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Abstract
MOONCAKE is the serving platform for Kimi, an LLM chat-
bot service developed by Moonshot AI. This platform features
a KVCache-centric disaggregated architecture that not only
separates prefill and decoding clusters but also efficiently
utilizes the underexploited CPU, DRAM, SSD and NIC re-
sources of the GPU cluster to establish a disaggregated KV-
Cache. At the core of MOONCAKE is its KVCache-centric
global cache and a scheduler designed to maximize through-
put while adhering to stringent latency-related Service Level
Objectives (SLOs).

Our experiments demonstrate that MOONCAKE excels in
scenarios involving long-context inputs. In tests using real
traces, MOONCAKE increases the effective request capacity
by 59%∼498% when compared to baseline methods, all while
complying with SLOs. Currently, MOONCAKE is operational
across thousands of nodes, processing over 100 billion tokens
daily. In practical deployments, MOONCAKE’s innovative
architecture enables Kimi to handle 115% and 107% more
requests on NVIDIA A800 and H800 clusters, respectively,
compared to previous systems.

1 Introduction

With the rapid adoption of large language models (LLMs) in
various scenarios [1–4], the workloads for LLM serving have
become significantly diversified. These workloads differ in
input/output length, distribution of arrival, and, most impor-
tantly, demand different kinds of Service Level Objectives
(SLOs). As a Model as a Service (MaaS) provider, one of the
primary goals of Kimi [5] is to solve an optimization problem
with multiple complex constraints. The optimization goal is
to maximize overall effective throughput, which directly im-
pacts revenue, while the constraints reflect varying levels of
SLOs. These SLOs typically involve meeting latency-related
requirements, mainly the time to first token (TTFT) and the
time between tokens (TBT).

To achieve this goal, a prerequisite is to make the best use
of the various kinds of resources available in the GPU cluster.
Specifically, although GPU servers are currently provided as
highly integrated nodes (e.g., DGX/HGX supercomputers [6]),
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Figure 1: The experiment of the effective request capacity of
MOONCAKE under the real-world conversation workload and
different TBT SLOs. In this experiment, MOONCAKE and
three baseline systems utilize 16 8×A800 nodes each. More
on §5.2.

it is necessary to decouple and restructure them into several
disaggregated resource pools, each optimized for different but
collaborative goals. For example, many other researchers [7–
9] have suggested separating prefill servers from decoding
servers, because these two stages of LLM serving have very
different computational characteristics.

Further advancing this disaggregation strategy, we have en-
gineered a disaggregated KVCache by pooling CPU, DRAM,
SSD and RDMA resources of the GPU cluster, referred to as
MOONCAKE Store. This novel architecture harnesses under-
utilized resources to enable efficient near-GPU prefix caching,
significantly enhancing the global cache capacity and inter-
node transfer bandwidth. The resultant distributed KVCache
system embodies the principle of trading more storage for
less computation. Thus, as demonstrated in Figure 1, it sub-
stantially boosts Kimi’s maximum throughput capacity in
meeting the required SLOs for many important real-world
scenarios. Later in this paper, we will first delve into a mathe-
matical analysis of this strategy’s benefits for LLM serving
and empirically assess its efficacy using real-world data (§2.2).
Then, we will detail the design choices made in implementing
this petabyte-level disaggregated cache, which is intercon-
nected via an RDMA network up to 8×400 Gbps (§3.2).

Building on this idea, we also found that the scheduling
of KVCache is central to LLM serving, and hence propose a
corresponding disaggregated architecture. Figure 2 presents
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Figure 2: MOONCAKE Architecture.

our current KVCache-centric disaggregated architecture
for LLM serving, named MOONCAKE. For each request, the
global scheduler (Conductor) will select a pair of prefill and
decoding instances and schedule the request in the following
steps: 1) transfer as much reusable KVCache as possible to
the selected prefill instance; 2) complete the prefill stage in
chunks/layers and continuously stream the output KVCache
to the corresponding decoding instance; 3) load the KVCache
and add the request to the continuous batching process at the
decoding instance for generating request outputs.

Although this process seems straightforward, the selection
policy is complex due to many restrictions. In the prefill stage,
the main objective is to reuse the KVCache as much as possi-
ble to avoid redundant computation. However, the distributed
KVCache pool faces challenges in terms of both capacity and
access latency. Thus Conductor is responsible for scheduling
requests with KVCache-awareness and executing scheduling
operations such as swapping and replication accordingly. The
hottest blocks should be replicated to multiple nodes to avoid
fetching congestion, while the coldest ones should be swapped
out to reduce reserving costs. In contrast, the decoding stage
has different optimization goals and constraints. The aim is to
aggregate as many tokens as possible in a decoding batch to
improve the Model FLOPs Utilization (MFU). However, this
objective is restricted not only by the TBT SLO but also by
the total size of aggregated KVCache that can be contained
in the VRAM.

In §4, we will detail our KVCache-centric request schedul-
ing algorithm, which balances instance loads and user expe-
rience as measured by TTFT and TBT SLOs. This includes
a heuristic-based automated hotspot migration scheme that

replicates hot KVCache blocks without requiring precise pre-
dictions of future KVCache usage. Experimental results show
that our KVCache-centric scheduling can significantly lower
TTFT in real-world scenarios.

We will also describe the main design choices made during
its implementation, especially those not covered in current
research. For example, regarding P/D disaggregation, there
are currently debates on its feasibility in large-scale practice
due to bandwidth requirements and trade-offs associated with
chunked prefill (e.g., Sarathi-Serve [10]). We demonstrate,
through comparison with vLLM, that with a highly optimized
transfer engine, the communication challenges can be man-
aged, and P/D disaggregation is preferable for scenarios with
stringent SLO limits (§5.2). Additionally, we discuss how to
implement a separate prefill node pool that seamlessly han-
dles the dynamic distribution of context length. We employ a
chunked pipeline parallelism (CPP) mechanism to scale the
processing of a single request across multiple nodes, which
is necessary for reducing the TTFT of long-context inputs.
Compared to traditional sequence parallelism (SP) based so-
lutions, CPP reduces network consumption and simplifies the
reliance on frequent elastic scaling (§3.3).

MOONCAKE is currently the serving platform of Kimi and
has successfully handled exponential workload growth (more
than 100 billion tokens a day). According to our historical
statistics, the innovative architecture of MOONCAKE enables
Kimi to handle 115% and 107% more requests on the A800
and H800 clusters, respectively, compared to previous sys-
tems.

To ensure the reproducibility of our results while safe-
guarding proprietary information, we also provide detailed
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experimental outcomes using a dummy model mirroring the
architecture of LLaMA3-70B, based on replayed traces of
actual workloads. These traces, along with the KVCache
transfer infrastructure of MOONCAKE, are open-sourced at
https://github.com/kvcache-ai/Mooncake.

In end-to-end experiments using public datasets and real
workloads, MOONCAKE excels in long-context scenarios.
Compared to the baseline method, MOONCAKE can achieve
up to a 498% increase in the effective request capacity while
meeting SLOs. In §5.3, we compare MOONCAKE Store with
the local cache design and find that the global cache design of
MOONCAKE Store significantly improves the cache hit rate.
In our experiments, the cache hit rate is up to 2.36× higher
than that of the local cache, resulting in up to 48% savings
in prefill computation time. MOONCAKE, to the best of our
knowledge, is the first system to demonstrate the significant
benefits of using a distributed KVCache pool to share KV-
Cache across different chat sessions and queries in large-scale
deployment scenarios. We also evaluate the performance of
the transfer engine that supports high-speed RDMA transfers
in MOONCAKE, which shows it is approximately 2.4× and
4.6× faster than existing solutions (§5.4).

2 Preliminary and Problem Definition

2.1 Service Level Objectives of LLM Serving

Modern large language models (LLMs) are based on the
Transformer architecture, which utilizes attention mecha-
nisms and multilayer perceptrons (MLP) to process input.
Popular Transformer-based models, such as GPT [11] and
LLaMA [12], employ a decoder-only structure. Each infer-
ence request is logically divided into two stages: the prefill
stage and the decoding stage.

During the prefill stage, all input tokens are processed in
parallel, and hence it is typically computationally intensive.
This stage generates the first output token while storing inter-
mediate results of computed keys and values, referred to as
the KVCache. The decoding stage then uses this KVCache
to autoregressively generate new tokens. It processes only
one token at a time per batch due to the limitation of autore-
gressive generation, which makes it memory-constrained and
causes computation time to increase sublinearly with batch
size. Thus, a widely used optimization in the decoding stage
is continuous batching [13, 14]. Before each iteration, the
scheduler checks the status and adds newly arrived requests
to the batch while removing completed requests.

Due to the distinct characteristics of the prefill and decod-
ing stages, MaaS providers set different metrics to measure
their corresponding Service Level Objectives (SLOs). Specif-
ically, the prefill stage is mainly concerned with the latency
between the request arrival and the generation of the first to-
ken, known as the time to first token (TTFT). On the other
hand, the decoding stage focuses on the latency between suc-

Notation Description Value
l Num layers 80
d Model dimension 8192
a,b Constant coefficients in Equation 1 4, 22
gqa Num q heads / Num kv heads 8
s Tensor element size 2 B (BFloat16)
G GPU computation throughput 8×312 TFLOPS
Bh2d Host-to-device bandwidth 128 GB/s
Bnic NIC bandwidth 800 Gbps
n, p Prompt and matched prefix length, respectively

Table 1: Notations and parameters. Model and machine pa-
rameters are set according to LLaMA3-70B and 8×A800.

cessive token generations for the same request, referred to as
the time between tokens (TBT).

In real deployments, if the monitor detects unmet SLOs, we
need to either add inference resources or reject some incoming
requests. However, due to the current contingent supply of
GPUs, elastically scaling out the inference cluster is typically
unfeasible. Therefore, we proactively reject requests that are
predicted not to meet the SLOs to alleviate the cluster’s load.
Our main objective is to maximize overall throughput while
adhering to SLOs, a concept referred to as goodput in other
research [8, 15].

2.2 More Storage for Less Computation
To meet the stringent SLOs described above, a commonly
adopted solution is to cache previously generated KVCache
and reuse it upon finding a prefix match. However, existing
approaches [16–18] typically restrict caching to local HBM
and DRAM, assuming that the transfer bandwidth required for
global scheduling would be prohibitively high. But, as we will
described later in §5.3, the capacity of local DRAM supports
only up to 50% of the theoretical cache hit rate, making the
design of a global cache essential. In this section, we present
a mathematical analysis of the actual bandwidth necessary to
benefit from this strategy, explaining why distributed caching
is advantageous, especially for larger models like LLaMA3-
70B. More experimental results will be given later in §5.4.2.

We base our analysis on the model using notations de-
scribed in Table 1 and incorporate specific parameters of
LLaMA3-70B. Essentially, current popular LLMs are au-
toregressive language models where each token’s KVCache
depends only on itself and preceding tokens. Therefore,
KVCache corresponding to the same input prefix can be
reused without affecting output accuracy. If a current request’s
prompt of length n shares a common prefix of length p with
previously cached KVCache, its prefill process can be opti-
mized as follows:

q[p : n],k[p : n],v[p : n] = MLP(hidden[p : n])

k[1 : n],v[1 : n]← KVCache+(k[p : n],v[p : n])

o[p : n] = Attention(q[p : n],k[1 : n],v[1 : n])

KVCache← (k[1 : n],v[1 : n])
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Given input length n, the FLOPS of the prefill stage can be
calculated as:

f lops(n) = l× (an2d +bnd2) (1)

Thus, reusing KVCache approximately reduces the compu-
tation cost of prefill by l× (ap2d +bpd2). However, this re-
quires transferring the cached KVCache into the prefill GPU’s
HBM, with a size of p× l×(2×d/gqa)×s. Assuming the av-
erage computation throughput is G and the average KVCache
loading speed is B (where B is determined by the minimum
of Bh2d and Bnic), the reuse of KVCache is beneficial in terms
of TTFT if:

B
G

>
2ds

gqa× (apd +bd2)
(2)

In such scenarios, reusing the KVCache not only reduces
GPU time and costs but also enhances the user experience
by improving TTFT. The criteria for bandwidth B relative to
computation throughput G are more readily met with larger
values of d, which is proportional to the model size. For exam-
ple, when running LLaMA3-70B on a machine with 8×A800
GPUs and assuming a prefix length of 8192, Equation 2 yields
a minimum required B of 6 GB/s. The requirement for B will
be enlarged to 19 GB/s for an 8×H800 machine. Moreover,
in practical scenarios, because the transfer stages cannot be
perfectly overlapped with each other, the actual bandwidth
requirement is even higher. However, as we will demonstrate
in §5.4.2, a fully utilized 100 Gbps NIC per NVIDIA A800
HGX network is sufficient to meet these criteria.

3 Design of MOONCAKE

3.1 Overview
As depicted in Figure 2, MOONCAKE employs a disaggre-
gated architecture that not only separates prefill from decod-
ing nodes but also groups the CPU, DRAM, SSD, and RDMA
resources of the GPU cluster to implement a disaggregated
KVCache. To schedule all these disaggregated components, at
its center, MOONCAKE implements a global scheduler named
Conductor. Conductor is responsible for dispatching requests
based on the current distribution of the KVCache and work-
load characteristics. MOONCAKE Store, detailed in §3.2,
manages the storage and transfer of these KVCache blocks.

Specifically, Figure 3 demonstrates the typical workflow
of a request. Once tokenizing is finished, the conductor se-
lects a pair of prefill nodes and a decoding node, and starts a
workflow comprising four steps:
1) KVCache Reuse: The selected prefill node (group) receives
a request that includes the raw input, the block keys of the
prefix cache that can be reused, and the block keys of the
full cache allocated to the request. It loads the prefix cache
from remote CPU memory into GPU memory based on the
prefix cache block keys to bootstrap the request. This step is
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Figure 3: Workflow of inference instances.

skipped if no prefix cache exists. This selection balances three
objectives: reusing as much KVCache as possible, balancing
the workloads of different prefill nodes, and guaranteeing the
TTFT SLO. It leads to a KVCache-centric scheduling that
will be further discussed in §4.
2) Incremental Prefill: The prefill node completes the prefill
stage using prefix cache and stores the newly generated in-
cremental KVCache back into CPU memory. If the number
of uncached input tokens exceeds a certain threshold, the
prefill stage is split into multiple chunks and executed in a
pipeline manner. This threshold is selected to fully utilize the
corresponding GPU’s computational power and is typically
larger than 1000 tokens. The reason for using chunked but
still disaggregated prefill nodes is explained in §3.3.
3) KVCache Transfer: MOONCAKE Store is deployed in each
node to manage and transfer these caches. This step is asyn-
chronously executed and overlapped with the above incre-
mental prefill step, streaming the KVCache generated by each
model layer to the destination decoding node’s CPU memory
to reduce waiting time.
4) Decoding: After all the KVCache is received in the CPU
memory of the decoding node, the request joins the next batch
in a continuous batching manner. The decoding node is pre-
selected by Conductor based on its current load to ensure it
does not violate the TBT SLO.

3.2 MOONCAKE Store: Cache of KVCache
Central to MOONCAKE is its efficient implementation of a
distributed global cache of KVCache, referred to as MOON-
CAKE Store. As described in §2.2, reusing cached KVCache
not only cuts computation costs but also improves user experi-
ence by reducing the TTFT, particularly when the aggregated
bandwidth is fully utilized. However, achieving full utiliza-
tion is challenging because the bandwidth can reach up to
8×400 Gbps, comparable to DRAM bandwidth.

We first introduce how MOONCAKE Store manages KV-
Cache in §3.2.1, including its storage scheme and eviction
policy. In §3.2.2, we describe the object-based APIs and mem-
ory transfer APIs of MOONCAKE Store. In §3.2.3, we will
detail the design of MOONCAKE Store’s transfer engine, a
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high-performance, zero-copy KVCache transfer system de-
signed to maximize the benefits of using multiple RDMA
NICs per machine. It enhances execution efficiency and relia-
bility through techniques such as topology-aware path selec-
tion and endpoint pooling.

3.2.1 KVCache Management

In MOONCAKE Store, all KVCache is stored as paged blocks
within a distributed cache pool. The block size, i.e., the num-
ber of tokens contained in each block, is determined by the
model size and the optimal network transmission size, typi-
cally ranging from 16 to 512 tokens. Each block is attached
with a hash key determined by both its own hash and its prefix
for deduplication. The same hash key may have multiple repli-
cas across different nodes to mitigate hot-cache access latency,
controlled by our cache-load-balancing policy described in
§4.2.

MOONCAKE Store allocates space for each cache block
in the cache pool and logs metadata such as the block key
and its address. When the cache pool is full, MOONCAKE
Store employs a LRU (Least Recently Used) strategy to evict
an existing cache block—unless the block is currently being
accessed by an ongoing request—and overwrites the evicted
block’s space with the new block.

3.2.2 Interface

At the higher layer, MOONCAKE Store offers object-based
APIs such as put, get, and change_replica. These facil-
itate the caching of KVCache in a disaggregated manner,
organizing mini blocks of KVCache as memory objects and
enabling Conductor to adjust the number of replicas for each
KVCache block to achieve higher bandwidth aggregation.
These functions are supported by a set of synchronous batch
transfer APIs, detailed in Listings 1.

Transfer operations are available for both DRAM and
GPU VRAM and will utilize GPU Direct RDMA when op-
timal, provided that the specified memory region has been
pre-registered. The completion of these operations can be
monitored asynchronously via the getTransferStatus API,
which reports whether transfers are ongoing or have encoun-
tered errors.

Listing 1: Memory transfer APIs in MOONCAKE Store.

int registerLocalMemory(void *vaddr, size_t len,
const string &type);

BatchID allocateBatchID(size_t batch_size);
int submitTransfer(BatchID batch_id,

const vector<Request> &entries);
int getTransferStatus(BatchID batch_id,

int request_index,
Status &status);

int freeBatchID(BatchID batch_id);

3.2.3 Transfer Engine

To efficiently implement the above APIs, a transfer engine
is designed to achieve several key objectives: 1) Effectively
distribute transfer tasks across multiple RDMA NIC devices;
2) Abstract the complexities of RDMA connection manage-
ment from the APIs; and 3) Appropriately handle temporary
network failures. This transfer engine has been meticulously
engineered to fulfill each of these goals.

Network Setup The benefits of MOONCAKE rely on a
high-bandwidth network interconnect. Currently, we use stan-
dard HGX machines where each A800 GPU is paired with
a 100/200 Gbps NIC, and each H800 GPU is paired with a
200/400 Gbps NIC, which is comparable to memory band-
width and existing libraries (other than NCCL) fail to fully
utilize this capacity. As for NCCL, it cannot gracefully handle
dynamic topology changes due to the addition or removal of
nodes/NICs and does not support DRAM-to-DRAM pathes.
In contrast, the transfer engine endeavors to find alternative
paths upon failure.

To address congestion, the network utilizes RoCEv2 tuned
by cloud providers. In the scheduler, we mitigate congestion
by increasing the number of replicas for hot KVCaches (§4.2).

Topology-aware path selection. Modern inference servers
often consist of multiple CPU sockets, DRAM, GPUs, and
RDMA NIC devices. Although it’s technically possible to
transfer data from local DRAM or VRAM to a remote location
using any RDMA NIC, these transfers can be limited by the
bandwidth constraints of the Ultra Path Interconnect (UPI)
or PCIe Switch. To overcome these limitations, MOONCAKE
Store implements a topology-aware path selection algorithm.

Before processing requests, each server generates a topol-
ogy matrix and broadcasts it across the cluster. This matrix
categorizes network interface cards (NICs) into "preferred"
and "secondary" lists for various types of memory, which
types are specified during memory registration. Under normal
conditions, a NIC from the preferred list is selected for trans-
fers, facilitating RDMA operations within the local NUMA
or GPU Direct RDMA through the local PCIe switch only. In
case of failures, NICs from both lists may be utilized. The pro-
cess involves identifying the appropriate local and target NICs
based on the memory addresses, establishing a connection,
and executing the data transfer.

For instance, as illustrated in Figure 4, to transfer data from
buffer 0 (assigned to cpu:0) in the local node to buffer 1 (as-
signed to cpu:1) in the target node, the engine first identifies
the preferred NICs for cpu:0 using the local server’s topol-
ogy matrix and selects one, such as mlx5_1, as the local NIC.
Similarly, the target NIC, such as mlx5_3, is selected based on
the target memory address. This setup enables establishing an
RDMA connection from mlx5_1@local to mlx5_3@target
to carry out RDMA read and write operations.

To further maximize bandwidth utilization, a single re-
quest’s transfer is internally divided into multiple slices at a
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{  
"cpu:0":[["mlx5_0","mlx5_1"],["mlx5_2","mlx5_3"]],  
"cpu:1":[["mlx5_2","mlx5_3"],["mlx5_0","mlx5_1"]],
"cuda:0":[["mlx5_0"],["mlx5_1","mlx5_2","mlx5_3"]],
...

}
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Figure 4: Transfer engine of MOONCAKE Store.

granularity of 16 KB. Each slice might use a different path,
enabling collaborative work among all RDMA NICs.

Endpoint management. MOONCAKE Store employs a pair
of endpoints to represent the connection between a local
RDMA NIC and a remote RDMA NIC. In practice, each
endpoint includes one or more RDMA queue pair objects.
Connections in MOONCAKE Store are established in an on
demand manner; endpoints remain unpaired until the first
request is made.

To prevent a large number of endpoints from slowing down
request processing, MOONCAKE Store employs endpoint
pooling, which caps the maximum number of active connec-
tions. We use the SIEVE [19] algorithm to manage endpoint
eviction. If a connection fails due to link errors, it is removed
from the endpoint pools on both sides and re-established dur-
ing the next data transfer attempt.

Failure handing. In a multi-NIC environment, one com-
mon failure scenario is the temporary unavailability of a spe-
cific NIC, while other routes may still connect two nodes.
MOONCAKE Store is designed to adeptly manage such tem-
porary failures effectively. If a connection is identified as
unavailable, MOONCAKE Store automatically identifies an
alternative, reachable path and resubmits the request to a dif-
ferent RDMA NIC device. Furthermore, MOONCAKE Store
is capable of detecting problems with other RDMA resources,
including RDMA contexts and completion queues. It tem-
porarily avoids using these resources until the issue, such as a
downed link, is resolved.

3.3 MOONCAKE’s Prefill Pool
Unlike the inviolable decoding nodes, the necessity and
best practices for designing a separate and elastic prefill
pool remain under debate. For example, although many re-
searchers [7–9] share our intuition to use a disaggregated
architecture, it is worth discussing whether this separation is
still necessary with the introduction of chunked prefill [10].

However, after careful consideration, we decided to main-
tain MOONCAKE’s disaggregated architecture. This decision

is primarily driven by the fact that online services typically
have more stringent SLOs. While chunked prefill reduces de-
coding interference, it remains challenging to simultaneously
maximize MFU during the prefill stage and meet the TBT
SLO during the decoding stage. We will demonstrate this in
the end-to-end experiments in §5.2. Another important rea-
son is that we think prefill nodes require different cross-node
parallelism settings to handle long contexts as the available
context length of recent LLMs is increasing rapidly, from 8k
to 128k and even up to 1 million tokens [20]. Typically, for
such long context requests, the input tokens can be 10 to 100
times larger than the output tokens, making optimizing the
TTFT crucial. Due to the abundant parallelism in long con-
text prefill, using more than a single 8×GPU node to process
them in parallel is desirable. However, extending tensor paral-
lelism (TP) across more than one node requires two expensive
RDMA-based all-reduce operations per layer, significantly
reducing the MFU of prefill nodes.

Recently, many works have proposed sequence parallelism
(SP) [21–27]. SP partitions the input sequences of requests
across different nodes to achieve acceleration, allowing even
long requests to meet the TTFT SLO. However, when ap-
plied to shorter input requests, SP results in a lower MFU
compared to using single-node TP only. Recent research [15]
proposes elastic sequence parallelism to dynamically scale up
or down the SP group. Although possible, this adds complex-
ity to our architecture. Additionally, SP still requires frequent
cross-node communication, which lowers the MFU and com-
petes with network resources for transferring KVCache across
nodes.

To address this, MOONCAKE leverages the autoregressive
property of decoder-only transformers and implements chun-
ked pipeline parallelism (CPP) for long context prefill. We
group every X nodes in the prefill cluster into a pipelined
prefill node group. For each request, its input tokens are par-
titioned into chunks, each no longer than the pre f ill_chunk.
Different chunks of the same request can be processed simul-
taneously by different nodes, thus parallelizing the processing
and reducing TTFT.

CPP offers two main benefits: 1) Similar to pipeline par-
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allelism in training, it requires cross-node communication
only at the boundaries of each pipeline stage, which can be
easily overlapped with computation. This leads to better MFU
and less network resource contention with KVCache trans-
fer. 2) It naturally fits both short and long contexts, bringing
no significant overhead for short context prefill and avoid-
ing frequent dynamic adjustment of node partitioning. This
pipeline-based acceleration method has been explored in train-
ing systems [28], but to our knowledge, this is the first appli-
cation in the inference stage, as long context inference has
only recently emerged.

4 Scheduling

4.1 Prefill Global Scheduling

Previous research on LLM serving typically uses a load-
balancing strategy that evaluates the load on each instance
based on the number of assigned requests. In MOONCAKE,
however, the selection of prefill instances considers additional
factors—not just load but also the prefix cache hit length and
the distribution of reusable KVCache blocks. While there is a
preference to route requests to prefill instances with longer
prefix cache lengths to reduce computation costs, it may be
beneficial to schedule them to other nodes to ensure over-
all system balance and meet TTFT SLOs. To address these
complexities, we propose a cache-aware global scheduling
algorithm that accounts for both the prefill time due to the
prefix cache and the local queuing time.

Algorithm 1 details the mechanism for our KVCache-
centric prefill scheduling. For every new request, block keys
are then compared one by one against each prefill instance’s
cache keys to identify the prefix match length (pre f ix_len)
With this matching information, Conductor estimates the cor-
responding execution time based on the request length and
pre f ix_len (which varies by instance), using a polynomial
regression model fitted with offline data. It then adds the
estimated waiting time for that request to get the TTFT on
that instance. Finally, Conductor assigns the request to the
instance with the shortest TTFT and updates the cache and
queue times for that instance accordingly. If the SLO is not
achievable, Conductor directly returns the HTTP 429 Too
Many Requests response status code to the upper layers.

The backbone of this scheduling framework is straightfor-
ward, but complexities are hidden in the engineering imple-
mentation of various components. For example, to predict the
computation time of the prefill stage for a request, we employ
a predictive model derived from offline test data. This model
estimates the prefill duration based on the request’s length
and prefix cache hit length. Thanks to the regular computation
pattern of Transformers, the error bound of this prediction is
small as long as enough offline data is available. The queu-
ing time for a request is calculated by aggregating the prefill
times of all queued requests. In practical implementations,
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Figure 5: The prefill scheduling experiment.

TTFTs are computed in parallel, rendering the processing
time negligible compared to the inference time.

More difficulty lies in predicting the transfer time because
it is determined not only by the size of the transferred data
but also by the current network status, especially whether the
sending node is under congestion. This also necessitates the
replication of hot KVCache blocks, which will be discussed
in §4.2.

4.2 Cache Load Balancing
In MOONCAKE, each prefill instance has its own set of local
prefix caches. The usage frequency of these caches varies
significantly. For example, system prompts are accessed by
almost every request, whereas caches storing content from
a local long document may be used by only one user. As
discussed in §4.1, Conductor’s role is crucial in achieving an
optimal balance between cache matching and instance load.
Thus, from the perspective of the distributed cache system,
load balancing also plays an important role. Specifically, it
involves strategizing on how to back up caches to ensure that
global prefill scheduling can achieve both high cache hits and
low load.

A straw-man solution to this KVCache scheduling problem
could be collecting the global usages of each block, using a
prediction model to forecast their future usages, and making
scheduling decisions accordingly. However, unlike the estima-
tion of prefill time, workloads are highly dynamic and change
significantly over time. Especially for a MaaS provider ex-
periencing rapid growth in its user base, it is impossible to
accurately predict future usages. Thus, we propose a heuristic-
based automated hotspot migration scheme to enhance cache
load balancing.

As previously noted, requests may not always be directed
to the prefill instance with the longest prefix cache length due
to high instance load. In such cases, Conductor forwards the
cache’s location and the request to an alternative instance if
the estimated additional prefill time is shorter than the trans-
fer time. This instance proactively retrieves the KVCache
from the holder and stores it locally. More importantly, we
prefer to compute the input tokens if the best remote prefix
match length is no larger than the current local reusable prefix
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Algorithm 1 KVCache-centric Scheduling Algorithm
Input: prefill instance pool P, decoding instance pool D, request R,

cache block size B.
Output: the prefill and decoding instances (p,d) to process R.

1: block_keys← PrefixHash(R.prompt_tokens,B)
2: TTFT, p← inf, /0

3: best_len,best_instance← FindBestPrefixMatch(P,block_keys)
4: for instance ∈ P do
5: if best_len

instance.prefix_len > kvcache_balancing_threshold then
6: prefix_len← best_len
7: transfer_len← best_len− instance.prefix_len
8: Ttransfer← EstimateKVCacheTransferTime(transfer_len)
9: else

10: prefix_len← instance.prefix_len
11: Ttransfer← 0

12: Tqueue← EstimatePrefillQueueTime(instance)
13: Tprefill← EstimatePrefillExecutionTime(

len(R.prompt_tokens),prefix_len)
14: if TTFT > Ttransfer +Tqueue +Tprefill then
15: TTFT← Ttransfer +Tqueue +Tprefill
16: p← instance
17: d,TBT← SelectDecodingInstance(D)
18: if TTFT > TTFT_SLO or TBT > TBT_SLO then
19: reject R; return
20: if best_len

p.prefix_len > kvcache_balancing_threshold then
21: TransferKVCache(best_instance, p)
22: return (p,d)

multiplied by a threshold1 Both strategies not only reduce
the prefill time for requests but also facilitate the automatic
replication of hotspot caches, allowing for their broader dis-
tribution across multiple instances.

To validate the effectiveness of our strategy, we conduct a
scheduling experiment that compares random scheduling and
load-balancing scheduling with our strategy. We further com-
pare the local cache-aware scheduling described in §4.1 and
the global cache-aware scheduling described in this section
that considers cache load balancing. In random scheduling,
a prefill instance is selected arbitrarily for each request. In
load-balancing scheduling, the instance with the lightest load
is chosen. Specifically, we build a MOONCAKE cluster con-
sisting of 16 8×A800 nodes, and replay the conversation trace
detailed in §5.2.1 for the experiment. We assess the perfor-
mance of each scheduling algorithm based on the TTFTs. The
experimental results, depicted in Figure 5, demonstrate that
our KVCache-centric scheduling algorithms outperform ran-
dom and load-balancing scheduling. By incorporating cache
load balancing, the global cache-aware algorithm reduces the
average TTFT by an additional 14% compared to the local
cache-aware algorithm.

1This threshold is currently adjusted manually but can be adaptively
adjusted by an algorithm in the future.

5 Evaluation

As described before, according to historical statistics of Kimi,
MOONCAKE enables Kimi to handle 115% and 107% more
requests on the A800 and H800 clusters, respectively, com-
pared to our previous systems based on vLLM. To further
validate this results and ensure reproducibility, in this section,
we conduct a series of end-to-end and ablation experiments on
MOONCAKE with a dummy LLaMA3-70B model to address
the following questions: 1) Does MOONCAKE outperform
existing LLM inference systems in real-world scenarios? 2)
Compared to conventional prefix caching methods, does the
design of MOONCAKE Store significantly improve MOON-
CAKE’s performance?

5.1 Setup

Testbed. During the reproducing experiments, the system
was deployed on a high-performance computing node cluster
to evaluate its performance. Each node in the cluster is con-
figured with eight NVIDIA-A800-SXM4-80GB GPUs and
four 200 Gbps RDMA NICs. The KVCache block size in
MOONCAKE Store is set to 256. For deploying MOONCAKE,
each node operates as either a prefill instance or a decoding
instance based on the startup parameters. For deploying other
systems, each node hosts a single instance.
Metric. Specifically, we measure the TTFT and TBT of
each request, where the TBT is calculated as the average of
the longest 10% of the token arrival intervals. As mentioned
in §2, the threshold for TTFT is set to 30 s, and TBT thresh-
olds are set to 100 ms, 200 ms, and 300 ms, depending on
the scenario. We consider requests with both TTFT and TBT
below their respective thresholds as effective requests, and
the proportion of effective requests among all requests as the
effective request capacity. For brevity, the subsequent experi-
ments not mentioning TTFT are assumed to meet the TTFT
threshold. To more intricately compare the caching perfor-
mance, we also measure the GPU time during the prefill stage
and the cache hit rate for each request.
Baseline. We employ vLLM [14], one of the state-of-the-art
open-source LLM serving systems, as our experimental base-
line. vLLM features continuous batching and PagedAttention
technologies, significantly enhancing inference throughput.
Despite its strengths, vLLM’s architecture, which couples the
prefill and decoding stages, can disrupt decoding especially in
scenarios involving long contexts. Recent updates to vLLM
have integrated features like prefix caching and chunked pre-
fill to improve performance metrics in long-context scenarios,
such as TTFT and TBT. In our experiments, we also compare
these features of vLLM. In our experiments, we utilize the
latest release (v0.5.1) of vLLM. Due to limitations in the
current implementation, we test the prefix cache and chunked
prefill features of this version separately.
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Conversation Tool&Agent Synthetic
Avg Input Len 12035 8596 15325
Avg Output Len 343 182 149
Cache Ratio 40% 59% 66%
Arrival Pattern Timestamp Timestamp Poisson
Num Requests 12031 23608 3993

Table 2: Workload Statistics.

5.2 End-to-end Performance

In our end-to-end experiments, we evaluate the request han-
dling capabilities of MOONCAKE and baseline systems under
various workloads. Specifically, we measure the maximum
throughput that remains within the defined SLO thresholds.
We employ three types of workloads in our tests: two real-
world traces sampled from Kimi that represent online con-
versations and tool&agent interactions, respectively, and a
synthetic workload to cover different inference scenarios. We
will first describe the unique characteristics of these work-
loads and then discuss the results. Lastly, we analyze the GPU
computation time during the prefill stage, further demonstrat-
ing the advantages of MOONCAKE Store in enhancing cache
utilization and reducing computation costs.

5.2.1 Workload

Conversation workload. Chatbots [1, 5] represent one of
the most prevalent applications of LLMs, making conversa-
tional requests a highly representative workload for LLM in-
ference. As shown in Table 2, the conversation workload con-
tains a significant portion of long-context requests—reaching
up to 128k tokens and averaging around 12k tokens—which is
comparable to the data lengths found in current long-context
datasets [29, 30]. Moreover, the workload has an average of
approximately 40% prefix caching ratio brought about by
multi-turn conversations. We sampled 1 hour of conversation
traces from an online inference cluster, where each record
includes the input and output lengths along with timestamps
of arrival. Requests are dispatched according to these times-
tamps and are preemptively terminated once the model output
reaches the predetermined length.
Tool&Agent workload. Recent studies [31] involving
LLMs deployed as tools or agents to perform tasks have been
increasing. These tasks are typically characterized by the in-
corporation of pre-designed, often lengthy, system prompts
that are fully repetitive. We collected traces of the tool&agent
workload, also sampled over a 1-hour period. As indicated
in Table 2, this workload exhibits a high proportion of prefix
caching, with shorter input and output lengths.
Synthetic workload. The synthetic workload was con-
structed from a combination of publicly available datasets.
We categorized the requests in the real trace into three types:
short conversations, tool and agent calls, and long text sum-
marization and QA. For each category, we selected the follow-
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Figure 6: The experiment of the effective request capacity of
MOONCAKE under the tool&agent workload.

ing datasets: ShareGPT [32], Leval [29], and LooGLE [30].
ShareGPT comprises multi-turn conversations with short in-
put lengths. Leval serves as a benchmark for evaluating model
performance over long contexts, simulating scenarios where
requests involve lengthy system prompts typical of tool and
agent interactions. LooGLE is tailored for long-context QA
and summarization tasks, featuring input lengths of up to 100k
tokens and including both multi-turn QA and single-turn sum-
marizations, making it well-suited for long text summarization
and QA scenarios. Overall, the synthetic workload has the
longest average input length. Despite having the highest pro-
portion of prefix caching, its cache hits are quite dispersed,
thus requiring a substantial cache capacity.

During preprocessing, each conversation turn was mapped
into a separate request, incorporating both the input and out-
puts from previous interactions. For datasets featuring mul-
tiple questions with the same lengthy prompt, each question
and its preceding prompt were treated as a single request. We
combined the processed datasets in a 1:1:1 ratio, preserving
the sequential relationships within the multi-turn dialogue
requests while randomly shuffling them. Since the datasets do
not specify arrival times, we simulated realistic conditions by
dispatching requests at a defined rate using a Poisson process.

5.2.2 Effective Request Capacity

To assess the maximum number of requests that can adhere
to the SLOs under different workloads, we test four system
configurations: MOONCAKE, vLLM, vLLM with the prefix
caching feature, and vLLM with the chunked prefill feature,
each utilizing 16 nodes.
Conversation workload. The results for this workload are
presented in Figure 1. This workload, characterized by vary-
ing input lengths and longer output lengths, causes significant
fluctuations in TBT for the vLLM system due to the lengthy
contexts in the prefill stage. While chunked prefill reduces
decoding interference, balancing the enhancement of MFU
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Figure 7: The experiment of the effective request capacity of
MOONCAKE under the synthetic workload.

in the prefill stage with the TBT constraints in the decoding
stage remains challenging. Despite meeting the TTFT SLO,
its effective request capacity is still suboptimal. Compared to
vLLM, MOONCAKE achieves a very significant increase in
effective request capacity.
Tool&Agent workload. In contrast, the tool&agent work-
load has a high proportion of prefix caching and shorter output
lengths, favoring the vLLM system as the short prefill time
minimally impacts output. However, as illustrated in Figure 6,
vLLM and vLLM with chunked prefill experience more severe
disruptions in decoding due to longer prefill processing times,
resulting in a lower effective caching capacity than vLLM
with prefix caching. MOONCAKE uses a global cache pool
to significantly increase caching capacity and optimize cache
utilization through internode transfers, excelling in scenarios
with high prefix caching. As a result, it enhances effective
caching capacity by 42% compared to vLLM with prefix
caching under the 200 ms threshold.
Synthetic workload. The synthetic workload features the
longest average input lengths and dispersed cache hotspots
which leads to poor cache utilization under smaller cache ca-
pacities. As depicted in Figure 7, most requests processed by
MOONCAKE maintain a TBT within 100 ms, whereas about
20% of requests handled by vLLM exceed 300 ms. The per-
formance of systems with prefix caching and chunked prefill
is similar to vLLM, as they fail to mitigate the impact of long
contexts on the decoding stage. Compared to vLLM, MOON-
CAKE increases effective request capacity by 40% under the
200 ms threshold.

5.2.3 Prefill GPU Time

Prefill GPU time is positively correlated with requests’ TTFT
and serving cost and is determined by requests’ input lengths
and cache hit rates. We analyze the average GPU time during
the prefill stage under different workloads, as shown in Fig-
ure 8. For MOONCAKE, the conversation workload incurs the
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Figure 8: Average GPU time of each request during the prefill
stage under different workloads.

longest prefill GPU time due to its longer input lengths and
lower prefix cache ratio. The synthetic workload, featuring
the highest prefix cache ratio and dispersed cache hotspots,
achieves optimal cache hit rates within MOONCAKE’s global
cache pool. Consequently, despite having the longest aver-
age input lengths, it requires less prefill GPU time than the
conversation workload. Finally, the tool&agent workload ex-
hibits the shortest prefill GPU time because it has the shortest
average input length and a relatively high prefix cache ratio.

Across different systems, MOONCAKE significantly re-
duces GPU time by fully utilizing global cache for prefix
caching, achieving reductions of 36%, 53%, and 64% for con-
versation, tool&agent, and synthetic workloads, respectively,
compared to vLLM. vLLM featuring prefix caching uses lo-
cal cache stored on HBM, where the cache capacity is far
lower than that of MOONCAKE. Its prefill GPU time is 1.43×
and 1.40× higher than MOONCAKE for the conversation and
tool&agent workloads, respectively. However, in the synthetic
workload, where cache hotspots are more dispersed, the prefill
GPU time of vLLM with prefix caching is nearly equivalent
to vLLM, and is 2.59× that of MOONCAKE. vLLM with
chunked prefill sacrifices some prefill efficiency to maintain
lower TBT during the decoding stage, resulting in the longest
prefill GPU times, which are 1.90×, 2.68×, and 3.33× that
of MOONCAKE for the three workloads.

5.3 MOONCAKE Store
To address Question 2, we examine the effects of MOON-
CAKE Store’s global cache pool on system performance. Our
analysis reveals that although using local DRAM to construct
KVCache memory increases cache capacity than HBM only,
restricting the cache to a single node still leads to suboptimal
cache utilization. We will first conduct a quantitative anal-
ysis of cache capacity requirements and then showcase the
benefits through practical workload experiments.

5.3.1 Quantitative Analysis of Cache Capacity

Considering the LLaMA3-70B model, the KVCache size
required for a single token is 320 KB. Despite the possibility
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of reserving approximately 1 TB of DRAM for local caching,
this setup only supports storage for about 3 million tokens,
which proves insufficient. Figure 9 displays theoretical cache
hit rates under various workloads and their combinations.
The findings indicate that a local cache with a 3M token
capacity does not achieve 50% of the theoretical maximum
hit rate in most scenarios. We also determine that, in these
workloads, a cache capacity of 50M tokens nearly reaches the
theoretical maximum hit rate of 100%, which require to pool
at least 20 nodes’ DRAM. The results highlight that a global
cache significantly enhances capacity over local caches, thus
improving cache hit rates and reducing GPU times.

5.3.2 Practical Workload Experiment

To evaluate the effectiveness of global versus local caching
mechanisms, we focus on two metrics: cache hit rate and
average GPU computation time for prefill. We configure a
cluster with 10 prefill nodes and restrict all request outputs
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Figure 11: Replication count of cache keys across various
workloads. We continuously monitor and record the keys and
counts of all cache blocks every 30 seconds, subsequently
ranking the cache keys by the cumulative counts from all sam-
ples. This figure depicts the temporal variation in replication
numbers for cache keys ranked at the 10th, 100th, 1000th, and
10,000th positions.

to 1 to isolate the impact of the decoding stage. Each node in
the local cache setup has a 3M token capacity but can only
access its own cache. The global scheduler is programmed
to direct requests to nodes with higher prefix match ratios to
maximize cache utilization. Conversely, in the global cache
setup, each node also has a 3M token capacity but can share
caches across all nodes, supported by proactive inter-node
cache migration. The experimental data, shown in Figure 10,
indicates that the global cache achieves higher cache hit rates
and shorter average prefill GPU computation times across all
tested workloads. Compared to the local cache, the global
cache exhibits a maximum increase of 136% in cache hit rate
and a reduction of up to 48% in prefill computation time.

5.3.3 Cache Replica

Building upon the cache load balancing scheduling strategy
discussed in §4.2, the cache keys in MOONCAKE Store may
have replicas distributed across different machines, thereby
reducing access latency for hot caches. To further investi-
gate the system’s dynamic behavior, we count the number of
cache replicas for keys across three workloads, as shown in
Figure 11.

It can be observed that in the conversation and tool&agent
workloads, there are highly concentrated hot caches (e.g., the
top 100 keys), which, after the system stabilizes, have replicas
on almost every instance in the prefill pool. In contrast, the
synthetic workload has fewer shared prefix caches, resulting
in fewer replicas and potential fluctuations, even for the top
10 blocks. This demonstrates that our scheduling strategy in
§4.2 effectively provides replicas for hot caches, particularly
in scenarios with highly concentrated prefix caches.

5.4 KVCache Transfer Performance
5.4.1 Transfer Engine

MOONCAKE’s transfer engine is designed to facilitate effi-
cient cache transfers between nodes. We compare its latency
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Figure 13: The synthetic workload experiment with varying
network bandwidths.

with other popular schemes, considering two alternative base-
lines: torch.distributed with a Gloo backend and TCP-
based transfers. All schemes are tested with a concurrency
level of 64 and a minimum transfer granularity of 128 KB. As
depicted in Figure 12, the transfer engine consistently exhibits
significantly lower latency than the alternative methods. In the
scenario of transferring 40 GB of data, corresponding to the
cache size for LLaMA3-70B with 128k tokens, the transfer
engine achieves bandwidth of 87 GB/s and 190 GB/s under
network configurations of 4×200 Gbps and 8×400 Gbps, re-
spectively. These rates are approximately 2.4× and 4.6×
faster than those achieved using the TCP protocol. The code
of this transfer engine will also be open sourced later as it is
a decoupled and basic tool that can be used in many scenar-
ios (e.g., it is also used in the checkpoint transfer service of
Moonshot AI).

5.4.2 Bandwidth Demand by MOONCAKE

MOONCAKE’s global cache pool relies on efficient inter-node
cache transfers to hide cache transfer times within GPU com-
putation times. We evaluate the impact of network bandwidth
on the system’s performance by simulating a range of band-
widths from 24 Gbps to 400 Gbps and measuring the transfer
time and TTFT under the synthetic workload described in
§5.2.1. Figure 13a shows that the average TTFT of requests
decreases as bandwidth increases. When the total communi-
cation bandwidth exceeds 100 Gbps, the average TTFT re-
mains below 2 s, significantly less than the TTFT of the re-
computation baseline. However, when bandwidth falls below
100 Gbps, system performance is significantly compromised.
This is marked by a sharp increase in TTFT and evident
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Figure 14: End-to-end latency breakdown of MOONCAKE. In
the figure, Prefill represents the time for layer-wise prefill that
integrates cache loading and storing, and Decode represents
the time to decode 128 tokens. All processes with diagonal
stripes can proceed asynchronously with model inference and
do not affect MOONCAKE’s throughput.

network congestion, as demonstrated by the substantial diver-
gence between actual and theoretical transfer times illustrated
in Figure 13b. Consequently, we recommend a minimum
network bandwidth of 100 Gbps to ensure optimal system
performance.

5.4.3 E2E Latency Breakdown

The latency of a single inference request in MOONCAKE
can be decomposed into five components: 1) scheduling and
queuing time; 2) layer-wise prefill time; 3) cache transfer time;
4) time required for the decoding node to load cache from
DRAM to HBM; and 5) decoding time. We experimentally
analyze the proportion of these five components under settings
with prefix cache ratios of 0% and 95%, as shown in Figure 14.

First, it is evident from the figure that the introduction of
prefix caching significantly reduces the prefill time. Specif-
ically, with an input length of 128k tokens, prefix caching
reduces the prefill time by 92%. Furthermore, the overhead
introduced by MOONCAKE has minimal impact on the sys-
tem’s performance. The Schedule, Transfer, and Load Cache
components can proceed asynchronously with model infer-
ence and therefore do not affect MOONCAKE’s throughput.
Moreover, the increase in TTFT due to these overheads is
smaller than the reduction achieved by prefix caching. Even
when accounting for the overhead, prefix caching in MOON-
CAKE can reduce TTFT by 86% with an input length of 128k
tokens.

5.5 P/D Ratio

As a deployed P/D disaggregation system, in this section, we
explore the impact of different P/D ratios on system perfor-
mance. We define the P/D ratio as the number of prefill nodes
to decoding nodes. Using the clusters comprising 16 nodes
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Figure 15: The impact of the P/D ratio on the system perfor-
mance. P is short for prefill nodes and D is short for decoding
nodes.

but with varying P/D ratios, we measure the average TTFT
and TBT under the synthetic workload described in §5.2.1.
We then calculate the effective request capacity as introduced
in §5.2.2, setting the thresholds for TTFT and TBT to 10
seconds and 100 milliseconds, respectively. Increasing the
number of prefill nodes reduces TTFT but increases TBT, and
vice versa (Figure 15b). Therefore, we need to find a balance
between TTFT and TBT. Figure 15a demonstrates that when
the P/D ratio is approximately 1:1, MOONCAKE achieves its
highest effective request capacity, indicating that the loads on
the prefill and decoding clusters are relatively balanced.

We also note that some prior work [7, 9] has proposed
dynamically switching the roles of nodes between prefill and
decoding. However, in practical deployments, we find that the
statistical characteristics of online traffic are generally stable.
Therefore, we choose to fix the P/D ratio while continuously
monitoring the loads of the prefill and decoding clusters, only
switching node roles when significant load fluctuations occur.

6 Related Work

Significant efforts have been dedicated to enhancing the effi-
ciency of LLM serving systems through scheduling, memory
management, and resource dissaggregation. Production-grade
systems like FasterTransformer [33], TensorRT-LLM [34],
and DeepSpeed Inference [35] are designed to significantly
boost throughput. Orca [13] employs iteration-level schedul-
ing to facilitate concurrent processing at various stages, while
vLLM [14] leverages dynamic KVCache management to op-
timize memory. FlexGen [36], Sarathi-Serve [10], and Fast-
Serve [37] incorporate innovative scheduling and swapping
strategies to distribute workloads effectively across limited
hardware, often complementing each other’s optimizations.
Further optimizations [7–9] lead to the separation of prefill
and decoding stages, leading to the disaggregated architecture
of MOONCAKE. Our design of MOONCAKE builds on these
developments, particularly drawing from the open-source
community of vLLM, for which we are deeply appreciative.

Prefix caching is also widely adopted to enable the reuse
of KVCache across multiple requests, reducing computa-
tional overhead in LLM inference systems [14, 34]. Prompt
Cache [16] precomputes and stores frequently used text KV-
Cache on inference servers, facilitating their reuse and sig-
nificantly reducing inference latency. SGLang [17] leverages
RadixAttention, which uses a least recently used (LRU) cache
within a radix tree structure to efficiently enable automatic
sharing across various reuse patterns.

Among these approaches, CachedAttention [38], a con-
current work with us, proposes a hierarchical KV caching
system that utilizes cost-effective memory and storage media
to accommodate KVCache for all requests. The architecture
of MOONCAKE shares many design choices with CachedAt-
tention. However, in long-context inference, the KVCache
becomes extremely large, requiring high capacity and efficient
data transfer along with KVCache-centric global scheduling.
Additionally, MOONCAKE is not a standalone cache service,
it incorporates both a memory-efficient cache storage mecha-
nism and a cache-aware scheduling strategy, further improv-
ing prefix caching efficiency.

The benefits of a distributed KVCache pool depend on
the cache hit rate, which increases as the per-token cache
size decreases under a fixed capacity. Consequently, orthogo-
nal techniques such as KVCache compression [39–41] and
KVCache-friendly attention architectures [42, 43] can further
enhance our approach.

7 Conclusion

This paper presents MOONCAKE, a KVCache-centric disag-
gregated architecture designed for efficiently serving LLMs,
particularly in long-context scenarios. We discuss the neces-
sity, challenges, and design choices involved in balancing
the goal of maximizing overall effective throughput while
meeting latency-related SLO requirements.
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