threshold to at least 6 to ensure efficient

compression, because in the case where the frequency threshold

is set to 6, we can ensure that each rule can have an average of at

least 6/2=3 effective replacements. As discussed previously, in the

CSR format, the cost of adding a rule vertex and two adjacent edges

is 3.

Correctness. In parallel rule-based compression, compared to

serial compression, different threads detect different rules. Our goal

is to prove that our algorithm does not affect the correctness of

the compression results. That is, upon decompression, the graph is

restored to its original state before compression.

Proof to correctness.We can abstract this problem as follows. In

context-free grammar, all productions have only one non-terminal

symbol on the left-hand side and two symbols on the right-hand

side, regardless of whether they are terminals or non-terminals. Fur-

thermore, each non-terminal symbol appears only once on the left-

hand side of a production. Our goal is to demonstrate the uniqueness

of leftmost reduction and leftmost derivation.

Uniqueness of leftmost reduction. We prove that for any state

during the reduction process, the next production accepted for the

leftmost reduction is unique. The proof is as follows. Suppose there

are two different leftmost reductions, 𝐴1 and 𝐴2, for the neighbor
array of a vertex. Let 𝑘1 and 𝑘2 be the first non-terminal symbols in

𝐴1 and 𝐴2, respectively, which are different. Since each production

corresponds to consecutive occurrences of vertex pairs, there must

exist a subscript such that 𝑘1 < 𝑘2 or 𝑘2 < 𝑘1, which contradicts



the definition of leftmost reduction. Therefore, the next production

accepted for the leftmost reduction is unique.

Uniqueness of leftmost derivation. For leftmost derivation, since

each non-terminal symbol appears only once on the left-hand side

of all productions, there are no alternative results when converting

non-terminal symbols into terminal symbols. This guarantees the

uniqueness of the derivation result.

4.4 Graph Expression Recovery Module

4.4.1 Design. Unlike normal rule compression engines, Laconic

has a two-layer compression module, so it is necessary to use the

graph expression recovery module after rule compression to re-

duce the performance degradation caused by rule compression,

as well as to enhance the localization of graphs and improve the

overall performance. It comprises two main parts. First, the locality

recovery sub-module initiates with infrequent rule filtering to elim-

inate rules that occur rarely during rule-based compression, caused

by parallelism and cross-depth matching. This step effectively re-

duces redundancy introduced during compression, similar to prior

work in the literature [112]. Second, the reordering process is em-

ployed to restore the original vertex arrangement disrupted by rule

compression. For instance, rule compression may alter a vertex’s

original adjacency list from {1, 2, 3, 4} to {1, |𝑉 |+1, 4}, leading to a

considerable increase in the “gaps” between neighboring vertices.

To address this, we employ a BFS-based vertex reordering tech-

nique, effectively restoring the graph’s locality. This sub-module

exhibits low complexity and can be efficiently parallelized, thereby

satisfying the low-latency requirements of graph computation sys-

tems.

The second part of the module is the parallel encoding com-

pression sub-module, which is responsible for compressing the

reordered graph using encoding techniques. Since in graph com-

putation processes, we usually extract all neighbors of a vertex

rather than individual neighbor, we can choose encoding meth-

ods with low amortized decompression overhead rather than low

random decompression overhead. In this case, we choose Delta

Encoding [86], which is a lightweight encoding method suitable for

ordered data. It has good compression performance and provides

𝑂(1) amortized decompression complexity per vertex. Moreover, it

can be efficiently parallelized.

By incorporating the locality recovery submodule and parallel

encoding compression submodule, we enhance the overall compres-

sion rate of Laconic, reducing both the redundancy in the graph

and the computation time.

4.4.2 Example. We illustrate the specific processes of rule filter-

ing and locality recovery in Figure 5. During the filtering phase

in Figure 5 (b), we traverse all the neighbors of the entire adja-

cency list and differentiate between the frequent rules 𝑅7 and 𝑅8,
and the infrequent rules 𝑅1 to 𝑅6 based on their frequencies. Infre-

quent rules are replaced with the element pairs they represent (e.g.,

replacing 𝑅1 with 0,1 in the neighbor of vertex 2). Next, we use

BFS reordering to reorder the vertex IDs and the neighbors within

each vertex in the filtered graph. We define the sum logarithm of

the difference between each neighbor and its previous neighbor

in the adjacency list of vertex 𝑖 as its “log gap”. This is because

the effective bit cost of encoding each vertex’s neighbors in delta
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Figure 5: Example on locality recovery sub-module.

encoding is the logarithmic sum of the neighbor gaps in that ver-

tex. The “log gap” of all vertices in the graph can be expressed as∑
𝑖 𝑖𝑛 𝑣𝑒𝑟𝑡𝑒𝑥

∑
𝑗 𝑖𝑛 𝑖.𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

log2 ( 𝑗 − 𝑗 .𝑝𝑟𝑒𝑣_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ). After rule

compression is completed, some vertices’ “log gap” will significantly

increase due to the newly introduced rule vertices, and reordering

effectively addresses this issue. In Figure 5 (c), we observe that after

reordering, the graph’s log gap is reduced by 33%.

5 EVALUATION

5.1 Experimental Setup

Evaluation methodology. We conduct a comparative evaluation

between Laconic and five state-of-the-art graph processing and

analytics solutions, CompressGraph [20], Ligra [91], Ligra+ [92],

WebGraph [5, 10], and GridGraph [120]. The rationale for selecting

these competitors lies in the following aspects. First, we consider

whether the competitors share the same motivation as Laconic. For

example, Ligra+ [92] also reduces memory usage by introducing a

lightweight compression module while efficiently analyzing graphs.

Similarly, GridGraph [120], like Laconic, guarantees to perform

graph analystics within restricted memory. Second, we choose

competitors that excel in graph compression and graph analytics.

WebGraph [5, 10] is renowned for its exceptional compression

ratios, while CompressGraph [20] achieves efficient fast-reading

analysis of compressed graphs. Third, these competitors have been

discussed in many previous works [17, 30, 82, 95, 97, 101, 102, 104,

110]. The performance evaluation primarily focuses on four aspects:

peak memory usage throughout the compression and computation

process, time and space overhead during computation, compression

ratio, and compression time.

Benchmarks. We evaluate five graph applications, including

connected components (CC), betweenness centrality (BC), triangle

counting (Triangle), single-source shortest path (SSSP), and PageR-

ank (PR). These benchmarks have been widely used in previous

studies [48, 68, 78, 117, 119, 120].

Datasets.We evaluate Laconic using the graphs listed in Table 1.

|𝑉 | represents the number of vertices, and |𝐸 | represents the number

of edges. These graphs are obtained from WebGraph [9, 10] and

the Stanford Network Analysis Project (SNAP) [60], which have



been extensively utilized in prior studies [55, 77, 78, 117, 119]. The

graphs are originally stored in an adjacency list format.

Table 1: Datasets.

Dataset Graph Abbreviation |𝑉 | |𝐸 | Size

1 web-BerkStan BERKSTAN 685,231 7,600,581 63MB

2 in-2004 IN 1,382,909 16,917,053 153MB

3 eu-2005 EU@2005 862,665 19,235,139 153MB

4 uk-2007-05@1000000 UK@1000000 1,000,000 41,247,159 322MB

5 indochina-2004 INDOCHINA 7,414,866 194,109,311 1.50GB

6 arabic-2005 ARABIC 22,744,080 639,999,458 4.93GB

7 it-2004 IT 41,291,594 1,150,725,436 8.88GB

8 gsh-2015-host GSH 68,660,142 1,802,747,600 13.94GB

9 sk-2005 SK 50,636,154 1,949,412,601 14.9GB

10 uk-2007-05 UK 105,896,555 3,738,733,648 28.65GB

11 clueweb12 CLUE 978,408,098 42,574,107,469 324.49GB

12 uk-2014 UK@2014 787,801,471 47,614,527,250 360.63GB

Platform. We conduct a standard performance evaluation of

Laconic on a CPU server equipped with an Intel Core i7-12700K

CPU, featuring 12 cores and 20 threads. The server has 128GB of

global memory, and the operating system used is Ubuntu 20.04.01.

To demonstrate Laconic’s superiority in handling large graphs such

as uk-2014 and clueweb12, we also measure Laconic’s performance

on another server with an Intel Xeon Gold 6230 CPU @ 2.10GHz,

featuring 40 cores and 80 threads. The server has 600GB global

memory, and the operating system used is Ubuntu 20.04.6.

5.2 Peak Memory Usage Throughout

Compression and Computation Processes

We conduct a comparative analysis of Laconic against various state-

of-the-art solutions, including traditional rule-based compression

(CompressGraph), and encoding-based compression algorithms

(Ligra and Ligra+). In this part, our comparison focuses on peak

memory usage during the compression process, as the maximum

memory consumption of compression significantly exceeds that of

the subsequent graph analytics process. We also evaluate the peak

memory usage of Ligra as a benchmark for direct graph processing.

Moreover, to verify Laconic’s scalability with large graphs, we

involve two large datasets clueweb12 and uk-2014 on a machine

with 600GB memory, using a batch size of 100 under high memory

pressure. The results are summarized in Table 2.

Table 2: Peak memory usage during graph compression and

processing.

Dataset
Original

CompressGraph Ligra Ligra+ Laconic
Size

UK@2014 360.63 GB - - - 261.65 GB

CLUE 324.49 GB - - - 288.76 GB

UK 28.65 GB 65.376 GB 154.90 GB 121.85 GB 24.86 GB

SK 14.90 GB 57.40 GB 80.10 GB 62.87 GB 13.89 GB

GSH 13.94 GB 84.45 GB 74.80 GB 58.85 GB 29.48 GB

IT 8.88 GB 34.77 GB 47.59 GB 37.42 GB 9.68 GB

ARABIC 4.93 GB 19.16 GB 26.11 GB 20.46 GB 5.24 GB

INDOCHINA 1.50 GB 6.27 GB 7.71 GB 6.00 GB 2.42 GB

UK@1000000 322 MB 966.71 MB 1.54 GB 1.18 GB 375.88 MB

EU@2005 153 MB 744.83 MB 750.30 MB 577.27 MB 281.91 MB

IN 153 MB 834.35 MB 693.31 MB 540.61 MB 314.00 MB

BERKSTAN 63MB 393.63MB 250.96MB 230.62MB 100.31 MB

We have the following findings. First, Laconic’s average peak

memory usage during graph analytics is 1.32× the size of the origi-

nal graph. This ratio increases to 1.43× for 10 batches and decreases

to 0.81× for 100 batches. Second, CompressGraph, Ligra+, and Ligra

exhibit peak memory usage of 4.37×, 3.60×, and 4.53× over the orig-

inal graph size, respectively. Our solution reduces 70% memory

usage on average. Third, on the uk-2014 dataset, Laconic demon-

strates lower peak memory usage than the original graph, with

a peak memory of only 73.5% of the original graph size through-

out processing. This reduction can be attributed to both the larger

number of compression batches chosen for uk-2014 and the good

locality inherent in the dataset. Furthermore, the peak memory de-

mands of Ligra+ and CompressGraph surpass the available system

memory, preventing us from completing their compression on the

clueweb12 and uk-2014 datasets. Consequently, these datasets will

be excluded from the subsequent experiments to ensure a fair and

valid comparison.

5.3 Batch Configuration

As discussed in Section 4.2, when dividing subgraphs for batch

compression, choosing an appropriate subgraph size is crucial. If

the subgraph size is too small, rule-based compression may deterio-

rate, leading to larger subgraphs for the subsequent encoding-based

compression, which increases encoding compression time and peak

memory usage. On the other hand, too many subgraphs can raise

the peak memory usage of rule-based compression. Thus, finding

a balance is essential to reduce rule-based compression while en-

suring low peak memory usage for encoding-based compression,

thereby enhancing Laconic’s graph processing capabilities under

resource constrained environment.

As shown in Figure 6, after conducting experiments on real-

world graphs, we have the following findings. First, setting the

batch size to 10 effectively eliminates the high peak memory usage

caused by large original graphs during the rule-based compression,

addressing the bottleneck of reducing peak memory in the compres-

sion process. Second, we do not recommend setting the batch size

greater than 10, as for most graphs, further increasing the batch size

has a limited impact on reducing peak memory; excessively large

batch sizes can disrupt the locality of the original graph and degrade

compression performance. Third, when the batch size is less than

20, the peak memory overhead of encoding-based compression in

Laconic does not exceed that of rule-based compression. Because

the initial step of rule-based compression significantly reduces the

graph size by several magnitudes, the encoded graph ends up being

much smaller than the original graph.

5.4 Compression Ratio

We conduct a comprehensive comparison of compression ratios

for Laconic, CompressGraph, and Ligra+ on different graphs. The

original graph sizes stored using adjacency lists and the sizes of the

compressed data obtained with these techniques are provided. The

compression ratios for each method (Laconic, CompressGraph, and

Ligra+) are reported, representing the ratio of the original data size

to the respective compressed data size. Table 3 presents a summary

of our experimental results.



Figure 6: The relationship between peak memory and the number of batches.

Table 3: Comparison of compression ratios and compressed graph sizes of Ligra+, CompressGraph and Laconic.

Dataset Original Size
Ligra+

Compressed Size
Ligra+

Compression Ratio
CompressGraph
Compressed Size

CompressGraph
Compression Ratio

Laconic
Compressed Size

Laconic
Compression Ratio

UK@2014 360.63GB - - - - 23.89GB 16.30
CLUE 324.49GB - - - - 38.99GB 8.32
UK 28.65GB 5.44GB 5.26 4.48GB 6.38 3.48GB 8.23
SK 14.90GB 5.04GB 2.95 2.62GB 5.68 1.85GB 8.05
GSH 13.94GB 5.93GB 2.35 6.47GB 2.15 4.76GB 2.93
IT 8.88GB 3.04GB 2.92 1.72GB 5.16 1.22GB 7.29

ARABIC 4.93GB 1.71GB 2.88 0.96GB 5.12 699MB 7.22
INDOCHINA 1.50GB 525MB 2.92 295MB 5.20 216MB 7.10
UK@1000000 322MB 106MB 3.03 47MB 6.76 32MB 9.88
EU@2005 153MB 61MB 2.50 43MB 3.52 32MB 4.69

IN 153MB 58MB 2.63 48MB 3.16 35MB 4.32
BERKSTAN 63MB 30MB 2.10 26MB 2.43 20MB 3.15

We have the following observations. First, Laconic achieves the

highest average compression ratio of 7.29, making it 2.47× more

efficient in compression than Ligra+ (with a ratio of 2.95) and 1.58×
more efficient than CompressGraph (with a ratio of 4.61). This high-

lights Laconic’s effectiveness in reducing redundancy in graphs

with low overhead. However, Ligra+ and CompressGraph incur

relatively high auxiliary memory overhead during the compression

process, making them impractical for compressing large graphs,

such as the clueweb12 and uk-2014 datasets, under memory con-

strained environments. Second, Laconic demonstrates the highest

compression ratio on the uk-2014 dataset. This can be attributed

to the dataset’s vertices having a substantial number of neighbors

(an average of 60.44 neighbors per vertex) and exhibiting good

locality, which allows Laconic to fully exploit the advantages of

multi-dimensional redundancy elimination in the dataset.

5.5 Compression Speedup

Encoding-based compression leverages lightweight encoding tech-

niques, such as Delta [86] and RLE [1], with well-established paral-

lelization implementations, yielding an amortized time complexity

of 𝑂(1) per edge. In contrast, the time complexity of rule-based

compression remains a significant challenge, as no parallel rule-

based compression method has been proposed so far. As a result,

rule-based compression constitutes the most time-consuming part

of the Laconic compression process. To address this issue, we in-

troduce a novel parallel rule capture and replacement algorithm

in Section 4.3. This novel approach effectively reduces the com-

pression time, addressing the high time complexity associated with

rule-based compression and enhancing the efficiency of the overall

Laconic compression process.

We compare the compression time of Laconic’s parallel rule-

based compression, CompressGraph compression, and Ligra+ com-

pression. To ensure each compression effectively reduces the size

of the graph, we set the frequency threshold from 4 to 6, as dis-

cussed in Section 4.3.4. Our evaluation entails measuring the parallel

rule-based compression, serial rule-based compression, and Ligra+

compression with frequent thresholds set to 4 and 5, respectively,

and measuring the compression time.

The results are presented in Table 4. We have the following find-

ings. First, Laconic’s parallel rule-based compression achieves a

9.64× speedup compared to Ligra+ in each round of iteration, and

a 13.92× speedup compared to the serial rule-based (Compress-

Graph) compression. Even when considering multiple iterations

and capturing deeper-level rules, Laconic’s parallel rule-based com-

pression still achieves favorable results, with an average speedup

of 3.16× compared to Ligra+ in the sum of the first three rounds

of iterations, and an average speedup of 4.52× compared to the

serial rule-based (CompressGraph) compression. Second, in most

cases, the compression time of the parallel version of rule-based

compression decreases as the number of iterations increases. This

trend can be attributed to the reduced graph size resulting from

previous compression, along with a decrease in the number of rules

that can be captured and replaced in subsequent rounds. These

factors collectively reduce the computational workload. Third, the

rule-based compression time generally increases with the growth

of the data size. However, the specific compression time exhibits

significant fluctuations, contingent on the dataset’s characteristics.

For example, during parallel compression, the compression time of

the gsh-2015-host dataset approaches or even surpasses that of the

serial compression of the uk-2007-05 dataset.



Table 4: Compression time evaluation. PFT is short for parallel frequency threshold.

Dataset Ligra+ (s) CompressGraph (s)
Laconic (s) - PFT = 5 Laconic (s) - PFT = 4

Iteration 1 Iteration 2 Iteration 3 Total Iteration 1 Iteration 2 Iteration 3 Total

UK 605.03 690.43 81.67 66.82 42.13 190.62 82.51 67.42 44.58 194.51

SK 326.81 334.71 23.61 22.14 22.43 68.19 24.51 23.41 21.94 69.87

GSH 324.03 812.63 61.70 62.88 59.44 183.03 61.17 61.66 56.46 179.31

IT 175.25 198.43 15.56 14.55 13.96 44.08 15.40 13.98 12.76 42.14

ARABIC 53.54 105.34 5.08 3.62 2.88 11.58 5.11 2.80 3.78 11.70

INDOCHINA 28.50 51.66 7.62 7.08 7.02 22.73 7.62 7.79 6.70 22.12

UK@1000000 3.38 4.07 0.37 0.33 0.29 1.00 0.40 0.31 0.32 1.03

EU@2005 1.57 2.39 0.22 0.21 0.21 0.66 0.24 0.22 0.24 0.70

IN 1.25 2.23 0.19 0.18 0.16 0.54 0.20 0.18 0.19 0.58

BERKSTAN 0.97 1.51 0.11 0.10 0.10 0.31 0.12 0.11 0.09 0.32

Unlike systems that directly analyze the original graph, a graph

analytics system with a compression module can store intermedi-

ate results and subsequently read the compressed results for graph

analytics, reducing the subsequent I/O time. In this case, the peak

memory usage throughout the process depends only on the space

required for analyzing the compressed graph. To simulate this sce-

nario, we store the intermediate results compressed by Ligra+,

CompressGraph, and Laconic, and conduct several tasks on them.

5.6 Peak Memory and Time Consumption

During Computation

We assess the peak memory usage and time consumption of the

system when performing analytics tasks on the compressed graphs

using Ligra+, CompressGraph, and Laconic compression, as shown

in Figure 7 and Figure 8. We find that although the peak memory

overhead of encoding-based and rule-based compression meth-

ods during graph analytics is significantly lower than the memory

overhead during compression, the results obtained solely from

rule-based compression or encoding-based compression do not

guarantee satisfactory performance in both time and space dur-

ing computation. Rule-based compression achieves an average

speedup of 1.47× compared to encoding-based compression during

computation, but the peak memory usage when performing com-

putation tasks on rule-based compressed graphs is 2.15× higher

than that of encoding-based compressed graphs. Therefore, in ad-

dition to the rule-based and encoding-based compression utilized

in Laconic, we introduce the locality recovery sub-module in Sec-

tion 4.4. During the execution of these modules, we observe that

the Laconic-compressed graphs achieve an average peak memory

usage reduction of 27% compared to Ligra+, and 66% compared to

CompressGraph. Regarding the time usage for graph analytics, the

Laconic-compressed graphs demonstrate speedups of 2.13× and

1.47× compared to Ligra+ and CompressGraph, respectively.

5.7 Additional Baselines and Discussion

Various graph systems have emerged, such as disk-oriented [35, 56,

71, 77] and non-computation-oriented compression solutions [10,

12, 28, 29]. We compare Laconic with these prominent systems.

Comparison with non-computation-oriented compression.

The field of compression has seen significant advancements, with

notable contributions such as GZIP [28] and LZW [29]. In the realm

of graph compression, WebGraph [10] stands out as a prime exam-

ple. In detail, we conduct a thorough comparison between Laconic

and WebGraph, considering both compression ratios and the effi-

ciency of operations on the compressed graphs. To assess the space

cost, we examine the ratio of the compressed graph’s size to the

number of edges, referred to as bits per edge (bpe). The perfor-

mance on the compressed graph is analyzed in terms of both time

and space. For our evaluation, we primarily focus on CC across all

datasets, as it effectively traverses each vertex of the graph. Other

workloads exhibit similar performance characteristics. In our exper-

iments, WebGraph achieves a bpe of 3.04 across the datasets, while

Laconic achieves a slightly higher bpe of 4.17. It is worth noting

that despite Laconic’s compressed graphs having a higher compres-

sion ratio, it processes at a remarkable rate of 1.78 × 107 edges per

second, which is impressively 11.7× faster than WebGraph.

Comparison with the disk-based graph system. Disk-based

graph systems store the entire graph on disk and handle large

graphs by partitioning them and storing a portion in memory. Grid-

Graph [120] is an exemplary approach for querying large graphs

with limited memory resources. It partitions extensive graph data

into blocks, each containing a subset of the graph’s vertices and

edges. By reducing the size of the processed graph at any given

time, it aims to control memory usage. We conduct a performance

comparison between Laconic and GridGraph on CC and PR. To guar-

antee the same amount of available memory, we set the available

memory during GridGraph execution to match the peak memory

of the compressed graph after Laconic compression. Additionally,

based on the results in GridGraph, we set the number of blocks to

64 (8×8) to ensure maximum efficiency with minimal partitioning

overhead. Our findings reveal that, on average, Laconic outper-

forms GridGraph by 74× on PR and 23× on CC. This disparity

arises because GridGraph necessitates repeated block I/Os during

PR execution, which is considerably slower than memory access.

6 RELATED WORK

Compression has been widely applied in various fields [19, 42, 57,

58, 61–66, 87, 109]. In this section, we show the related work of

graph compression from different dimensions.



Figure 7: Peak memory reduction.

Figure 8: Performance speedup.

Memory reduction in graph analytics. In graph analysis sys-

tems, peak memory often limits the maximum graph size that a

system can handle in a given environment. Representative works

on reducing memory usage during graph analytics include mem-

ory graph computing [92] and distributed graph computing sys-

tems [119], both focusing on minimizing peak memory consump-

tion. Graph partitioning techniques are widely used in disk-based

graph systems [21, 35, 56, 71, 77, 120], allowing the storage of the

entire graph on disk and a portion of it in memory to handle large

graphs. For example, Fan et al. [35] proposed a hierarchical con-

traction scheme for querying large graphs. Such techniques can

also accelerate graph computation [18, 33]. In Laconic, we employ

batch compression to reduce memory consumption during rule

compression and minimize peak memory utilization.

Compressed data direct processing. Many works attempt to

ensure the effectiveness of graph queries while compressing the

graph [3, 34, 53, 74, 75]. Some direct processing methods on com-

pressed data have been proposed, involving advanced techniques

based on trees, indexes, and suffix arrays [8, 24, 37–40, 45, 50, 81].

Succinct [2] is a representative method for queries on compressed

data. Many graph compression technologies and systems support

access to vertex neighbors without complete decompression [10, 91].

However, in practical graph applications, graph redundancy is not

fully utilized to improve performance. Researchers have found

that data reuse can be achieved through data redundancy utiliza-

tion, leading to improved program performance. For example, TA-

DOC [112–116] is a representative rule-based compression method

that enables efficient text analytics without decompression. These

works demonstrate the potential application of rule-based compres-

sion. The study [25] proposed applying rule-based compression

methods from text to graph data. Previous works also have utilized

grammar compression on strings [11, 14, 23, 26, 43, 44, 108, 117]

and graphs [20, 72, 73]. However, the high compression overhead of

many graph computing systems with compression modules results

in compression times far exceeding the analytics time.

7 CONCLUSION

This paper presents Laconic, a fast and efficient method for graph

compression under resource constraints. By employing data seg-

mentation, rule compression, and encoding compression, Laconic

achieves an average peakmemory reduction of 70% during compres-

sion and 66% during computation. Moreover, Laconic significantly

reduces rule compression time by 93% compared to traditional

methods, resulting in a 2.47× higher compression ratio and a 2.12×
performance speedup. The paper demonstrates the ability of La-

conic to capture redundancies at different graph levels and proposes

tailored compression methods for various redundancies. Addition-

ally, a parallel rule-based compression method is introduced to

expedite the compression process. Experimental results validate

the promising practicality of Laconic.
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