
This paper is included in the Proceedings of the
2015 USENIX Annual Technical Conference (USENIC ATC ’15).

July 8–10, 2015 • Santa Clara, CA, USA

ISBN 978-1-931971-225

Open access to the Proceedings of the
2015 USENIX Annual Technical Conference
(USENIX ATC ’15) is sponsored by USENIX.

Memory-Centric Data Storage for Mobile Systems
Jinglei Ren, Tsinghua University; Chieh-Jan Mike Liang, Microsoft Research;
Yongwei Wu, Tsinghua University; Thomas Moscibroda, Microsoft Research

https://www.usenix.org/conference/atc15/technical-session/presentation/ren

USENIX Association 	 2015 USENIX Annual Technical Conference  599

Memory-Centric Data Storage for Mobile Systems

Jinglei Ren
Tsinghua University∗

Chieh-Jan Mike Liang
Microsoft Research

Yongwei Wu
Tsinghua University∗

Thomas Moscibroda
Microsoft Research

Abstract
Current data storage on smartphones mostly inherits
from desktop/server systems a flash-centric design: The
memory (DRAM) effectively acts as an I/O cache for the
relatively slow flash. To improve both app responsive-
ness and energy efficiency, this paper proposes MobiFS,
a memory-centric design for smartphone data storage.
This design no longer exercises cache writeback at short
fixed periods or on file synchronization calls. Instead, it
incrementally checkpoints app data into flash at appro-
priate times, as calculated by a set of app/user-adaptive
policies. MobiFS also introduces transactions into the
cache to guarantee data consistency. This design trades
off data staleness for better app responsiveness and
energy efficiency, in a quantitative manner. Evaluations
show that MobiFS achieves 18.8× higher write through-
put and 11.2× more database transactions per second
than the default Ext4 filesystem in Android. Popular real-
world apps show improvements in response time and
energy consumption by 51.6% and 35.8% on average,
respectively.

1 Introduction
App experience drives the success of a mobile ecosys-
tem. Particularly, responsiveness and energy efficiency
have emerged as two new crucial requirements of highly
interactive mobile apps on battery-powered devices.

Recent work has shown the impact of data storage on
app experience. Storage I/Os can slow down the app
responsiveness by up to one order of magnitude [11, 19,
28, 36], and can substantially impact the device’s energy
consumption either directly or indirectly [29, 38, 50].

Modern mobile platforms typically inherit their data
storage designs from desktops and servers. For exam-
ple, Android and Windows Phone 8 currently default to
the Ext4 and NTFS filesystem, respectively. However,
these data storage designs neither reflect the different
requirements nor exploit the unique characteristics of
smartphones. The limited number of foreground apps,

∗Department of Computer Science and Technology, Tsinghua Na-
tional Laboratory for Information Science and Technology (TNLIST),
Beijing; Research Institute of Tsinghua University, Shenzhen.

increasingly adequate DRAM capacity, and the net-
worked nature of most apps open up a new design space
that is not applicable to desktops and servers.

In this paper, we advocate a memory-centric design
of data storage on smartphones. To elevate energy
efficiency and app responsiveness as first-class met-
rics, we switch from the traditional flash-centric design
to a memory-centric design. The flash-centric design,
derived from desktops/servers, assumes the persistent
flash medium as the primary store, and regards the
memory (DRAM) as a temporary cache. Most recent
optimizations [16, 20, 22, 36, 37, 38, 51] still follow this
traditional philosophy. In contrast, we re-examine the
underlying assumption of mobile storage design. Our
memory-centric design views the memory as a long-lived
data store, and the flash as an archival storage layer. Con-
cretely, (1) frequent writebacks of in-memory dirty data
become unnecessary; (2) individual file data synchro-
nization calls (typically, fsync), which are costly, can be
safely aggregated and scheduled out of the critical path
of app I/O. Both changes have significant implications
on app responsiveness and energy efficiency [11, 19, 28,
36]. Instead, we incrementally checkpoint app data at
optimal variable intervals that adapt to app behavior, user
interactions and device states.

Our key idea is to trade off durability for energy
efficiency and app responsiveness. To realize the trade-
offs in a quantitative way, we interpret durability as a
continuous variable, instead of a binary discrete variable
(durable or not). Intuitively, given a specific probabil-
ity of system failure, the less stale the persistent version
is, the more “durable” the data is. Therefore we use data
staleness as the metric of durability. Besides, these trade-
offs rely on the decoupling of durability and consistency
in storage. Recent efforts have explored a similar decou-
pling in different domains [6, 35], but they do not apply
to our memory-centric design, and they do not show how
to optimize the tradeoffs for mobile apps. Overall, there
is a lack of systematic and quantitative studies on these
tradeoffs in mobile systems.

The gains from our design mainly come from its
adaptability to mobile app behavior and usage. The tra-

1

600  2015 USENIX Annual Technical Conference	 USENIX Association

ditional fsync and fixed flush intervals are not suited for
optimizing energy performance in mobile systems and
often negatively impact user experience. Instead, our
measurements motivate an app/user-adaptive design of
checkpointing for mobile apps. Concretely, we answer
the algorithmic questions regarding what in-memory
data to checkpoint (i.e., save to flash), and when to do so.
Our solution determines the ideal checkpointing times
for each app independently, by considering both device
states and user interactions.

Meanwhile, loosening the timing of checkpoint-
ing is feasible in the mobile context because smart-
phones exhibit favorable properties. First, being self-
contained (e.g., powered by batteries), smartphones are
less exposed to losing data on volatile memory caused
by external factors (e.g., power loss). Second, both hard-
ware and software advances lower the data loss proba-
bility due to system crashes. Only 6% of users experi-
ence system failures more than once per month, accord-
ing to our online survey. Third, most mobile apps are
networked, meaning that their data are recoverable from
remote servers (e.g., Gmail, Facebook, Browser). We
investigate 62 most popular free apps on Google Play,
and only 8 are vulnerable to local data loss (Section 3)1.

To manipulate the checkpointing time, we change the
semantics of POSIX fsync to be asynchronous. For
some apps and databases (e.g., SQLite) that rely on syn-
chronous fsync to guarantee data consistency, we design
Versioned Cache Transactions (VCTs) to enforce atomic
transactions on the filesystem cache. Combining adap-
tive checkpointing and VCT ensures data consistency
while minimizing overhead caused by periodically fre-
quent writebacks.

We implement our filesystem, MobiFS, at the system
call layer for three reasons. First, this position is below
upper-layer apps and databases, so it allows MobiFS
to intercept and manage all storage I/O. At the same
time, we can selectively enable/disable our features for
individual apps1. Second, our solution does not alter
standard filesystem interfaces, so no changes to upper-
layer apps are necessary. Third, our solution is agnos-
tic to underlying flash management implementation. For
example, it can be integrated with Ext4 [33], Btrfs [45]
or the latest F2FS [26].

In summary, we make multiple contributions. (1) We
establish the feasibility and significance of the memory-
centric design for mobile storage. (2) We exploit, in
the mobile context, the tradeoffs between data stale-
ness, energy efficiency and app responsiveness. MobiFS
introduces transactions to the page cache of regular
filesystems, without modifying app storage interfaces.
(3) We propose a new measure to quantify the trade-

1Apps with critical data (e.g., unreproducible photos) can still opt
to use a regular flash partition.

off between data staleness and energy efficiency, and
characterize various I/O patterns of apps. These empir-
ical results drive a policy framework that organizes and
balances multiple factors – data staleness, energy, and
responsiveness. (4) We implement a fully working pro-
totype integrated with both Ext4 [33] and Btrfs [45].
Experiment results suggest up to 35.8% reduction in
energy consumption and 51.6% improvement on app
responsiveness, as compared to the default Android file-
system. It also achieves 18.8× higher write throughput
and 11.2× more database transactions/sec.

2 Background
Filesystem and Page Cache. A typical filesystem con-
sists of three main components: (1) the interface rou-
tines to serve system calls; (2) the in-memory cache of
hot data, typically the page cache; (3) the management
of the persistent media. Our work revisits two of these
parts: the system call routines and the cache.

Traditional filesystems with POSIX [15] interfaces
use two ways to minimize data staleness and guar-
antee consistency while optimizing I/O performance.
(1) Asynchronous write2 moves data into the page
cache. Dirty pages are written to flash after a small fixed
time interval (default is 5 seconds in Android). (2) Syn-
chronous fsync immediately enforces data persistence
of the specified file. Databases rely on fsync to maintain
consistency. Take write-ahead logging for example: the
database first records updates in a separate log, without
affecting the main database file, and then invokes fsync
over the log. This ensures a consistent state of the log file
in persistent media. Finally, logged changes are applied
to the main database file.
Data Consistency and Staleness. A system failure
may lead to data loss in the page cache, with essen-
tially two negative outcomes: inconsistency and stale-
ness. Consistency in this paper refers to point-in-time
consistency [44], meaning that the persistent data always
corresponds to a point of time T in the write history – all
writes before T are stored in flash and all writes after T
are not. Asynchronous write can not guarantee consis-
tency. Specifically, when data is kept in the page cache, it
may be overwritten and results in writes being reordered.
If only partial cache is flushed before a system crash, the
in-flash data could violate point-in-time consistency.

Meanwhile, data staleness is typically less of a con-
cern for most apps in the case of a system crash. Data
staleness is the “distance” between the current volatile
in-memory data and the persistent in-flash data. This dis-
tance can be measured either with respect to versions [4]
or time [43].

2For clarity, write only refers to an asynchronous one without spe-
cial flags such as O SYNC.

2

USENIX Association 	 2015 USENIX Annual Technical Conference  601

3 Insights
The memory-centric approach has become feasible on
smartphones, as advances in both hardware and software
make its underlying assumptions tenable.
Insight 1 Memory capacity on smartphones is ample
enough for app data storage.

The DRAM capacity on modern smartphones has
grown significantly (8× since 2010, from 512 MB to
4 GB), with 2 GB being the standard today. This amount
of memory is already sufficient to run Windows XP on
a desktop. Although app data requirement has also been
increasing, it has been doing so in a slower pace. For ex-
ample, typical web page requests have increased in size
by only 94% during the same time period [1]. Moreover,
smartphone users tend to run a small number of active
apps/services at the same time due to the limited screen
size. Further evaluation can be found in Section 7.2.
Insight 2 Storing app data on smartphone memory is
not as risky as it sounds.

First, smartphones have a battery power supply. Such
battery-backed RAM (BBRAM) is regarded as reliable
in the desktop/server setting [12, 47, 49]. Second, the re-
liability of smartphones has improved to the extent that
memory data loss due to system failures is sufficiently
rare. This observation is based on our online survey
about the frequency of mobile system crashes (not app
crashes) experienced by average users. Among all 117
users responding to the survey, only 6% encounter more
than one failure per month, and the average frequency
is once per 7.2 months. Third, most apps store data on
online services or the cloud anyway.

Our detailed case study of the top 62 free apps in the
Google Play app store (covering all categories, represen-
tative of most popular and frequently used apps) well
supports the observation above. At one extreme, there
are apps that are always in sync with online servers, e.g.,
Facebook, Google Maps, Glide video texting, Fitbit and
most games (so does Apple’s Game Center). At the other
extreme, some apps rely on local data exclusively or ex-
tensively, e.g., WhatsApp (for privacy protection) and
Polaris Office. Data of these apps is vulnerable before
being saved to flash. Meanwhile, there are apps in be-
tween these two extremes. For example, Skype may store
messages on the server for “30 to 90 days” to synchro-
nize states across multiple devices, so the data loss risk
is negligible.

Overall, only 8 apps are counted as vulnerable to lo-
cal data loss, for which a system crash may largely af-
fect user experience. Users/developers have the flexibil-
ity of configuring these apps to use a regular flash parti-
tion with traditional fsync. Note that these exceptions
only raise a slight configuration burden, rather than a
programming burden. In our experience, an app-level

configuration option is more practical and easy-to-use
than enforcing new programming interfaces.

Insight 3 Reducing the amount of data flushed to flash
is one key to save app energy.

First, the write energy dominates the app I/O energy.
Prior measurements [5] have shown that reading con-
sumes about 1/6 energy of writing for the same amount
of data. Meanwhile, our system-call traces of Google
Play top 10 apps suggest that the data amount of reads
is only 41% of writes on average. Therefore, the overall
read energy is only 6.3% of write energy.

Second, the amount of data to flush, rather than the
number of batches, is the dominant factor of write
energy. In our experiment, writing 40 MB data in batches
ranging from 4 to 40 MB results in a net energy con-
sumption difference within 1.5% on a Samsung smart-
phone. In addition, standby is not a good state for data
flushing, because fixed overhead can be amortized if the
device is active. Up to 129% extra energy is used if data
is flushed after the device switches to standby.

In conclusion, considering that the total write data is-
sued from an app is externally determined, we can focus
on how much data is overwritten before flushing, as an
indicator of the app’s energy efficiency.

Insight 4 Relaxing the timing of flushes is a key to app
responsiveness.

Flushing impacts app responsiveness in two ways:
(1) When flushing in a fsync call, the app has to wait
until the data is saved to the slow flash. This situation
is encountered frequently [16, 28] as databases rely on
fsync. (2) When flushing is invoked for background
writeback, it competes for CPU cycles with active app
workloads, as shown in [19, 36] and from our evaluation.

In either case, the timing of flushes plays a key role:
if flushing is out of the fsync path to avoid user interac-
tion/CPU peaks, its negative impacts on the app respon-
siveness would be minimal. Our memory-centric view
leverages this insight.

Insight 5 App/user-specific I/O access patterns suggest
adaptive policies to balance the staleness-energy trade-
off, which can be achieved in a quantitative way.

I/O access patterns can vary widely among apps/users.
We follow three steps to quantify this variability as well
as the key tradeoff. (1) We define a data staleness metric
that is suitable to our context. Traditional definitions are
with respect to either time [43] or versions [4]. However,
the time-based staleness is hardly associated with energy
efficiency, and there is no strict data versioning in a regu-
lar filesystem. Instead, we define the data staleness, s, as
the total amount of data that an app has ever written since
the last checkpoint. If an app writes two pages of data to
the same address, the data staleness is increased by two

3

602  2015 USENIX Annual Technical Conference	 USENIX Association

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

e
 (

%
)

Staleness (Unified)

Facebook: 0-11.4MB
Twitter: 0-156.2MB

AngryBirds: 0-6.9MB
GoogleMaps: 0-175.8MB

Browser: 0-9.5MB

Figure 1: Different shapes of e curves suggest app-
specific I/O patterns. The staleness ranges are unified to
0-100, and actual values are noted beside the app names.

pages (similar to the version-based staleness in this case).
(2) Based on INSIGHT 3, we define the energy efficiency
ratio, e = o/s, where o is the total amount of data that
has been overwritten since the last checkpoint. As o < s,
e is within [0, 1). A larger e indicates a larger propor-
tion of pending write data to be merged before flushing
and hence higher energy efficiency. (3) Based on the two
definitions above, we draw the e curve over s to capture
the extent to which increased staleness improves energy
efficiency. The different shapes of e curves in Figure 1
suggest the optimal flushing time is different for differ-
ent apps (and also for different users). Ideally, data in
memory should be flushed when e reaches the maximum.

4 Design

The design of MobiFS is guided by insights in the pre-
vious section. As Figure 2 shows, MobiFS consists of
five major components: (1) the page cache, which stores
file data in memory; (2) the write log, which maintains
a write history; (3) the transactions, which group entries
in the write log and protects them from inconsistency due
to overwriting/reordering; (4) the checkpointer, which is
based on an underlying flash store to persist transactions
atomically; (5) the policy engine, which marks transac-
tion boundaries, detects user interactions, and decides the
timing and target transactions to checkpoint.

MobiFS is designed to work with the existing page
cache shared with the OS. For each write to the page
cache, MobiFS first updates the write log, by appending
a new entry or updating an existing entry with the target
page address. We also maintain a page reverse-mapping
from the dirty page back to the write log. Based on the
write log and page reverse-mapping, MobiFS establishes
atomic transactions. A transaction defines the scope of
overwriting and reordering. Finally, the policy engine
guides the checkpointer to save transactions without in-
terfering with user interactions. It makes app-specific de-
cisions, according to each app’s behavior statistics and

File inode

Page 0 Page 1 Page 2

Page reverse-mapping

Write
Log

Active Section

Closed
Section

Transactions

App 1
App 2

Trans.
Policy

Checkpt..
Policy

Checkpointer

Reference
Data flow
External
component

Figure 2: Architecture of MobiFS

current device states.
In a typical set-up, apps have their own write log and

transactions, and they share the page reverse-mapping,
the policy engine and the checkpointer process(es).

4.1 Write Log
The write log is a chronological record of all writes from
an app. The write log is divided into sections. New en-
tries are inserted to the active section at the end of the
write log, and the closed section contains entries that are
ready for checkpointing.

The scope of a write log covers all directories accessi-
ble by an Android app (/data/data/[PackageName],
etc). Note that SQLite is an embedded database for indi-
vidual apps, whose files are also covered by write logs.

One observation that enables app-specific optimiza-
tion is the relatively static and isolated app data paths,
which avoids the consistency issue of cross-app coor-
dination. However, there might be cases where several
apps have access to the same data file, e.g., a galley app
and a file management app can manipulate the same set
of pictures. In such a case, apps are responsible for han-
dling situations where files are manipulated by a third
party. In fact, this is the expectation of mobile operating
systems such as Android.

4.2 Versioned Cache Transaction
The write log can have different versions of a cached
page. Versioned Cache Transaction (VCT) captures this
information. A VCT goes through three states in its life-
time. When it is open, it accepts new entries in the ac-
tive section. These entries reference the latest version
of a cached page. When closed, all entries in the ac-
tive section are moved into the closed section and pro-
tected from further modifications. A VCT in the closed
section can not be re-opened. When it is committed,
all pages referenced by entries in a closed section are

4

USENIX Association 	 2015 USENIX Annual Technical Conference  603

flushed atomically. After the commit, the VCT and its
entries are evicted from the write log.

Overwriting and reordering are only allowed within a
single VCT. As the checkpointer will guarantee the dura-
bility and atomicity of a committed VCT, such optimiza-
tions will not leave any inconsistent state in flash.

When a write comes, MobiFS has to handle three sit-
uations: (1) If the reverse-mapping of the target page
does not exist, this means the app writes to a page that
is not in the write log. MobiFS appends a new entry,
and associates it with a new reverse-mapping. (2) If the
reverse-mapping exists and points to the closed section,
this means the app writes on a page within a protected
VCT. MobiFS copy-on-writes over the target page. A
new entry is appended for the modified copy. (3) If the
reverse-mapping exists and points to the active section,
this means the target page is not in a closed VCT and can
be overwritten directly.

4.3 Crash Recovery
VCT boundaries do not necessarily coincide with fsync.
In a crash, MobiFS relies on the underlying flash man-
agement component to recover any partially check-
pointed VCT. Take our Ext4 variant for example. It either
rolls back to the last transaction, or replays the journal to
persist the latest one. In this design, apps and databases
always see the data state corresponding to a point of
time in history. This is true even after recovering from
a system crash. We note that MobiFS guarantees consis-
tency, but not the typical definition of durability.

4.4 Policy Engine
Two categories of policies are running in the policy en-
gine: the transactioning policy and the checkpointing
policy. The former addresses when to close a VCT, while
the latter addresses when to save which VCTs into flash.
Our general rule is to do checkpointing during the idle
time (e.g., when a user is reading the screen content).

The concrete transactioning and checkpointing algo-
rithms we implement in MobiFS are described in Sec-
tions 5.2, 5.3 and 5.4, respectively. However, note that
our policy engine is an extensible framework, so alterna-
tive algorithms may be used.

4.5 Checkpointer
The checkpointer has two responsibilities. First, it in-
vokes an underlying flash component to save data in
flash. Second, as MobiFS is loaded, the checkpointer
checks a target partition and attempts recovery of any
inconsistent data. The flash management component
of many filesystems like Ext4 and Btrfs can be eas-
ily adopted to implement the checkpointer. The check-
pointer exposes four interfaces:
• BEGIN TRANSACTION, invoked at the beginning of

a VCT commission.

• APPEND ENTRY, invoked for each entry in the target
VCT after a successful invocation of the above.

• END TRANSACTION, invoked at the end of a VCT
commission after all its entries are appended.

• WAIT SYNC, used if flushing is asynchronous.
The underlying flash management component

should guarantee the durability and atomicity of
the data written between BEGIN TRANSACTION and
END TRANSACTION.

5 Policy
In this section, we describe our policy design and specific
algorithms employed in MobiFS.

5.1 Overview
The policy design has to balance several contradictory
requirements of mobile systems: data staleness, energy
efficiency, and app responsiveness. We organize their re-
lations into a modular extensible policy framework.

The policy framework assembles three modules.
(1) Individual transactions are made ready for check-
pointing according to the e curve, in favor of energy
efficiency (Section 5.2). This does not rely on any un-
realistic assumption of user operation distribution. In-
stead, we use a second module to predict dynamic user
behaviors, so that (2) Transactions may get delayed and
queued before checkpointing, in favor of app responsive-
ness. (Section 5.3). (3) Coordination of multiple apps is
managed by a scheduling model (Section 5.4).

We make energy- and responsiveness-optimizing deci-
sions independent, avoiding complex multi-objective op-
timization with simplistic assumptions. This keeps the
algorithms concise as well as effective for practical sys-
tems. Many heuristics used in this section are derived
from substantial first-hand experience.

5.2 Transactioning Algorithm
Increasing data staleness improves the chance of data
overwriting (thus, energy saving), but it pays the price
of a higher data loss risk. Hence we face the question:
To what extent should MobiFS trade off data staleness
for energy efficiency? MobiFS decides by evaluating the
energy saving per data staleness unit, namely the e ratio
(Section 3). Intuitively, the peak of the e curve is the best
tradeoff point, as it maximizes the energy saving. Dif-
ferent from related efforts that set a fixed large staleness
threshold [32, 35, 43], our philosophy is to reduce data
loss risk unless there is a reason (improving energy effi-
ciency) to do otherwise.

The goal of the tradeoff point location (TPL) algo-
rithm is to determine the log entry that marks the end of
the current VCT. Each write increments the data stale-
ness value, which corresponds to a point in the e curve.
Whenever a VCT is closed, the new curve starts at e = 0

5

604  2015 USENIX Annual Technical Conference	 USENIX Association

e ratio

Staleness

0

P

s0 s1 s2

m0

m0'

m1

m1'

choosing peak
choosing lower

(Lines coincide before s0)
P'

Figure 3: The e curves produced by choosing different
transactioning points.

(c.f. Figure 3). Ideally, the best point to close a VCT
is the peak point with highest e, as explained next. Sup-
pose, for contradiction, that an algorithm decides to close
a VCT at P′ with x = s0, rather than at the peak P which
is x = s1. Then, we can improve this algorithm by shift-
ing the closing point to P, while keeping the subsequent
closing point x = s2 the same as with the supposed algo-
rithm. We can show that by doing so, we increase the
probability of data overwriting3. Without loss of gen-
erality, we let s0 < s1. The amount of overwritten data
during [s0,s1] ([s1,s2]) is m0 (m1) for our strategy; it
is m′

0 (m′
1) for the supposed algorithm. Then we have

m0−m′
0 >m′

1−m1 for the following reasons: [s0,s1] still
sees our curve quickly rising, so there should be much
data to overwrite, yet if it is cut by the supposed algo-
rithm, much data loses the chance to overwrite. In con-
trast, as P is the peak, the original curve would go down
in [s1,s2], meaning that little overwritten data is found
in there. A simple transformation of the above formula
leads to m0 +m1 > m′

0 +m′
1. Therefore, by cutting at P

which is necessary to confine data staleness, our strategy
has less a chance to overwrite data.

In practice, we have to deal with additional challenges.
To mitigate fluctuations in the curve that may lead the
algorithm to a locally optimal point, we use linear fitting
within a sliding window. The algorithm remembers the
latest k points, fits a line, and judges the peak via the
gradient of the line. We choose linear fitting, instead of
higher order curve fitting, because the algorithm runs on
every write so that its complexity should not impose high
CPU overhead. Meanwhile, we set a staleness (or time)
limit to prevent the opposite – unbounded waiting for a
peak. Evaluation of this algorithm is in Section 7.5.

5.3 Interval Prediction
The goal of this algorithm is to predict the length of an
interval within which the user is expected not to actively
operate the smartphone. These are idle intervals when
flushing should be scheduled. The algorithm is triggered
when there are pending VCTs. To evaluate the effec-
tiveness of such an algorithm, we call an user operation

3This is not a rigorous mathematical proof. Counterexamples may
exist, but overall it is sufficient for the policy design.

short interval
{As[1..ks], ts}

long interval
{Al[1..kl], tl}

shorter
interval

longer
interval

u |
update As

u |
update As

u | update Al

u | update As

u > |
update Al

 |
do checkpt.

 | do checkpt.
event u - an user operation
event - when m×ts passes; event - when tl passes

Figure 4: Finite-state machine for interval prediction

unexpectedly occurring within a predicted idle interval a
responsive conflict (RC). Note that idle interval predic-
tion errors can cause several RCs.

We use a state-machine-based prediction method that
well balances the low conflict number (i.e., low potential
impact on responsiveness) and the long predicted inter-
val (i.e., large potential energy saving as more VCTs can
be merged and flushed once). Our algorithm is based
on the observation that users usually switch back and
forth between short and long intervals, e.g., when read-
ing News Feeds on Facebook, the user may quickly skim
some posts before spending time to read one. It is not
the goal of this paper to compose a full-fledged inter-
action model for app users. Instead, we establish the
policy framework, and show that, for our purpose, a sim-
ple state-machine model is sufficient to learn user pat-
terns and achieve good prediction qualities (evaluated in
Section 7.4).

Figure 4 depicts our finite-state machine model. There
are two central states: the short interval (long
interval) state when the user operates with short (long)
intervals. Each of the two states maintains a recent his-
tory of intervals A[1 . . .k], and uses the minimal value t
as a prediction of the next interval. Each of them also
has a timer, which is set for a corresponding timeout
event whenever necessary. Subscripts “s” and “l” de-
note the two central states, respectively. Meanwhile, the
other two intermediate states, shorter interval and
longer interval, help to decrease or increase interval
predictions.

Intuitively, the state machine works as follows. While
staying in the short interval state, it will loop if the
coming event is a user operation. However, if the user
operation does not come before a timeout event τ (Fig-
ure 4), the machine assumes that the user may begin a
long interval, so it changes to the long interval state.
Afterwards, if the predicted time tl successfully passes
without user operation (event δ), the state machine enters
the longer interval state which waits until a user op-
eration happens. Otherwise in the long interval state,
if a user operation comes later than τ , we assume the user

6

USENIX Association 	 2015 USENIX Annual Technical Conference  605

still operates with long intervals but the interval predic-
tion should be decreased, so it goes into the shorter

interval state; if the user operation comes so quickly
(before τ) that we guess the user switches to short inter-
vals, the state is directly set to short interval.

5.4 Transaction Scheduling
The scheduling problem arises when a user interacts
with multiple (background) apps or switches between
apps. A typical scenario can be playing a game while
listening to radio, and a background service repeatedly
checks emails. MobiFS may have multiple write logs
with closed VCTs for commission. The scheduler needs
to prioritize VCTs to checkpoint, balancing the goals
of fairness, high responsiveness and energy efficiency.
Our algorithm considers three factors in the decision:
(1) Transaction length, or the number of pages to check-
point. We judge whether the transaction can fit into the
predicted interval. (2) Transaction affinity. Transactions
from the same app have affinity, because they can be
merged if checkpointed together, thereby often saving
extra energy. (3) Transaction age, the number of intervals
a VCT has previously been skipped by the scheduler.

We use a priority-based scheduling algorithm, with
four rules ordered in descending precedence. The algo-
rithm maintains three queues as a way to batch VCTs of
the same age. These queues have varying priority in get-
ting flushed. Whenever a VCT is selected to be sched-
uled, other VCTs of the same app are prioritized. For
simplicity of discussion, we may directly use apps as the
unit of scheduling thereafter.
Rule 1 (transaction affinity): Whenever the scheduling
algorithm skips an app in a queue, the app is moved to a
higher-priority queue (if there is one).
Rule 2 (transaction age): Apps are first enqueued in the
lowest-priority queue, and promoted to higher-priority
queues as time goes on (as described in Rule 1). When
there is no feasible choice in all queues, we find a short-
est VCT in the highest urgent queue to checkpoint.
Rule 3 (transaction length): An app in the candidate
queue is feasible to checkpoint only when its first VCT’s
length is shorter than the available predicted interval.
Rule 4 (queue replenishment): If an app is unable to
checkpoint all its VCTs within a scheduled time, VCTs
left are moved to the lowest-priority queue.

6 Implementation
We implement a fully-working prototype in Android 4.1
(Linux 3.0.31), and integrate it with both Ext4 [33] and
Btrfs [45]. The code base has 1,996 lines of C code,
excluding the reused components from Ext4 or Btrfs.
MobiFS does not need kernel recompilation for deploy-
ment.

6.1 Main Components
Write Log. We implement the write log with a circular
array, as it well supports the required sorting operation.
To save space, some logical entry fields (e.g., the page in-
dex and version number) are compacted to a single phys-
ical data type. The write log also embeds a kobject

structure, such that MobiFS can export user-space in-
terfaces under the /sys directory for easy configura-
tion. Moreover, the log supports certain parallelism in
operations by distinguishing protection for checkpoint-
ing and appending – the tail of the circular log is pro-
tected by a spinlock, and the head is protected by a mutex
that only postpones writes when the tail grows to reach
the head. Finally, to locate which log covers a certain
file, we record the log index into the i private field
of the inode structure. When a new file is created, its
i private is derived from its parent directory.
Page Reverse-Mapping. One approach to implement
the page reverse-mapping is adding a reference pointer
to the page structure. Since struct page is already
packed (e.g., 24+ flags reside in a 32-bit variable), this
approach requires enlarging the structure size. Instead,
we opt for a customized hash table, which uses a reader-
writer lock for each bucket instead of a table-wide lock.
Pages associated with entries have its count field in-
cremented so that the Linux Page cache will not evict
them. This also means MobiFS must unpin pages before
memory space runs low, to avoid out-of-memory prob-
lems.
Checkpointer. The checkpointer is a kernel thread,
which sleeps if there is no VCT to checkpoint. Upon
being woken up by the policy engine, it first runs the in-
terval prediction over the recorded user interaction his-
tory. Then, it finds the appropriate VCTs to checkpoint,
according to the VCT scheduling policy.
Policy Engine. The implementation of the policy en-
gine needs to consider some of the kernel limitations.
For example, the kernel does not directly support floating
points due to FPU register overheads. Hence we have to
multiply e by 103 in our OPL algorithm to preserve thou-
sandth precision.
User Interaction Logger. We record screen events in
a queue. An issue is that some single logical user op-
erations, such as dragging, incurs multiple events with
small intervals (< 0.01 ms). Therefore, we need a filter
to combine these events to one logic operation.

6.2 Integration with Storage Components
Our prototype bases its flash I/O implementation on
some existing filesystem components. To support
durable and atomic transactions, there are mainly two
methods, the write-ahead logging (WAL) and copy-on-
write (COW). Ext4 and Btrfs are two typical filesystems
that use the methods, respectively.

7

606  2015 USENIX Annual Technical Conference	 USENIX Association

Ext4. Ext4 uses WAL to achieve durable and atomic
transactions. All file writes are first performed in a jour-
naling area, and then moved to the main flash data set.
The integration with Ext4 needs to consider the write-
twice nature of Ext4 journal, where all data is written on
flash twice. This may diminish the gain from MobiFS’
overwriting. Fortunately, empirical results suggest that
MobiFS can still achieve significant energy savings.
Btrfs. Btrfs relies on COW to achieve durable and
atomic transactions. Similar to WAL, COW does not di-
rectly update the target area on flash, but makes a new
copy of the data for modification. While Btrfs is highly
anticipated, it is still in an experimental phase. There-
fore, our MobiFS integration with Btrfs (Btr-MobiFS) is
not as mature as with Ext4.

7 Evaluation
We evaluate MobiFS by three main metrics -
app/user adaptability (Section 7.3), app responsiveness
(Section 7.4), and energy consumption (Section 7.5). Be-
fore discussing benefits, we estimate memory footprints
of MobiFS for running individual apps (Section 7.2).

7.1 Methodology
The evaluation results consist of both trace-driven simu-
lations and actual device measurement; both benchmarks
and real apps. We use a Samsung Galaxy Premier I9260
smartphone (with dual-core 1.5 GHz CPU, 1 GB RAM,
Android 4.1), and two Kingston microSD cards (with the
default 128 MB journal and 4 KB block size). A Mon-
soon Power Monitor [3] measures device energy con-
sumption. By default, MobiFS refers to our Ext4-based
implementation, and Ext4 uses the default ordered mode
on Android, journaling only metadata.

Simulation traces are collected from five users operat-
ing each of the following top apps (logged in with their
own accounts) for five minutes: Facebook (FB), Pan-
dora (PA), Angry Birds (AB), Netflix (NF), Twitter (TT),
Google Maps (GM), Citrix Receiver (CR), Flipboard
(FL), Web Browser (WB), and WeChat (WC). Traces in-
clude I/O system calls, page cache accesses and screen
touch timestamps.

Benchmarks consist of the following: (1) AnTuTu’s
I/O and database benchmarks, (2) RL Benchmark for
SQLite (with 13 workloads), and (3) MobiBench for sim-
ulating I/O characteristics of Android system. We also
use an in-house benchmark that issues sequential writes
of 8 MB data to the same region of a file 16 times, and
invokes fsync once every two writes.

For experiments that monkey real apps, we choose
Browser, Facebook and Twitter, because they are rep-
resentative of three typical I/O characteristics: Browser
incurs few fsyncs and is mainly influenced by Ext4
flushing; Twitter is the opposite, triggering more than

 0

 10

 20
 30

 40

 50

 60

 70

 80
 90

 100

 110

FB PA AB NF TT GM FL WB CR WC

In
c
re

m
e
n
t
R

a
te

 (
K

B
/s

)

Ext4

MobiFS

Figure 5: Memory footprint increment rates of Ext4 and
MobiFS for different apps.

 0.25
 0.5

 1
 2
 4
 8

 16
 32
 64

FB PA AB NF TT GM FL WBCRWC u1 u2 u3 u4 u5

A
v
g
 I
n
te

rv
a
l
(s

)

Ext4
MobiFS

Figure 6: Adaptive checkpoint intervals of MobiFS for
different apps/users. Right most user statistics (ux) are
collected on Facebook.

50 fsyncs per second; Facebook has a moderate num-
ber of fsyncs. We use monkeyrunner [2] to replay pro-
grammed user interaction paths. We test Browser with
an in-lab Apache2 web server via 802.11n Wi-Fi to min-
imize noise introduced by network dynamics.

7.2 Memory Footprint
We estimate the worst-case footprints of MobiFS ac-
cording to our app I/O traces, as shown in Figure 5.
It is assumed that MobiFS does not checkpoint VCTs.
The y axis is the increment rate of the average memory
footprint4 introduced by the filesystem. On average,
Ext4 footprints increase by 25.6 KB/s without restriction,
while MobiFS incurs an increment of 35.8 KB/s. In other
words, having an extra 100 MB memory, MobiFS can
support an app running 17.4 minutes without flushing in
the worst case (with 100.5 KB/s increment rate). Note
that, when the footprint is beyond a threshold, MobiFS
can deliberately execute checkpointing to release RAM
space. Overall, considering that RAM is ample for apps
nowadays, the footprint of MobiFS is acceptable.

7.3 App/User Adaptability
This section evaluates MobiFS’ adaptability to both apps
and users, as implemented by our tradeoff point location
algorithm (Section 5.2).

4To reflect different shapes of memory footprint curves, we use in-
tegration to calculate the average. For the target increment rate α and
the known integral I of the footprint curve over the time interval ∆t, we
suppose 1

2 α∆t2 = I, so α = 2I/∆t2.

8

USENIX Association 	 2015 USENIX Annual Technical Conference  607

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

%
 O

v
e

rw
ri
tt

e
n

Total Data Written (MB), Facebook

Ideal

MobiFS

Ext4
 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

%
 O

v
e

rw
ri
tt

e
n

Total Data Written (MB), Twitter

Ideal

MobiFS

Ext4

Figure 7: e curves against overall app written data.

Adaptability to Apps and Users. We run the tradeoff
point location algorithm on the I/O traces and suppose
immediate checkpointing without considering user inter-
actions. Figure 6 shows the average of these calculated
checkpoint intervals for each app. The average MobiFS
checkpoint intervals fluctuate drastically, with a variance
of 21.7×. Meanwhile, the geometric mean of MobiFS’
average intervals is 17.5 times that of Ext4 flushes. We
can see that not only does MobiFS largely extend the
traditional Ext4 flush intervals, but also it is inherently
adaptive to various apps.

Figure 6 also shows the average of checkpoint inter-
vals for Facebook, as grouped by users. There is up to
2.6× variation of intervals among users for the same app.
Such user-oriented adaptability is due to users exploring
different contents, from different sources, and with dif-
ferent reading speeds.
Gains from Adaptability. Assuming no flushing should
happen, the resulting e curve (“ideal”) would present the
highest potential for overwriting data. MobiFS tries to
follow this ideal curve by adapting to individual apps and
users. In contrast, Ext4 is limited by fixed flush intervals
and traditional fsyncs. To illustrate MobiFS’ gains from
adaptability, Figure 7 compares a variant of the e curve
with Ext4. The e ratio here is calculated against the over-
all data staleness s from the beginning, instead of from
the last checkpoint. The observation is that MobiFS fol-
lows the ideal curve quite closely, and this higher over-
write ratio translates to energy efficiency improvement.

7.4 App Responsiveness
There are two factors that MobiFS focuses on to im-
prove app responsiveness: minimizing responsiveness
conflicts, and improving the I/O throughput.
Responsiveness Conflicts. When a user-idle inter-
val is predicted by our interval prediction algorithm
(Section 5.3), MobiFS would try to schedule a check-
pointing operation to take up the full length of the in-
terval. RCs occur when one or more unexpected user
operations happen during such supposedly idle interval.
We use two metrics to evaluate the prediction quality:

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

FB AB NF TT GM FL WB CR WC All
R

C
s
 p

e
r

P
re

d
ic

ti
o
n Last-Min

Last-Avg
State-Machine

Figure 8: Responsive conflict ratios of three models.

 0

 1

 2

 3

 4

 5

 6

 7

FB AB NF TT GM FL WB CR WC All

A
v
g

 L
e

n
 (

s
)

Last-Min
Last-Avg

State-Machine

Figure 9: Average length of predicted intervals of three
models.

(1) Average number of RCs per prediction; (2) Aver-
age predicted interval length. Longer intervals offer
more opportunities for transaction merging which saves
time/energy.

Figures 8 and 9 separately illustrate the performance
of MobiFS’ state-machine-based solution on the two
metrics, according to our user operation traces. It
is compared with the commonly used last min model
(LMM)/last average model (LAM), which predicts us-
ing the min/average of the last k measured intervals.
As LMM always takes a conservative prediction, it in-
flicts only 0.26 RCs per prediction, smaller than LAM
which inflicts 1.18. Naturally, our state machine algo-
rithm cannot outperform LMM on this metric, but it
achieves 54.8% less than LAM. On the other hand, LAM
predicts much longer intervals than LMM. On average,
our state machine achieves 75.9% length of LAM, and
is over 2.7× that of LMM. As it can remember the pre-
vious “long” intervals for prediction, our state machine

9

608  2015 USENIX Annual Technical Conference	 USENIX Association

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

Ramfs Ext4 Ext4-simu. MobiFS Btr-MobiFS
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000
T

h
ro

u
g
h
p
u
t
(M

B
/s

)

E
n
e
rg

y
 (

m
J
)

Throughput
Energy

Figure 10: A baseline benchmark on different file-
systems. Ext4 only journals metadata. Ext4-simu. is an
Ext4 that simulates behaviors of MobiFS, i.e., it journals
all data and only does so when MobiFS flushes.

 0.1

 1

 10

 100

 1000

Ext4 MobiFS
 1
 4
 16
 64
 256
 1024
 4096
 16384

T
h

ro
u

g
h

p
u
t

(M
B

/s
)

T
ra

n
s
.
p
e
r

S
e
c
.

Seq. W
Seq. R

Rand. W (TPS)
Rand. R (TPS)

Insert (TPS)
Update (TPS)
Delete (TPS)

Figure 11: Itemized performance of MobiBench on Ext4
and MobiFS.

even outperforms LAM in 3 out of 9 apps. To sum up,
MobiFS has a low RC numbers close to LMM, and real-
izes long interval length as LAM. It achieves the sweet
spot between LMM and LAM.
I/O Throughput. As I/O largely affects app respon-
siveness, we evaluate typical I/O performance metrics of
MobiFS on the device. Table 1 and Figure 11 show re-
sults from AnTuTu (ATT), RL and MobiBench. Results
suggest that MobiFS can outperform Ext4 by up to 480×
(e.g., random writes), and by one order of magnitude in
typical database operations.
User-Perceived Latency We evaluate app responsive la-
tency by the time required for monkeyrunner to finish
a predefined user interaction path on the device. This
method has advantages in (1) eliminating diversity in real
user operations that are not mutually comparable and (2)
reflecting user-perceived latency that excludes users’ re-
action time. As Figure 12 shows, monkeyrunner operates
the browser to visit 50 websites, and the page loading
time drops by 49.0% (-0.36 s/op) when switching from
Ext4 to MobiFS. For Facebook, MobiFS reduces the time
required to load the news feed five times by 53.6% (-0.85
s/op). Finally, for twitter, the time for loading #Discover
tag ten times is reduced by 51.9% (-0.47 s/op). Overall,
MobiFS significantly reduces the user-perceived latency
of real apps.

 0

 10

 20

 30

 40

 50

Browser Facebook Twitter
 0

 20

 40

 60

 80

 100

T
im

e
 (

s
)

E
n
e
rg

y
 (

J
)

Ext4-Time
MobiFS-Time

Ext4-Energy
MobiFS-Energy

Figure 12: Responsiveness and energy consumption of
apps on Android Ext4 and MobiFS.

 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

FB PA AB NF TT GM FL WB CR WC
A

v
g
 F

lu
s
h
 R

a
te

 (
K

B
/s

) Ext4
MobiFS

Figure 13: Flushed data of various apps on Ext4 and
MobiFS.

7.5 Energy Consumption
MobiFS reduces energy consumption primarily by re-
ducing the amount of data flushed to flash. This section
first uses trace-driven simulation to quantify this reduc-
tion, and then evaluates the real device energy saving.
Reduction in Flushed Data. Figure 13 compares the
amount of data flushed to the permanent storage media
in the case of Ext4 and MobiFS, according to the traces.
The flush data saving varies among apps, which depends
on the number of overlapping writes that an app issues.
By the geometric mean of all apps, 53.0% less data were
flushed in the case of MobiFS, as compared to Ext4.

Our evaluation shows that MobiFS requires 66.4%
more energy than regular Ext4 for the same flush size
due to write-twice (Section 6.2), so the overall simulated
energy cost of MobiFS is 78.3% of Ext4. Meanwhile, if
we calculate average flush sizes, Ext4 flushes 4.29× the
amount of data that MobiFS flushes, which means that
MobiFS consumes 61.2% less energy than Ext4.
Device Energy Saving. We first consider the baseline
energy figures in Figure 10. MobiFS logically flushes
only half the amount of data compared to Ext4, but due
to write-twice (Section 6.2) it should incur similar energy
consumption with Ext4. In practice, however, both Ext4-
simu. and MobiFS require less energy (over 16.8%), par-
tially because internal data movement incurs less CPU
processing than independent write system calls. On the
other hand, although it does not write twice, Btr-MobiFS
costs similar energy with Ext4, due to COW overheads.

10

USENIX Association 	 2015 USENIX Annual Technical Conference  609

Item Ext4 MobiFS Improve.

Perf. ATT(score) 689.9±21.5 1817±51.0 +163%
RL(sec.) 38.6±0.4 19.1±0.4 -50.1%

Energy∗

(J)
ATT 24.3±0.8 20.3±0.7 -16.4%
RL 43.8±0.5 37.6±0.6 -14.2%

Table 1: Performance and energy of AnTuTu (ATT)
and RL Benchmark on Android Ext4 and MobiFS. ATT
scores favor the higher; RL time favors the lower.

Moreover, by comparing MobiFS with Ext4-simu., we
can see that the energy cost of the unique components of
MobiFS only counts 4.0%.

Results from benchmark tools on the device also jus-
tify MobiFS’s contribution in reducing energy consump-
tion. Table 1 shows energy savings under the AnTuTu
and RL benchmarks, as compared to Ext4. Note that
these workloads hardly manifest MobiFS’ full potential,
because our design is highly oriented to real app/user be-
haviors, as evaluated in the following experiment.

Figure 12 compares the energy cost of real apps in
the case of MobiFS and regular Ext4. Specifically, the
energy cost of the whole device drops on average by
32.1%, 41.3% and 33.6% with Browser, Facebook and
Twitter, respectively. We can see that MobiFS substan-
tially improves the energy efficiency of mobile apps.

8 Related Work
Latest Mobile Filesystems. F2FS [26] (on Moto X)
observes 128% higher random write throughput than
Ext4 [24]. DFS [17] improves the I/O performance by
delegating storage management to the flash hardware. In
contrast, our memory-centric solution can achieve nearly
two orders of magnitude of improvements on read/write
performance (Figure 11).
Revisiting fsync. MobiFS decouples the consistency
and durability functionalities of fsync. The same
methodology has been exploited to different extents.
xsyncfs [40] stalls any user-visible output until the dura-
bility is accomplished. We have a more aggressive
tradeoff for performance than xsyncfs, considering the
unique features of mobile systems. OptFS [6] intro-
duces osync and dsync. The former ensures only even-
tual durability. In a sense, we also follow this durabil-
ity model. However, OptFS’ mechanism ensures con-
sistency of journaling disk writes by checksums, while
we realize consistency in the page cache. It does not
study policy design for mobile systems. Other similar
work [32, 35, 43] simply uses a static time bound on
staleness, and does not adaptively tradeoff in the same
way as MobiFS does for mobile apps.
Memory Data Management. Main-memory
databases [10, 12, 18, 41], adaptive logging [23], recov-
erable virtual memory [46], flash-oriented [9, 21, 31]
and NVM-based [8, 14, 27, 49] storage systems optimize

the performance of data flushing/writeback. NVM-based
swapping [51] shows less performance improvement
than our design. qNVRAM [30] implements a persistent
page cache but requires new APIs to use. External
journaling [16] requires extra storage devices, and does
not optimize energy efficiency. Fjord [20] distinguishes
apps mainly by cloud-related properties, and changes
software configuration accordingly. Host-side flash
caching [25] preforms a similar tradeoff between per-
formance and staleness. Beyond all the above work, we
advance at identifying minimal modifications to fsync

and the page cache in a constrained mobile system, a
systematic study of key tradeoffs, and a policy design
with app/user-adaptive optimization.
Energy/Responsiveness Optimization. BlueFS [39]
carefully chooses the least costly replica among multiple
nodes. SmartStorage [38] sacrifices 4%-6% performance
for energy efficiency by tuning storage parameters, while
we achieve orders of magnitude of performance promo-
tion along with energy saving. Capsule [34] only consid-
ers random or sequential access patterns. SmartIO [36]
focuses on prioritizing reads over writes. Mobius [7]
takes into account node location, network congestion,
etc. While increasing I/O burstiness for energy effi-
ciency [42, 48] shares a similar logic with us, we also
consider adaptive strategies and asynchronous fsync.
Simba [13] crafts a sync interface for both local and
cloud data. Similar to Simba, we also provide consis-
tency cross filesystem and database for local data. After
all, our observation on the e curves and resulting multi-
objective policy designs distinguish MobiFS from these
above optimization works.

9 Conclusion
MobiFS identifies a fundamentally new sweet spot in
the staleness-performance and staleness-energy trade-
offs that lie at the core of a filesystem for smartphones.
Its new memory-centric rationale, along with app/user-
adaptive incremental checkpointing, and the VCTs to
support asynchronous fsync, provides a good reference
for next-generation data storage design tailored for the
mobile environment. Evaluations via user traces, micro-
benchmarks, and real apps on the real device illustrate
the sound policy design and practical benefits.

Acknowledgement
We thank our shepherd, Chia-Lin Yang, and the anony-
mous reviewers for their valuable feedback. This work
is partially supported by National High-Tech R&D (863)
Program of China (2012AA012600), National Basic Re-
search (973) Program of China (2011CB302505), Natu-
ral Science Foundation of China (61433008, 61373145,
61170210, U1435216), and Chinese Special Project of
Science and Technology (2013zx01039-002-002).

11

610  2015 USENIX Annual Technical Conference	 USENIX Association

References
[1] HTTP archive trends. http://httparchive.org/trends.

php, 2014.

[2] The monkeyrunner tool. http://developer.android.com/

tools/help/monkeyrunner_concepts.html, 2015.

[3] Monsoon power monitor. http://www.msoon.com/

LabEquipment/PowerMonitor/, 2015.

[4] BAILIS, P., VENKATARAMAN, S., FRANKLIN, M. J., HELLER-
STEIN, J. M., AND STOICA, I. Probabilistically bounded stale-
ness for practical partial quorums. Proc. VLDB Endow. 5, 8 (Apr.
2012).

[5] CARROLL, A., AND HEISER, G. An analysis of power consump-
tion in a smartphone. In USENIX ATC (2010).

[6] CHIDAMBARAM, V., PILLAI, T. S., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Optimistic crash consistency. In
SOSP (2013).

[7] CHUN, B.-G., CURINO, C., SEARS, R., SHRAER, A., MAD-
DEN, S., AND RAMAKRISHNAN, R. Mobius: unified messaging
and data serving for mobile apps. In MobiSys (2012).

[8] COBURN, J., BUNKER, T., SCHWARZ, M., GUPTA, R., AND
SWANSON, S. From aries to mars: Transaction support for next-
generation, solid-state drives. In SOSP (2013).

[9] DAI, H., NEUFELD, M., AND HAN, R. Elf: an efficient log-
structured flash file system for micro sensor nodes. In SenSys
(2004).

[10] DEBRABANT, J., PAVLO, A., TU, S., STONEBRAKER, M.,
AND ZDONIK, S. Anti-caching: A new approach to database
management system architecture. Proc. VLDB Endow. 6, 14
(Sept. 2013).

[11] DESNOYERS, P. What systems researchers need to know about
nand flash. In Proceedings of the 5th USENIX Conference on Hot
Topics in Storage and File Systems (2013), HotStorage ’13.

[12] DEWITT, D. J., KATZ, R. H., OLKEN, F., SHAPIRO, L. D.,
STONEBRAKER, M. R., AND WOOD, D. A. Implementation
techniques for main memory database systems. In SIGMOD
(1984).

[13] GO, Y., AGRAWAL, N., ARANYA, A., AND UNGUREANU, C.
Reliable, consistent, and efficient data sync for mobile apps. In
FAST (2015).

[14] HITZ, D., LAU, J., AND MALCOLM, M. File system design for
an nfs file server appliance. In Proceedings of the USENIX Winter
1994 Technical Conference (1994).

[15] IEEE AND THE OPEN GROUP. IEEE Std 1003.1-
2008 (POSIX.1-2008). http://pubs.opengroup.org/

onlinepubs/9699919799/, 2015.

[16] JEONG, S., LEE, K., LEE, S., SON, S., AND WON, Y. I/O stack
optimization for smartphones. In USENIX ATC (2013), pp. 309–
320.

[17] JOSEPHSON, W. K., BONGO, L. A., FLYNN, D., AND LI, K.
Dfs: A file system for virtualized flash storage. In FAST (2010).

[18] KALLMAN, R., KIMURA, H., NATKINS, J., PAVLO, A., RASIN,
A., ZDONIK, S., JONES, E. P. C., MADDEN, S., STONE-
BRAKER, M., ZHANG, Y., HUGG, J., AND ABADI, D. J. H-
store: A high-performance, distributed main memory transaction
processing system. Proc. VLDB Endow. 1, 2 (Aug. 2008).

[19] KIM, H., AGRAWAL, N., AND UNGUREANU, C. Revisiting
storage for smartphones. In FAST (2012).

[20] KIM, H., AND RAMACHANDRAN, U. Fjord: Informed storage
management for smartphones. In IEEE 29th Symposium on Mass
Storage Systems and Technologies (MSST) (2013).

[21] KIM, H., RYU, M., AND RAMACHANDRAN, U. What is a good
buffer cache replacement scheme for mobile flash storage? In
SIGMETRICS (2012).

[22] KIM, W.-H., NAM, B., PARK, D., AND WON, Y. Resolving
journaling of journal anomaly in android I/O: Multi-version b-
tree with lazy split. In FAST (2014).

[23] KIM, Y.-S., JIN, H., AND WOO, K.-G. Adaptive logging for
mobile device. Proc. VLDB Endow. 3, 1-2 (2010).

[24] KLUG, B. Moto x review. http://www.anandtech.com/

show/7235/moto-x-review/9, 2013.

[25] KOLLER, R., MARMOL, L., RANGASWAMI, R., SUNDARARA-
MAN, S., TALAGALA, N., AND ZHAO, M. Write policies for
host-side flash caches. In FAST (2013).

[26] LEE, C., SIM, D., HWANG, J., AND CHO, S. F2fs: A new file
system for flash storage. In FAST (2015).

[27] LEE, E., KANG, H., BAHN, H., AND SHIN, K. Eliminating
periodic flush overhead of file I/O with non-volatilebuffer cache.
IEEE Transactions on Computers, 99 (2014).

[28] LEE, K., AND WON, Y. Smart layers and dumb result: Io charac-
terization of an android-based smartphone. In The ACM SIGBED
International Conference on Embedded Software (2012), EM-
SOFT ’12.

[29] LI, J., BADAM, A., CHANDRA, R., SWANSON, S., WOR-
THINGTON, B., AND ZHANG, Q. On the energy overhead of
mobile storage systems. In FAST (2014).

[30] LUO, H., TIAN, L., AND JIANG, H. qnvram: quasi non-volatile
ram for low overhead persistency enforcement in smartphones. In
6th USENIX Workshop on Hot Topics in Storage and File Systems
(2014), HotStorage ’14.

[31] LV, Y., CUI, B., HE, B., AND CHEN, X. Operation-aware buffer
management in flash-based systems. In SIGMOD (2011).

[32] MA, D., FENG, J., AND LI, G. Lazyftl: a page-level flash
translation layer optimized for nand flash memory. In SIGMOD
(2011).

[33] MATHUR, A., CAO, M., BHATTACHARYA, S., DILGER, A.,
TOMAS, A., AND VIVIER, L. The new ext4 filesystem: current
status and future plans. In Proceedings of the Linux Symposium
(2007).

[34] MATHUR, G., DESNOYERS, P., GANESAN, D., AND SHENOY,
P. Capsule: an energy-optimized object storage system for
memory-constrained sensor devices. In SenSys (2006).

[35] MICKENS, J., NIGHTINGALE, E. B., ELSON, J., NAREDDY,
K., GEHRING, D., FAN, B., KADAV, A., CHIDAMBARAM, V.,
AND KHAN, O. Blizzard: Fast, cloud-scale block storage for
cloud-oblivious applications. In NSDI (2014).

[36] NGUYEN, D. T. Improving smartphone responsiveness through
I/O optimizations. In Proceedings of the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous Computing: Ad-
junct Publication (2014), UbiComp ’14 Adjunct, ACM.

[37] NGUYEN, D. T., PENG, G., GRAHAM, D., AND ZHOU, G.
Smartphone application launch with smarter scheduling. In Pro-
ceedings of the 2014 ACM International Joint Conference on Per-
vasive and Ubiquitous Computing: Adjunct Publication (2014),
UbiComp ’14 Adjunct.

[38] NGUYEN, D. T., ZHOU, G., QI, X., PENG, G., ZHAO, J.,
NGUYEN, T., AND LE, D. Storage-aware smartphone energy
savings. In UbiComp (2013).

[39] NIGHTINGALE, E. B., AND FLINN, J. Energy-efficiency and
storage flexibility in the blue file system. In OSDI (2004).

[40] NIGHTINGALE, E. B., VEERARAGHAVAN, K., CHEN, P. M.,
AND FLINN, J. Rethink the sync. In OSDI (2006).

12

USENIX Association 	 2015 USENIX Annual Technical Conference  611

[41] ONGARO, D., RUMBLE, S. M., STUTSMAN, R., OUSTER-
HOUT, J., AND ROSENBLUM, M. Fast crash recovery in ram-
cloud. In SOSP (2011).

[42] PAPATHANASIOU, A., AND SCOTT, M. Energy efficiency
through burstiness. In Fifth IEEE Workshop on Mobile Comput-
ing Systems and Applications (2003), HotMobile ’03.

[43] PORTS, D. R. K., CLEMENTS, A. T., ZHANG, I., MADDEN,
S., AND LISKOV, B. Transactional consistency and automatic
management in an application data cache. In OSDI (2010).

[44] RECOVERY SPECIALTIES, LLC. Data consistency: Explained.
http://recoveryspecialties.com/dc01.html, 2015.

[45] RODEH, O., BACIK, J., AND MASON, C. BTRFS: The linux
b-tree filesystem. ACM Trans. Storage (TOS) 9, 3 (2013).

[46] SATYANARAYANAN, M., MASHBURN, H. H., KUMAR, P.,
STEERE, D. C., AND KISTLER, J. J. Lightweight recoverable
virtual memory. In SOSP (1993).

[47] WANG, A.-I., REIHER, P. L., POPEK, G. J., AND KUENNING,
G. H. Conquest: Better performance through a disk/persistent-
ram hybrid file system. In USENIX ATC (2002).

[48] WEISSEL, A., BEUTEL, B., AND BELLOSA, F. Cooperative I/O:
a novel I/O semantics for energy-aware applications. In OSDI
(2002).

[49] WU, M., AND ZWAENEPOEL, W. envy: a non-volatile, main
memory storage system. In ASPLOS (1994).

[50] XU, F., LIU, Y., MOSCIBRODA, T., CHANDRA, R., JIN, L.,
ZHANG, Y., AND LI, Q. Optimizing background email sync on
smartphones. In MobiSys (2013).

[51] ZHONG, K., WANG, T., ZHU, X., LONG, L., LIU, D., LIU, W.,
SHAO, Z., AND SHA, E.-M. Building high-performance smart-
phones via non-volatile memory: The swap approach. In The
ACM SIGBED International Conference on Embedded Software
(2014), EMSOFT ’14.

13

