KnightKing: A Fast Distributed Graph Random Walk

Engine
Ke Yang® MingXing Zhang ¥ Kang Chen"
Xiaosong MaS$ Yang Bail Yong Jiang™
Abstract ACM Reference Format:

Random walk on graphs has recently gained immense popu-
larity as a tool for graph data analytics and machine learning,.
Currently, random walk algorithms are developed as individ-
ual implementations and suffer significant performance and
scalability problems, especially with the dynamic nature of
sophisticated walk strategies.

We present KnightKing, the first general-purpose, dis-
tributed graph random walk engine. To address the unique in-
teraction between a static graph and many dynamic walkers,
it adopts an intuitive walker-centric computation model. The
corresponding programming model allows users to easily
specify existing or new random walk algorithms, facilitated
by a new unified edge transition probability definition that
applies across popular known algorithms. With KnightKing,
these diverse algorithms benefit from its common distributed
random walk execution engine, centered around an innova-
tive rejection-based sampling mechanism that dramatically
reduces the cost of higher-order random walk algorithms.
Our evaluation confirms that KnightKing brings up to 4 or-
ders of magnitude improvement in executing algorithms that
currently can only be afforded with approximation solutions
on large graphs.

Keywords graph computing, random walk, rejection sam-
pling

“Department of Computer Science and Technology, Beijing National Re-
search Center for Information Science and Technology (BNRist), Tsinghua
University, China.

Research Institute of Tsinghua University in Shenzhen, China.

*Sangfor Technologies Inc.

SQatar Computing Research Institute, Hamad Bin Khalifa University.
14Paradigm Co. Ltd.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SOSP 19, October 27-30, 2019, Huntsville, ON, Canada

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6873-5/19/10...$15.00
https://doi.org/10.1145/3341301.3359634

524

Ke Yang, MingXing Zhang, Kang Chen, Xiaosong Ma, Yang Bai,
and Yong Jiang. 2019. KnightKing: A Fast Distributed Graph Ran-
dom Walk Engine. In ACM SIGOPS 27th Symposium on Operating
Systems Principles (SOSP ’19), October 27-30, 2019, Huntsville, ON,
Canada. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3341301.3359634

1 Introduction

Random walk is one fundamental and widely-used graph pro-
cessing task. As a powerful mathematical tool for extracting
information from the ensemble paths between graph entities,
it forms a foundation for many important graph measur-
ing, ranking and embedding algorithms, such as personal-
ized PageRank [13, 19, 28], SimRank [21], DeepWalk [34],
node2vec [17], among others [10, 12, 20, 27, 28, 33, 35, 36,
42, 46]. These algorithms could work independently, or as a
pre-processing step for machine learning tasks [11, 16, 18].
They serve diverse applications, such as node/edge classifica-
tion, community detection, link prediction, image processing,
language modeling, knowledge discovery, similarity mea-
surement, and recommendation.

A random walk based algorithm takes a graph G as in-
put, along with w walkers. It starts the walkers, each from
a specific vertex, who then wander through the graph inde-
pendently. At each step, a walker samples an edge from the
outgoing edges of its currently residing vertex, following it
to the next stop. Each walker quits with a preset termination
probability, when reaching a preset path length, or when
meeting preset exception criteria. Output can be generated
by computation embedded during the random walk process,
or by dumping the resulted random walk paths. The process
may be repeated for multiple rounds.

Intuitively, the bulk of computation in random walk re-
sides in the edge sampling process, which also embodies
the differences between individual random walk algorithms.
More specifically, a random walk algorithm defines its own
edge transition probabilities. As random walk becomes more
popular, the sampling logic has also become more complex,
with recent algorithms performing dynamic sampling, where
the edge transition probability depends on the walker’s cur-
rent state, the previous vertex (or vertices) it visited, and the
property of edges of its current residing vertex.

As a result, sophisticated random walk algorithms achieve
more flexible, application-specific walks, at the cost of sam-
pling complexity. E.g., while the popular network feature

https://doi.org/10.1145/3341301.3359634
https://doi.org/10.1145/3341301.3359634
https://doi.org/10.1145/3341301.3359634

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

learning technique node2vec [17] includes both dynamic
graph random walk and subsequent skip-gram language
model construction, it is reported that a Spark node2vec
implementation [2] spends 98.8% of its execution time on
the former [49]. Our experiment shows, even when imple-
mented above the state-of-the-art graph engine Gemini [50],
node2vec is bogged down by edge sampling, producing a ver-
tex navigation rate (number of vertices visited per second)
up to 1434 times slower than BFS on the Twitter graph [22].

Such high cost of sampling is mainly due to its dynamic
nature: at each step, the out edge selection requires recalculat-
ing all outgoing edges’ transition probability, whose overhead
grows with the degree of a walker’s current residing ver-
tex. Such overhead is far from balanced across vertices, as
real-world graphs tend to have power-law degree distribu-
tion [15]. To make things worse, vertices with more incident
edges are more likely to be visited, further exacerbating the
sampling expense at these hot vertices.

Graphs Degree Degree Full-scan average KnightKing’s average
mean variance overhead overhead
Friendster 514 1.62E4 361 edges/step 0.77 edges/step
Twitter 70.4 6.42E6 92202 edges/step 0.79 edges/step

Table 1. Node2vec sampling overhead

Table 1 demonstrates this with a side-by-side comparison
between two real-world graphs ! (Twitter [22] and Friend-
ster [47]) with different skewness in edge distribution. They
have rather similar average degrees (51 vs. 70), but the Twit-
ter graph is far more skewed, with a variance 395 times
higher. Here we report the average sampling overhead of
node2vec, in terms of the number of edge transition proba-
bilities computed, per step per walker. Current exact imple-
mentations perform full scan of out edges to dynamically
calculate their transition probability at each step. This over-
head on Twitter is 255 times larger than on Friendster, since
the former graph has much more severe imbalance in degrees.
It also shows that with such a moderately sized real-world
graph (41.7 million vertices and 1.47 billion edges), a dynamic
random walk algorithm like node2vec examines on average
nearly 100,000 edges before making each single walker move.

These challenges apply to many random walk algorithms.
However, unlike in the case of graph processing, there lack
general-purpose frameworks providing common algorithmic
or system support for efficient and scalable graph random
walk. As a result, application users develop their own random
walk implementations, suffering both redundant labor and
poor performance.

Meanwhile, it is counter-intuitive for users to implement
these walker-centric algorithms, especially their sampling
logic, in popular graph frameworks (such as Pregel [30],
PowerGraph [15], Ligra [38], X-stream [37], PowerLyra [9],
and Gemini [50]). These graph frameworks, either vertex-
centric [9, 15, 30, 38, 50] or edge-centric [37], focus on up-
dating the state of vertices along edges. The “walker” notion

1Both graphs are made undirected for node2vec.

525

K.Yang, M.Zhang, K.Chen, X.Ma, Y.Bai, and Y.Jiang

central to random walk would likely have to be handled as
“messages” with existing systems, losing the capability of
tracking/optimizing walker state updates, especially when
each walker’s next move depends on its recent walk history.
Also, many system optimizations adopted by state-of-the-art
graph engines, such as 2-D graph partitioning and GAS-like
execution, do not fit the random walk computation model
and may even backfire to degrade performance, as shown
later in the paper.

This paper presents KnightKing, the first general frame-
work for graph random walk. It can be viewed as a “dis-
tributed random walk engine”, the random walk counter-
part of traditional graph engines. KnightKing assumes a
walker-centric view, with APIs for defining customized edge
transition probability, while handling common random walk
infrastructure. Similar to graph engines, KnightKing hides
system details in graph partitioning, vertex assignment, inter-
node communication, and load balancing. Thus it facilitates
an intuitive “think-like-a-walker” view, though users have
the flexibility to add optional optimizations.

Central to KnightKing’s efficiency and scalability is its
capability of fast selection of the next edge to follow. We first
propose a unified transition probability definition, which al-
lows users to intuitively define the static (graph-dependent)
and dynamic (walker-dependent) transition probabilities for
custom random walk algorithms. Based on this algorithm
definition framework, we build KnightKing as the first ran-
dom walk system to perform rejection sampling. KnightKing
eliminates the need of scanning all out-edges at a walker’s
current residing vertex to recalculate their transition proba-
bilities. Intuitively, this step is necessary for dynamic random
walk as one cannot proceed with sampling one edge, without
evaluating its transition probability relative to its siblings’.
With rejection sampling, however, one replaces such com-
plete O(|E,|) examination at vertex v with only a few trials
that are individually and quickly evaluated.

Table 1 demonstrates the difference: for the same node2vec
computation, on average KnightKing only needs to compute
transition probability for 0.79 edges in sampling one edge.
This dramatically speeds up edge sampling, especially with
the power-law degree distribution common in real-world
graphs: hot vertices with thousands or even millions of edges
can be walked in and out at a similar cost as their much less
popular peers, saving them from inevitably being frequent,
ultra-expensive stops. Also, unlike existing approximate op-
timizations [2, 49], KnightKing performs exact sampling, im-
proving performance without sacrificing correctness.

Finally, though rejection sampling itself is motivated and
designed for dynamic sampling, KnightKing is a general-
purpose framework and handles static sampling efficiently as
well. Besides the above algorithmic innovations, KnightKing
encompasses system design choices and optimizations to
support its walker-centric programming model.

KnightKing: A Fast Distributed Graph Random Walk Engine

We implemented KnightKing in C++, and evaluated it with
four popular random walk algorithms on multiple real-world
and synthetic graphs. Results show a speedup up to 4 orders
of magnitude for dynamic random walks and 17X for static
ones, over fastest alternatives we could find/build. To our
knowledge, KnightKing is the only system capable of exact
computation of dynamic random walk on very large graphs.

2 Unified Walk Algorithm Definition
2.1 Random Walk Taxonomy

We first introduce the common taxonomy of random walk
based algorithms. They follow a common framework: given
a graph, a certain number of walkers each starts from a given
start point, then repeatedly selects a neighbor of the current
residing vertex according to given probability distribution,
and moves to this neighbor. Intuitively, key variations among
random walk algorithms lie in the neighbor selection step.

From the aspect of the edges’ relative chances of being
selected, random walk algorithms can be categorized into
unbiased, where the transition probability of out-going edges
do not rely on their weight or other properties, and biased,
where edges are weighted for neighbor selection in walks.

If the edge transition probabilities remain constant
throughout the process, we have a static random walk. Oth-
erwise, we have a dynamic walk, where the determination
of transition probabilities involves the walker state, which
constantly evolves during a walk. As a result, rather than
pre-computing all per-edge transition probabilities, during
dynamic walks such probabilities need to be recalculated
at each step. We further categorize algorithms in their or-
der, by how far back a walker’s recent track is considered
in updating the transition probability at its current residing
vertex. With first-order walk algorithms, walkers are oblivi-
ous to the vertices visited before the current one, while with
second-order algorithms, in selecting the next stop, a walker
considers the previous vertex visited, from which it tran-
sited to the current one. Note that higher-order algorithms,
including second-order ones, are dynamic by definition.

In addition to the transition probability definition, differ-
ent random walk algorithms might adopt different termi-
nation strategy. Common strategies include truncating the
walk at given number of steps (resulting in walk sequences
with uniform length), or having each walker terminate its
walk with a given probability at each step.

2.2 Unified Transition Probability

Our literature survey leads us to identify a general frame-
work for defining edge transition probabilities, which applies
to known random walk algorithms, across the categories
named above. For a walker w currently residing at vertex v,
the unnormalized transition probability along its edge e is de-
fined as the product of a static component P, a dynamic com-
ponent Py, and an extension component P,. More specifically,

526

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

the transition probability P(e) is Ps(e) - Py(e, v, w) - Pe(v, w).
Note that the state of w carries necessary history information
such as the previous n vertices visited.

Under such a framework, the more naive algorithms are
special cases of biased, higher-order algorithms. E.g., an un-
biased, static algorithm (which has fixed, uniform transition
probability across edges) has both the Ps; and P; components
set trivially at 1. Independent of the P and P; definitions,
when a walk satisfies the given termination condition (such
as reaching a given step count or seeing the “stop” side after
flipping a biased coin), P, becomes 0. Together with cases
where no out edges exist or are eligible, a walk terminates as
there are no out edges with positive transition probability.

Below we introduce four representative and popular ran-
dom walk algorithms, and give their edge transition proba-
bilities in the aforementioned format. We focus on the P, and
P; components. Unless otherwise noted, these algorithms’
P, definition adopts a fixed walk length (80 used in our evalu-
ation, a common setup recommended in prior work [17, 34]).
PPR: A more sophisticated version of the well-known PageR-
ank algorithm is Personalized PageRank (PPR) [19, 32]. Unlike
the general PageRank problem, which is often computed us-
ing power iteration [6], PPR, especially fully PPR (with per-
sonalization for all vertices), is known to require prohibitive
time or space cost to efficiently compute, especially for large
graphs [28]. Random walk based solutions hence become a
common approximation, with walk sequences generated and
saved for future PPR queries [28]. Our discussion in this pa-
per is based on one random walk implementation using the
full personalization model [13, 28], a biased, static algorithm
simulating personal preferences in web browsing.

At each step, the probability of an outgoing edge of the

current residing vertex being sampled is proportional to its
weight. More specifically, Ps(e) = f(v, x), where e connects
the current residing vertex v to x, and Py(e) = 1, Ve. For
better performance and parallelism, a long random walk is
broken into many short walks, by having walkers adopt a
fixed termination probability P;, so that with P, P.(v, w) = 0
(Py = 0.0125 or 0.149 in our experiments).
DeepWalk: As another example of biased, static random
walk algorithm, consider DeepWalk [34], an important graph
embedding technique widely used for machine learning. It
leverages language modeling techniques for graph analyt-
ics, using truncated random walk to generate many walk
sequences. By treating each vertex as a word and each se-
quence as a sentence, it then applies the SkipGram language
model [31] to learn the latent representation of these vertices.
This representation is useful in many applications, such as
multi-label classification, link prediction, and anomaly de-
tection. While the original DeepWalk was unbiased, later
work [10] extends it to biased random walk.

Like with PPR, when DeepWalk runs on weighted graphs,
the transition probability of an edge is also proportional to its

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

weight. The major difference is then the termination compo-
nent: unlike PPR, which can have random “early termination”,
DeepWalk continues till the given path length.

Meta-path: Next we introduce meta-path based algo-
rithms [12, 14, 24, 25], proposed to capture the semantics be-
hind the heterogeneity of the vertices and edges. In these al-
gorithms, each walker is associated with a meta-path scheme
specifying the pattern of edge types in a walk path. E.g., in a
graph of publications, to probe the citation relationship, we
may set the starting vertex as an author and set the meta-path
scheme as “isAuthor— citedBy — authoredBy™!”. Longer
walks can be created by repeating such templates [12, 40],
e.g., in this case generating long citation chains by having
alternating edges denoting “cites” (author to paper) and “au-
thored by” (paper to author) relationships.

The actual meta-path to use is application-specific and
usually defined by domain experts. Specifically, a Meta-path
execution will randomly assign each walker one from N
user-supplied meta-path schemes. For a walker assigned a
meta-path scheme S, at the k" step:

Poe) = 1, if type(e) = Skmod|s|
d 0, otherwise

(1)

This gives an example of a dynamic, first-order random walk
algorithm. At the same vertex, for walkers with different
schemes or at different steps, the edge transition probability
distribution is different and cannot be pre-computed at the
beginning of the execution. Meanwhile, the selection of next
edge to follow remains first-order, as it only involves the
current position at the assigned scheme, without considering
which vertices were visited previously.

node2vec: Finally, we get to introduce a higher-order al-
gorithm. Such algorithms are powerful as the walkers bear
their recent walk history in selecting the next stop, which
reflects reality in many use scenarios. The vast majority of
higher-order algorithms in real applications we have seen so
far are 2nd-order [17, 39, 48]. Among them, we introduce the
highly popular node2vec [17], which has similar applications
as DeepWalk but is more flexible and expressive.

On a given undirected graph, a walker w (that remembers
its last stop as last(w) = t) has the following dynamic edge
transition probability at its current residing vertex v, for
edge e, that connects v and vertex x:

117, ifdix =0
Pyle,v,w) =11, ifdyc =1 (2
é, ifdtx =2

Here p and g are hyperparameters configured by users,
and d;, is the distance between t and x. d;,, = 0 means ¢
and x are the same vertex, which makes e = (v, x) exactly
the edge just traveled (return edge). Therefore, p is called
the return parameter, giving the likelihood of immediately
revisiting a node in a walk. d;» =1 means x is adjacent with
t and d;x = 2 otherwise. q thus is called in-out parameter,

527

K.Yang, M.Zhang, K.Chen, X.Ma, Y.Bai, and Y.Jiang

if r = 6, then e, gets sampled

c[o] c[1] c[2] C[3]

(a) ITS

(b) Alias method

Figure 1. Efficient sampling for static walk

where a higher setting generates walks that tend to obtain
a “local view” of the underlying graph with respect to the
start vertex and approximate BFS behavior. A lower setting,
on the other hand, generate walks more inclined to explore
nodes “further away”, resembling the DFS behavior [17].

node2vec can be either biased or unbiased, as specified by
the static component P;. Commonly, with biased node2vec,
Ps and P, are set by edge weight and fixed walk length,
respectively, similar to DeepWalk.

In discussing our proposed solution, we use biased
node2vec as a running example, as it illustrates the most
complex form of popular random walk algorithms. The less
sophisticated algorithms aforementioned can be viewed as
special cases of this biased, second-order algorithm, by sim-
plifying part of its edge transition probability definition.

3 Existing Optimizations (Related Work)

Here we summarize existing optimizations for random walk,
in part to give background for efficient static sampling, which
will be used in KnightKing as well. This section also serves
as a brief related work survey.
Static random walk: One common sampling technique
for static walks is Inverse Transform Sampling (ITS), illus-
trated in Figure 1a. Suppose a vertex has n outgoing edges,
{eo, €1, ..., en—1}. An array C can store the Cumulative Dis-
tribution Function (CDF) of the transition probabilities, by
calculating the prefix sum of the unnormalized static com-
ponent Pg(e), i.e., C[i] = ;;(1) Ps(e;j). The sampling is then
performed by generating a random number r in [0, C[n — 1])
and finding the smallest i where C[i] > r using binary search,
producing e; as the sampled edge. By inversing the “horizon-
tal” sampling to the “vertical” direction, it takes O(n) time
and space to construct C, then O(log n) to sample an edge.
An alternative adopted by existing random walk imple-
mentations is the alias method [26, 41, 45]. It splits each edge
into one or more pieces, with the total number of pieces no
larger than 2n, and put them into n buckets, with the restric-
tion that each bucket holds at most 2 pieces and the sum of
weight (Ps) of the pieces in each bucket are exactly the same.
These buckets and their content form the alias table. To sam-
ple an edge, first we uniformly sample a bucket, then one of
its pieces according to their weight, returning the edge the
piece belongs to. Here the chance an edge being sampled is
proportional to the sum of the weight of its corresponding
pieces, which in turn equals its own weight.

KnightKing: A Fast Distributed Graph Random Walk Engine

Figure 1b illustrates the breaking up of 4 edges, using
the same example as above, and their assignment into the
4 buckets. It takes an O(n) pre-processing time and space
overhead to build the alias tables, enabling O(1) complexity
in edge sampling. KnightKing leverages the alias approach
to handle its static transition probability component.
Dynamic random walk: Unfortunately, the aforemen-
tioned optimizations do not apply to dynamic random walk,
as it brings prohibitive time and space overhead to pre-
compute and store ITS arrays or alias tables enumerating
possible walker states. E.g., exact computation of node2vec
using CDF or alias requires about 970TB or 1.89PB mem-
ory, respectively, on the 11 GB Twitter graph [22]. Conse-
quently, machine learning systems [3-5] implementing such
pre-processing for node2vec are known to not scale well [49].

Algorithm-specific optimization, on the other hand, ex-
ists for dynamic random walk. E.g., a metapath implemen-
tation [1] performs pre-processing to build per-edge-type
ITS arrays or alias tables, enabling fast sampling without
increasing pre-processing time/space overhead, as edges are
partitioned into disjoint sets by type. This, however, cannot
be generalized to all dynamic random walks. For node2vec,
Fast-Node2Vec [49] uses optimizations such as caching the
edge lists of popular vertices to reduce data transmission,
and sacrificing the walker processing concurrency to save
memory consumption.

In addition, approximation methods are proposed to make
higher-order algorithms more affordable. E.g.., node2vec-on-
spark [2] trims high degree vertices to enable pre-processing,
by selecting only 30 edges for vertices with a higher degree.
However, even with this approximation, it still needs to store
up to 900|V| transition probabilities. Fast-Node2Vec [49]
switches to static sampling (by ignoring the dynamic transi-
tion probability component) for high-degree vertices.

Unlike these systems, KnightKing enables exact edge sam-

pling at O(1) cost, with pre-processing overhead not exceed-
ing the O(n) level, for common random walk algorithms
including higher-order ones.
System optimizations: The only system study for ran-
dom walk we are aware of is DrunkardMob [23], targeting
high-speed random walk on multi-core processors. However,
it only focuses on static walk and is designed to run out-of-
core on a single machine. General-purpose graph computing
systems [9, 15, 30, 37, 38, 50] are usually deeply optimized
and evaluated for traditional graph algorithms, without ad-
dressing random walk workloads.

4 KnightKing Sampling Methodology

This section describes the key innovation within KnightK-
ing: its unified edge sampling mechanism that effortlessly
handles expensive dynamic/higher-order walks, while mor-
phing into the alias solution automatically in static walks.
Centered around rejection sampling, it only needs to com-
pute the unnormalized transition probability of several edges,

528

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

N] P=2,q=05 reject P=2, q=0.5 accept
— x Q(v)=2
pa(c0) =1 °
paler) =1/q=2 1 b I
pae)=1/g=2 0.5 |-mm-pessageoooe- Py
()P0 (o, 0 €1 €12 €3 €314
N N
(a) Sample graph (b) Rejection sampling at v

Figure 2. Rejection sampling for unbiased node2vec

even at million-edge vertices. Meanwhile, it remains an exact
solution, delivering fast sampling without losing correctness.

4.1 Rejection Sampling for Random Walk

Basic algorithm for unbiased walk: Rejection sampling
is originally proposed as a general method for computers
to sample from an arbitrary probability distribution [44].
Without loss of generality, we introduce its working through
our random walk scenarios.

Consider unbiased node2vec on the sample graph segment
shown in Figure 2a. Suppose a walker is currently at v, hav-
ing previously visited ¢. As introduced in Section 2.2, the
dynamic unnormalized probability component P;(e) is ei-
ther 117’ 1, or é, depending on the distance between x and ¢.
With the sample parameter setting of p = 2 and q = 0.5, the
four edges (leading to x, x1, x2, and ¢ respectively) have P,
valued at 1, 2, 2, and 0.5, respectively. Figure 2b illustrates
this with a simple discrete probability distribution plot, with
bar heights corresponding to the edges’ P, values.

The basic idea of rejection sampling is to find an envelope
Q(v) that covers all the bars and convert the 1-D sampling
problem among the edges into a 2-D one, within the area
covered under the envelope. In KnightKing, we define Q(v)
as a per-vertex constant, intuitively drawing it as a horizontal
line matching the highest P; value across all edges. In this
case, Q(v) = max(%, 1, é) = 2, as shown in Figure 2b.

To sample one edge, one randomly samples a location
(x, y) with uniform distribution within the rectangular area
covered by the lines y=Q(v) and x = |E, |, along with the x
and y axes. Le., imagine throwing a dart within that rectangle.
The sampled x value gives a candidate edge e, while the
y value will be compared against its corresponding Py. If
y < Py(e) (the dart hitting a bar), e is accepted as a successful
sample; otherwise (the dart missing all bars), e is rejected,
which requires another sampling trial, until success. For
sampling correctness, see proof in related textbooks [29].

The beauty of this method lies in that with dynamic ran-
dom walk, where the transition probability P; depends on
the walker state and cannot be efficiently pre-computed, this
rejection-based sampling allows one to sample first, then
check whether the sampling can be accepted. This seem-
ingly minor difference eliminates the expensive scan of all
edges at the current vertex, needed to update the relative

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

probability for sampling among the edges. With a reason-
able envelope, there is a large chance for the sampling to
succeed within a few trials (each with O(1) time to check
the actual dynamic probability for only the sampled edge).
With power-law degree distribution common in real-world
graphs, this approach effectively wipes out the difference
between vertices, dramatically reducing the sampling cost
at vertices with thousands or even millions of edges.
Biased rejection sampling: With our unified definition
that decomposes the per-edge unnormalized transition prob-
ability into the Ps and P; components, it is rather straightfor-
ward to extend the above basic, unbiased sampling scheme
to support biased dynamic random walk.

Again consider node2vec, but with a non-trivial P; defini-

tion (often by the edge weight) to give the static bias to be
compounded to the dynamic component P,;. Using existing
approaches like ITS and alias (described in Section 3), we
can perform optimized 1-D sampling with pre-processing,
given the static P distribution. Now the candidate edges are
sampled according to the Ps values, instead of uniformly. In
other words, while in Figure 2b all bars have equal width,
here the width of each bar is proportional to the P; value of
the corresponding edge.
Sampling complexity: Another advantage of rejection
sampling is that, though conceptually we have the discrete
probability distribution plot (Figure 2b), there is no need to
physically build such a structure. Given the dynamic com-
ponent Py, the per-edge transition probability is computed
on-demand using user-defined functions. The static com-
ponent, on the other hand, benefits from pre-computation
given in Section 3, at O(n) time and space for a vertex with
n edges, with results reused across all sampling trials.

Though individual sampling trials each come with a cost
of O(1) (using alias as the static solution) or O(log n) (using
ITS), the overall sampling efficiency apparently depends on
the average number of trials needed. Intuitively, the outcome
of each trial corresponds to the ratio of “effective area", the
combined area of all bars divided by the entire rectangular
area. The tighter the envelope bounds the bars, the higher
the success rate. Therefore, the average number of trials
needed to sample an edge, E can be calculated as follows:

_ Q(v) - ZeeEv Pg(e)
B S Pao) Pa®) ®

Note that this average number E is not directly related
to the degree of v. As a result, with a proper Q(v), E can be
small even with a huge vertex degree, producing dramatic
performance gain by reducing the sampling complexity from
O(|Ey|) to E on average.

4.2 Optimization for Dynamic Walk

Handling outliers in P;: As mentioned, the efficiency of
our edge sampling algorithm heavily relies upon how tightly
the envelope encloses the per-edge probability bars. The

529

K.Yang, M.Zhang, K.Chen, X.Ma, Y.Bai, and Y.Jiang

Q(v)

N

. lower bound
appendix

QW g

1 13
A1 1

C) Global Pz lower bound
d

Q(v)

(a) Py with outlier (b) Outlier optimization

Figure 3. Optimizations for dynamic random walk
distribution of Py is taken care of with the static solution
(alias or ITS). However, an undesirable situation remains
when Pj; has a highly skewed distribution, with a few very
tall bars pushing up the entire envelope, as shown in figure 3a.
Coming back to the node2vec example, this corresponds to
when we have p and g set as 0.5 and 2, respectively. In this
case, a single bar (the return edge) has a height of 2, while all
the others no taller than 1. This outlier doubles Q(v), creating
a rectangular dartboard dominated with invalid white area,
which is especially a nightmare when v has many edges.

To mitigate this, one can customize P; definition to de-
clare such outliers, allowing the system to “fold” them. In
the above case, an outlier can be declared for the “return
edge” condition, with P,y ;ier value of 2. It is handled by
chopping the long bar into 2 parts and appending an “ap-
pendix”, representing the chopped upper part, to the right
of the probability distribution plot. This can be done individ-
ually for each outlier case if there are more than one. After
generating an x sample, if it falls into the non-outlier area
we follow the original rejection sampling scheme. If it falls
into an appendix area, we locate the corresponding edge and
accept it with a probability of its actual chopped area divided
by the estimated appendix area.?

Though this step is easy for node2vec, in the worst case
one may need to scan all adjacent edges to locate such outlier
edges. However, note that we only need to do this when x
falls into the appendix area, which is low-probability by
definition. Compared with the original “tall” rectangle, the
reshaped sampling area makes the average case much faster,
at the cost of worst cases when outliers are actually sampled.
Pre-acceptance: A relatively even dynamic probability
distribution has high sampling success rate. This actually
brings additional opportunities for performance optimiza-
tion. Note that the envelope y = Q(v) only bounds the y
sampling in one direction. With all bars close to the enve-
lope, we reduce another type of waste, by skipping dynamic
P, value check for the sampled candidate edge, which poten-
tially involves expensive process like message passing and
remote execution for higher-order algorithms.

Again consider above node2vec example with 1/p = 2 and
1/q = 0.5, with all bars above 0.5, as depicted in Figure 3a.

It may be hard to specify the exact width/height of the outliers, with-
out knowing which edges they correspond to for the walker performing
this sampling. Users may instead specify upper bounds and subsequently
perform corrections in rejection sampling after locating specific outliers.

KnightKing: A Fast Distributed Graph Random Walk Engine

This way, a dart hitting anywhere below 0.5 is guaranteed to
hit a bar, and should be accepted without probability check.
Hence we introduce another optimization, by allowing users
to provide optional lower bound definition. A declaration
of lower bound of L(v) notifies the system of another hori-
zontal line y = L(v) (see Figure 3c), allowing it to prune Py
evaluation for samples falling on or below this line.

Our evaluation confirms the effectiveness of these opti-
mizations (Table 5).

5 Workflow and Programming Model
5.1 Random Walk Life Cycle

Similar to traditional graph engines that coordinate updates
at many vertices (along many edges) in iterations, KnightK-
ing possess an iterative computation model, coordinating
the actions of many walkers simultaneously. Like vertices
and edges, walkers are also assigned to each node/thread,
based on the assignment of its current residing vertex. The
obvious difference from traditional graph engines, of course,
is the probabilistic walk along sampled edges vs. determinis-
tic update propagation along all/active edges. A consequent,
more subtle difference is on each iteration’s execution with
a distributed random walk engine.

While graph engines can push/pull updates and perform
vertex state updates through one round of vertex-to-vertex
messages, when handling higher-order walks KnightKing
needs to break such iteration to contain two rounds of mes-
sage passing. As each walker potentially needs to perform
edge selection based on vertices it recently visited, it may is-
sue walker-to-vertex queries (such as in the case of node2vec,
to check whether the previous stop t is adjacent to a candi-
date stop x). Under distributed settings, vertices and edges
are partitioned across nodes, requiring message passing for
sending such queries and collecting their results.

To facilitate efficient batching and coordination of such
distributed query operations, KnightKing plays a role similar
to a post office, where walkers submit query messages based
on their local sampling candidate(s), addressed to vertices
involved in dynamic checks. All such queries are delivered ac-
cording to vertex-to-node assignment, with all nodes work in
parallel to process queries received, from all walkers. Then
another round of message passing will return results col-
lectively, with querying walkers retrieving results together.
Below are the steps within a KnightKing iteration:

1. Walkers generate candidate edges for rejection sam-
pling and perform preliminary screening.

2. Walkers issue walker-to-vertex state queries based on
sampling results, when necessary.

3. All nodes process state queries and send back results.

4. Walkers retrieve state query results.

5. Walkers decide sampling outcome, move if successful.

Note that the above describes the most general case of
random walk supported by KnightKing. With less complex

530

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

real_t edgeStaticComp(Edge e) {
return e.weight;

}
void postStateQuery(Edge e, VertexID src, Walker w) {
if (w.step !=0) //query w.pre if e.dst is its neighbour
graph.postNeighbourQuery(w.prev, e.dst, w);

}
real_t edgeDynamicComp(Edge e, Vertex src, Walker w) {
if (w.step == 0) return max(1.0/p, 1.0, 1.0/ q);
else if (e.dst == w.prev) return 1.0/ p;
else if (graph.getStateQueryResult(w)) return 1.0;
else return 1.0/ q;

real_t dynamicCompUpperBound(EdgeList list, Vertex src) {
return max(1.0/p, 1.0, 1.0/q);

real_t dynamicCompLowerBound(EdgeList list, Vertex src) {
return min(1.0/p, 1.0, 1.0/ q);
}

Figure 4. Node2vec sample code

algorithms, often steps can be skipped. E.g., with static or
first-order random walk, steps 2-4 are omitted as there is no
need to involve other vertices in local sampling. For such
algorithms, all walkers can move lockstep: within each itera-
tion, walkers perform their sampling and (local) checking,
until one edge is sampled successfully (or the walk termi-
nates). In these cases, all active walkers are at the same
steps along their walk sequences. With higher-order algo-
rithms like node2vec, however, iterations across walkers are
synchronized by the two rounds of walker-to-vertex query
message passing. Lucky walkers with successful sampling
will go ahead and walk one step, while less fortunate ones
stuck at their current vertex for the next iteration. This way,
walkers may proceed at different pace, potentially producing
stragglers. We present related optimization in Section 6.2.

5.2 KnightKing APIs

Given the general random walk algorithm definition frame-
work proposed in Section 2.1, KnightKing provides intuitive
APIs for users to specify existing or create new random walk
algorithms. Below we describe its key interfaces.
Transition probability specification: This is the central
information users need to supply to KnightKing for imple-
menting a custom random walk algorithm. Recall that the
unified transition probability we propose contains the static
component Ps(e) and the dynamic one Py(e, v, w). KnightK-
ing provides two corresponding APIs for their specifica-
tion, namely, edgeStaticComp and edgeDynamicComp. Users fill
these functions to override the system default of assigning
both probability uniformly as 1 across all edges in the graph.
Figure 4 gives the sample code of node2vec using these APIs.
With edgeStaticComp, users provide the static transition
probability component, typically as the edge weight (as in
the node2vec sample code here), or derived from weight or
other edge properties. As this definition does not involve the
walker state, this component can be pre-computed. Based on
this definition, KnightKing performs preparation accordingly
during initialization, such as building the alias tables.

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

edgeDynamicComp, on the other hand, provides dynamic
computation involving the walker state, which cannot be pre-
computed. For higher-order algorithms where the dynamic
edge transition probability computation involves other ver-
tices, users invoke another interface, postStateQuery, to sub-
mit walker-to-vertex state queries.

In the node2vec example, edgeDynamicComp specifies the
case-by-case Py definition, returning 1, 1/p, or 1/q depend-
ing on the distance between t (w.prev) and x (e.dst). To
check whether there is an edge between these two vertices,
here the edgeDynamicComp function further invokes the API
getStateQueryResult. Note that this is actually executed af-
ter the two-round message passing for walker-to-vertex state
queries, to retrieve query results. The query semantics it-
self is specified through the postStateQuery API. When this
function is provided by the user, KnightKing realizes that
dynamic walker-to-vertex state checks are necessary and
will coordinate the two-round message passing across all
walkers. It delivers each such query to the node that hosts
the w.prev in question, who performs the actual query exe-
cution as defined in this function. In this case, user supplied
postStateQuery calls a standard KnightKing utility routine
postNeighborQuery, to issue a query checking whether two
vertices are neighbors. Beside postNeighborQuery, users can
also define customized queries.

Finally, the pair of APIs dynamicCompUpperBound and
dynamicCompLowerBound supply the upper and lower bound
in P for rejection sampling. Like edgeStaticComp, these two
functions describe static information, thus are invoked by
KnightKing during random walk initialization. Note that the
former is mandatory for dynamic random walk, to construct
the envelope Q. The latter, instead, is an optional API to en-
able the optimization of reducing dynamic state queries by
early acceptance. In this node2vec example, the upper bound
and lower bound are set in a straightforward way:.
Initialization and termination: KnightKing users spec-
ify the number of walkers when starting a random walk.
They can give specific start locations or their distribution
of starting locations (for the system to randomly generate
start vertices accordingly) with KnightKing APIs. When not
specified either way, start locations are determined using
KnightKing’s default strategy, which places the i;; walker
at the (i mod |V|);p vertex.

Similarly, KnightKing provides API for users to specify
the P, component by giving termination conditions. For
node2vec, it is set to continue till reaching 80 steps.
Walker state: KnightKing automatically performs default
walker state maintenance, such as updating the current re-
siding vertex, and the number of steps walked. In addition,
users performs their own initialization and update of custom
walker properties using provided APIs.

Due to space limit, we omit the initialization and termi-
nation API usage samples in Figure 4, as well as those for
outlier declaration.

531

K.Yang, M.Zhang, K.Chen, X.Ma, Y.Bai, and Y.Jiang

6 System Design and Optimization

Finally, we describe system design choices and optimizations
within KnightKing, in providing a unified execution engine
for diverse random walk algorithms. KnightKing is imple-
mented in around 2500 lines of C++ code, using OpenMPI for
inter-node message passing. Its underlying layer has much
in common with distributed graph engines, where we adopt
infrastructure and techniques in mature systems such as
Pregel [30] and Gemini [50]. Our discussion focuses on de-
sign aspects and tradeofs specific to random walk execution.

6.1 Graph Storage and Partitioning

KnightKing store edges using compressed sparse row (CSR),
a compact data structure commonly used in graph systems.
Further, considering it is important for a walker to directly
access any edge of a vertex (e.g., for performing local dy-
namic transition probability check with rejection sampling),
KnightKing adopts a vertex-partitioning scheme. Each ver-
tex is assigned to one node in distributed execution, with all
directed edges stored with their source vertices. Undirected
edges are stored twice, in both directions.

In general, the frequency of a vertex being visited in a ran-
dom walk depends on user-defined (and potentially dynamic)
transition probabilities and involves intricate interplay be-
tween graph topology and walker behavior. In KnightKing,
we roughly estimate the amount of processing workload as
the sum of a node’s local vertex and edge counts, and per-
forms 1-D partition balancing this sum across nodes. While
this may not produce evenly distributed random walk pro-
cessing or communication loads, it achieves even memory
consumption, with inadequate memory capacity being the
chief cause of distributed processing in the first place.

6.2 Random Walk Execution and Coordination

Computation model: As walkers move independently,
random walk algorithms may appear embarrassingly paral-
lel and coordination-free, scaling out easily to more thread-
s/nodes. However, a naive implementation, such as one us-
ing a graph database as the storage back-end, with each
walker retrieving information via APIs like getVertex() and
getEdges() will incur excessive high network traffic and
poor data locality. Instead, KnightKing adopts the BSP (Bulk
Synchronous Parallel) model [43] common in graph engines,
which fits well with its iterative process.

Before a walk starts, KnightKing performs initialization as
user specified or by default settings. This includes building
per-vertex alias tables if a custom static component P is de-
fined, setting up rejection sampling using the upper bound
and optional lower bound supplied if a custom dynamic com-
ponent Py is defined, and walker instantiation/initialization.

KnightKing: A Fast Distributed Graph Random Walk Engine

(%]

9 PPR ——
20

';éjz) node2vec - — ‘-

> 15 N BFS - --

P2 ~.

5] ~

§2° .

> 5 N,

2 N

2 20 \

100
lterations

150 200

Figure 5. Tail behavior, random walk vs. BFS.

Walker-centric execution of the main walk iterations lever-
age supports similar to those seen in distributed graph en-
gines: per-walker (rather than per-vertex) message gener-
ation, destination node lookup and message batching, and
all-to-all message passing. There are also common optimiza-
tions such as buffer pool management and pipelining to
overlap computation with communication.

Task scheduling: KnightKing performs task scheduling
in a similar way as graph engines like Gemini, but works
in a walker-centric rather than vertex-centric manner. It
sets up parallel processing within each node by having the
same number of threads as the number of cores available per-
forming computation, plus two threads dedicated to message
passing. The two-round communication within higher-order
random walk is implemented within each iteration, with
computation (generating outgoing query messages and pro-
cessing incoming queries) overlapped with message passing.
Tasks, defined as chunks of either walkers or messages, are
put into shared queues for the threads to grab. The granular-
ity of such dynamic scheduling (chunk size) is set as 128, for
both walkers and messages.

Straggler handling: With its rejection-based core strategy
reducing the sampling complexity to nearly O(1), KnightK-
ing makes the sampling cost per step dramatically more
predictable, not only lower. However, it could still face long-
tail executions, with a few stragglers lingering much longer
than the bulk of walkers. One scenario leading to this is
non-deterministic termination, such as PPR (where walkers
terminate with a user-set probability). The other is higher-
order algorithms like node2vec. As mentioned earlier in Sec-
tion 5.1, with synchronous iterations containing the two-
round walker-to-vertex query communication, walkers en-
countering sample rejection have no choice but stay at where
they are to try their luck for the next iteration.

Unlike graph processing algorithms that have to deal with
dwindling set of active vertices, here with random walk,
we face longer and thinner tails, as shown in Figure 5 with
the LiveJournal graph. BFS has fast growing and shrinking
active vertex set, completing in 12 iterations. In comparison,
random walk with stragglers “converges" more slowly, with
very few active walkers lagging far behind. As such long tails
are algorithm-induced, KnightKing cannot speed up these
slow walkers, but we have found that system performance
can receive significant improvement by cutting back level of
concurrency during this long tail. When there is not much

532

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

going on, the system overhead in maintaining the original
thread pool outweighs the benefit of parallel processing.
Therefore a KnightKing node switches to its light mode by
retaining only three threads (one for computation and two
for message transmission) when its number of active walkers
fall below a threshold, set at 4000 in our experiments. Results
show that this optimization reduces overall execution time
of long-tail walks by up to 57.5% (details in Section 7.5).

7 Evaluation
7.1 Experiment Setup

Testbed: We use an 8-node cluster with 40Gbps IB inter-
conneciton, running Ubuntu 14.04. Each node has 2 8-core
Intel Xeon E5-2640 v2, 20MB L3 cache, and 94GB DRAM.

Graph 4 directed undirected Degree De gree

|E| |E| mean variance

LiveJournal [7] 4.85M 69.0M 86.7M 17.9 2.72E3
Friendster [47] 70.2M 1.81B 3.61B 51.4 1.62E4
Twitter [22] 41.7M 1.47B 2.93B 70.4 6.42E6
UK-Union [8] 134M 5.51B 9.39B 70.3 3.04E6

Table 2. Real-world graph datasets

Input graphs: Table 2 gives specifications of our four real-
world graph datasets, widely used in graph processing and
random walk evaluations. These graphs cover different graph
sizes, with Twitter and UK-Union graphs presenting more
pronounced power-law degree distribution than the other
two. We use their undirected version, and further create their
weighted version (for biased walk) by assigning edge weight
as a real number randomly sampled from [1, 5). To be able
to manipulate graph scales and characteristics, we also use
synthetic graphs, with details to be given in Section 7.3.
Random walk applications: We evaluate four popular
random walk algorithms discussed earlier, namely DeepWalk,
PPR, Meta-path, and node2vec. The first two are static while
the last two dynamic. All tests deploy |V| walkers. For
Meta-path, there are 5 edge types and 10 cyclic path schemes,
with length = 5. Each walker is randomly assigned one
scheme. For PPR we set the termination probability as 1/80,
so that its expected walking length is also 80.

Systems for comparison: As there lacks general random
walk engines, we compare KnightKing with random-walk-
adapted versions of Gemini [50], the state-of-art distributed
graph computing system, implemented in C++. It adopts dual-
mode (push/pull) update propagation model and performs
intensive system optimization targeting graph processing.
Like with the GAS model, in Gemini, a vertex cannot directly
access all its incident edges, but has to interact with its mir-
rors distributed on different nodes. So for it we implement
a two-phase sampling algorithm: at each step a walker first
samples which node to walk to using ITS, then its mirror on
that node samples a specific edge. For dynamic walk, the tran-
sition probability is computed in an ad-hoc manner, using

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

ITS also for the second phase (alias inefficient due to its high
initialization cost). For static walk, the transition probability
and corresponding data structures are pre-computed, with
both ITS and alias evaluated for the second phase (results re-
porting the better between the two). Such vertex replication
and edge distribution also prevent Gemini from adopting
rejection sampling, as a walker reading any particular edge
requires two iterations (sending a request to the mirror and
waiting for its response).

Evaluation methodology: Reported execution time (aver-
age of 5 runs except several extremely slow cases (*)) includes
initializing walkers and sampling related data structures,
but excludes graph loading, partitioning, or walking trace
collection. With the extremely slow cases, which take the
other system evaluated six to hundreds of hours to finish,
we extrapolate their performance by running with a small,
randomly sampled set of walkers (1% to 6% for Twitter graph
and 0.1% to 0.6% for UK-Union). The full execution time
is then estimated by using linear regression. As expected,
the computation time scales linearly with the number of
walkers and the smallest R? value in our regression is found
to be 0.9998. We further verified our estimation method by
completing such a long-running test, where our estimated
execution time has an error under 1.5% from the actual one.

7.2 Overall Performance

Time in seconds Gemini | KnightKing Spe.edup
Xtimes

Live] 17.64 2.22 7.93

DeepWalk FriendS 182.09 21.15 8.61

Twitter 96.90 12.76 7.60

UK-Union 223.88 38.73 5.78

Live] 110.14 6.50 16.94

PPR FriendS 297.51 30.82 9.65

Twitter 201.55 20.27 9.94

UK-Union 351.99 49.56 7.10

Live] 63.59 2.74 23.20

Meta-path FriendS 691.07 32.28 21.41
Twitter 24165* 20.98 1152.03*
UK-Union | 537438* 66.87 8037.50*

Live] 168.55 14.12 11.93

node2vec FriendS 1467.07 69.80 21.02
Twitter 97373* 44.14 2206.12*
UK-Union | 1822207* 163.59 11138.85*

Table 3. Overall performance on unweighted graph

Table 3 and Table 4 give overall execution times for the
combination of algorithms and input graphs (unweighted
and weighted version, respectively). All results are from 8-
node executions using 16 threads per node.

With static walk (DeepWalk and PPR), KnightKing executes
its unified sampling workflow, but without actually perform-
ing rejection sampling. Therefore its performance advan-
tage over Gemini comes from its systems aspects. Overall,
KnightKing leads Gemini by up to 16.94x with these two
static algorithms 8.22X on average).

533

K.Yang, M.Zhang, K.Chen, X.Ma, Y.Bai, and Y.Jiang

Time in seconds Gemini | KnightKing Spe.edup
Xtimes

LiveJ 17.73 3.14 5.65

DeepWalk FriendS 193.47 30.47 6.35

Twitter 102.12 17.29 5.91

UK-Union 233.76 63.24 3.70

Live] 107.52 7.21 14.92

PPR FriendS 306.10 39.22 7.80

Twitter 211.99 24.69 8.59

UK-Union 352.99 70.50 5.01

Live] 68.65 3.38 20.32

Meta-path FriendS 770.09 47.81 16.25
Twitter 51783* 30.31 1711.62*
UK-Union 932536" 97.44 9570.07*

LiveJ 170.46 15.34 11.11

node2vec FriendS 1483.33 78.68 18.85
Twitter 101095* 49.35 2048.53*
UK-Union | 1917205* 189.34 10126.20*

Table 4. Overall performance on weighted graph

Besides the aforementioned limitation of Gemini’s inher-
ent graph partitioning (a vertex accesses its edges through
mirrors scattered on different nodes), the performance gap
also comes from design mismatch between graph process-
ing systems and graph random walk workloads. E.g., its
“dense” mode uses pull-style communication based on in-
edges, while walkers naturally work outwards, forcing it
to stay with the “sparse” mode. With traditional graph pro-
cessing, it is common for vertices to update all its neighbors.
Therefore Gemini executes such “push” operations via broad-
cast, for a vertex to notify simultaneously all its mirrors.
This introduces huge waste for random walk execution, as a
walker only needs to walk along a single edge.

When edges are assigned weights (Table 4), results are
similar, with moderate increase of execution time for both
systems. That of course comes from the overhead of static
sampling with non-uniform transition probability.

Across all input graphs and both systems, PPR is much
slower than DeepWalk, due to its non-deterministic behavior.
Though its expected walk length is also 80, matching the
(fixed) length of DeepWalk, the longest walk length with PPR
is over 1000, producing the longer execution time as well as
the straggler situation discussed earlier.

When it comes to dynamic algorithms, KnightKing’s re-
jection sampling brings overwhelming advantage. Gemini,
using traditional sampling, sees walk execution time grow
significantly with Meta-path, and explode with node2vec. For
both algorithms, the Twitter graph walk cannot complete
within 6 hours, and node2vec on UK-Union is estimated to
take >500 hours (with altogether 128 threads on 8 nodes).
Also, whether the graph is weighted plays little role for
node2vec, due to the dominance of connectivity check cost.
These results explain the current adoption of approximation
solutions for such higher-order algorithms.

KnightKing, on the other hand, performs exact sampling
and reduces such executions with seemingly untameable

KnightKing: A Fast Distributed Graph Random Walk Engine

Edges computed

1200

900

600

300

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

Vertices Vertex degree upper bound

(a) Uniform degree (b) Truncated power-law degree

Figure 6. Sampling overhead with varying graph topology

(c) Popular vertices

Knightking —— 1000 4000 ['Knightking —— ' 382D 10000 | Knightking —— " 9429 | [s Knightking —<—]
Gemini ~—e—) Gemini ~—e— ? Gemini ~—e— 2 2 Gemini —8—
800.~ 2 ! 2 75727 £
i 3 3000 / 3 7500 = 5 075+
600.- £ / £ 57197 =
- 8 2000 | / 8 ~ % ost
400~ ° / o 3000 38507 N 0
= [1186 |3 = g
200~ & 1000 +0.76 0.76 - § 2500 {19777 5 025
50, -~ i 1 1?/ 392~ o 2
o P<760.75 075 075 0,75 0,75 o 7 = - 0% 075 075 ologe 076 076 076 076 ol
0 200 400 600 800 1000 100 400 1600 6400 25600 2 4 6 8 10 12 4 6 8

Popular vertices Nodes

(a) Inter-node scalability

Figure 7. node2vec scalability

inherent cost to the time duration close to static algorithms.
Across both algorithms and all input graphs (weighted or
unweighted), KnightKing finishes within 200 seconds, by
reducing the O(n) edge sampling to O(1) level.

7.3 Graph Topology Sensitivity

This section illustrates the impact of moving to rejection
sampling, with varied graph topology. Based on the nature
of rejection sampling, we are confident about KnightKing’s
robustness against graph topology changes, including inten-
sifying walk-unfriendly characteristics. The results, there-
fore, serve as a reminder for what happens to traditional
dynamic random walk implementations. For this, we gener-
ate synthetic graphs (with 10 million vertices, undirected and
unweighted) with different topology features and compare
the traditional sampling algorithm (Gemini) with rejection
sampling (KnightKing). As we focus on the algorithm aspect
here, we report the average number of calculating per-edge
transition probabilities needed for walking one step.

First, we use synthetic graphs with uniform degrees, to
illustrate the impact of graph density. Figure 6a shows that
traditional total sampling overhead growing linearly with
vertex degree, while rejection sampling having constant over-
head. Note that KnightKing on average computes edge tran-
sition probability less than once (more accurately, only 0.75
times) per step. This is due to its internal optimizations, such
as with the lower-bound-enabled early acceptance.

Next we examine the impact of skewness, by having vertex
degrees following a truncated power-law distribution found
in many real-world graphs. Here “truncated” means there is
an upper bound, beyond which the probability density is set
to 0. In this setting, the higher the upper bound, the more
non-uniform the vertex degree distribution is. As shown in
Figure 6b, when the upper bound grows from 100 to 25600,
with traditional sampling, the edge probability computation
overhead increases by 67 times, while the average degree
increases only 3.9 times. KnightKing’s rejection sampling
unsurprisingly stays constant.

Finally, the existence of hotspots (a few very popular ver-
tices), common in social graphs like Twitter, can drastically
slow down random walks. We isolate this behavior by adding

534

a few high-degree vertices (with 1 million edges) to a uni-
form graph with degree 100. While the behavior of rejection
sampling is boring as ever, interestingly the traditional sam-
pling overhead grows linearly with the number of hotspots,
as shown in Figure 6c. Adding two such hotspots to the 100-
degree uniform graph, one sees the traditional sampling cost
skyrocket from 100 to 1977. The more these expensive stops,
the higher the average sampling cost per step.

As a by-product of KnightKing’s main contribution of low-
ering the sampling cost to constant level, it makes dynamic
random walk resilient to performance hazards brought by
treacherous real-world graphs.

7.4 Probability Distribution Sensitivity

p=2 p=05 p=1
qg=0.5 q=2 g=1

Naive 49.22 160.44 43.87

Exec. time (s) | Lower bound 44.14 145.57 23.53
Naive 1.05 3.60 1.00

Edges/step | Lower bound 0.79 2.70 0.00

(a) Impact of lower bound with varied node2vec hyper-parameters

Naive | Lower bound (L) | Outlier (O) L+0O
Exec time. (s) | 160.44 145.57 84.83 67.21
Edges/step | 3.60 2.70 1.81 0.91

(b) Impact of outlier and lower bound optimization with p = 0.5, ¢ = 2

Table 5. KnightKing optimizations on node2vec

While insensitive to graph topology, KnightKing is sen-
sitive to the Py distribution (i.e., the “shape” of its dynamic
probability distribution plot). Here we evaluate related opti-
mizations to enhance the efficiency of its rejection sampling.
Table 5 demonstrates the impact of such optimizations by
running unbiased node2vec on the Twitter graph.

In Table 5a, we use 3 sets of node2vec hyper-parameter
settings, generating very different run times with naive re-
jection sampling. In particular, the 2nd setting p = 0.5,q = 2
has the most skewed Py, containing a single value of 2 for
the return edge, as discussed in Section 4.2. KnightKing is
forced to compute the transition probability for 3.6 edges
on average in this case. By applying the lower bound opti-
mization to pre-accept edges when the sampled y value is

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

600

" Mixed —%— |
Decoupled —+—

" Mixed —<—
r Decoupled —+—

o

1 2 4 8 16 32 64 1
Maximum edge weight

(a) Uniform

o
S

450

~
3

300

o
=]

150

IN)
o

Time (Seconds)
Time (Seconds)

=)

2 4 8 16 32 64
Maximum edge weight

(b) Power-law

Figure 8. Performance impact of decomposing P; from Py

200

al

xR j Origin‘ EXXXA j Or\g\‘nal
r E=mm Straggler-aware = Straggler-aware

160 -
120 -

80

Time (Seconds)

40 -

Time (Seconds)
o =M w s oo

LiveJ FriendS Twitter UK-Union

(b) node2vec

LiveJ FriendS Twitter UK-Union

(a) PPR

Figure 9. Impact of scheduling optimization

below the given lower bound, we reduce unnecessary com-
putation and communication, and bring a reduction of up
to 10% and 25% for execution time and edges computed per
step, respectively, for the first 2 non-trivial cases.

Table 5b fixes the hyper-parameters to the above most
challenging setting (p = 0.5, ¢ = 2) and shows the effect of
outlier mitigation and lower bound optimization, as well as
their combination. As expected, the outlier optimization pro-
duces significant improvement, almost halving the execution
time. Together with lower bound, they bring a 2.4x speed
up to the naive rejection implementation and 75% reduction
to the amount of edge probability computation.

The next experiment illustrates that the unified transi-
tion probability definition we proposed not only facilitates
intuitive and general algorithm specification, but also has
performance implications. By decoupling the static (Ps) and
dynamic (P;) components, it isolates the edge weight, often
used as the static probability, to one-time static probability
pre-computation. Rather than computing the product of P
and Py as in traditional dynamic sampling approaches, re-
moving edge weights from P, reduces its “dynamic range”
and subsequently enhances its sampling efficiency.

Figure 8 gives KnightKing performance behavior on
node2vec, using the Twitter graph, with uniform and power-
law weight assignment respectively. We repeat the tests with
varied maximum edge weight. With the traditional defini-
tion (“mixed”), even with rejection sampling, KnightKing
run time grows with the maximum edge weight. Power-law
weight assignment, not surprisingly, worsens this growth.
By compounding the weight, especially when it has power-
law distribution, the overall edge transition probability has
higher skewness. This in turn produces more “white area”
in the dartboard and slows down rejection sampling. Hav-
ing separate Pg and P, (“decoupled”), in contrast, leaves the
highly variable weights to static pre-computation and the

535

K.Yang, M.Zhang, K.Chen, X.Ma, Y.Bai, and Y.Jiang

P; component more regulated, as reflected by the constant
KnightKing run time.

7.5 System Design

We now evaluate the system behavior of KnightKing, start-
ing with scalability. We again show the results with unbiased
node2vec, which as a 2nd-order algorithm, involves far more
inter-node communication than other algorithms. Figure 7a
shows the comparison with Gemini on the Friendster graph,
using growing number of nodes. Both systems scale quite
similarly, though not linearly (to be expected with such irreg-
ular computation). Note that results are normalized to each
system’s single-node run time, and the KnightKing baseline
has a 20.9x advantage over Gemini’s.

Finally, we assess KnightKing’s straggler-aware sched-
uling (Section 6.2), on the two straggler-prone algorithms
PPR (P; set as 0.149 [28]) and node2vec. Figure 9 gives the
KnightKing run times on the three input graphs. Here the
baseline performance, using the original scheduler, includes
the outlier and lower bound optimizations, which also allevi-
ate the long-tail situations. Nevertheless, simply by reducing
the number of threads to 3 on a node when there are under
4000 active walkers there, this straggler-aware optimization
helps the two algorithms reduce execution time by up to
66.1% (on average 37.2% for PPR and 16.3% for node2vec). Its
brings more improvement to small graphs (LiveJournal in
this case), as with overall less work to do, the long-tail part
of the execution has higher effect on performance.

8 Conclusion

This work presents KnightKing, to our knowledge the first
general-purpose, distributed graph random walk engine.
It provides an intuitive walker-centric computation model
to support easy specification of random walk algorithms.
We propose a unified edge transition probability definition
that applies across popular known algorithms, and novel
rejection-based sampling schemes that dramatically reduce
the cost of expensive higher-order random walk algorithms.
Our design and evaluation of KnightKing demonstrate that
it is possible to achieve near O(1) complexity in exact edge
sampling, regardless of the number of outgoing edges at the
current vertex, without losing accuracy.

ACKNOWLEDGMENT

We thank our shepherd and the anonymous reviewers for
their valuable comments and helpful suggestions. This work
is supported by National Key Research & Development Pro-
gram of China (2018YFB1003505), National Natural Science
Foundation of China (61433008, 61373145, 61572280), Young
Scientists Fund of the National Natural Science Founda-
tion of China (61802219), China Postdoctoral Science Foun-
dation (2018M630162). Corresponding Author: Kang Chen
(chenkang@tsinghua.edu.cn).

KnightKing: A Fast Distributed Graph Random Walk Engine

References

[1] [n.d.]. Euler: a distributed graph deep learning framework. https:
//github.com/alibaba/euler.

[2] [n.d]. Node2vec on Spark. https://github.com/aditya-grover/
node2vec.

[3] [n.d.]. Node2vec with tensorflow. https://github.com/apple2373/

(10]

(13]

(14]

(15]

[16

—

(17]

(18

—

(19]

[20]

node2vec.

[n.d.]. OpenNE: An open source toolkit for Network Embedding.
https://github.com/thunlp/OpenNE.

[n.d.]. Stanford Network Analysis Platform (SNAP). https://github.
com/snap-stanford/snap.

Arvind Arasu, Jasmine Novak, Andrew Tomkins, and John Tomlin.
2002. PageRank computation and the structure of the web: Exper-
iments and algorithms. In Proceedings of the Eleventh International
World Wide Web Conference, Poster Track. 107-117.

Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan.
2006. Group formation in large social networks: membership, growth,
and evolution. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 44-54.
Paolo Boldi, Massimo Santini, and Sebastiano Vigna. 2008. A Large
Time-Aware Graph. SIGIR Forum 42, 2 (2008), 33-38.

Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. Powerlyra:
Differentiated graph computation and partitioning on skewed graphs.
In Proceedings of the 10th European Conference on Computer Systems.
ACM, 1.

Michael Cochez, Petar Ristoski, Simone Paolo Ponzetto, and Heiko
Paulheim. 2017. Biased graph walks for RDF graph embeddings. In
Proceedings of the 7th International Conference on Web Intelligence,
Mining and Semantics. 21.

Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2018. A survey
on network embedding. IEEE Transactions on Knowledge and Data
Engineering (2018).

Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metap-
ath2vec: Scalable representation learning for heterogeneous networks.
In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 135-144.

Daniel Fogaras, Balazs Racz, Karoly Csalogany, and Tamas Sarlos.
2005. Towards scaling fully personalized pagerank: Algorithms, lower
bounds, and experiments. Internet Mathematics 2, 3 (2005), 333-358.
Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. 2017. Hin2vec: Explore
meta-paths in heterogeneous information networks for representation
learning. In Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management. ACM, 1797-1806.

Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and
Carlos Guestrin. 2012. PowerGraph: Distributed Graph-Parallel Com-
putation on Natural Graphs. In the Proceedings of the 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
12). Hollywood, CA, 17-30.

Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques,
applications, and performance: A survey. Knowledge-Based Systems
151 (2018), 78-94.

Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining. ACM,
855-864.

William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Represen-
tation learning on graphs: Methods and applications. arXiv preprint
arXiv:1709.05584 (2017).

Taher H Haveliwala. 2002. Topic-sensitive pagerank. In Proceedings of
the 11th international conference on World Wide Web. 517-526.
Mohsen Jamali and Martin Ester. 2009. Trustwalker: a random walk
model for combining trust-based and item-based recommendation.
In Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining. 397-406.

536

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

Glen Jeh and Jennifer Widom. 2002. SimRank: a measure of structural-
context similarity. In Proceedings of the eighth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining. ACM,
538-543.

Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010.
What is Twitter, a social network or a news media?. In Proceedings of
the 19th international conference on World Wide Web. ACM, 591-600.
Aapo Kyrola. 2013. Drunkardmob: billions of random walks on just a
pc. In Proceedings of the 7th ACM conference on Recommender systems.
ACM, 257-264.

Ni Lao and William W Cohen. 2010. Fast query execution for retrieval
models based on path-constrained random walks. In Proceedings of
the 16th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 881-888.

Sangkeun Lee, Sungchan Park, Minsuk Kahng, and Sang-goo Lee. 2012.
Pathrank: a novel node ranking measure on a heterogeneous graph
for recommender systems. In Proceedings of the 21st ACM international
conference on Information and knowledge management. 1637-1641.
Aaron Q Li, Amr Ahmed, Sujith Ravi, and Alexander J Smola. 2014.
Reducing the sampling complexity of topic models. In Proceedings of
the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining. 891-900.

Juzheng Li, Jun Zhu, and Bo Zhang. 2016. Discriminative deep random
walk for network classification. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), Vol. 1. 1004-1013.

Qin Liu, Zhenguo Li, John Lui, and Jiefeng Cheng. 2016. Powerwalk:
Scalable personalized pagerank via random walks with vertex-centric
decomposition. In Proceedings of the 25th ACM International on Con-
ference on Information and Knowledge Management. 195-204.

David JC MacKay and David JC Mac Kay. 2003. Information theory,
inference and learning algorithms. Cambridge university press.
Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a
system for large-scale graph processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of data. 135—
146.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. 2013.
Efficient Estimation of Word Representations in Vector Space. In Inter-
national Conference on Learning Representations (2013). 1-12.
Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
1999. The PageRank citation ranking: Bringing order to the web. Tech-
nical Report. Stanford InfoLab.

Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang.
2016. Tri-party deep network representation. Network 11, 9 (2016),
12.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk:
Online learning of social representations. In Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and
data mining. 701-710.

Bryan Perozzi, Vivek Kulkarni, Haochen Chen, and Steven Skiena.
2017. Don’t Walk, Skip!: Online Learning of Multi-scale Network Em-
beddings. In Proceedings of the 2017 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining 2017. 258-265.
Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo.
2017. struc2vec: Learning node representations from structural identity.
In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 385-394.

Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream:
Edge-centric graph processing using streaming partitions. In Pro-
ceedings of the 24th ACM Symposium on Operating Systems Princi-
ples(SOSP2013). ACM, 472-488.

Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph
processing framework for shared memory. In ACM Sigplan Notices,

https://github.com/alibaba/euler
https://github.com/alibaba/euler
https://github.com/aditya-grover/node2vec
https://github.com/aditya-grover/node2vec
https://github.com/apple2373/node2vec
https://github.com/apple2373/node2vec
https://github.com/thunlp/OpenNE
https://github.com/snap-stanford/snap
https://github.com/snap-stanford/snap

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

Vol. 48. ACM, 135-146.

[39] Guolei Sun and Xiangliang Zhang. 2017. Graph Embedding with
Rich Information through Heterogeneous Network. arXiv preprint
arXiv:1710.06879 (2017).

[40] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. 2011.
Pathsim: Meta path-based top-k similarity search in heterogeneous
information networks. Proceedings of the VLDB Endowment 4, 11 (2011),
992-1003.

[41] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and
Qiaozhu Mei. 2015. Line: Large-scale information network embedding.
In Proceedings of the 24th International Conference on World Wide Web.
1067-1077.

[42] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. 2006. Fast random
walk with restart and its applications. In Sixth International Conference
on Data Mining (ICDM’06). 613-622.

[43] Leslie G Valiant. 1990. A bridging model for parallel computation.
Commun. ACM 33, 8 (1990), 103-111.

[44] John Von Neumann. 1951. Various techniques used in connection with
random digits,. Applied Math Series 12, 36-38 (1951), 5.

537

[45]

[46]

[47]

(48]

[49]

[50]

K.Yang, M.Zhang, K.Chen, X.Ma, Y.Bai, and Y.Jiang

Alastair] Walker. 1977. An efficient method for generating discrete
random variables with general distributions. ACM Transactions on
Mathematical Software (TOMS) 3, 3 (1977), 253-256.

Yubao Wu, Yuchen Bian, and Xiang Zhang. 2016. Remember where
you came from: on the second-order random walk based proximity
measures. Proceedings of the VLDB Endowment 10, 1 (2016), 13-24.
Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating net-
work communities based on ground-truth. Knowledge and Information
Systems 42, 1 (2015), 181-213.

Zigian Zeng, Xin Liu, and Yangqiu Song. 2018. Biased Random Walk
based Social Regularization for Word Embeddings. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI 2018, Fuly 13-19, 2018, Stockholm, Sweden. 4560-4566.

Dongyan Zhou, Songjie Niu, and Shimin Chen. 2018. Efficient Graph
Computation for Node2Vec. arXiv preprint arXiv:1805.00280 (2018).
Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.
2016. Gemini: A Computation-Centric Distributed Graph Processing
System. In the Proceedings of 12th USENLX Symposium on Operating
Systems Design and Implementation (OSDI 16). USENIX Association,
Savannah, GA, 301-316.

	Abstract
	1 Introduction
	2 Unified Walk Algorithm Definition
	2.1 Random Walk Taxonomy
	2.2 Unified Transition Probability

	3 Existing Optimizations (Related Work)
	4 KnightKing Sampling Methodology
	4.1 Rejection Sampling for Random Walk
	4.2 Optimization for Dynamic Walk

	5 Workflow and Programming Model
	5.1 Random Walk Life Cycle
	5.2 KnightKing APIs

	6 System Design and Optimization
	6.1 Graph Storage and Partitioning
	6.2 Random Walk Execution and Coordination

	7 Evaluation
	7.1 Experiment Setup
	7.2 Overall Performance
	7.3 Graph Topology Sensitivity
	7.4 Probability Distribution Sensitivity
	7.5 System Design

	8 Conclusion
	References

