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Abstract—Due to the dynamic nature of grid environments, 
schedule algorithms always need assistance of a long-time-ahead 
load prediction to make decisions on how to use grid resources 
efficiently. In this paper, we present and evaluate a new hybrid 
model, which predicts the n-step-ahead load status by using 
interval values. This model integrates autoregressive (AR) model 
with confidence interval estimations to forecast the future load of 
a system. Meanwhile, two filtering technologies from signal 
processing field are also introduced into this model to eliminate 
data noise and enhance prediction accuracy. The results of 
experiments conducted on a real grid environment demonstrate 
that this new model is more capable of predicting n-step-ahead 
load in a computational grid than previous works.  The 
proposed hybrid model performs well on prediction advance time 
for up to 50 minutes, with significant less prediction errors than 
conventional AR model. It also achieves an interval length 
acceptable for task scheduler. 

I. INTRODUCTION 
Grid computing [1] is the high-performance and 

internet-based infrastructure that aggregates geographically 
distributed and diverse resources to deliver computational 
power to users in a transparent way, supporting large-scale, 
resource-intensive and distributed applications. Task 
scheduling is an important factor on improving resource usage 
efficiency in such a dynamic distributed environment. 
Obviously, system load prediction can be used to forecast task 
run time [18] and guide scheduling strategies, thus to achieve 
high performance and more efficient resource usage [2] [3] 
[4]. 

In most previous works, load prediction models, such as 
mean-based methods, median-based methods, autoregressive 
(AR) models, polynomial fitting, etc., use point value to 
represent future load status of workstations, clusters and grids. 
Papers [5] [6] [10] describe such point value prediction 
models and their performances. Some other works, like [11], 
implement interval value prediction on structural model to 
forecast system performance in a distributed production 
environment. 

Though point value prediction strategy has been widely 
adapted by recent system load prediction models, this kind of 
strategy do have some drawbacks for highly distributed 
environments. Because grid tasks usually take long run time, 
task scheduler in a computational grid needs a comparatively 
long-time-ahead prediction or an n-step-ahead prediction with 
large step intervals. Point value can hardly cover load 
variability in such a long time frame (i.e., step interval), and 
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e, most of the previous prediction works also 

problems in the history load data, which 
ffects the prediction accuracy. One problem is 
surement error, which inherently exists in all 
methods and can be amplified by a prediction 
r problem is the load data noise introduced by 

uation in a computational grid. The tendency of 
 used by some tendency-track models, like AR 
nomial fitting, to forecast future status. But the 
ndency might be distorted or concealed in the 
d therefore misleads the tendency–track models, 
sequently impair prediction accuracy. 
ution in this paper is that we propose a new 

, which can forecast far more n-step-ahead load 
evious models and methods, with comparatively 
 errors and acceptable prediction interval length 

uler and other utilities. To deal with the dynamic 
putational grids and the needs of task schedulers, 
AR model with confidence interval estimate in 
odel, where AR model is used as a basic 
point value prediction method, and the 

terval of future load status is estimated based on 
l and predicted point values. In order to enhance 
uracy, Kalman Filter [12] is used to minimize 
ment errors of history load data, and 
y filter functions [17] are used as the tendency 
 for data noise eliminating. The results of our 
on a real computational grid environment 
that this hybrid model is of an excellent 
n-step-ahead load prediction, and it also achieves 
 prediction mean square error than conventional 
Furthermore, n-step-ahead load prediction is 
large n in our hybrid model as well. The 

 prediction advance time can be up to 50 
 low prediction mean square error (0.04 on 
acceptable confidence interval length (less than 
ask scheduler. 
 this paper is organized as follows. Section II 
 related work. Section III analyses the causes of 
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measurement errors and describes an error minimize tool – 
Kalman filter. Section IV presents our hybrid model on load 
prediction, and also introduces a signal smoothing algorithm, 
Savitzky-Golay filter, which is used to eliminate data noise 
and reveal the tendency of the data more clearly. Section V 
describes the experiment results of our hybrid model on a real 
computational grid. Finally, we conclude our work and 
describe our future work in section VI. 

II. RELATED WORK 
Previous works [7] [10] indicate that load has such 

properties as self-similarity and epochal behaviour, and is 
strongly correlated over time, which implies that system load 
is consistently predictable from the past behaviour. Therefore, 
correctly correlating the history data with the future values is 
the kernel to make accurate predictions.  

Several load prediction strategies in the distributed 
environment have been proposed in the past. [14] extends the 
prediction by using seasonal variation and Markov 
model-based meta-predictor in addition to seasonal variation 
for 1-step-ahead prediction. [15] proposes a multi-resource 
prediction model that uses both autocorrelation and cross 
correlation to achieve higher prediction accuracy. 

The Network Weather Service (NWS) provides a 
dynamically monitoring and forecasting method to implement 
1-step-ahead prediction on network and computational 
resources [5]. NWS uses various prediction methods, such as 
mean-based methods, median-based methods, and AR 
methods to forecast the future system status at the same time. 
NWS tracks the accuracy of all predictors, and selects the one 
exhibiting the lowest cumulative error measure at any given 
moment to generate a forecast. In this way, NWS 
automatically identifies the best forecasting technique for any 
given resource. 

In Dinda’s paper [6], the prediction power of several linear 
models, including AR, MA, ARMA, ARIMA, and ARFIMA 
are evaluated in detail. Their results show that simple, 
practical models such as AR are sufficient for load prediction 
and AR(16) models or better are recommended for CPU load 
prediction. 

In [16], several homeostatic and tendency-track 
1-step-ahead prediction strategies are presented and evaluated. 
Homeostatic methods assume that the load of a system always 
remains steady in a given time frame, while tendency-track 
strategies are based on the assumption that the tendency of the 
load variability exists in the load data, and can be properly 
revealed by the tendency-track models. The prediction of 
future value is adjusted according to the magnitudes of the last 
load measurement and the last prediction error, and the 
evaluations of this technique show that it outperforms NWS 
for CPU load prediction. 

The prediction strategies mentioned above in this section 
are all using point value to represent the future load status. 
Conventional point value prediction models are often 
inaccurate since they can only represent one point in a range 
of possible behaviours. In [11], stochastic interval values are 
introduced in the area of system load prediction, which can 
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CPU load every 10 seconds, whereas the original BioGrid 
sensors report the monitoring information every 60 seconds. 
Fig. 1 details the measurement errors observed from a node of 
the BioGrid. 

 
Fig. 1 CPU load measurement errors observed on one node (in Tsinghua 
University) of the BioGrid. Mean absolute Measurement Error is 0.069543, 
and Mean Square Measurement Error is 0.0145 

C. Using Kalman filter to minimize measurement errors 
In 1960, R.E. Kalman proposed a recursive solution to the 

discrete-data linear filtering problem in his famous paper [12]. 
Kalman filter has been extensively researched and applied, 
particularly in the area of autonomous or assisted navigation 
[9]. It provides an efficient recursive method to estimate the 
state of a process, and minimizes mean square error.  

Kalman filter uses feedback control to estimate a process: 
firstly the filter estimates the process state at certain time and 
secondly obtains feedback from the measurements. Thus we 
can divide the equations of Kalman filter into two groups: time 
update equations and measurement update equations. The 
specific equations for time and measurement updates are 
presented in [12] and [9]. 

Our work applies Kalman filter to minimize measurement 
errors, and therefore enhance prediction accuracy, which is 
evaluated in section V. Kalman filter has two initial 
parameters, process noise covariance Q and measurement 
noise covariance R. In practice, these two parameters might 
vary with each time step or measurement, but we assume they 
are constants here. Presuming a very small process variance, 
we let Q = 1e – 5, and fix the measurement variance R = 
(0.062)2 = 0.0036. Because this is the “true” average 
measurement error variance we observed from the pervious 
load data in the BioGrid of ChinaGrid, we would expect the 
“best” performance in terms of balancing responsiveness and 
estimate variance.  

IV. PREDICTION 
Task schedule and load balance strategies can benefit a lot 

from accurate load prediction. Because the load variability and 
resource consuming situation on a computational grid are 
strongly correlated over time and have the properties such as 
self-similarity, period stability, long time load prediction 
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sible. In this section, we introduce our hybrid 
ad prediction for computational grid, which 
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AR models to predict a future point value 
dea behind using a linear time series model in 
n is to treat the sequence of periodic samples of 
<Zt>, as a realization of a stochastic process that 
ed by linear stationary models, such as AR, MA, 

A, ARFIMA, etc. [6]. The coefficients of the 
 estimated by observing past data sequence. If 
the model can cover most of the data sequence 
 coefficients could be used to estimate future 
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is a model used to find an estimation of a data 
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             (4.1) 



AR model consists of two parts: an error or noise part tε , 

and an autoregressive summation∑
=

−

p

i
iti X

1

ϕ  . The summation 

represents a fact that current input value depends only on the 
previous input values. The variable p is the order of AR model. 
The higher the order of AR model, the more accurate a 
representation will be. As the order of the model approaches 
infinity, we get almost an exact representation of the input 
data; however, the computational expense on calculating the 
AR(p) coefficients increases with the p order. Therefore, we 
should balance the prediction accuracy and the computational 
expense. In [6], the authors collected a large number of 1 Hz 
benchmark load traces, which capture all the dynamics of load 
signal, and subjected them to a detailed statistical analysis, 
drew a conclusion that AR(16) models or better are 
recommended for host load prediction. 

The problem in AR(p) analysis is to derive the "best" values 
for φi, given a series Xt-i. The majority of methods assume that 
the series Xt-i is linear and stationary. By convention the series 
Xt-i is assumed to be zero mean, if not this is simply another 
term tε  in the summation of the equation (4.1). Even for 
relatively large values of p, with the Burg algorithm [13] that 
we used to compute the AR(p) coefficients iϕ , this can be 
done almost instantaneously. Then the 1-step-ahead value Xt 
can be easily computed. 

However, in highly distributed computational grid 
environments, 1-step-ahead load forecasting can not satisfy 
the demands of task scheduler. The further the load prediction 
of a computational grid can reach, the more appropriate the 
task scheduler can make scheduling strategies and balance the 
load. So what the scheduler in these large distributed 
environment needs is the n-step-ahead prediction (n = 
2,3,4…or even 30,40,50..), which can forecast the load 
variability far more ahead before it really happens. 

AR(p) model attempts to predict an output Xt of a system 
based on the previous inputs (Xt-1, Xt-2, Xt-3...) and the 
coefficients ( pϕϕϕ ,..., 21 ). Before we use AR(p) model to 
implement the n-step-ahead prediction, the following two 
important assumptions have to be addressed: 

• The coefficients of AR(p) model represent the variability 
of the history load data Xt-1, Xt-2,…, and they are also 
suitable to represent the tendency of the load in a future 
period, and the variability of future unknown data Xt, 
Xt+1…, Xt+n-2, and Xt+n-1. 

• The prediction of the Xt+n-1  is based on the data Xt+n-2, 
Xt+n-3, …, Xt, Xt-1, Xt-2,…,and only data Xt-1, Xt-2,…is the 
true measured data; Xt, Xt+1,…, Xt+n-2 must be computed 
step by step before predicting the Xt+n-1, and then Xt, 
Xt+1,…, Xt+n-2 can be assumed as the “true” data when we 
predict the Xt+n-1 . 

Based on these two assumptions, the n-step-ahead 
performance point value prediction is generated using the 
following algorithm in Table I. 
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e AR coefficients pϕϕϕ ,..., 21  based on the 
ring data Xt-1, Xt-2,…; 
 
 AR coefficients pϕϕϕ ,..., 21  and Xt-1+i-1, 
…, to compute the Xt-1+I; 
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U load variability of THU node cluster of the BioGrid 
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ant to use an interval value to represent all the 

y in a time frame, it would lengthen the interval 
ingless for grid task scheduler. In [11], many 
size real phenomena generate distributions 
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includes the n-step-ahead prediction values generated by AR(p) 
model.  

We set the confidence level to be 95% in our experiments. 
The confidence interval value here is described as a pair of 
two point values (Xlower(t), Xupper(t)), where Xlower(t) denotes the 
lower limit of the load prediction of time frame t, while Xupper(t) 
means the upper limit of the load prediction of time frame t. 

In practice, suddenly abnormal load fluctuation in a 
computational grid does not happen frequently and often lasts 
transitorily, which makes this phenomenon hard to be 
predicted. In this paper, we assume that load is stable in most 
of the time, and therefore the load confidence interval 
prediction values should also display as two smoothness 
curves which reflect the stability of the load. So after we 
compute the n-step-ahead load confidence interval, we use 
Savitzky-Golay filter introduced in formula 4.1 to smooth the 
interval data, the lower limit data and the upper limit data, to 
do some corrections on the original load confidence interval 
prediction values. 

TABLE II LOAD PREDICTION PROCESS OF HYBRID MODEL 

1. Using Kalman filter to minimize the measurement errors 
of the history data Xmeasure(t), generate the more accuracy 
data Xfilter(t). 
 
2. Using Savitzky-Golay filter to smooth the data Xfilter(t) 
with the former data Xfilter(t-1), Xfilter(t-2), …., generate the 
data Xsmooth(t). 
 
3. Compute the AR(p) coefficients pϕϕϕ ,..., 21  based on 
the Xsmooth(t), Xsmooth(t-1)… 
 
4. For the given n-step-ahead parameter N, using the 
Xsmooth(t), Xsmooth(t-1)… and AR(p) coefficients 

pϕϕϕ ,..., 21 to compute the predict future value of 
Xpredict(t+1), Xpredict(t+2)…Xpredict(t+n). 
 
5. Compute the confidence interval (Xlower(t+n), Xupper(t+n)) 
with sample size CIwindow+N, at confidence level 95%, 
using the data Xfilter(t-CIwindow+1)…,Xfilter(t-2), Xfilter(t-1), 
Xpredict(t), Xpredict(t+1)…Xpredict(t+n). 
 
6.Using Savitzky-Golay filter to smooth the prediction 
interval value (Xlower(t+n), Xupper(t+n)) with the former data 
(Xlower(t+n-1), Xupper(t+n-1)), (Xlower(t+n-2), 
Xupper(t+n-2)),…, generate the smoothed prediction interval 
value(Xsmoothed_lower(t+n), Xsmoothed_upper(t+n)) 
 

3)  The whole prediction process 
The whole process of our hybrid model on n-step-ahead 

load prediction is described in Table II.  
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g services for bioinformatics researchers 
interface transparently. It is part of the China 
d Research Grid Project – ChinaGrid, an 
ject funded by Chinese Ministry of Education. 
ms to integrate heterogeneous mass resources 
 the China Education and Research Network 
to a public platform for research and education 
 BioGrid has 7 nodes distributed in 6 distant 
a (Beijing, Shanghai, Wuhan, Ji’nan, Lanzhou, 
ach of them is a cluster with processor number 
6. Without the loss of generality, we use a set of 
U load data of the BioGrid from the ChinaGrid 
(CGSV [19]) to evaluate our hybrid model, the 
ize is 13470. These CPU load data is gathered 
t-end machines of 7 nodes in the BioGrid every 
d the CPU load of each node(cluster) is denoted 
%, using point value to represent the average 
every time frame. All the following evaluation 
erated from this set of CPU load data. 

al parameters of the AR(p) model 
 doubt that more accurate point value prediction 
will lead to a nicer confidence interval value 
 the conclusion of [6], AR(16) model or better 
e for the host load prediction. We measured the 
e AR n-step-ahead prediction with different n, 

ult of this measurement reveals the capability of 
in the further n-step-ahead prediction.  
mean square prediction error as (5.1) 
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621 0.1658 0.2372 0.2523 
535 0.0685 0.1244 0.1498 
393 0.0651 0.1194 0.1331 
406 0.0635 0.1034 0.1346 
501 0.0583 0.1052 0.1234 
 III we notice that AR(p) model performs well 
step ahead between 1 to 10, where the mean 
ould be smaller than 0.065. The results suggest 
odel can not predict much further future CPU 
ode in a computational grid. Considering the 
uracy and computational expense, we use p=32 
ions below.  

acy of the confidence interval value prediction 
id model 
point value prediction using AR(p) model which 
ossible point value of a future time point, 

terval value prediction gives a view of possible 
ture time frame. If the true CPU load measured 
ring system in a future time frame falls in the 

fidence interval value, we define the prediction 
this situation as 100%, in other words, the 



prediction error is 0. The mean square error of the confidence 
interval value prediction is defined as (5.2), and Fig. 3 shows 
the evaluation results. 
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The )(__int ierror predictionvalueerval here is slightly different 
from the error in the point value prediction. We compute the 

)(__int ierror predictionvalueerval using the definition of (5.3). 
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Fig. 3 Mean square error of hybrid model prediction 

C. The prediction confidence interval length using hybrid 
model 

As shown in Fig. 3, our hybrid model is of an outstanding 
forecasting capability. It illustrates that we should use as small 
as possible the CIwindow to achieve small prediction mean 
square error. But there is another problem about the 
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terval is too wide, it may be meaningless for the 
r. For example, the range of CPU load is 
% to 100%, but the prediction load confidence 
h of a future time is as wide as 60%. This 
o faint that the task scheduler can hardly arrange 
atching based on it. On the contrary, if this 
 of prediction can be limited as small as 15% or 
h easier for the scheduler to recognize the future 

ystem CPU load.  
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monstrates the influence of the parameters, 
 N, on the prediction interval length. Noticeably, 
fidence interval length is almost below 20% 

indow is bigger than 15. 
promise between the prediction accuracy and 
h, we set the CIwindow as 20 when using our 
ast the CPU load of the BioGrid. 

n between hybrid model and AR model 
red the prediction accuracy of our hybrid model 
l on a set of 7 series of CPU load data collected 
rid. The prediction mean square error of our 



 

hybrid model (using equation (5.2)) and AR model (using 
equation (5.1)) on this set of load data are shown in Fig. 5. 
The experimental results show that the hybrid model 
outperforms AR model on the CPU load prediction. The 
prediction mean square error of hybrid model is 77.07% less 
on average than that of AR model. We also evaluated the 
prediction mean square error of the interval median prediction 
by using the hybrid model (using equation (5.1)). This 
variation from our hybrid model also shows better prediction 
accuracy that the prediction mean square error is 51.31% less 
on average than that of AR(32) model. In these evaluations, 
we set the parameter of the hybrid model as P=32, CIwindow 
=20. 

E. The power of Kalman filter in minimizing the measurement 
errors 

In section III, we analyse the causes of the measurement 
errors. Measurement error is unavoidable and may be 
amplified by prediction models, thus impairing the prediction 
accuracy. In our work, we use Kalman filter to minimize these 
measurement errors. We compare the mean square error of our 
hybrid model using Kalman filter with the one without using 
Kalman filter. The results are shown in Fig. 6, which 
demonstrates that Kalman filter works very well on 
minimizing the measurement errors and the prediction 
accuracy is improved consequently.  

 
Fig. 6 Mean square error amplification without using Kalman filter, where 
Z-label = filterkalmangufilterkalmanno MSEMSE __sin__ −   

F.  A sample of CPU load prediction using hybrid model 
Fig. 7 is a sample of the CPU load prediction using our hybrid 
model. Fig. 7(a) is the CPU load measurement data of the 
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mple time is from 2006-12-23 16:27 to 
4:08, total 1301 sample point, with sample 

 seconds, in Tsinghua University node. Fig. 7(b), 
e 10, 30 and 50 step-ahead CPU load confidence 
ction by hybrid model, using the same parameter 
Iwindow=20. Table IV summarizes the mean 
f these predictions at different n-step-ahead and 

rval length.  

 
(a) Real CPU load 

 

(b) 10-step-ahead prediction 

 

(c) 30-step-ahead prediction 

 

(d) 50-step-ahead prediction 

 load confidence interval prediction using hybrid model 
Fig. 5 Prediction errors compare on 7 series of CPU load data collected from the BioGrid 



TABLE IV CONFIDENCE INTERVAL PREDICTION ERRORS AND INTERVAL 
LENGTH STATISTICS OF FIGURE 7 

Evaluation metrics 10-step 
-ahead 

30-step 
-ahead 

50-step 
-ahead 

Confidence interval 
prediction MSE 

0.0063 0.0259 0.0428 

Mean interval length of 
prediction (confidence 
level 95%) 

17.34% 
±0.21% 

18.05% 
±0.19% 

16.72% 
±0.18%

Fig. 7 and Table IV show that our hybrid model works 
excellently in CPU load prediction, which is always the 
bottleneck for a computational grid. Using the parameter p=32 
and CIwindow=20, the interval length is limited to below 20% 
and the mean square error is smaller than 0.05 even for 
50-step-ahead (50 minutes ahead) CPU load. 

VI. CONCLUSION AND FUTURE WORK 
To predict the load of a computational grid, we have 

developed a hybrid model which integrates AR model with the 
confidence interval estimate. Whereas the point value 
prediction is always the ideal estimate of the load in the future 
time point, the confidence interval prediction adopted in this 
hybrid model can reflect the load variability in a future time 
frame and convey more information to the task scheduler of a 
computational grid. 

In order to enhance the prediction accuracy, we use Kalman 
filter to minimize the load measurement errors, and 
Savitzky-Golay filter to smooth the history data. The 
evaluation results demonstrate that these noise eliminating 
tools perform very well and lead to a significant improvement 
on prediction accuracy. 

Considering the trade-off between the prediction accuracy 
and the confidence interval length, we use parameters p=32 
and CIwindow = 20 to predict the CPU load of the BioGrid. 
The prediction advance time can be even 50-step-ahead long, 
with significant less prediction mean square error than the 
conventional AR model and has acceptable interval length for 
the schedule algorithm. The optimal parameter values may be 
slightly different according to the different computational 
applications and programs running on a computational grid, 
and we will evaluate the prediction performance variability of 
our hybrid model under different applications and parameters 
in the future. Some machine learning mechanism and 
parameter auto-adaptation function could also be added in our 
model to fit in different conditions. 
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