
Multi-objective optimization for Floating Point
Mix-Precision Tuning

Zeqing Li
Tsinghua University

Department of Computer Science
Email: zq-li17@mails.tsinghua.edu.cn

Yongwei Wu
Tsinghua University

Department of Computer Science
Email: wuyw@tsinghua.edu.cn

Youhui Zhang
Tsinghua University

Department of Computer Science
Zhongguancun Laboratory

Beijing 100094, China
Email: zyh02@tsinghua.edu.cn

Abstract—This paper proposes a multi-objective optimization
method for mixed-precision computation. Unlike previous studies
that often take mantissa length reduction as the only optimization
target, our work models the actual performance and power
consumption of mixed precision programs on the corresponding
hardware platforms, and based on this model searches for the
pareto optimal set of all precision configurations.

Experiments show that this tool can obtain performance
improvements of 15%−71% on floating-point benchmarks while
satisfying accuracy requirements. Compared to some typical
counterpart-work, an average 21% improvement can be obtained
in SIMD scenarios.

I. INTRODUCTION

In high-performance computing tasks, floating-point compu-
tation is a primary means of real-value computation. As com-
putation scales increase, the efficient employment of floating-
point computation has an increasingly significant impact on
overall performance [1]. While higher precision can improve
output accuracy, it can also increase program runtime, energy
consumption, and memory-access pressure.

However, not all programs require high-precision operations
throughout to guarantee output accuracy. Ideally, applications
should use as little high-precision as possible to gain per-
formance and power advantages while maintaining output
precision. Developing mixed-precision codes manually is chal-
lenging, as it requires a deep understanding of the numerical
behavior of the algorithm, as well as details of floating-point
rounding errors, particularly for large HPC programs.

Fortunately, many studies aim to automate the development
of mixed-precision versions of a given program [2]–[5]. How-
ever, all existing studies have some limitations.

Firstly, they only use the number of variable bits as the
feedback signal for optimization, and do not precisely model
program performance. This approach is inconsistent with
reality, mainly because SIMD instructions are widely used
as an effective speedup in floating-point programs, and the

This work was supported in part by National Natural Science Foundation
of China (NSFC) under Grant No. 62250006, 62072266 and 62202254,
in part by Beijing National Research Center for Information Science and
Technology (BNR2022RC01003), in part by Tsinghua University Initiative
Scientific Research Program, and in part by Suzhou-Tsinghua Innovation
Leadership Program.

acceleration effect of SIMD depends on information such as
the degree of vectorization and specific hardware parameters.
Thus, signals such as the number of variable bits can only
provide rough trends. Additionally, the additional overhead
generated at the hardware level is not considered, as some
reduced precision variables and their operations will not nec-
essarily improve performance.

Secondly, existing work lacks modeling of power consump-
tion, which should also be a key optimization goal in some
scenarios.

In this paper, we propose a method to model accuracy,
performance, and power consumption by sampling on the
corresponding hardware platform using automatic differen-
tiation (AD) and Gaussian processes (GP), respectively. A
multi-objective Bayesian optimization algorithm then explores
the search space to find the optimal precision configuration
with a guaranteed precision threshold. In the vast majority
of our experiments, the tool chain yields better precision
configurations compared to existing work.

II. RELATED WORK

The field of approximate computation has a range of well-
established work, and we refer the reader to a detailed survey
of the entire domain [6], [7], presenting here only a small part
of the work most relevant to that described in this paper.

One direction of work in mixed precision is to analyze
floating-point codes to find unstable numerical computations.
Some work [8], [9] give tight bounds on the rounding er-
ror based on symbolic Taylor expansions, but the precision
strategy obtained is too conservative. Precimonious [3], also
dedicated to numerical analysis, is the first approximate com-
putation tool that can be applied to large programs. Nhut
[10] analyzes the variables of large programs in parallel for
further efficiency, and can adjust the floating-point by any
number of precision bits. ADAPT [11], in order to study
the effect of variable precision on the output error in a
more refined way, analyzes it with automatic differentiation to
obtain a more radical precision configurations. We differ from
these techniques in that we go beyond static analysis of the
floating-point code and model the program performance power
consumption by taking into account the hardware influences.979-8-3503-1175-4/23/$31.00 ©2023 IEEE

Fig. 1. Flowchart for searching mixed precision configurations. (a) Sample: A series of initial precision configurations are obtained from the precision space
by a sampling algorithm. (b) Execute: These precision configurations are executed on the simulator or hardware platform to obtain the performance and power
consumption corresponding to each configuration. (c) GP/AD: Modeling with Gaussian processes and automatic differentiation and using them as surrogate
functions in the optimization process. (d) Optimize: Build acquisition function and use Bayesian optimization to search for better precision configurations.
(e) Update: Add the new configuration to the initial set and consider it as a complete iteration after executing process b again. (f) Generate: After several
iterations, a pareto efficient set is generated from the data set, and a proper precision configuration is selected according to the specific constraints.

III. PROBLEM FORMULATION

Definition 1 (Program Input Precision). The given pro-
gram has n floating-point variables X = {x1, x2, ..., xn}.
The precision of each variable is inscribed by a two-tuple
(exponent and mantissa), and in this paper we only consider
the mantissa, such that the program precision is represented
by the precision vector P = {p1, p2, ..., pn} and pi represents
the mantissa of the variable xi.

Definition 2 (Output Error). Error of the program’s output
for a given precision configuration relative to the initial
precision output.

Definition 3 (Performance). Performance is defined as the
acceleration ratio achieved by the program in a mixed preci-
sion configuration.

Definition 4 (Power). Power consumption is defined as the
sum of the power consumption of each module.

In the present problem, there is a large correlation be-
tween output error, performance, and power consumption, and
they are often not optimized simultaneously. Therefore, we
introduce Pareto optimality to measure the advantages and
disadvantages of the precision configuration.

Definition 5 (Pareto Efficient Set). Given distinct yi ∈ RL

for i = 1, . . . , n, we write yj ⪰ yk when yj,l ≥ yk,l
for each l = 1, . . . , L, and say ” yjdominates yk ”. For
the set of distinct points Y = {y1, . . . ,yn} , the sub-
set of Pareto efficient points, P(Y) ⊆ Y , is defined as
P(Y) =

{
yi ∈ Y : yj ⪰̸ yi∀yj ∈ Y\ {yi}

}
. In other words,

the Pareto efficient set is the set of non-dominated points, and
is always non empty.

Problem 1 (Floating Point Precision Tuning). Given a
precision space D, each precision configuration corresponds
to a vector p in the space D. Output error, performance
and power consumption are the elements y in the output

space Y . Precision Tuning requires finding the set of vectors
P = {p|f(p) ∈ Y, y′ ⪰̸ f(p),∀p ∈ D,∀y′ ∈ Y }.

In this article, we aim to explore the Pareto efficient set
consisting of output error, performance, and power consump-
tion under different precision configurations, and to choose the
optimal configuration according to the actual output precision
requirements.

IV. METHODOLOGY

A. Overview

Figure 1 illustrates the full process of the mixed precision
searching algorithm. First, we sample in the precision space
and optimize the sampling process using active learning and
domain knowledge (IV-B). Then, it is tested in real hardware
or clock-driven processor simulator to obtain the power-
consumption and performance under different configurations.
After obtaining the dataset, we model the accuracy using au-
tomatic differentiation (IV-C) and model the performance and
power consumption with Gaussian processes (IV-D). Taking
the above models as surrogate functions, we apply a multi-
objective Bayesian optimization algorithm (IV-E) to search for
a better precision vector and add it to the dataset. After several
iterations, we find the Pareto effective set from the dataset
and select the optimal precision configuration based on actual
constraints.

B. Sampling

Considering the impact of sampling time and data set size
on modeling speed, we aim to utilize a small but information-
rich data set. Although a naive uniform sampling method
exists, it is not ideal for capturing representative samples in
our problem.

To address this challenge, we leverage transductive experi-
mental design (TED), a technique that has shown significant
promise in architecture design [12]. As outlined in Algorithm

1, TED constructs a distance matrix K between newly sam-
pled vectors and unsampled spaces using a suitable distance
function. We then maximize the trace of this matrix to obtain
more representative sampling points [12].

To further enhance sampling performance, we incorporate
domain knowledge and manually prune the sampling space.
Specifically, we specify original sampling points and apply
the TED algorithm to neighborhoods of these points. Our
experiments demonstrate that incorporating domain knowledge
can lead to a 13% reduction in the number of required samples
on average (as shown in Algorithm 1).

Algorithm 1 Sampling algorithm
Input: D is the unsampled space, α is the normalization

factor, N is the amount of sampled data, and C is the
set of artificially introduced sampling points.

Output: S is the sampled data set with |S| = N .
1: S ← ∅
2: Di ← neighborhood of ci ∈ C
3: for x in Di do
4: Si ← TED(x, α, ⌊N/|C|⌋)
5: S ← S ∪ Si

6: end for
Procedure TED(D,α,N)
Input: K is the metric matrix.

7: s← ∅
8: for i = 1 to N do
9: s∗ ← argmaxTr[KDs(Kss + αI)−1KsD]

10: s← s ∪ s∗, D ← D\s∗
11: K ← K −KDs∗(Ks∗s∗ + αI)−1Ks∗D

12: end for
13: return s
EndProcedure

C. Output Error Estimation Model
We construct our error model by approximating the program

with a first-order Taylor series, where the output error is
assumed to be linear in the rounding error. Specifically, we
consider the input of the program, denoted by x, and the out-
put, denoted by y, which together can be viewed as a function
f that satisfies y = f(x). Assuming a small perturbation ∆x
in the input caused by a change in input precision, we can
estimate the output error of the program using the following
equation: ∆y ≈

∣∣f ′(a)T∆x
∣∣.

To measure the error of a specific precision, we use the
absolute error due to rounding in variable x, which is less
than |x|ϵ, where ϵ = 2−p and p represents the number of bits
in the mantissa for that precision [11]. We define a metric E
to capture the sensitivity of any input or intermediate variable
to rounding errors:

Ex = |f ′(x)× x| (1)

D. Performance and Power Models
Research on building reliable prediction models quickly for

a given initial training set has been a popular topic in recent

years. Gaussian process (GP) models have gained significant
attention due to their non-parametric and robust nature, which
have contributed to their success in traditional optimization
problems. In architecture design, GP has been successfully
applied in several studies. For instance, in the design of 64-
bit prefix adders, GP was used to efficiently and effectively
explore the parameter space of EDA tools [13]. Similarly,
BOOM-Explorer [14] uses GP to characterize the design
space in microarchitecture design. Experiments show that this
method can accurately fit processor performance and further
derive optimal microarchitecture parameters.

In light of these successes, we aim to employ GP to
construct performance and power consumption models. We
assume that we have feature vectors X that correspond to a
set of power or performance values y. GP provides a prior over
the value function f as f(x) ∼ GP (µ, kθ), where µ represents
the mean value and the kernel function k is parameterized by
θ. Using this prior, we can construct Gaussian distributions
for any collection of value functions f , as specified by the
following equation:

f = [f (x1) , f (x2) , . . . f (xn)]
T ∼ N

(
µ,KXX|θ

)
(2)

where KXX|θ is the intra-covariance matrix among all feature
vectors and

[
KXX|θ

]
ij

= kθ (xi,xj). Thus, given a newly
sampled feature vector x∗, the predictive joint distribution f∗
that depends on y can be calculated according to Equation:

f∗ | y ∼ N
([

µ
µ∗

]
,

[
KXX|θ + σ2

eI KXx∗|θ
Kx∗X|θ kx∗x∗|θ

])
(3)

In general, the performance of GP depends on the ex-
pressiveness of the kernel function kθ. The common kernel
functions are linear kernels, polynomial kernels, and radial
kernels, etc. DNN is used in BOOM-Explorer [14] to find
the optimal gaussian kernel. However, in the context of this
particular problem, our testing revealed that although DNN-
based methods have the potential to attain higher prediction
accuracy, they are not necessarily capable of generating op-
timal precision configurations. This can be attributed to the
restricted range of variable precision options, which are limited
to 16-32-64 bits. Upon careful consideration of factors such
as time overhead, training data size, and prediction accuracy,
we have decided to adopt the ARD Matern 5/2 kernel, which
is defined as

kM52 (x,x
′) = θ20

(
1 +
√
5r2 + 5

3r
2
)
exp

(
−
√
5r2

)
r2 =

∑D
d=1 (xd − x′

d)
2
/θ2d

(4)

E. Multi-objective Optimization

Next we need to use Bayesian optimization to obtain the
Pareto set based on the above model. Suppose the sampled pre-
cision configurations are X = {x1, x2, ..., xt} and the model
to evaluate them is yi = f(xi). Our goal is to find a new preci-
sion configuration xt+1 such that reward = f(xt+1)− f(x∗)

is maximized. This is very simple with a single objective,
but in this problem a better precision configuration should
not only have higher output accuracy, but also lower power
consumption and runtime. There is a clear correlation between
these multiple optimization objectives before, so how to gener-
alize the single-objective optimization framework to the multi-
objective case is the main problem we face.

Fig. 2. Two-dimensional schematic of the Pareto hypervolume when only
performance and precision are considered. (a) The four red points represent
the currently obtained pareto-optimal set, and the shaded area is their PV
relative to the origin. The green points included in it are the suboptimal
precision configuration, dominated by the red points. (b) The EIPV is the
expectation of the area of the dark region, and the blue points are candidates
for a more optimal configuration. Algorithm 2 selects new sampling points
by maximizing EIPV.

To solve this problem, we introduce the concept of Pareto
hypervolume (PV) [15], [16]. Given a set of distinct points
Y = {y1, . . . ,yn} , we have defined its Pareto efficient sub-
set, P(Y) . Define a reference point, vref ∈ RL, which is
dominated by each element of P(Y) i.e. u ⪰ vref for each
u ∈ P(Y) . The Pareto hypervolume of P(Y) with respect to
vref is

Volvref P(Y)) =
∫
RL

I [y ⪰ vref]

1− ∏
u∈P(Y)

I[u ⪰̸ y]

 dy

(5)
where I(.) is the indicator function, which outputs 1 if its
argument is true and 0 otherwise.

In this way, we convert the problem of simultaneously
optimizing the three objectives into optimizing the super
volume of these three variables relative to the reference point.
By definition a larger PV indicates a better configuration,
so the optimal configuration point should maximize the total
increment of PV , i.e., maximize the following expression

rT = Volvref

(
P
(
ỸT

))
−Volvref (P (Y∗)) (6)

where Y∗ is the true Pareto frontier and ỸT is the suggested
Pareto frontier after T evaluations of each of the objectives.

Unfortunately, the variable proves to be computationally
infeasible when T is sufficiently large. In this problem, we use
the expected improvement in Pareto hypervolume introduced
by [17]. In other words, our goal is to maximize the area of
the dark shadows in Figure 2.

Algorithm 2 Mixed-precision Search Algorithm
Input: D is the unsampled space, α is the normalization

factor, N is the amount of sampled data, and T is the
maximal iteration number.

Output: Final Precision Configuration P
1: X0 ← sampling(D,α,N)
2: Use gem5 to obtain corresbonding clock cycles and power
3: L← X0

4: U ← D\L
5: for x = 1← T do
6: Establish and train GP on L
7: x∗ ← argmax

x∈U
EIPV(x | U)

8: Update : L, U
9: end for

10: Construct Pareto-optimal set X from L
11: Select precision configuration P based on constraints

return P

V. EVALUATION

In the experimental section, we searched for the optimal
configurations of different scalar and vector programs for a
given accuracy constraint and compared them with previous
work. In order to get power consumption conveniently, we
used the cycle-driven CPU simulator, Gem5, as a test platform
for most of our experiments. Further, we also did real machine
tests in x86 environment to verify the correctness of the
method.

A. Scalar Program

We compared our search results with those of ADAPT
[11]. Given our output results produced precisely in-place
precision vectors, we mapped the mantissa back to half-
precision, single-precision, and double-precision for compar-
ison. To obtain the program’s precision configuration, we
initially utilized ADAPT’s test programs with equivalent input
files and error metrics. As ADAPT solely supports 32-64 bit
mixing, we ensured a fair comparison by setting the lowest
precision to single precision in the first set of experiments.
Subsequently, we extended the search logic of ADAPT to
support half-precision search.

Figure 3 presents the experimental results, with each group
representing a distinct test case on the horizontal coordinates.
The two left columns in each group represent the data obtained
by running ADAPT, while the vertical coordinates represent
the speedup ratio obtained by each program relative to the
full-precision version. Unlike the sampling operation, we con-
ducted five runs of each program and calculated the average
to obtain the exact running time.

Our experiments revealed that our tool could provide better
precision configurations in the vast majority of cases in scalar
program tests. Our tool yielded an average speedup ratio of
32.7%, which is better than ADAPT’s 30.5% for 32− 64 bit
configurations. Our tool also obtained an average speedup ratio
of 42.5% when the precision options expanded, which is more
advantageous than the existing work’s 36%.

This improvement resulted from two primary reasons:
firstly, a decrease in the number of bits of variables did not
necessarily equate to faster speed. In some mixed-precision
versions of programs, the compiler implicitly added data type
conversions, increasing overhead at the hardware level, dimin-
ishing or offsetting the performance benefits of lower preci-
sion. Type conversion operations could account for 10− 20%
of the total time in a given program, as observed in [18].
Secondly, greedy search methods risked being restricted to
local optima, which became more pronounced as the search
space increased, i.e., when the number of optional precision
configurations per variable increased.

Arclength Simpson Jet Carbongas

Apps

1

1.2

1.4

1.6

1.8

S
p

e
e
d

u
p

32-64(ADAPT) 16-64(ADAPT)

32-64(our's) 16-64(our's)

Fig. 3. Acceleration ratios obtained for each program with different precision
configurations in different precision ranges

B. SIMD Program

In order to further test the performance improvement of
the program by mixing precision in a vector environment,
three representative programs were selected for testing, namely
HPCCG, SVM and GMRES. HPCCG is an application in
the mantevo benchmarking suite, and the core computational
algorithm is the conjugate gradient method. SVM is the predic-
tion stage of support vector machines, and is a representative
algorithm in the field of machine learning. GMRES is the
generalized minimum residual method for iteratively solving
systems of linear equations and is the core algorithm for many
scientific computing problems.

To maximize the impact of vectorization on the performance
of the program, we mark the code segments that can be vec-
torized and vectorize them manually. We also keep the scalar
version of the program for ADAPT analysis and accuracy
model construction. To further exploit the performance and
power benefits of vectorization, here we set floating-point
types for each variable, i.e., half-precision, single-precision,
and double-precision.

Experiments show that our tool can provide better precision
configurations in a SIMD environment than ADAPT, obtaining
an average performance improvement of 21%.

In the case of solving systems of linear equations (GMRES),
our advantage is particularly clear. Specifically, we found that
excessive reduction in the precision of the variables leads
to a decrease in the convergence speed. Compared to the
original precision, GMRES requires more iterations to reach

convergence, and in extreme cases, the number of iterations
can even increase by a factor of 2-3. Therefore, a proper search
strategy should not only reduce the variable precision, but
also keep the number of additional iterations within a suitable
range. If the focus is only on the number of variable bits, the
extra number of iterations tends to weaken the performance
gain from mixing precision. Using performance rather than the
number of variable bits as the optimization goal in our work
can largely avoid this problem.

HPCCG SVM GMRES

APPs

1

1.2

1.4

1.6

1.8

2

S
p

e
e

d
u

p

ADAPT

our's

Fig. 4. The acceleration ratios obtained by each test program in the vector
environment. Where blue represents the precision configuration obtained by
ADAPT and orange represents the precision configuration obtained by our
tool.

Regarding power consumption, our program achieves an
average power reduction of 17% in a vector environment
through mixed precision. However, similar to performance,
low-precision operations may be affected by certain opera-
tions, such as type conversion, that may negate the advantages
of mixed precision. Nevertheless, after vectorization, there is
a reduction of 5 − 7% in power consumption, primarily due
to the significant reduction in floating-point operations and
memory accesses (up to 40% in SVM) enabled by SIMD.

To validate our approach on real hardware, we limited
the precision levels to 32 and 64 bits. For scalar programs,
we achieved the same precision configuration as the existing
tool for arclength and Simpson, and observed a 5% and
6.2% performance gain, respectively, due to better precision
configurations in the other two programs. For vector programs,
we obtained different precision configurations and an aver-
age additional performance gain of 21%, consistent with the
simulator tests. Notably, we found that using the precision
configuration obtained from the simulator as an initial point
and fine-tuning it by hardware sampling could further optimize
the search overhead. This insight suggests that future work can
employ a two-step approach to first coarse-grain the search on
the fast model and then fine-tune it on the accurate model.

C. Tuning Overhead
While our tool offers more accurate precision configurations

than existing tools such as ADAPT [11] and Precimonious [3],
it requires sampling, leading to a larger search overhead. The
search time can range from tens of seconds to tens of minutes,
with a significant portion of the time devoted to obtaining
performance and power consumption through a clock-driven
processor simulator. On average, our tool requires 10-20 iter-
ations to achieve the final precision configuration, depending
on the program and the initial training set distribution.

TABLE I
ERROR THRESHOLDS, OUTPUT ERRORS, AND ESTIMATION ERRORS FOR

VARIOUS APPLICATIONS

Apps Error Threshold Output Error Estimate Error
Arclength 1e-12 2.3e-13 2.5e-13
Simpson 1e-12 4.8e-14 4.3e-14

Jet 1e-13 2.2e-13 8.9e-14
Carbongas 1e-10 6.5e-11 3.7e-11
HPCCG 1e-9 2.3e-10 4.3e-10

SVM 1e-10 7.2e-12 3.1e-12
GERES 1e-9 5.9e-11 1.2e-10

8 11 14 17 20 23 26

% of Labeled Data

60

65

70

75

80

85

M
e
a
n

 R
e

la
ti

v
e
 A

c
c
u

ra
c

y
 (

%
)

Random

TED

TED + Domain Knowledge

Fig. 5. The performance of MRA varies with changes in the number of
samples under different sampling strategies.

To reduce the search time, we introduce domain knowledge
and active learning ideas in the initial sampling process. This
reduces the search time by an average of 31%. We show
in Figure 5 that using the transductive experimental design
algorithm individually can improve the prediction accuracy
compared to random sampling. Furthermore, a better initial
set with the introduction of domain knowledge can further
reduce the number of samples needed, optimizing the search
time.

However, there is still room for optimization of the search
process, such as parallelizing fragments of the search process
as done in [10], and sampling with faster simulators or
building hardware models to predict program performance
more quickly. These are left for future work.

VI. CONCLUSION

This paper presents an algorithm for solving mixed pre-
cision configurations of programs. The algorithm is modeled
by sampling and uses multi-objective Bayesian optimization
to search for the precision configuration with optimal per-
formance and power consumption. Its novelty is that it uses
information about the program’s running on hardware to guide
the search, implicitly including the impact of operations such
as data type conversion and SIMD on program performance.
Experiments show that it yields precision configurations that
are better than those given by existing work in most cases.
For programs with a higher degree of vectorization, the
performance advantage we achieve will be even more apparent.

REFERENCES

[1] Ganesh Gopalakrishnan, Paul D. Hovland, Costin Iancu, Sriram Krish-
namoorthy, Ignacio Laguna, Richard A. Lethin, Koushik Sen, Stephen F.
Siegel, and Armando Solar-Lezama. Report of the hpc correctness
summit, jan 25–26, 2017, washington, dc, 2017.

[2] Michael O Lam, Jeffrey K Hollingsworth, Bronis R de Supinski, and
Matthew P LeGendre. Automatically adapting programs for mixed-
precision floating-point computation. In Proceedings of the 27th interna-
tional ACM conference on International conference on supercomputing,
pages 369–378, 2013.

[3] Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James
Demmel, William Kahan, Koushik Sen, David H Bailey, Costin Iancu,
and David Hough. Precimonious: Tuning assistant for floating-point
precision. In SC’13: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, pages
1–12. IEEE, 2013.

[4] Alexey Solovyev, Marek S Baranowski, Ian Briggs, Charles Jacobsen,
Zvonimir Rakamarić, and Ganesh Gopalakrishnan. Rigorous estimation
of floating-point round-off errors with symbolic taylor expansions.
ACM Transactions on Programming Languages and Systems (TOPLAS),
41(1):1–39, 2018.

[5] Eva Darulova, Einar Horn, and Saksham Sharma. Sound mixed-
precision optimization with rewriting. In 2018 ACM/IEEE 9th Interna-
tional Conference on Cyber-Physical Systems (ICCPS), pages 208–219.
IEEE, 2018.

[6] Qiang Xu, Todd Mytkowicz, and Nam Sung Kim. Approximate
computing: A survey. IEEE Design Test, 33(1):8–22, 2016.

[7] Gennaro Rodrigues, Fernanda Lima Kastensmidt, and Alberto Bosio.
Survey on approximate computing and its intrinsic fault tolerance.
Electronics, 9(4), 2020.

[8] Thierry Braconnier and Philippe Langlois. From rounding error estima-
tion to automatic correction with automatic differentiation. In Automatic
differentiation of algorithms, pages 351–357. Springer, 2002.

[9] Alexey Solovyev, Marek S Baranowski, Ian Briggs, Charles Jacobsen,
Zvonimir Rakamarić, and Ganesh Gopalakrishnan. Rigorous estimation
of floating-point round-off errors with symbolic taylor expansions.
ACM Transactions on Programming Languages and Systems (TOPLAS),
41(1):1–39, 2018.

[10] Nhut-Minh Ho, Elavarasi Manogaran, Weng-Fai Wong, and Asha
Anoosheh. Efficient floating point precision tuning for approximate
computing. In 2017 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 63–68. IEEE, 2017.

[11] Harshitha Menon, Michael O Lam, Daniel Osei-Kuffuor, Markus Schor-
dan, Scott Lloyd, Kathryn Mohror, and Jeffrey Hittinger. Adapt:
Algorithmic differentiation applied to floating-point precision tuning.
In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 614–626. IEEE, 2018.

[12] Kai Yu, Jinbo Bi, and Volker Tresp. Active learning via transductive
experimental design. In Proceedings of the 23rd international conference
on Machine learning, pages 1081–1088, 2006.

[13] Yuzhe Ma, Ziyang Yu, and Bei Yu. Cad tool design space exploration via
bayesian optimization. In 2019 ACM/IEEE 1st Workshop on Machine
Learning for CAD (MLCAD), pages 1–6, 2019.

[14] Chen Bai, Qi Sun, Jianwang Zhai, Yuzhe Ma, Bei Yu, and Martin DF
Wong. Boom-explorer: Risc-v boom microarchitecture design space
exploration framework. In 2021 IEEE/ACM International Conference
On Computer Aided Design (ICCAD), pages 1–9. IEEE, 2021.

[15] Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Differentiable
expected hypervolume improvement for parallel multi-objective bayesian
optimization. Advances in Neural Information Processing Systems,
33:9851–9864, 2020.

[16] Amar Shah and Zoubin Ghahramani. Pareto frontier learning with
expensive correlated objectives. In International conference on machine
learning, pages 1919–1927. PMLR, 2016.

[17] Michael Emmerich. Single-and multi-objective evolutionary design
optimization assisted by gaussian random field metamodels. PhD thesis,
Dortmund, Univ., Diss., 2005, 2005.

[18] Giuseppe Tagliavini, Stefan Mach, Davide Rossi, Andrea Marongiu,
and Luca Benini. A transprecision floating-point platform for ultra-
low power computing. In 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1051–1056. IEEE, 2018.

