156 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1,

JANUARY 2014

Modeling of Distributed File Systems
for Practical Performance Analysis

Yongwei Wu, Member, IEEE, Feng Ye, Kang Chen, and Weimin Zheng, Member, IEEE

Abstract—Cloud computing has received significant attention recently. Delivering quality guaranteed services in clouds is highly
desired. Distributed file systems (DFSs) are the key component of any cloud-scale data processing middleware. Evaluating the
performance of DFSs is accordingly very important. To avoid cost for late life cycle performance fixes and architectural redesign,
providing performance analysis before the deployment of DFSs is also particularly important. In this paper, we propose a systematic
and practical performance analysis framework, driven by architecture and design models for defining the structure and behavior of
typical master/slave DFSs. We put forward a configuration guideline for specifications of configuration alternatives of such DFSs, and a
practical approach for both qualitatively and quantitatively performance analysis of DFSs with various configuration settings in a
systematic way. What distinguish our approach from others is that 1) most of existing works rely on performance measurements under a
variety of workloads/strategies, comparing with other DFSs or running application programs, but our approach is based on architecture
and design level models and systematically derived performance models; 2) our approach is able to both qualitatively and quantitatively
evaluate the performance of DFSs; and 3) our approach not only can evaluate the overall performance of a DFS but also its components
and individual steps. We demonstrate the effectiveness of our approach by evaluating Hadoop distributed file system (HDFS). A series
of real-world experiments on EC2 (Amazon Elastic Compute Cloud), Tansuo and Inspur Clusters, were conducted to qualitatively
evaluate the effectiveness of our approach. We also performed a set of experiments of HDFS on EC2 to quantitatively analyze the
performance and limitation of the metadata server of DFSs. Results show that our approach can achieve sufficient performance
analysis. Similarly, the proposed approach could be also applied to evaluate other DFSs such as MooseFS, GFS, and zFS.

Index Terms—Distributed file system, architecture model, practical performance analysis, HDFS

1 INTRODUCTION

ATA-INTENSIVE DFSs are any file system that allows

multiple users to access to files distributed on multiple
machines via a computer network, for the purpose of
sharing files and storage resources [22]. DFSs are emerging
as a key component of large-scale cloud computing
platforms. Applications on such computing paradigms
come with increasing challenges on how to transfer and
where to store and compute data reliably and efficiently.
Specifically, these challenges include data transfer bottle-
necks, performance unpredictability, scalable storage and
so on. To deal with these challenges, various DFSs such as
Hadoop distributed file system (HDEFES) [2], the Google file
system (GFS) [11], MooseFS [3], and zFS [21], have been
developed for large-scale distributed systems such as
Facebook and Google.

Performance analysis is an important concern in the
distributed system research area. Researchers have made a
lot effort to evaluate, model, and analyze distributed systems
for computing intensive or data intensive applications. There
exist well-known evaluation benchmarks (e.g., LINPACK,
mpiBLAST) for computing paradigms. However, similar

o The authors are with the Department of Computer Science and technology,
Tsinghua University, Qinghuayuan 1#, Haidian District, Beijing 100084,
China and the Research Institute of Tsinghua University in Shenzhen,
China. E-mail: wuyw@tsinghua.edu.cn.

Manuscript received 9 Nov. 2012; revised 20 Dec. 2012; accepted 21 Dec.
2012; published online 11 Jan. 2013.

Recommended for acceptance by K. Li.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2012-11-1141.
Digital Object Identifier no. 10.1109/TPDS.2013.19.

1045-9219/14/$31.00 © 2014 IEEE

kinds of widely accepted benchmarks are rarely seen in
DEFSs. For example, there is no specific benchmark proposed
for evaluating DFSs (e.g., HDFS, GFS) for web services. Some
other related works evaluate performance of DFSs by
comparing them with similar kinds of DFSs (e.g., NFS) via
running in-house benchmarks or application programs (e.g.,
[13]). Some researchers measured the performance of DFSs
under a variety of workloads and strategies (e.g., [27], [15]).

In the field of evaluating the performance of DFSs, a
typical approach taken is through experiments by running
DEFSs; therefore, it is mainly based on the analysis of the
experiment results (e.g., [28]), or draw conclusion by
comparing with existing DFSs (e.g., [13], [23]). Therefore,
there rarely exist approaches that are capable of qualita-
tively and quantitatively analyzing the overall performance
of a DFS or its individual step or component, prior to the
deployment of the DFS, without running benchmarks or
particularly designed or selected applications. In this paper,
we propose such an approach that is driven by architecture
and design models of DFSs.

System architects can use design-time performance to
evaluate the resource utilization, throughput, and timing
behavior of a system prior to the deployment due to the
following reasons: 1) analyzing performance of the system
is much less expensive than testing the performance of the
system by running it, 2) it is simply infeasible to test all
kinds of different configurations of the system by running
it, and 3) performance analysis on models helps architects
make configuration and deployment decisions to avoid
costly redesign, reconfiguration or redeployment.

Published by the IEEE Computer Society

WU ET AL.: MODELING OF DISTRIBUTED FILE SYSTEMS FOR PRACTICAL PERFORMANCE ANALYSIS 157

Some model-driven performance analysis and prediction
(MDPAP) approaches (e.g., [10], [19]) have been proposed
in the literature and especially Balsamo et al. conducted a
survey on MDPAP [9]. The survey results reveal that
1) most approaches make use of unified modeling language
(UML) [18] or UML-like formalisms to describe behavioral
models, 2) few approaches provide direct correspondence
between the software specification abstraction and the
performance model evaluation results, and 3) the perfor-
mance model should be easy to apply in practice. The key
challenge of MDPAP approaches is finding the right
architecture and performance abstraction of the system
under study.

Based on the above study, in this paper, we propose a
practical performance analysis methodology particularly
for DFSs. The approach is based on the UML specification
of the DFS architecture and their key behaviors (see
Section 2). Some elements of the architecture model are
also characterized by some stereotypes from the MARTE
profile [6], which is a UML profile for modeling and
analysis of real-time and embedded systems. We define the
following characteristics of our methodology:

1. DFS architecture and design models provide a
common understanding of DFS, which is considered
crucial as DFS practices lack of such a common
knowledge base.

2. Based on the models, one can systematically and
automatically derive configurable parameters.
Without them, this activity will heavily rely on
expert tacit knowledge, inevitably leading to the
low-quality management of the process.

3. Configuring DFS systems is typically the first and
most important step to set up experiments. There-
fore, our methodology provides a way to design
experiments whose results directly contribute to
performance analysis.

4. Qualitative and quantitative performance analysis
can be conducted, based on the models, system
configurations and experiment results. Analysis
results can be also interpreted based on the
architecture and design models, therefore making
the architecture and design refinement much easier.

5. Based on the models, both the overall system
performance and individual component or execution
step performance can be analyzed. This is because
the message interactions and relationships between
components are clearly specified in the architecture
and design models.

As one popular master/slave structured DFS, HDEFS is
selected as the representative for evaluation. Three sets of
real-world experiments were conducted to qualitatively
assess the effectiveness of our performance analysis
approach. We also conducted a set of experiments of HDFS
on EC2 to quantitatively analyze the memory and CPU
bottlenecks of the metadata server of HDFS and formulate
the response time of the Read operation of the metadata
server to client requests. Results show that our approach
can achieve an acceptable level of qualitative and quanti-
tative performance analysis.

In Section 2, we first present the architecture and design
models we built for DFSs, based on which, we propose a
configuration guideline (see Section 2.3) and the perfor-
mance modeling and analysis approach (see Section 3). In
Section 4, we report how we evaluated our approach and
the evaluation results. The related work is provided in
Section 5. We conclude the paper in Section 6.

2 ARCHITECTURE, DESIGN MODELING, AND
PERFORMANCE-RELEVANT CONFIGURATION

The architecture and design models we present in this
section are general for typical DFSs, but we use the
terminologies from HDEFS [2] (e.g., namenode, datanode)
to discuss the common concepts of DFSs.

2.1 Structural Modeling

The structural model consists of three models: data model,
node specification model, and application to node deploy-
ment model.

The data model specifies the structure of the software
deployed to DFS nodes as a class diagram. It mainly
contains classes DataNode, NameNode, Client, File,
and Block. Classes Client, DataNode, and NameNode
correspond to software deployed to client workstations,
datanodes and the namenode (i.e., metadata server),
respectively. File and Block are two important DFS
concepts and are entities needed to be consistent with the
behavioral model. Note that the software classes in the data
model are the abstraction of the software deployed to DFS
nodes for the purpose of capturing sufficient information to
support performance analysis. Therefore, only configurable
attributes (e.g., size of Block) are captured. Operations of
each class are referenced by the behavioral model (see
Section 2.2). This data model is a minimum in the sense that
we only capture concepts that are relevant to performance
analysis, nothing more.

The node specification model (see Fig. 1) models the
internal structure of nodes and their properties related to
performance analysis. For a DFS, all its contained nodes
are physical processing devices capable of storing and
executing program code. Therefore, their fundamental
service is to compute [6]. In MARTE, stereotype
<<HwComputingResource>> denotes an active execution
resource. In DFSs, all the nodes are computing resources
and hence all have it applied. Plus, they are all applied
with <<CommunicationEndPoint>>, indicating that all the
nodes provide a mechanism for connecting/delivering
data to a communication media. Each node is composed of
one or more Processor, Disk, and Memory. <<HwPro-
cessor>> has attributes of op_Frenquecies (the clock
frequency), nbCores (the number of cores), among others.
<<HwDrive>> and <<HwRAM>> denote a mass storage
memory and a processing memory, respectively. Note that
only few attributes of the stereotypes are shown in Fig. 1
due to space limitation.

As shown in Fig. 1, the application to node deployment
model of DFSs captures physical connections among nodes
and the deployment of software components to nodes, as a
UML deployment diagram. A client node is connected to the
namenode and one or many datanodes through network,

158 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1,

JANUARY 2014

«CommunicationMedia, HwComputingResources «CommunicationEndPoint, HwComputingResources «HwProcessors
Client B PhysicalNode - | Processor
- «configurables NetAdapterBandwidth : NFP_DataTxRate - «configurables NetAdapterLatency : NFP_Duration 1| - nbCore : NFP_Natural
x - - op_Frequencies : NFP_Frequency
Wonhﬂedia» «Car nicationMedia» R —
%
«CommunicationEndPoint, HwComputingResources
NameNode * «CommunicationEndPoint, HwComputingResources ‘:WRAM'
- «configurable» Workload «fJommunicationMedias DataNode 'emor; _
- «configurables RequestQueuelength : NFP_Integer « | - «configurables NetAdapterBandwidth : NFP_DataTxRate - memorySize : NFP_DataSize
- «configurable» RequestQueuelength : NFP_integer B~
T “‘dfPIo}"’ «HwDrives
recpioy Disk

«executables
] NameNode Application

manfess] ENameNode |[EDataNode [Sraciezr:

s «executables
[DataNode Application

- speed x

Fig. 1. Application to node deployment model and node specification model (red part).

which is specified as the associations between them
stereotyped with <<CommunicationMedia>>. Configurable
properties of the physical nodes are shown as attributes
stereotyped with <<Configurable>>. This deployment dia-
gram also indicates an instance of software component
NameNode application (DataNode application) is
deployed to physical node NameNode (DataNode), which
is linked to software class Namenode (DataNode) of the
data model.

Note that in some DFSs, an instance of the client
application software and an instance of the datanode
software can be installed on the same machine.

2.2 Behavioral Modeling

Reading and writing files are two most important DFS
operations. Therefore, the behavioral model consists of two
UML sequence diagrams, each of which models the
interactions between clients, datanodes and the namenode,
which are realized in sequence diagrams as messages.
Notice that DFSs are message-based systems. In DFSs, the
delivery time of a message is determined by the file size
being read or written from/to DFSs, and also the network
conditions, and the current status of the receiver and sender
of the message.

Besides messages, UML sequence diagrams also allow us
to model loop, optional, alternative and parallel branches
through advanced features: CombinedFragments. This is
very important for modeling Read and Write of DFSs as we
need to capture repeated steps, optional and alternative
branches, and concurrent steps.

2.2.1 Read

As shown in Fig. 2, to read a file, a client first contacts the
namenode and then it will translate the file name into a list
of block information and return them to the client node.
The block information contains a list of datanodes that store
each block. Then the client connects itself to the “closest”
datanode and requests a specific block ID. This can be done
in parallel (the par combined fragment in Fig. 2), or
sequentially (the else operand of the alt combined fragment
in Fig. 2). Notice that the alt combined fragment specifies
and distinguishes two types of realizations of the Read
operation in DFSs. The opt combined fragment with
condition “need more block info.” shows that the first
getBlockLocations operation might not get all the
block information related to the file. In such cases, the

getBlockLocations operations should be invoked mul-
tiple times. How many times required depends on the size
of the file and how much information returned by one
invocation of the operation and so on. The parameter N in
the condition of the first loop combined fragment denotes
the number of block information returned by a getBlock-
Locations invocation. Of course, the other approach is to
gather all the required block information from the first
getBlockLocations invocation.

222 Write

To write a file to DFS, a client application first creates a new
file (see Fig. 3). This creates operation further sends a
message to the namenode through a remote procedure call
(RPC) to complete the creation of a new file in the
namenode. At this time, there is no block related to the
newly created file. Alternatively, a client can append new

Q client:Client Q datanode[i:DataNode Q nameNode:NameNode

1: open
1.1: getBlocklocations

1.2: getBlocklocations

[0.N]

[parallelReadData == true]

[datancge i] 1: readBlock

2: readBlock

[else]

[0,locatedBlocks.hosts.sizef]

[fileLengthPointerLocation > readlength]
1i readBlock

2: readBlock

lez——___4ireadblock L

[need more block info.]
1: getBlackl ! »
2: getBlocklLocations

Fig. 2. Sequence diagram for the Read operation.

WU ET AL.: MODELING OF DISTRIBUTED FILE SYSTEMS FOR PRACTICAL PERFORMANCE ANALYSIS 159

E dient:Client g £ dats

[i:DataNode disk:Disk

ol
L create
1.1 rpc create

1.2: rpc create ‘

-t

1: append
1.1 append

ii2ispgend: _§

1:addBlock
2: addBlock

3: writeRequest

1: writeToDisk

2: writeRequest (i++)
e

U]

e
g —— 1.1 writeAck(i--)
3: receivedBlockNotification

P S §

1:addBlock
----2:addBlock - L

311 writeAck

Fig. 3. Sequence diagram for the Write operation.

data to an existing file in the system. Then operation
append is invoked instead of invoking operation create.
This is captured in Fig. 3 as the alt combined fragment.

The client needs to send a message to the namenode to
request for adding new blocks. This addBlock operation is
also required as long as a block being written is full and
there is a need for requesting a new block, as shown by the
opt combined fragment in the loop combined fragment.

The client sends a write request to the first datanode
(writeRequest), which, therefore, sends an asynchro-
nized message to its local disk to write data (writeTo-
Disk), while sending another asynchornized message to the
next datanode to request writing (writeRequest (1++)).
When the writing disk operation is completed, the datanode
sends an acknowledgement message to its previous data-
node (writeAck (i-)), and eventually an acknowledgment
message is sent to the client (writeAck). Notice that the
parameter L in the loop combined fragment denotes the
total number of datanodes involved in a Write operation.
Therefore, this parameter indirectly reflects the size of the
file being written.

2.3 Performance-Relevant Configuration

For the structure configuration, one has to configure the
DFS by making decisions such as number of nodes to
deploy and what their internal topologies are. More
specifically, we need to, based on the structural model
described in Section 2.1, to configure the topology of the
DFS nodes and their internal structures.

Regarding performance parameter configuration, perfor-
mance-relevant parameters should be bound to concrete
values when the system is configured. For example,

TABLE 1
Configurable Parameters

Model Acronyms | Configurable parameter
Application Dpl Number of datanodes
to Node | Dp2 Number of client nodes
Deployment Dp3 PhysicalNode::NetAdapterLatency
Model Dp4 NameNode::Workload

Dp5 NameNode::RequestQueueLength

Dp6 NameNode::ResponseQueueLength

Dp7 DataNode::NetAdapterBandwidth

Dp8 ClientNode::NetAdapterBandwidth

Dp9 CommunimcationMedia::NetworkLatency
Node Npl Number of processors/CPUs
Specification Np2 Processor::nbCores of each processor
Model Np3 Processor::op_frequencies of each processor

Np4 Memory::memorySize
Data model Dapl Block size

Dap2 File size
Performance Ppl Number of invocations of getBlockLocations
Model

parameters applied with stereotype <<configurable>>
(e.g., NetAdapterLatency of ClientNode) (see Fig. 1).
This type of configuration also includes configuring data
model classes by assigning concrete values to their
configurable attributes, for example, size of Block.

Based on the structural and behavioral models, we
systematically derived a set of performance-relevant, con-
figurable parameters, as shown in Table 1. They will be
used to derive the analysis formulas (see Section 3).

3 PERFORMANCE MODELING AND ANALYSIS

A performance model is an instance-based representation of
a runtime system, focusing on how the system uses all
kinds of resources and how the usage of them impacts the
system performance, for example, response time. Therefore,
we mainly reply on the Read and Write sequence diagrams
(see Figs. 2 and 3), and the configuration parameters to
derive performance analysis formulas for DFSs.

To analyze the performance of a DFS, we mainly
consider time required to send messages between client
nodes, the namenode and datanodes. Therefore, the total
response time is determined by time required for each
operation invocation (in messages) between two nodes.

3.1 Read

As one can see from Fig. 2, the overall Read response time
(Tt _veaa) consists of three parts: time for operations open,
getBlockLocations, and readBlock. We, therefore,
can derive the following formula for the Read operation:

T‘t_read - Topen + N*TgetBlockLocations + M*T‘readBlocb (1)

where N and M denote the total number of getBlock-
Locations, and readBlock operations of a Read
operation, respectively. As discussed in Section 2.2, the
sequence diagram in Fig. 2 represents different types of
DFS implementations and therefore values assigned to M
and N are different for different implementations. Note
that there is always one open operation. M and N also
depends on the size of the block location information
returned by each getBlockLocations operation. In
other words, if more block location information returned

160 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1,

by each getBlockLocations, then less number of
invocations of getBlockLocations (Ppl) is required,
therefore leading to shorter response time.

Topenr qutBlockLocationsr and E‘(iadBlock denote the time Spent
on each invocation of open, getBlockLocations, and
readBlock, respectively. As shown in Fig. 2, each
invocation of getBlockLocations requires a message
sent from a client node to the namenode. Time of sending
such a message depends on the network adapter band-
width of the client node (Dp8), the current workload (Dp4),
request queue length (Dp5) and response queue length
(Dp6) of the namenode, and also the network latency (Dp9)
between the client node and the namenode. One can easily
observe from (1) that when the network condition is not
good, the response time of the Read operation will be long,
and if the size of the file to read is large, it of course takes
longer time to read since more getBlockLocation and
readBlock will be invoked. For readBlock, each invocation
triggers a message sent from the client to a datanode.
Therefore, the following factors have influences on the time
of sending such a message: the network adapter band-
width of the client side (Dp8) and the datanode side (Dp7),
and the network latency (Dp9) between the client side and
the datanode.

The block size (Dapl) is defined as a configurable
attribute of class Block in the data model (see Section 2.1).
When the system is configured, such attributes should be
specified (see Section 2.3). When we derive performance
prediction formula, this parameter should be considered as a
factor as well. Taking into account all the above-mentioned
factors, we can further detail (1) into the following set of
formulas, which specify all these factors influencing the
response time of reading a file:

T‘open = fl (Dap17 Da'p27 Dps)a (2)

Tget,BlockLocations = fQ(DaPL Dap27 Dp4a Dp5a Dp67 ng, ng)a
3)

TreadBlock = f3(Dap17 Dap2, Dp7, Dp8, ng) (4)

Functions fi, f;, and f; are very hard to obtain. We,
however, can obtain estimated functions via conducting a
series of experiments (see Section 4). These functions can
then be used to analyze response times of the Read
operation when different configurations are given.

In DFSs, it is usually a case that multiple clients read or
write files concurrently. Therefore, there is a very important
factor that greatly impacts the response time of the Read or
Write operations: count, denoting the number of concurrent
Read and Write operations. Considering count, (1) should be
changed to

T}-read = count (T:)pen + N*TgetBlockLO(zati()nS +]\/[*TreadBlock))'
()

3.2 Write

Similarly, we derive the performance model for Write. As
shown in Fig. 3, the overall write response time (7}_yyit) can
be decomposed into five parts: time required for operations
create, append, rpc create, writeRequest, and

JANUARY 2014

addBlock. Operation writeRequest consists of all the
operations needed to write a file to datanodes. It is possible
to further decompose writeRequst to its nested operations
to achieve better performance analysis, which is considered
as our future work. We can then derive the following
formula for Write:

T;‘/_write = 1 create 1 T'rpc create T TwriteRequest + P*TLdeBlocb (6)

where P denotes the total number of addBlock invoca-
tions. P depends on the file size. Reading large files leads to
large P. It also depends on the block size. If the block size is
large, then less number of operation addBlock is invoked
and therefore small P.

T’create/ Trpc creater T‘writeRequ,est/ and ﬂzddBlo(tk denote the time
required for each invocation of operations create, rpc
create, writeRequest, and addBlock, respectively.
As shown in Fig. 3, operation create invokes operation
rpc create, which requires a message sent from a client
node to the namenode to create a new file. Similar
procedure is followed for append. Therefore, for create,
and rpc create and append, time required for them
depends on factors Dap1, Dap2, Dp4, Dp5, Dp6, Dp8, and
Dp9. We can then obtain the following formulas:

Tereate = .f-l (Dapl, Dapza Dp47 Dp57 Dp6a Dp87 ng) (7)
Trpc create — fS(Dap1> Dap2a Dp4, Dp5a Dp6a Dp8> ng), (8)

Tappend = fG(Dap17 Dap2, Dp4, Dp5, Dp6a Dp& ng) (9)

Operation writeRequest is more complicated than the
others since it involves multiple steps, which send
messages among the namenode, client node, and data-
nodes. Therefore, many factors have impact on the response
time of the operation:

Tcreate - f7(Dap17 Dap27 Dp47 Dp57 Dp67 Dp77 Dp87 ng)
(10)

As for Read, if we consider factor count, (6) should be
changed to

T‘t_write = count (Tcreate + T‘rpc create T T‘writeRequest + P*TaddBlock)-

(11)

4 EVALUATION

4.1 Qualitative Performance Analysis

In this section, we present a series of real-world experi-
ments that we conducted to evaluate the effectiveness of
using our approach to qualitatively analyze the response
time of Read and Write. All the experiments are based on
HDES [2], though the whole methodology described in the
previous sections are general for all typical DFSs (see
Section 4.3).

4.1.1 Experiment Settings

As shown in Table 2, the first experiment was deployed on
one box of the Tsinghua Tansuo-100 High performance
machine (abbreviated as Tansuo), which can have up to
104 TFlops computing power. We deployed one namenode

WU ET AL.: MODELING OF DISTRIBUTED FILE SYSTEMS FOR PRACTICAL PERFORMANCE ANALYSIS 161
TABLE 2 TABLE 4
Configurations of Three DFS Systems Experiment Settings

Parameter | Tansuo Inspur Cluster Amazon EC2 Phase I

Dpl 17 8 60 Size [1K [2K [4K [8K [16K [32K [64K

Dp2 17 8 60 Count 1024

Namenode | Datanodes |Namenode | Datanodes Phase I1

Npl/node 2 1 12 1 1 Size [128K [256K [512K | IM__|2M |4M_[8M [16M [32M
CPU type Intel Intel Q6600 | Intel x5650 |Intel E5430 | Intel E5430 Count | 512 256 128 64 30 16 g 1 P

Np3__ |2 ;(;(grlli 2.40GH. 267GHz__| 2.66GHz | 2.66GH Phase Il

P oo | oo ot2 o2 s o2 Size [64M [128M [256M [512M | 1G | 2G| 4G

Np2/CPU 6 4 412 4 1 Count | 0

Dp9 Gigabit | Megabit Gigabit Gigabit Gigabit oun

Np4 47G 2G 1G-24G 15G 1.66G

and 17 datanodes to Tansuo. Each datanode also has a client
application installed; therefore, these 17 datanodes also act
as client nodes. All the namenode and datanodes have the
same hardware configuration (see Fig. 1). The second
system was deployed on the Inspur cluster, with one
namenode and eight datanodes. The namenode in Inspur
has lower hardware configuration (e.g., much less memory)
to compare with Tansuo. The detailed hardware configura-
tion of each datanode in Inspur is provided in Table 3, from
which one can notice that datanodes D1, D2, and D3 have
much smaller memory size than the others and the CPU of
D4 has 12 cores, which is larger than the others. The third
experiment was deployed on the Amazon Elastic Compute
Cloud (EC2) (http://aws.amazon.com/ec2/). EC2 is a
commercial web service and a virtual computing environ-
ment, as opposed to Tansuo and Inspur. We deployed 60
datanodes on it with the same configuration (see Table 2).

For each experiment, we conducted a series of tests, each
of which was performed under a different combination of
file size and count. Recall that count denotes the total
number of concurrent Read or Write operations. The block
size was set to 64M by HDFS.

As shown in Table 4, for each of the three experiments,
we conducted 23 tests, which are divided into three phases:
Phase I, Phase II, and Phase III. Each test was run four times
and the consistency of the results was checked. We did not
identify any significant inconsistencies and therefore in the
remainder of the paper, we only report one group of the
test results.

4.1.2 Experiment Results and Analysis

Read. During Phase I, open (2) has to be invoked as many
times as the number of the files concurrently been read (i.e.,
count). Therefore, as shown in Fig. 4, during Phase I of the
experiment, time for open and getBlockLocations are
stable at log value 10. This is because Read invokes open
and getBlockLocations once and therefore the time for
these two operations is determined by count. As all the files
in Phase I are small size, one getBlockLocations

TABLE 3
Configurations of Inspur Cluster Datanodes
Parameters Configuration
D1, D2, D3 D4 D5, D6, D7, D8
Npl/node 1 2 2
Np2/CPU 4 12 6
Np4 970M 23.5G 23.6G

invocation often obtains all the required information for
a Read operation. Also note that time for open and
getBlockLocations is longer, compared to other two
phases. This is again because Phase I has the largest count.
Regarding readBlock, time increases slowly along with
the increment of the total file size, simply because larger
files need more time to read.

During Phase II, the total size of all the files being read at
each test remains same (i.e., 6), though file size increases
and count decreases correspondingly. It is clear from Fig. 4
that time for readBlock remains stable since it mainly
depends on the total size of the files. Note that this is only
true when the size of each file is less than the block size.
Time of invoking getBlockLocations and open de-
creases along with the decrement of count. This is because
reading a file requires invoking open once and times of
invoking getBlockLocations are small since the size of
each file is still less than the block size (see Fig. 2). During
Phase III, only one file was read in each test and therefore
count equals 1 (log size = 0). File size increases from 64M to
4G. Therefore, time for readBlock increases and more
time to invoke getBlockLocations is required.

One can also observe from Fig. 4 that readBlock
requires significantly more time than getBlockLoca-
tions and open, especially when the file size is large. This
can be interpreted as readBlock is invoked more times
than the other two (N > M > 1, (1)). One can also observe
that it requires increasingly more time to read blocks when
the file size increases. This is because larger files are
divided into more blocks and therefore more invocations of

a) Tansuo

b) Inspur, D1

og(total filesize, MB)

og(cournt) og(open)

og(getBlocklocaions)

Fig. 4. Response time of the Read operations.

162 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,

readBlock are occurred (i.e., IV increases along with file
size increment, formulas (1) and (4)). Very similar results
were observed for all the datanodes in Tansuo and this is
because they all have the same configuration.

Inspur has low-end hardware configuration than Tansuo
(see Tables 2 and 3). The network connection between the
namenode and datanodes is Megabit Ethernet with larger
latency and the connections among datanodes are Gigabit.
Hence, we expect that, for Read, getBlockLocations
will take longer time in Inspur than Tansuo, since the
operation is invoked through sending a message from the
client to the namenode. The other two Read operations
should not be much impacted by the configuration
difference. We expect that as long as the hardware
configuration of the namenode does not form a bottleneck
to the whole system, the Read response time in Inspur
should be very similar to the results we obtained from
Tansuo, except that more time (but not significantly) is
expected for getBlockLocations. Experiment results
conducted on Inspur prove that our analysis is correct.
The system performance is presented in Figs. 4b and 4c.
Note that D1 (D5) has the lowest (highest) configuration
among all the Inspur datanodes. From the figure, one can
see that in all the phases, getBlockLocations took more
time in Inspur than Tansuo.

The experiment we conducted on Amazon EC2 has
larger scale than the first two. As shown in Table 4,
60 datanodes were deployed and they all have the same
configuration. The namenode configuration of Amazon EC2
is higher than that in Inspur but lower than that in Tansuo.
Therefore, we do not expect that the namenode would be
the single-node bottleneck of the system performance
because of memory limitation. However, we predict that
overall EC2 should take longer time than Tansuo and
Inspur because EC2 is a virtual machine-based environ-
ment. Therefore, the hard disk I/O speed of EC2 is slower
and network communication also needs multiple routers,
which should cause the overall lower performance of
reading files in EC2 than Inspur and Tansuo. Our analysis
again is proved correct; as shown in Fig. 4d: overall, all the
Read operations took longer time during all phases than
Tansuo and Inspur.

Write: In Fig. 5, during Phase I, time for operations
create, rpc create, and addBlock does not increase
along with the increment of the total file size, because the
file size is small (1-64K) and therefore basically each of these
three operations is invoked once only. Additionally, in
Phase I, 1,024 files were written to the systems concurrently
and hence these three operations were invoked 1,024 times.
So comparing with Phase II and Phase III, the total time for
each of these three operations in Phase I is the longest
among all phases. In Phase I, time for writing files to blocks
increases along with the increment of file size.

During Phase II, time required for writeRequest is
roughly stable at log value 15, because the total size of the
files remains at 64M. Along with the decrement of count,
time for create, rpc create, and addBlock decreases.
This is because the file size is still equal or smaller than 64M
(the predefined block size); hence, count determines how
many times are needed to invoke these three operations.

VOL. 25, NO. 1, JANUARY 2014

a)Tansuo

b) Inspur, D1

--------- og(size) -———log(Cournt) — log(creae)

— |OE(WTTLE)

— log(rpc cregte) —— log(addBlock)

Fig. 5. Response time of the Write operations.

In Phase 111, all files are over 64M; therefore, significantly
more time is required for writeRequest, because when a
file is larger than 64M, more than one block is needed to
write the file. Therefore, the value of L in the loop combined
fragment (see Fig. 3) will increase and consequently more
times of invoking writeToDisk and writeRequest are
needed. Due to the same reason, addBlock is invoked
more times, hence time for addBlock increases long with
the increment of the file size.

Due to the difference of the Inspur and Tansuo
configurations, we expect that in Inspur, more time (but
not significantly) should be taken on all the Write
operations. This is because all the Write operations (i.e.,
create, rpc create, writeRequest, and addBlock)
involving message interactions between clients/datanodes
and the namenode (see Fig. 3). The performance of sending
and receiving these messages is influenced by the network,
which is Megabit Ethernet with larger latency, instead of
Gigabit Ethernet with lower latency as in Tansuo and EC2.
This analysis is proved correct, as shown in Figs. 5b and 5c.
In addition, we also predict that the difference (mainly on
Memory) among the configuration of the Inspur datanodes
should not have significant impact on their performance as
DFSs usually have no high requirements on datanode
Memory. This analysis is again proved correct by compar-
ing Figs. 5b and 5c. Note that the pulses in Fig. 5b are most
probably caused by the instability of Inspur itself.

EC2 is a virtual machine-based environment which
slows down the system performance. Therefore, we expect
that the response time of the Write operations should be
longer than that in Tansuo and Inspur. This analysis is
again proved correct, as one can see from Fig. 5d.

4.2 Quantitative Performance Analysis

We did not observe any situation, where the namenode of a
system reaches its bottleneck (see Section 4.1). But, being
able to quantitatively analyze the limitation of the name-
node beforehand is crucial. Hence, in this section, we
discuss how we analyze the memory and computation
limitations of the namenode, relying on the analysis of the
response time of Read. Note that here we only analyze the
performance of the namenode of a DFS and we particularly

WU ET AL.: MODELING OF DISTRIBUTED FILE SYSTEMS FOR PRACTICAL PERFORMANCE ANALYSIS 163

focus on the analysis of the getBlockLocation round
trip message—the only type of message that the namenode
has with clients.

4.2.1 Identify Namenode Memory and CPU Bottlenecks

As all user requests have to be processed by the namenode,
there is a performance limitation for metadata operations,
regardless how powerful its CPU is or how large its
memory is. For the memory limitation, each file takes
roughly 200 bytes of memory. Thus, the maximal number of
files that the namenode can support is limited. For example,
if the total memory of the namenode is 16G, the maximal
number of files is up to 86 million, though this number may
vary based on how long file names are and how many
levels the files are down from root.

Regarding the CPU or computational limitation, we
measure it as the maximal number of requests (Read or
Write metadata operations) that the CPU can process per
second. To see how this factor is important to the
performance of the metadata server, consider there be a
time period lasting for ¢ seconds and during that period
the rate of incoming requests is p. Assume the maximal
number of requests per second that the CPU (we choose
for the namenode) can process is ¢. If ¢ is larger than p,
each incoming request will be processed quite soon since
there will be no queuing. However, if ¢ is smaller than p,
which is always the case when there comes a request
peak, the average response time of requests in this period
will increase by %, according to the queuing theory.

From the equation above, one can easily conclude that
the amount of average response time will keep going up
continuously as t or p increases. However, for any client
using HDEFS or other DFSs, there should always be an upper
bound for the response time of a request, simply because
one cannot wait for a request to be responded endlessly,
hence making the whole client stuck in place. Therefore, if
an upper bound of the average response time is given as B
second and the latency of network (Dp9) for the round-trip
message getBlockLocation is given as C' second, we can
infer, using equation t(p — ¢q) = 2¢(B — C'), how large scale
(t and p) of the request peak (that the namenode can suffer
but still keeps the average response time in bound) is. For
example, if the lasting time of the request peak is 7" second,
the maximal request rate of that period is

The above equation can really give a nice estimation of p
when ¢ is given or vice versa. However, ¢ remains as an
unknown factor for the given namenode. Though some
experiments can be performed to obtain the value of this
factor, it is not an easy task since many clients are required
to push the namenode to its limit as well as a whole HDFS
environment should be set up. In the next section, we

discuss how to determine the value for g¢.

4.2.2 Determine the Maximal Number of Requests that
the Namenode Can Process

In our experiments, we modified HDFS to do only metadata
operations to test the performance of namenode. To keep its

TABLE 5
Quantitative Evaluation Experiment Settings
Instance type | CPU type Cru Memo | SPECjvm2
speed ry 008 Result
nnl(small) Intel Xeon E5645 240GHz | 1.7GB | 7.7
nn2(medium) | Intel Xeon E5506*2 2.13GHz 1.7GB | 27
nn3(large) Intel Xeon E5645*4 2.40GHz 75GB | 48

CPU as busy as possible, we use several clients to perform
metadata operations in parallel. The number of clients
varies from 10 to 99 and each client continuously sends read
requests to namenode sequentially. We chose three different
types of instances from Amazon EC2 as the namenodes and
use the SPECjvm2008 benchmark to evaluate the perfor-
mance of their CPUs. The hardware configurations and
SPECjvm2008 results of the instances are given in Table 5.

Based on (3) (see Section 3), it is easy to see that the
response time of getBlockLocation is determined by
seven factors: Dapl, Dap2, Dp4, Dp5, Dp6, Dp8, and Dp?9.
In our experiment, we intentionally let the file size (Dap1l)
smaller than the block size (Dap2), implying that reading
one file only needs read one block. Dp5 is actually [and
Dp6 is the response queue length, which is actually
determined by clients, not the namenode when network
condition does not cause the messages piled up in the
namenode side—the case of our experiment. Therefore we
do not consider Dp6 as an impact factor on the response
time. Both Dp8 and Dp9 are set constant. Hence, we can
easily draw the conclusion that the response time is only
determined by Dp5 (I): the number of requests in the
waiting queue when a Read request arrives. From Fig. 2,
one can see that it takes time for the namenode to execute
the getBlockLocation message (the bar on the name-
node lifeline). This corresponds to the time of the namenode
locating/searching file block information from a sorted
block metadata record sequence, which is further deter-
mined by the number of file blocks (c) stored in the
namenode with formula Inc. So, based on our models and
the analysis, we conclude that the response time of
namenode to client requests is proportional to /Inc.

Note that [is proportional to the number of clients.
Moreover, to simplify our experiments, we make ¢ also
proportional to the number of clients. The rationale is that
the number of files in HDFS is mostly expected to increase
as the number of clients grows up. Therefore, what we can
expect that the response time of metadata operations should
be proportional to zInz, where = denotes the number of
clients in the experiments.

Fig. 6 shows how the response time of Read varies with
the number of clients when we chose nnl, nn2, and nn3
instances to be the namenode, respectively. A summary of
the fit result is shown in Table 6, from which one can see
that the zlnz curves fit quite well with our test points:
all the R? are larger than 0.99. Moreover, when considering
the reciprocal of coefficient of zInz, the ratio among three
namenodes are 1:3.5089:6.6826, and the ratio of their
SPECjvm2008 results is 1:3.5065:6.2338. These two ratios
are fairly close, implying that the SPECjvm2008 results are a
good estimation of how many requests the namenode can
process per second. In addition, the conformance of our

164 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1,

B nnt:y=1.10509xInx-3.14122x+19.82533, R*2=0.99619 a
200 ® nn2: y=0.31494xInx-0.91312x+7.90617, R"2=0.99604
1‘7; A nn3; y=0,16537xInx-0.42366x+4 6088, R"2=0,99653 s
E .
o -
8 150
vl u
"6 >
100 -
s 00
£ u
'_ -
© e
g s0- " P e =
— il
2 T
7 = l,,rl—*' T
0] 0 - —
14
T T 4 T T T T T T T
0 20 40 60 80 100

Number of Clients

Fig. 6. Fit of response time of Read.

results to the SPECjvm2008 benchmark indicates that our
analysis of xInx is correct, which forms the foundation of
the derivation of the fit curves.

As long as we can get a good estimation of how many
requests that the namenode can process per second, we can
further predict how large scale of the request peak that the
namenode can suffer without compromising the response
time upper bound, described as follows:

1. Run the SPECjvm2008 benchmark to get a score (s)
for CPU. Using nnl as the example, its s = 7.7.

2. Calculate the maximal request that the namenode
can process per second according to equation

W*LOOO. Recall that ¢ is the number of

files. In this formula, we use the values of s and

reciprocal of coefficient of xIn z of namenode nnl to

calculate the constant of the formula.

After we got the value for q, we can then use (12) to
calculate the maximal incoming request rate p for a known
time period ¢.

4.3 Discussion

All the systems deployed for the experiments are HDFS.
However, the qualitative and quantitative performance
analysis approach that we propose in this paper and
applied in the experiments can be also applied for other
typical DFSs such as MooseDFS, GFS, and zFS, with similar
system structure and behavior as HDFSs.

In the qualitative performance analysis, we evaluate a
DFS from the most critical aspect of its performance:
response time of Read and Write. The same approach can
also be applied for other operations such as File List, as
long as the behavior of such operations is specified,
for example, using UML sequence diagrams, as we did
for Read and Write (see Figs. 2 and 3). In terms of the
quantitative performance analysis, we only conducted the
performance analysis for namenode. Similar kind of
analyses can also be applied to evaluate the performance
of datanodes. In the case that a DFS has multiple
namenodes, we can reasonably consider the multiple
namenodes as a whole (i.e., integrated CPU and Memory),
when analyzing the performance of the system handling
the metadata operations using our approach.

Replica strategies are commonly used in DFSs and
introducing such strategies to the DFSs have impact on

JANUARY 2014

TABLE 6
Descriptive Statistics of Fit of Response Time of Read

Instance Coefficient of | RA2 Reciprocal of coefficient
type xlnx of dlmx

nnl 1.10509 0.99619 0.90490

nn2 0.31494 0.99604 3.17521

nn3 0.16537 0.99653 6.04705

the performance of their namednode(s) and datanodes.
However, our approach is still valid as long as the same
strategy is applied in all the systems including DFS under
analysis and deployed DFSs for collecting analysis data.

5 RELATED WORK

5.1 Model-Driven Methodologies for Performance
Analysis

Balsamo et al. [9] conducted a survey on model-driven
performance analysis and prediction in software develop-
ment. The authors pointed out that the software perfor-
mance prediction/analysis process is based on the
availability of software artifacts describing suitable abstrac-
tion of the final software system. According to the survey,
most of the methodologies that the authors studied make
use of UML or UML-like formalisms to describe models,
which is consistent with our work.

Tawhid and Petriu proposed an approach [26] to
integrate performance analysis to the model driven devel-
opment of software product lines. Annotated and para-
meterized UML sequence diagrams with the MARTE
performance annotations (i.e., stereotypes) are required to
be built for each use case of the system. The resulting
sequence diagrams are then transformed into an LQN
performance model for analysis [19]. A simulation-based
approach is proposed in [10], which uses Palladio compo-
nent models to specify component-based profile of a
system. Pllana and Fahringer proposed a UML-based
modeling approach (without analysis) for performance-
oriented, parallel and distributed applications [20]. UML
class, deployment and activity diagrams, extended with a
large number of stereotypes, are mainly used to model
architectures of parallel and distributed applications.

To compare with all these approaches, our approach
aims to provide a practical means for the system analysts to
analyze the system performance. The approach is simple in
the sense that the effort required for modeling is much less
than the modeling effort required by the approaches
proposed in the related work.

5.2 Distributed System Performance Analysis

In benchmarks [12], [30] some HPC benchmarks (e.g.,
NPB, STREAM (for memory bandwidth), high perfor-
mance LINPACK (HPL), IOR, and BT-1O (for parallel IO))
are used to evaluate distributed systems. They also test
some real-world applications (e.g., POP, CCSM, mpi-
BLAST, CSFV) for investigating a variety of relevant
issues such as performance (execution time, network
latency and IO bandwidth), scalability and performance
variability. Note that all of them rely on running bench-
marks or application programs. Our approach, however,

WU ET AL.: MODELING OF DISTRIBUTED FILE SYSTEMS FOR PRACTICAL PERFORMANCE ANALYSIS 165

relies on architecture and design models of DFSs for their
performance analysis, therefore saving cost and helping
architects making decision of configuring and deploying
DEFESs prior to the deployment.

For distributed /parallel file systems (e.g., HDFS [2], GFS
[11], MooseFS [3], PVFS [5]), there is no well-recognized
benchmarks for evaluating or analyzing them. In [17], [24],
and [26], in-house microbenchmarks (concurrent read/
write from single/different files) are used and their
evaluation results show that each of them is good at
different aspects and they are quite different from each
other. Research results in [16] provide a comparison of
cloud storage systems (e.g., Amazon S3 [1], Openstack Swift
[4], Microsoft SQL Azure [7]) from the aspects of high
availability, scalability, data access performance, security
and so on. As for evaluating the performance of computing
paradigms, these approaches also rely on running applica-
tion programs to test performance. Beker et al. [8] also
analyzed the user-level file access patterns of a DFS by
running application programs.

Another frequently applied performance analysis ap-
proach is to rely on performance measurements under a
variety of workloads/strategies. For example, in [27], Weil
et al. used this approach to measure a DFS, named Ceph,
from various aspects such as 1/O performance and write
latency. Similarly, Ligon III and Ross [15] measured the raw
transfer throughput in a variety of configurations to
indicate the performance of PVFS.

Some researchers also evaluate/analyze the performance
of a DFS by comparing with other DFSs. For example,
Howard et al. [13] evaluated their DFS by comparing it with
Sun Microsystem’s NFS file system for the purpose of
evaluating the whole file transfer strategy.

Regarding performance analysis and prediction of
distributed computing and file systems, there are a lot of
methods (e.g., machine learning [14], adaptive hybrid
model with confidence window [29]) proposed. These
approaches are mostly based on mathematical models.

6 CONCLUSION

Model-driven performance analysis has been recognized as
an important tool to analyze system performance. In the
paper, we presented such an approach, particularly tailored
for distributed file systems (DFSs). Our approach mainly
has several components: the architecture and design
models and explicitly captured performance-relevant, con-
figurable parameters, and the systematically derived
performance model.

The related work in the field mainly evaluates the
performance of DFSs and computing paradigms by,
for example, relying on running benchmarks or application
programs, performance measurements under a variety of
workloads/strategies, and comparing with other DFSs. Our
approach, however, qualitatively and quantitatively ana-
lyzes the DFS performance based on the models we
constructed, such that early feedback on architectural
design, configuration, and deployment of DFSs can be
provided. Thereby one can avoid cost for architectural
redesign and redeployment.

We conducted a series of real-world experiments
deployed on EC2, Tansuo, and Inspur to demonstrate
how our approach should be applied and to evaluate how
effective it is. Results show that our approach is practical
and can achieve sufficient performance analysis.

ACKNOWLEDGMENTS

This work was supported by National Basic Research (973)
Program of China (2011CB302505) and National High-Tech
R&D (863) Program of China (2012AA012600).

REFERENCES

[1] Amazon Simple Storage Service (Amazon S3), http://aws.
amazon.com/S3/, 2013.

[2] Hadoop Distributed File System (HDFS), http://hadoop.
apache.org/hdfs/, 2013.

[3] MooseFS, http:/ /www.moosefs.org/, 2013.

[4] OpenStack SWIFT, http://openstack.org/software/openstack-
storage/, 2013.

[5] Parallel Virtual File System, http://www.pvfs.org/, 2013.

[6] The UML MARTE Profile, http://www.omgmarte.org/, 2013.

[71 Windows Azure, http:/ /www.windowsazure.com/, 2013.

[8] M.G. Baker,].H. Hartman, M.D. Kupfer, K-W. Shirriff, and J.K.
Ousterhout, “Measurements of a Distributed File System,”
Proc. ACM SIGOPS Operating Systems Rev., vol. 25, pp. 198-212,
1991.

[9] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-
Based Performance Prediction in Software Development: A
Survey,” IEEE Trans. Software Eng., vol. 30, no. 5, pp. 295-310,
May 2004.

[10] S. Becker, H. Koziolek, and R. Reussner, “The Palladio Compo-
nent Model for Model-Driven Performance Prediction,” J. Systems
and Software, vol. 82, no. 1, pp. 3-22, 2009.

[11] S. Ghemawat, H. Gobioff, and S.T. Leung, “The Google File
System,” vol. 37, pp. 29-43, 2003.

[12] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn, “Case Study
for Running HPC Applications in Public Clouds,” Proc. 19th ACM
Int’l Symp. High Performance Distributed Computing, pp. 395-401,
2010.

[13] J.H. Howard, M.L. Kazar, S.G. Menees, D.A. Nichols, M.
Satyanarayanan, R.N. Sidebotham, and M.J. West, “Scale and
Performance in a Distributed File System,” ACM Trans. Computer
Systems, vol. 6, no. 1, pp. 51-81, 1988.

[14] S. Kundu, R. Rangaswami, A. Gulati, M. Zhao, and K. Dutta,
“Modeling Virtualized Applications Using Machine Learning
Techniques,” Proc. Eighth ACM SIGPLAN/SIGOPS Conf. Virtual
Execution Environment, 2012.

[15] W. Ligon III and R. Ross, “Implementation and Performance of a
Parallel File System for High Performance Distributed Applica-
tions,” Proc. IEEE Fifth Int'l Symp. High Performance Distributed
Computing, pp. 471-480, 1996.

[16] S. Mohammad, S. Bre3, and E. Schallehn, “Cloud Data Manage-
ment: A Short Overview and Comparison of Current Ap-
proaches,” Proc. 24th GI-Workshop Foundations of Databases
(Grundlagen von Datenbanken), 2012.

[17] B. Nicolae, D. Moise, G. Antoniu, L. Boug, and M. Dorier,
“BlobSeer: Bringing High Throughput under Heavy Concurrency
to Hadoop Map-Reduce Applications,” Proc. IEEE Int'l Symp.
Parallel and Distributed Processing (IPDPS), pp. 1-11, 2010.

[18] OMG, “UML 2.2 Superstructure Specification (formal/2009-02-
04).”

[19] D. Petriu and H. Shen, “Applying the UML Performance Profile:
Graph Grammar-Based Derivation of LQN Models from UML
Specifications,” Proc. 12th Int’l Conf. Computer Performance Evalua-
tion: Modelling Techniques and Tools, pp. 183-204, 2002.

[20] S. Pllana and T. Fahringer, “On customizing the UML for
Modeling Performance-Oriented Applications,” Proc. Winter Si-
mulation Conf., pp. 83-102, 2002.

[21] O. Rodeh and A. Teperman, “zFS-a Scalable Distributed File
System Using Object Disks,” Proc. IEEE/11th 20th NASA Goddard
Conf. Mass Storage Systems and Technologies (MSST '03), pp. 207-
218, 2003.

166

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

(30]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.25, NO. 1, JANUARY 2014

A. Silberschatz, P.B. Galvin, and G. Gagne, Operating System
Concepts, vol. 89, Addison-Wesley, 1994.

J. Stribling, Y. Sovran, I. Zhang, X. Pretzer, J. Li, M.F. Kaashoek,
and R. Morris, “Flexible, Wide-Area Storage for Distributed
Systems with WheelFS,” Proc. Sixth USENIX Symp. Networked
Systems Design and Implementation, pp. 43-58, 2009.

W. Tantisiriroj, SSW. Son, S. Patil, S.J. Lang, G. Gibson, and R.B.
Ross, “On the Duality of Data-Intensive File System Design:
Reconciling HDFS and PVFS,” Proc. Int’l Conf. for High Performance
Computing, pp. 1-12, 2011.

R. Tawhid and D. Petriu, “Integrating Performance Analysis in the
Model Driven Development of Software Product Lines,” Proc. 11th
Int’l Conf. Model Driven Eng. Languages and Systems, pp. 490-504,
2008.

W. Tantisiriroj, S. Patil, and G. Gibson, “Data-Intensive File
Systems for Internet Services: A Rose by Any Other Name,”
Parallel Data Laboratory, Carnegie Mello Univ., 2008.

S.A. Weil, S.A. Brandt, E.L. Miller, D.D.E. Long, and C. Maltzahn,
“Ceph: A Scalable, High-Performance Distributed File System,”
Proc. Seventh Symp. Operating Systems Design and Implementation
(OSDI), pp. 307-320, 2006.

B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small, J.
Zelenka, and B. Zhou, “Scalable Performance of the Panasas
Parallel File System,” Proc. Sixth USENIX Conf. File and Storage
Technologies, p. 2, 2008.

Y. Wu, K. Hwang, Y. Yuan, and W. Zheng, “Adaptive Workload
Prediction of Grid Performance in Confidence Windows,” IEEE
Trans. Parallel and Distributed Systems, vol. 21, no. 7, pp. 925-938,
July 2010.

Y. Zhai, M. Liu, J. Zhai, X. Ma, and W. Chen, “Cloud versus In-
House Cluster: Evaluating Amazon Cluster Compute Instances
for Running MPI Applications,” Proc State of the Practice Reports
Article. (S5C "11), p. 11, 2011.

Yongwei Wu received the PhD degree in
applied mathematics from the Chinese Academy
of Sciences in 2002. He is currently a professor
in computer science and technology at Tsinghua
University of China. His research interests
include parallel and distributed processing, and
cloud storage. He is currently on the editorial
board of the International Journal of Networked
and Distributed Computing and Communication
of China Computer Federation. He has pub-

lished more than 80 research publications and has received two Best
Paper Awards. He is a member of the IEEE.

Feng Ye received the BS degree in computer
science and technology from Tsinghua University
in 2010. Currently, he is working toward the
master’s degree in computer science at Tsinghua
University of China. His research interests
include distributed file system, and cloud storage.

Kang Chen received the PhD degree in compu-
ter science and technology from Tsinghua
University in 2004. He is currently an associate
professor in computer science and technology at
Tsinghua University of China. His research
interests include distributed file system, parallel
and distributed processing.

Weimin Zheng received the BS and MS
degrees form the Department of Automatics,
Tsinghua University, in 1970 and 1982, respec-
tively. He is a professor of computer science
and technology, Tsinghua University, China. He
is the director of the Chinese Computer Society
currently. His research interests include com-
puter architecture, operating system, storage
networks, and distributed computing. He is a
member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

