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Abstract
libcrpm is a new programming library to improve the checkpoint

performance for applications running in NVM. It proposes the

failure-atomic differential checkpointing protocol, which addresses

two problems simultaneously that exist in the current NVM-based

checkpoint-recovery libraries: (1) high write amplification when

page-granularity incremental checkpointing is used, and (2) high

persistence costs from excessive memory fence instructions when

fine-grained undo-log or copy-on-write is used. Evaluation results

show that libcrpm reduces the checkpoint overhead in realistic

workloads. For MPI-based parallel applications such as LULESH,

the checkpoint overhead of libcrpm is only 44.78% of FTI, an

application-level checkpoint-recovery library.

1 Introduction
Checkpoint-recovery [14] is a common programming paradigm for

building recoverable applications. It typically follows an epoch-based

model in which each epoch consists of an execution period and a

checkpoint period. During the checkpoint period, the application

suspends the execution, then saves the checkpoint state (i.e., neces-

sary data for recovering the current execution) in persistent storage.

After a system crash, the application can restore the latest check-

point state from the persistent storage and continue its execution.

Reducing the time of the checkpoint period is critical to minimize

the disturbance to application execution. Recently, with the advent

of non-volatile memory (NVM), e.g., Intel Optane DC Persistent

Memory Module (DCPMM) [3], many checkpoint-recovery sys-

tems [7, 9, 10, 12, 15, 18] try to use the high performance of NVM to

reduce the checkpoint overhead (i.e., additional execution time due

to checkpoint). Such systems also benefit from the NVM’s direct

memory access, i.e., without data serialization and deserialization

that are usually needed for saving checkpoint states on disks.

However, existing works [10, 12, 15] cannot fully utilize the

power of NVM because they often follow the traditional method

that only treats NVM as a faster storage device. We find out that

two problems limit the checkpoint performance using NVM.

(P1) Page-granularity incremental checkpointing leads to high

write amplification for NVM (i.e., written data is larger than modified
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data). To reduce the amount of data that needs to be saved during

checkpointing, many libraries implement incremental checkpoint-

ing, i.e., only to save changed program states. Thus, they have to

trace changed program states during an epoch. The memory change

tracing is often implemented by using the page fault mechanism,

such as the mprotect() system call [15] and the soft-dirty bit tech-

nique [6]. The page fault mechanism detects the page-level (4KB

page or larger) modification. However, NVM is byte-addressable,

and the storage media of NVM has a smaller access granularity (e.g.,

256B in DCPMM [3]). This mismatching will lead to copying the

whole page during the checkpoint period even if only one cache

line is actually modified.

(P2) Finer-granularity checkpointing requires excessive memory

fences that increase persistent costs in NVM. Since NVM provides a

byte-addressable interface, we also investigated existing in-memory

checkpoint-recovery libraries [17, 19] (often used for debugging).

To reduce the checkpoint overhead, these libraries use static in-

strumentation to avoid page-level tracing while can still detect all

modifications. They also use undo-log/copy-on-write mechanisms

to keep the checkpoint state consistent. It is possible to transform

these volatile checkpoint methods into non-volatile ones (i.e., mak-

ing checkpoint data available after a crash) by using persistent

instructions (e.g., clwb and sfence) — every time after appending a

new undo-log/copy-on-write entry, clwb instructions will be used

to flush data to NVM, followed by sfence instructions to guarantee

the persistent order. Such transformation has to use more memory

fences which incur non-trivial overhead [11].

This paper proposes libcrpm, a programming library that pro-

vides the Checkpoint-Recovery interface using Persistent Memory.

libcrpm captures memory changes in finer granularity using static

instrumentation. We propose a new checkpointing protocol that

both shrinks the amount of data to be checkpointed (P1) and

reduces the fence instructions needed (P2). To the best of our

knowledge, libcrpm is the first solution that addresses both prob-

lems simultaneously in software, i.e., without changing hardware.

To achieve both goals, we redesign (1) the in-NVM compact

memory layout for checkpoint-recovery, and (2) the checkpointing

protocol that updates checkpoint states. The compact memory lay-

out contains two regions, the main region is visible to applications,

while the backup region saves additional data to build the check-

point state. Different from DICE [7], the checkpoint state keeps

consistent even if the application is interrupted by system crashes

during checkpointing. Both regions are partitioned into segments

(copy-on-write granularity, 2MB each) and further partitioned into

blocks (data copy granularity, 256B each). During checkpointing,

the main region (containing the current program state) is atomi-

cally set as a new checkpoint state. libcrpm performs segment-level

copy-on-write to keep the checkpoint state consistent. Only two

sfence instructions are needed per segment, so a relatively large

segment reduces the persistence overhead frommemory fences. We
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Figure 1: Execution time breakdown under the balanced

workload using unordered_map1.

also manage data changes at the block level using memory tracing

based on static instrumentation. Thus, only dirty blocks are copied

instead of the whole segment during copy-on-write. This reduces

the memory copy costs for checkpointing.

We measure the performance of libcrpm using real-world work-

loads. The throughput of persistent unordered_map using libcrpm

is up to 2.72× higher than Dalí [16]. For MPI-based parallel appli-

cations like LULESH [13], the checkpoint overhead of libcrpm is

44.78% of FTI [8], an application-level checkpoint-recovery library.

In summary, this paper makes the following contributions:

• Performing copy-on-write at segment granularity and copying

data at block granularity solve the dilemma in the trade-off

between extra NVM data writes and persistence overhead.

• We implement libcrpm, an NVM programming library that

enables the checkpoint-recovery semantic to applications.

Evaluations show that libcrpm can reduce the checkpoint

overhead of realistic workloads.

2 Background and Motivation

2.1 Checkpoint-recovery using NVM
Checkpoint-recovery is a well-known technique for recoverable

applications. It is widely used in high-performance computing [14]

and data storage [16]. Most checkpoint-recovery libraries use the

epoch-based model. Each epoch consists of an execution period

and a checkpoint period. An application saves its current state in

persistent storage during the checkpoint period. It loads the latest

checkpoint state from the persistent storage to restore the execution

after a crash and restart. Incremental checkpointing [10, 12] is a

key technique to reduce the amount of data during checkpointing,

which only stores the differences between the last checkpoint and

the current state.

With the availability of NVM, we expect that the checkpoint

overhead can be reduced using this faster storage device. Its direct

memory access mode also avoids data serialization and deserial-

ization. Many recent checkpoint-recovery systems [7, 9, 10, 12, 18]

have switched from HDD/SSD to NVM. Some of them [10, 18] re-

quire hardware modifications to the memory architecture. Besides,

some NVM data structures (e.g., Dalí [16]) keep data persistence at

low costs by frequent checkpointing.

Persistence overhead is not negligible in NVM programs. The

main reason for this overhead is from the explicit memory flushes.

Platforms with volatile in-CPU caches need to explicitly use the

clwb instruction to flush data from the cache to NVM. And then,

sfence prevents the store instruction from reordering. Both in-

structions are costly compared to other instructions [11]2.

1Appending undo-log or copy-on-write entries are considered as the memory trace
overhead for undo-log and LMC respectively.
2eADR [3] makes in-CPU cache in the non-volatile domain, which can further eliminate
the use of clwb. As eADR is not widely available, this paper focuses on the platforms
with the volatile cache.

2.2 Empirical Analysis of Checkpoint Overhead
We measure the checkpoint overhead by the execution time of the

unordered_map with different checkpoint-recovery implementa-

tions. The experimental setup is described in §5. Figure 1 shows the

execution time breakdown for the balanced workload (50% update

and 50% get). The checkpoint interval is 128𝑚𝑠 .

2.2.1 Page-granularity Incremental Checkpointing.To implement in-

cremental checkpointing, traditional checkpoint-recovery libraries

use the page fault mechanism provided by the operating system

such as mprotect [15] and the soft-dirty bit [6]. At the beginning

of each epoch, all pages are marked as read-only. A page fault ex-

ception allows the library to detect the page modification event

and then makes the page writable. Only the modified pages will be

saved in NVM during the checkpoint period.

We find out that memory change tracing is expensive because

of the high latency of page faults (about 2𝑢𝑠 per 4KB page). For

example, mprotect takes about 48% of the total execution time for

memory change tracing. Moreover, page-level incremental check-

pointing also increases write amplification (P1). The page fault mech-

anism detects page-level (4KB or larger) modifications. However,

the storage media of NVM has a smaller access granularity (e.g.,

256B in DCPMM [3]). This mismatching leads to store the full page

during the checkpoint period even if only one cache line is modified.

As a result, checkpoint has significant overhead (42% and 66% of

the total time for mprotect and soft-dirty bit respectively).

2.2.2 Fine-grained Checkpointing.We also measure the data persis-

tence overhead by transforming in-memory checkpointing (Undo-

log [19] and LMC [17]) to the persistent versions. These libraries

resort to static instrumentation, avoiding the overhead from page

faults. The instrumented codewill create undo-entries (undo-logs or

copy-on-write records) before any memory modification. The size

of each undo-entry (excludingmetadata) is 256B. These undo entries

are deleted after completing a checkpoint. Such instrumentation-

based in-memory checkpointing has a low overhead, and the check-

pointing frequencies can be very high.

When appending a undo entry, the transformed versions make it

persistent immediately using clwb and sfence instructions. At the

end of each epoch, the current program state is flushed into NVM

before truncating any undo-entries. However, excessive memory

fences have high persistence costs (P2). Thememory tracing (includes

appending undo entries) becomes the performance bottleneck in

our test (49% and 46% of the total execution time for undo-log and

LMC, respectively). Profiling shows that excessive memory fence

instructions incur high persistence overhead. Two memory fence

instructions are issued every time appending an undo-entry, one for

the undo-entry and the other for updating the metadata.

3 Design

3.1 Overview
libcrpm is a pure software solution. Figure 2 shows its architecture,

consisting of a customized compiler and a runtime library.

The customized compiler allows libcrpm to identify the dirty

data in a finer granularity other than page-level granularity. Before

each instruction that may modify program state objects, a call

hook_routine(addr, len) instruction is inserted to mark mem-

ory area [addr, addr + len) dirty at runtime. The compiler also
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Figure 2: libcrpm overview.

1 int main(int argc, char *argv[]) {
2 MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD, &numRanks);
3 crpm_option_t opt; init_option(&opt);
4 ctr = crpm_mpi_open("/path/to/file", &opt, MPI_COMM_WORLD);
5 locDom = (Domain *) crpm_get_root(ctr, 0);
6 if (!locDom) {
7 locDom = crpm_malloc(sizeof(Domain));
8 new (locDom) Domain(numRanks, /* other arguments */);
9 crpm_set_root(ctr, 0, locDom);
10 }
11 while ((locDom->time()<locDom->stoptime())&&(locDom->cycle()<opts.its)) {
12 TimeIncrement(*locDom); LagrangeLeapFrog(*locDom);
13 if (!(locDom->cycle()%(opts.numCkptIter)))
14 crpm_mpi_checkpoint(ctr);
15 }
16 crpm_mpi_close(ctr); MPI_Finalize(); return 0;
17 }

Figure 3: Code snippets of the LULESH application.

removes unnecessary instrumentation and changes the position of

some instrumented code to reduce memory tracing overhead.

In libcrpm, all objects have two states (§3.3): (S1) the working

state, which is accessible to applications, and (S2) the checkpoint

state, which is identical to the working state at the last checkpoint

period. To save both states, two regions in NVM are used: (R1) the

main region saves the working state, and (R2) the backup region

saves differential data between the working and checkpoint states.

Both regions are partitioned into segments (2MB each). A copy-

on-write virtually replicates data of the entire segment using two

sfence instructions (for persisting metadata). Large segment size

reduces the metadata overhead and persistence costs (number of

memory fences used). Each segment is further divided into blocks

(256B each). Only necessary blocks are actually copied during a copy-

on-write, while others are skipped. This reduces the checkpoint size

(i.e., the amount of copied data during a checkpoint [10]).

After a successful checkpoint (§3.4.2), the current working state

becomes a new checkpoint state. A segment-level copy-on-write

(CoW) (§3.4.1) copies necessary data in the main region to a backup

one. Data in the backup region plus the unmodified data in the

main region make up the consistent checkpoint state. After a crash

and restart, the working state can be recovered from the checkpoint

state (§3.4.3). In addition, libcrpm can buffer state objects to DRAM

(§3.5) and it also supports MPI-based parallel programs (§3.6).

3.2 Programming Interface
libcrpm’s APIs help developers define program states to be saved

during the checkpoint period. Most APIs are self-explaining. When

opening a container, the latest checkpoint state is mapped into

the virtual memory address space of the current process. The root

pointer array is used for retrieving objects after a restart. The check-

point function call works in collective mode: each thread executes

crpm_checkpoint() and blocks until other threads have entered

this function (i.e., nobody modifies the container’s data). libcrpm

also supports MPI programs, and crpm_mpi_checkpoint() estab-

lishes globally consistent checkpoints for multiple containers. Fig-

ure 3 illustrates fault-tolerant LULESH [13] using libcrpm APIs.

Figure 4: Persistent memory layout of a container.

Figure 5: Segment-level copy-on-write (CoW) example.

3.3 Compacted Memory Layout
Figure 4 shows the persistent memory layout. Both the main and

backup regions are divided into nr_main_segs and nr_backup_segs

segments respectively. Each segment is numbered according to the

address offset. The maximal modified segments per epoch is limited

by the number of backup regions. To keep the checkpoint state

consistent, libcrpm includes two data structures in the metadata:

(1) Backup-to-main-segmentmapping array (backup_to_main,

with nr_backup_segs elements) records the paired backup segment

𝐵 𝑗 ( 𝑗-th segment in the backup region) of a main segment 𝑀𝑖 (𝑖-th
segment in the main region). For example, in Figure 4, 𝐵1 is the
paired backup segment of 𝑀3, because backup_to_main[1]==3.

Either𝑀𝑖 or 𝐵 𝑗 saves the checkpoint state. For main segments with

no paired backup segments (e.g., 𝑀1), a copy-on-write allocates

one in the backup region if needed. A backup segment 𝐵 𝑗 can be

allocated if it is not used for saving the checkpoint state.

(2) Segment state array (seg_state, with nr_main_segs ele-

ments) is a list of segments that save the checkpoint state. The 𝑖-th
element (segment state of𝑀𝑖 ) can be either – (1) SS_Initial:𝑀𝑖

does not store program state; (2) SS_Main:𝑀𝑖 saves the checkpoint

state; or (3) SS_Backup: 𝐵 𝑗 saves the checkpoint state, where 𝐵 𝑗 is

the paired backup segment of𝑀𝑖 . For crash consistency, the meta-

data contains two seg_state arrays. If the committed epoch is 𝑒 ,
seg_state[𝑒%2] is active and used for the checkpoint state.

3.4 Failure-atomic Differential Checkpointing

3.4.1 Segment-level Copy-on-Write.To reduce the use of sfence in-

structions, libcrpm implements copy-on-write at the segment level

(Figure 5): 1 After the checkpoint period, main segments save the

checkpoint state, and they are virtually read-only. Before modifying

data in the main segment𝑀𝑖 , a copy-on-write is triggered. 2 We

make the whole data of paired backup segment 𝐵 𝑗 identical to𝑀𝑖 .

3 The segment state of𝑀𝑖 switches from SS_Main to SS_Backup.

4 𝑀𝑖 is writable after copy-on-write completes, and modifications

to𝑀𝑖 in the current epoch do not corrupt the checkpoint state.

To reduce the amount of data to be checkpointed, 2 block-based

data copy is used. Initially, data in 𝐵 𝑗 is equal to 𝑀𝑖 . During the

next execution period, some memory blocks in𝑀𝑖 are modified by

applications. Therefore, only these blocks in𝑀𝑖 are different from

𝐵 𝑗 , i.e., by copying these blocks, data in 𝐵 𝑗 equal to 𝑀𝑖 again. To

record a block being modified during an epoch, libcrpm uses the

dirty block bitmap (dirty_blocks) in DRAM. Both dirty block/seg-

ment recording and segment-level copy-on-write are triggered by

the instrumented code. Figure 6 shows the pseudo-code.
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1 def copy_on_write(ctr, main): # ctr: abbreviation of container
2 lock(main.lock)
3 e = ctr.committed_epoch % 2
4 if ctr.seg_state[e][main] == SS_Main:
5 backup, diff_ckpt = find_paired_backup_segment(ctr, main)
6 if not diff_ckpt: # a new backup segment allocated
7 persist_copy(backup, main, SegmentSize)
8 else: # use block-based data copy
9 delta = backup.base_addr - main.base_addr
10 for b in main.blocks:
11 if ctr.dirty_blocks.contains(b):
12 persist_copy(b + delta, b, BlockSize)
13 sfence()
14 persist_store(ctr.seg_state[e][main],SS_Backup);sfence()
15 ctr.dirty_blocks.clear(main.blocks)
16 ctr.dirty_segments.add(s)
17 unlock(main.lock)
18

19 def hook_routine(addr, length): # instrumented code
20 ctr, block, valid = locate_ctr_and_block(addr, length)
21 if not valid: return # do not proceed if address is invalid
22 if not ctr.dirty_segments.contains(block.segment):
23 copy_on_write(ctr, block.segment)
24 ctr.dirty_blocks.add(block)
25

26 def crpm_checkpoint(ctr):
27 is_leader = assign_leader()
28 barrier() # synchronize multiple threads
29 if len(ctr.dirty_blocks) < Threshold:
30 for b in ctr.dirty_blocks: # distribute to each thread
31 clwb(b)
32 else:
33 wbinvd()
34 sfence(); barrier()
35 if is_leader:
36 e = (ctr.committed_epoch + 1) % 2
37 ctr.seg_state[e] = ctr.seg_state[1-e]
38 for s in ctr.dirty_segments:
39 ctr.seg_state[e][s] = SS_Main
40 persist(ctr.seg_state[e]); sfence()
41 persist_fetch_and_add(ctr.committed_epoch, 1); sfence()
42 ctr.dirty_segments.clear_all()
43 barrier()
44

45 def crpm_recovery(ctr): # trigger when opening a container
46 e = ctr.committed_epoch % 2
47 for backup in ctr.back_segments:
48 main = ctr.backup_to_main[backup]
49 state = ctr.seg_state[e][main]
50 if state == SS_Main: persist_copy(backup, main, SegmentSize)
51 if state == SS_Backup: persist_copy(main, backup, SegmentSize)

Figure 6: The checkpoint-recovery protocol.

Dirty block/segment recording: The instrumented code marks

memory blocks dirty before they are modified (Line 24). At the

end of each epoch, we do not clear the dirty block bitmap. Instead,

we find different blocks between the main segment and its paired

backup segment during the copy-on-write of the next epoch (Line

11). Dirty bits of these blocks are cleared after a successful copy-

on-write (Line 15). We also use the dirty segment bitmap to identify

whether the main segment has been modified during the current

epoch (Line 16). It will be cleared at the end of the epoch (Line 42).

Copy-on-write: Copy-on-write is triggered before the first time

to modify data in a main segment, i.e., the segment is clean in the

current epoch (Line 22). It normally performs block-based data

copy (Lines 9–12), updates the segment state (Line 14), and marks

the segment dirty (Line 16). To support multi-threading, the per-

segment locks serialize concurrent copy-on-writes on the same

segment𝑀𝑖 (Lines 2 and 17). They also guarantee that the copy-on-

write for𝑀𝑖 has been completed after unlocking (§3.4.4).

3.4.2 Checkpoint Protocol. Figure 6 also shows the checkpoint pro-

tocol. (1) Find dirty blocks from the main region and persist them in

NVM (Lines 29–34). To reduce the persistence overhead, we choose

either clwb or wbinvd instructions by comparing the total size of

dirty blocks and a threshold (the last level cache size, 32MB in our

platform). (2) Segment states of all dirty segments are changed

to SS_Main atomically (Lines 36–41): libcrpm firstly updates the

inactive segment state array and makes it durable (Lines 37–40);

committed_epoch is then atomically updated, which swaps inac-

tive and active segment state arrays (Line 41). If the number of dirty

segments is less than a threshold, copy-on-write of all dirty seg-

ments will be immediately executed during the checkpoint period.

This further reduces the use of sfence instructions.

3.4.3 Recovery Protocol.Before restarting, segments from the backup

region are copied to the corresponding main segments, making the

working state identical to the checkpoint state (Lines 51 of Figure 6).

If data in the main segment is also the checkpoint state, its paired

backup segment (if existed) needs to be updated for ensuring the

correctness of block-based data copy (Lines 50).

3.4.4 Correctness. libcrpm ensures checkpoint state (including the

segment state array in the metadata and the used segments) equiv-

alent to the working state of the latest completed epoch, even if the

execution is interrupted during checkpointing. (1) The checkpoint

protocol atomically updates the checkpoint state by increasing the

committed_epoch (Line 41). Before this operation, the previous

checkpoint state exists, and it will be used for recovery if the sys-

tem fails. Contents of the previous checkpoint state do not change

at this time. By successfully updating the committed_epoch, the

new checkpoint state is available for recovery. (2) Segment-level

copy-on-write separates the working and checkpoint versions of

a segment. Both copy-on-write and subsequent changes to the

working version do not corrupt the checkpoint state. Concurrent

copy-on-writes on the same segment are also handled correctly. For

example, assume threads 𝐴 and 𝐵 write the same segment. Thread

𝐴 locks first and performs copy-on-write, while thread 𝐵 will block

until thread 𝐴 completes copy-on-write and releases the lock.

3.5 Buffered Mode
libcrpm can also run in a buffered mode that applications manipu-

late program state in DRAM for better performance. During check-

pointing, libcrpm updates either main or backup segments depend-

ing on the current epoch number 𝑒 . If 𝑒 is even, dirty blocks from
the 𝑖-th in-DRAM segment (modified during epochs 𝑒 − 1 or 𝑒) are
replicated to the main segment𝑀𝑖 with the same index. Otherwise,

these blocks are copied to the paired backup segment of 𝑀𝑖 . The

checkpoint protocol also needs to modify the segment array and

the committed epoch atomically (Lines 36–41 of Figure 6).

3.6 Support for MPI Applications
libcrpm supports coordinated checkpoints in MPI programs so that

multiple containers can update their checkpoints atomically. During

the checkpoint period of epoch 𝑒 , each process commits its new
checkpoint state individually, then all processes are synchronized

by MPI_Barrier() calls. This ensures that before MPI_Barrier()

returns, each container keeps both checkpoint states of epochs 𝑒
and 𝑒 − 1. During recovery, each process obtains its committed

epoch number 𝑒𝑖 from metadata, and determines the minimum one

𝑒min among all processes. The checkpoint state of epoch 𝑒min will
be used for further recovery (c.f. §3.4.3).

4 Implementation
libcrpm consists of a Clang/LLVM v10.0.0-compatible [5] pass

(1481 lines of code) as a compiler plugin, and a runtime library writ-

ten by C++ (7506 lines of code). The AVX-512 instruction set [4] ac-

celerates non-temporal memory copying. We implement a memory

allocator for managing program state objects (§3.2). The allocator

metadata is also considered as program states to be saved, so we

instrument related code when building libcrpm.
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5 Evaluation

5.1 Setup
All experiments are conducted on a dual-socket Intel Xeon Gold

6240R 2.4GHz server. Each socket has 48 logical cores, 192 GB

DRAM, and 768 GB DCPMM. All benchmarks run on a single pro-

cessor to avoid overheads from inter-socket NVM access [3]. Our

machine runs Ubuntu 20.04 (Linux kernel 5.4.0).

We compare the following systems: (1) Mprotect and soft-

dirty bit — incremental checkpointing using mprotect and soft-

dirty bit respectively. (2) Undo-log — generating and persisting

undo logs before memory modifications. (3) LMC — a lightweight

memory checkpointing library [17] that tolerances power failures.

(4) Dalí [16] — a periodically persistent hash map. (5) NVM-NP —

data structures running in NVM but with No Persistence instruction

used. (6) FTI [8] — generating full checkpoints using FTI with multi-

level checkpointing disabled. (7) libcrpm-Default and libcrpm-
Buffered— libcrpmwith default protocol (§3.4) and bufferedmode

(§3.5) respectively. Both undo-log and LMC require static instru-

mentation. The instrumented code creates undo-logs/copy-on-write

records before any modification (§2). The size of each record is 256B.

5.2 End-to-end Performance

5.2.1 Data Structures.Many applications keep their states using

data structures. We build two periodically persistent data struc-

tures based on the C++ Standard Template Library (STL): (1) map,

a red-black tree; and (2) unordered_map, an unordered hash table.

A wrapper class CrpmAllocator is used to replace the default allo-

cator. Passing it as one of the template parameters, elements are

then allocated from a container. The compiler will instantiate the

template and then instrument the instantiated code. As a result, a

single line of code change will enable recoverable data structures.

For each test, 24M keys are populated initially (except the insert-

only workload). Both keys and values are 8 bytes. Then we perform

the following workloads: (1) Insert-only; (2) Balanced: 50% update,

50% get; (3) Read-heavy: 5% update, 95% get; and (4) Read-only: 100%

get. For the insert-only workload, we measure the time of inserting

5M entries, where keys are uniformly distributed. We properly set

the load factor to avoid hash table resizing. For other workloads,

keys are generated in a Zipfian distributionwith parameter𝛼 = 0.99.
The execution period of each epoch is 128𝑚𝑠 .

Result: Figure 7 shows the throughput under different workloads.

Compared with NVM-NP, libcrpm-Default supports checkpoint-

recovery at the cost of increasing its execution time by 13.7% under

the balanced workload. The throughput of unordered_map using

libcrpm-Default is up to 7.23× and 7.08× higher than mprotect

and soft-dirty bit respectively, because libcrpm reduces both mem-

ory tracing overhead and the checkpoint size. libcrpm-Default

also has up to 1.47× and 1.38× higher throughput than undo-log

and LMC respectively, because segment-level copy-on-write re-

quires fewer memory fences. We will further discuss the reasons in

§5.3. The throughput of unordered_map using libcrpm-Default is

1.80×/2.72× higher thanDalí in the insert-only/balanced workloads

respectively. For the read-only workload, as there is nothing to be

checkpointed, libcrpm-Default can run as fast as NVM-NP.

5.2.2 Parallel Computing Applications.We transform three well-

known applications for checkpoint-recovery support: LULESH [13]

(a) map

(b) unordered_map

Figure 7: Throughput of the persistent map and unordered_map
with a single thread. The checkpoint interval is 128𝑚𝑠.

Figure 8: Relative execution time of parallel benchmarks.

Table 1: Detailed analysis for persistent unordered_map.
(a) Average checkpoint size in bytes per operation.

Insert-only Balanced Read-heavy

mprotect 3,190 987 117
Soft-dirty bit 1,303 872 846
libcrpm-Default 269 56 7

(b) Number of sfence instructions issued per epoch.

Insert-only Balanced Read-heavy

Undo-log 218,409 173,916 40,591
LMC 222,702 184,574 40,584
libcrpm-Default 333 281 8

(90/55463), HPCCG [2] (38/1652), and CoMD [1] (22/3054). This is

done by replacing memory allocation functions and adding check-

point logic. We measure the execution time with different input

datasets and checkpoint-recovery systems. Program states of each

application are buffered inDRAM, so only FTI and libcrpm-Buffered

are evaluated. We run each application with eight processes in a

single machine, and checkpoints are generated every five iterations.

Result: Figure 8 reports the relative execution time of FTI and

libcrpm-Buffered (i.e., execution time without checkpointing is

normalized to 1.0 for eachworkload). For LULESH, libcrpm-Buffered
supports fault tolerance at the cost of 5.16% of extra execution time

(10.25𝑠) if the input dataset size is 903, while FTI is 11.53% (22.89𝑠)4.
The checkpoint overhead of libcrpm-Buffered is only 44.78% of

FTI. For both HPCCG and CoMD, libcrpm-Buffered reduces the

checkpoint overhead by 49.83% ∼ 81.85%, compared to FTI.

5.3 Effectiveness of Design Choices
This section shows how libcrpm can mitigate performance prob-

lems that existed in previous works (§2). We report the result of

persistent unordered_map under the balanced workload (§5.2.1).

Checkpoint size. As shown in Table 1a, the average checkpoint size

per operation is significantly reduced by 91.56%, 94.30%, and 93.86%

3𝑋/𝑌 means 𝑋 lines of code (LOC) to be added/changed to support the checkpoint-
recovery semantic, while the original version has 𝑌 LOC.
4FTI with hash-based incremental checkpointing takes 28.46𝑠 extra execution time,
because hash computation dominates the checkpoint overhead.
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Figure 9: Throughput of map/unordered_map with different

checkpoint intervals (under the balanced workload).

Figure 10: Throughput of unordered_map using libcrpm-
Default with various segment and block sizes.

compared with mprotect-based system under the insert-only, bal-

anced, and read-heavy workloads respectively. This is a key factor

to mitigate the checkpoint overhead. For soft-dirty bit, modifica-

tions to a single page may trigger multiple pages to be marked dirty,

which incurs high checkpoint size under the read-heavy workload.

Memory fences. libcrpm also reduces the sfence [11] instructions

by using segment-level copy-on-write (Table 1b). Compared to LMC,

libcrpm-Default reduces 99.85% and 99.84% of sfence instructions
under the insert-only and balanced workloads respectively.

5.4 Analysis of Parameters
Checkpoint frequency. We tweak the execution period of an epoch

andmeasure the throughput of both map and unordered_map (§5.2.1).

The result is shown in Figure 9. At higher frequencies, soft-dirty

bit’s performance is worse than mprotect, as the checkpoint time

is longer than normal execution. The throughput of undo-log and

LMC is insensitive to the checkpoint frequency because most of the

work is executed during the execution period. The throughput of

libcrpm-Default is not severely hurt when the checkpoint interval

is shorter than 128𝑚𝑠 . It also outperforms other systems at various
checkpoint frequencies. This indicates that libcrpm can reduce the

checkpoint interval without harming the performance.

Segment and block sizes. To test the effects of different segment

and block sizes of libcrpm-Default, we evaluate unordered_map.

The checkpoint interval is 128𝑚𝑠 . Figure 10a shows the throughput
with different segment sizes (512B to 32MB), while the block size

is 256B. When the segment size is small (≤ 32KB), the throughput

of the balanced workload drops. Such a penalty is caused by the

increased size of the segment state array (§3.3). It takes a longer

time to update the segment states atomically during the checkpoint

period. More memory fence instructions are also desired.

Figure 10b shows the throughput with block sizes ranging from

64B to 16KB, while the segment size is 2MB. A smaller block usually

improves the performance by reducing the checkpoint size. E.g., the

checkpoint size using 256-byte blocks is 13.79% of 4096-byte blocks

and 1.38× of 64-byte blocks under the balanced workload. How-

ever, small blocks incur overhead from manipulating dirty bitmaps.

For balanced & read-heavy workloads, the maximal throughput is

reached when using 256-byte blocks (1.81× higher than 4KB).

5.5 Recovery Time
We measure the recovery time by killing and restarting LULESH

(§5.2.2) processes. The recovery time is proportional to the size of

the program state: 288𝑚𝑠 if the input dataset size is 903, and 515𝑚𝑠
if the input dataset size is 1103. During recovery, libcrpm-Buffered

firstly makes the working state consistent with the checkpoint state

(43% ∼ 56% of the total recovery time), and then copies data in the

main region to DRAM (this is not used in libcrpm-Default).

5.6 Storage Cost
For LULESH with libcrpm-Buffered (§5.2.2), the size of checkpoint

states is 258MB per process if the input dataset size is 903. It is 1.35×
larger than FTI, because checkpoint states of libcrpm are not serial-

ized. The checkpoint size of libcrpm is 187MB per epoch. libcrpm

requires 258MB DRAM as the in-memory buffer, and 452MB NVM

as main/backup regions. In-NVM metadata size of the container is

less than 3KB, while the dirty block bitmap takes 129KB DRAM.

6 Conclusion
In this paper, we describe libcrpm, a general-purpose checkpoint-

recovery programming library using NVM. The failure-atomic dif-

ferential checkpointing technique reduces both write amplification

and persistence costs. Our evaluation result shows that libcrpm

reduces both coding efforts and the execution overhead.
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