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Abstract—Large-scale computing frameworks, either tenanted on the cloud or deployed in the high-end local cluster, have become an
indispensable software infrastructure to support numerousenterprise andscientificapplications. Tasksexecutedon these frameworksare
generally classified into data-intensive and compute-intensive ones. However, most existing frameworks, led by MapReduce, are mainly
suitable for data-intensive tasks. Their task schedulers assume that the proportion of data I/O reflects the task progress and state.
Unfortunately, this assumption does not apply to most compute-intensive tasks. Due to biased estimation of task progress, traditional
frameworks cannot timely cut off outliers and therefore largely prolong execution time when performing compute-intensive tasks. We
propose a new framework designed for compute-intensive tasks. By using instrumentation and automatic instrument point selector, our
framework estimates the compute-intensive task progresswithout resorting to data I/O.We employ a clusteringmethod to identify outliers
at runtime and perform speculative execution/aborting, speeding up task execution by up to 25%. Moreover, our improvement to bare
instrumentation limits overhead within 0.1%, and the aborting-based execution only introduces 10% more average CPU usage. Low
overhead and resource consumption make our framework practically usable in the production environment.

Index Terms—Distributed system, parallel processing, compute-intensive, resource management

1 INTRODUCTION

CLOUD computing provides abundant computational re-
sources to users. In a typical datacenter, over thousands

of servers handle massive parallel tasks to support users’
applications (e.g., information retrieval, analytical or scientific
computation). Meanwhile, traditional clusters also reach
much larger scale, commonly with thousands of CPU cores
nowadays. On such a large-scale infrastructure, an efficient
and robust processing framework is critical to users. This
framework provides a viable way for users to organize and
utilize the underlying tremendous computational resource
pool. Specifically, it facilitates users’ development/deploy-
ment of applications and provides guarantee on the quality of
service (QoS).A set of easy-to-use but controlled interfaces are
exported to users to code programs, and the framework takes
chargeof scheduling these programs to runondifferent server
nodes in an efficient manner.

In this paper, we focus on the frameworks that achieve
parallelism via SPMD (single program, multiple data) and
support tasks with minimal mutual communication, rather
than the message-passing tasks (e.g., MPI programs). A job is
the unit that a user submits to the framework, and tasks refer to

what a job is split into when executed on a large multi-node
infrastructure. The tasks of different jobs can be generally
classified into two types: the data-intensive and the compute-
intensive. A data-intensive job/task issues a large amount of
data I/O, so data I/Ousually dominates and spreads along the
whole task.Meanwhile, a compute-intensive job/taskperforms
only limited data I/O but spendsmost of time on computation.

Our observation is that most existing computing frame-
works are suitable for data-intensive tasks but lack consider-
ation for compute-intensive ones. The main reason behind
involves the important scheduling component in these frame-
works. Many previous investigations [1], [2] have shown that
outliers constitute a notorious performance killer in massive
task processing. Outliers progress much more slowly than
peer tasks and therefore dramatically delay the completion
time of the whole job. Many common and unexpected factors
may lead to outliers, like uneven task assignment, hardware/
software problems, andnetwork congestion. Thus outliers are
pervasive in either a cloud or a cluster. In order to address this
issue, computing frameworks heavily rely on a smart sched-
uler, which is capable of identifying outliers, timely aborting
them, and re-executing replica tasks on other healthy nodes.

Although there have emerged various large-scale comput-
ing frameworks, amongwhichMapReduce is one of themost
successful and representative frameworks, they lack a mech-
anism to estimate theprogress of compute-intensive tasks and
are consequently incapable of action to outliers. For example,
MapReduce assigns a specific amount of data to a task and
naturally uses the processed data amount or proportion as the
indicator of the task’s progress. This approach embodies an
assumption that the task progress is approximately linear
with data I/O. Furthermore, main subsequent improvements
on the scheduler of MapReduce also hold this assumption.
However, it is not the case in compute-intensive tasks. When
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performing this kind of tasks, data I/Oactivitiesmostly take a
small portion of time and are skewed within a small interval.
Therefore the traditional mechanism of progress estimation
and outlier identification becomes problematic if directly
applied to compute-intensive tasks.

Considering the significance and pervasiveness of com-
pute-intensive tasks (e.g., analytical and scientific computing),
we propose , a framework designed for processing mas-
sive compute-intensive tasks in parallel. Our framework is
based on ProActive and, more importantly, employs a sched-
uler that relies on instrumentation and sampling to precisely
estimate task progress and accordingly cut off outliers.

There are several challenges to make our solution applica-
ble to the production environment. (1) Instrumented pro-
grams may encounter unacceptable overhead. For example,
we instrument function calls to reflect the position of the
program that the task is executing, in the case that the
program is well structured by functions. But if a frequently
called function is chosen, the overhead shall increase. Tomeet
such a challenge, we introduce a sampling phase to deliber-
ately yet automatically select what functions/instructions to
instrument. (2) Even though instrument points are wisely
selected, there is no guarantee that these points are touched
linearly along with the task progress. In the task duration,
some instrument points appear temporally dense in the trace
while others are sparse. So we have to design a scheduling
policy to pick up potential outliers based on such skewed
data. We borrow a data mining technique, the k-mean clus-
tering, to distinguish different task states from their traces.
(3) There exist many legacy code in scientific computing. We
have to provide concise interfaces to execute them and inte-
grate all the instrumentation, sampling and scheduling
phases to form a user-friendly workflow. This target is also
achieved in our design of framework.

To sum up, we make the following contributions in :
We design and implement an easy-to-use, efficient and
robust framework for parallel execution of massive com-
pute-intensive tasks.
We create an instrumentation-based technique to
estimate the progress of compute-intensive tasks. Our
approach introduces a sampling phase before final in-
strumentation to collect program characteristics, which
enables a wise selection of instrumentation points and a
better estimation of progress.
At runtime, we design a scheduling policy based on the
k-mean clustering method to identify outliers. This
method is robust to uneven instrument points and diver-
sity between data sets.

In the rest of this paper,we briefly introduce ProActive and
outliers in Section 2, describe the system architecture in
Section 3, address two main techniques: instrumentation and
outlier clustering respectively in Section 4 and Section 5, and
mentions implementation details in Section 6. Experimental
results are reported in Section 7 followed by some discussion
in Section 8, and relatedwork is discussed in Section 9. Finally,
we make a conclusion in Section 10.

2 BACKGROUND

This section makes a brief introduction to ProActive [3], the
basic computing framework on which our solution is built.

2.1 ProActive
ProActive Parallel Suite [4] developed by the French national
laboratory INRIA, is an innovative open-source solution for
the acceleration of applications. It is seamlessly integrated
with the management of high-performance clouds, and sim-
plifies the parallel program development in cluster, grid and
cloudcomputing environment. ProActive is completely based
on Java development for parallel distributed computing, and
does not make any modification on Java Virtual Machine
(JVM), so it can run on any operating system that supports a
standard Java environment. With the ProActive platform,
users tackle the acceleration and orchestration of all demand-
ing applications easily.

To execute parallel tasks in distributed environments, such
as clouds and clusters, requires a unified mechanism for
scheduling tasks and managing resources. The original Pro-
Active is equipped with a batch scheduler [5]. The scheduler
provides an abstraction of resources for users. It allows users
to submit jobs that contain one or several tasks, and to execute
these tasks on available resources afterwards. It enables
several users to share the same resource pool and to tackle
the problem involved with distributed environment, such as
failing tasks or resources. It also allows users to kill a specified
task easily, and to restart the task on another node.

By default, the scheduler assigns tasks according to the
default FIFO (First In First Out) priority policy. The users can
increase the task’s priority according to its emergency, or can
change the basic policy. In ProActive, to create and add a new
scheduling policy is very simple. Users only need to imple-
ment the policy interface, and execute the scheduler with a
new policy.

The ProActive Scheduler is connected to the Resource
Manager [6], a component for resource aggregation across
the network. It sends compute units represented by ProActive
nodes (Java Virtual Machines runs the ProActive Runtime) to
the scheduler thatmanages the taskworkflow and distributes
tasks to accessible resources. According to the deployment, it
can retrieve computing nodes using different standards such
as SSH, LSF, OAR, gLite, EC2.

With the Scheduler, the Resource Manager and other
components, the ProActive platform can easily run on a
cluster, a grid or a cloud or any mixture of them without
modification.

2.2 Outliers
Many previous works have identified outliers as a critical
performance killer in heterogeneous clouds. Even in high end
clusters, outliers are an inconvenient issue. Take our experi-
mental cluster for example. We share this large local cluster,
which has 8800 CPU cores over 740 server nodes, with many
other institutes and researchers. As the local cluster was
mainly built for scientific computing, it only provides a Load
Shared Facility (LSF) job scheduling system for users to
submit jobs in parallel. This situation is similar to what
typically happens in the cloud, where many virtual machines
share some physical servers.

Additionally, we have another small cluster that is dedi-
cated to our experiment. To better utilize all parts of compu-
tational resources, we deployed a uniform ProActive
Scheduling System to administrate all available resources. In
such a heterogeneous environment, outliers often emerge.
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The traditional ProActive global scheduler does not sup-
port the collaboration and communication with the local job
scheduler on a cluster, so that too much CPU contention on
some nodes leads to outliers. The outliers prolong the com-
pletion time of a job and seriously harm the performance of
ProActive.

3 SYSTEM OVERVIEW

Inspired by the problem caused by outliers, we name our
system NO Outliers ( ) which entails our aims as well as
the ’s mission. It is learned that there is only one system
that has a similar name with in the world. It is named
N2O, primarily concerning with introducing fuel and nitrous
into an engine’s cylinders for efficient combustion. N2O
provides an instantaneously speedup for auto. Whereas, our

system can continuously speed up parallel processing
for massive compute-intensive tasks in clusters and clouds.

contains two main components (Fig. 1): the instru-
menter (“Instrument Point Selector” “Instrumenter”) and
tasks scheduling policy generater (“Outliers Clustering”
“PolicyGenerater”). The instrument point selector collects the
statistics of function hits in a variety of executions and selects
some function entries for an appropriate instrumentation
granularity. Although the instrumenter can independently
do the instrument task of tracing all function entries, but may
incur unacceptable overheads in a production environment.
With the help of the instrument point selector, such overhead
can be reduced to a low level. Details will be discussed in
Section 7. The tasks scheduling policy generater is supported
by the outliers clustering. With the outliers information, an
optimized tasks scheduling policy can be generated for the
cloud or cluster. From the users’ perspective, they first send
the original binary code to be instrumented and then submit a
job description. ProActive runs the instrumented binary code
within so called “instrumented processes” and collects
traces to find outliers. Accordingly, send controls to
ProActive Scheduler to adjust scheduling.

We carefully designed to assure its independence
with the job scheduler that facilitates the users’ adaptation to
different job schedulers. As shown in Fig. 1, the only coupling
between and ProActive Scheduler is interfaces for ob-
taining task status information of a job and requesting to kill
or start a task. These abilities can be easily satisfied by any job
scheduler’s control interface, such as control script provided
by ProActive Scheduler or command line tools provided by
Condor.

The instrumentation has twophases: function hits statistics
and instrument with selected functions by the instrument
point selector. For function hit statistics, another instrumen-
tation is needed. As the statistics are offline, this instru-
mentation covers all functions in the binary code without
considering instrumentation overhead. The modified binary
code is executedwith some input cases inproduction runs and
the statistic results are saved in a file. With the statistics, the
instrumentation for progress trace can be performed with
the binary code in an appropriate granularity.

The speculation algorithm of tasks scheduling for a job is
straightforward with improvement driven by several heur-
istics rules of thumb. These empirical rules have been verified
in practice. The first rule is to assign a higher speculation

priority to a worse outlier. As speculation is costly, this rule is
obviously advisable. Making sure that the split task and
merge task do not execute on irregular nodes is another
important rule because we should not expose an outlier with
a single task. On the other hand, the split and merge phases
are always the critical stage of a job. The last one is to speculate
as soon as possible without irregular nodes. The goal of
speculation is to complete the job early. Earlier and
faster speculationmeans better opportunity. The pseudo code
of speculation algorithm is shown in Fig. 2.

In the next two sections, we will mainly illustrate the
design of instrumentation based on function hits statistics
and outliers clustering–the two key points in .

4 INSTRUMENTATION

There are two main challenges on tracing the progress of a
process with binary instrumentation in production systems.
One challenge is performance. Even a lightweight static
binary instrumentation would increases execution time by
tens of percentages. The other one is progress accuracy. The
ideal progress tracepoints are uniformly distributed along the
whole execution, which means that it can estimate accurately
how much the task has been done and how long it lasts.
Taking downloading a file for example if the downloading
progress bar shows a 50% completion after 1minute, it is clear
that half of the task has been done and it may last another 1
minute with a stable network connection. But for a compute-
intensive process, we only know that the process has met
which tracepoint we instrumented. We can not know the
actions of the process that has no instrumented tracepoints,
and neither the subsequent actions of the process. In other
words, it is hard to estimate the progress of a compute-
intensive process that is not related to data I/O.

We primarily concern the performance of tracing in ’s
instrumentation, and overcome the accuracy issue with our

Fig. 1. architecture.
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outlier clustering solution, which does not rely on
accurate estimation of progress. This will be discussed in the
Section 5.

Withmany instrumented execution cases, we have got two
simple observations on binary code runtime behaviors. Func-
tions in a binary can be placed ondifferent levels of an abstract
syntax tree (AST). Functions on the same level ofASTare often
called at similar frequency, and the minority of the functions
on the low level of AST consumes the majority of execution
time following a Pareto principle (80/20 principle). Table 1
shows the statistics of function hits of the instrumented
ImageMagick dynamic link library. There are 1060 functions
in the library and only 33 functions are called by more than
10,000 times in five executions.

As we know, the entry/exit points of functions and basic
blocks are commonly used instrument points. For the purpose
of progress tracing, an idealistic idea is to instrument each
entry and exit point with all functions and basic blocks.
Apparently, the overhead is proportional to the hit rates. So
with a fewmore coarse-grained instrumentations,we can skip
theminority of functions and reduce themajority of overhead.
To achieve minimum overhead, we propose a hit-statistics-
based function instrument approach.

The instrument point selector is designed to record each
function call andmaintain the function hit statistics,which are
saved in a key-value pattern: function name and number of
calls. After several runs, different AST levels of functions can
be distinguished according to the function hits. The instru-
menterfirst loads the statistics data and calculates themean of
hit numbers of all functions. Then it inserts a code snippet at
entries of each function, but skips those with a larger number
of hits than themean. If it workswell, themean of all function
hits will be set as the customized threshold. With the auto-
matic selection, the instrumenter can instrument the binary

codes in an appropriate granularity. The instrumented binary
is written back as a seperate file and sent to the ProActive
scheduler to execute.

5 OUTLIER CLUSTERING

For speculative executions, the first task of is to find out
the outliers. With traces returned by the instrumented pro-
cesses, uses an approach based on K-means Clustering
algorithm, which is commonly used in statistics analysis and
data mining, to hunt outliers. With outliers exposed,
performs speculative execution or aborting, which needs to
interact with the job scheduler.

There are several assumptions for the outliers clustering.
Outliers is the minority of the massive parallel processes.
A job is split into tasks with only slight imbalance.
The server nodes of a cluster become abnormal in an
indeterministic manner and may return to normal after a
while.

We novelly select two properties of each process’s traces to
make outliers exposed, the number of triggered tracepoints
and the increment of tracepoints in an interval . Fig. 3 shows
an example of two processes of the same binary code with the
same input at runtime. Ideally they should draw two very
similar lines, but process B is actually slower than process A.

A straightforward idea for exposing outliers is to generate
two classes using a one-degree K-means Clustering algorithm
with all processes’ number of tracepoints. If the normalized
variationof the two classes’means is larger thana threshold ,
the class of processes with a mean value less than the other
class will be judged as outliers.

But the number of tracepoints grows unevenly along the
task execution. As illustrated in Fig. 3, four differences of
tracepoint numbers of two processes have beenmarked as ,
, , at four different time points. Although process B is

always 0.8X slower thanprocessA, the difference of processA
and process B is not increased along the whole time line. An
obvious case is > , whichmaymislead the naive k-means
clustering approach to missing process B when clustering
outliers. Another type of mistake may be made in conditions
just as < . Process B may be just a little slower than
process A, but it is judged as an outlier in the naive k-means
clustering approach. So there is no fixed threshold that is
suitable for judging the outliers with the naive k-means
clustering approach.

To eliminate the false positive and false negative mistakes,
an improved approach has been proposed in . We

Fig. 2. Task speculation algorithm.

TABLE 1
Statistics of Function Hits of ImageMagick

Note: Only one function of each order of magnitude is
shown in the table for example.
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employ a new dynamic threshold , which is determined by
the threshold , the mean of all processes’ tracepoint incre-
ment and the th process’s tracepoint increment .

As one of the assumptions is that outliers are the minority,
the mean of the increment of tracepoints of all processes is
nearly the same to the majority. When the variance of the
means of clusterings decreases exceptionally like in the case

> , the dynamic threshold decreases correspondingly.
When the variance of the means of clusterings increases
exceptionally like in the case < , the corresponding in-
crease of comes along. So dynamic threshold can
generally be adaptive to the uneven increase of the number
of tracepoints. With this improved approach for outliers
clustering, can find out most outliers whereas introduce
few false positives.

6 IMPLEMENTATION

For a clear understanding, we illustrate some important de-
tails of ’s implementation in this section. The technologies
we used in development and some implementation tricks
hidden behind are introduced in brief.

We developed the ’s instrument tool with a static
instrumentation fashion based on the DynInst [7] library. The
DynInst library is an Application Program Interface (API) [8]
that permits the insertion of code into a static binary code or a
running process. The goal of this API is to provide a machine
independent interface to permit the creation of instrumenta-
tion tools and applications. The ’s implementation of
function hits statistics is based on an example of DynInst
tools named CodeCoverage [9].

Generally, there are three code snippets for the instrument
point selector: the initial one is used for creating some data
structures for statistics; the commonly used intermediate one
is used for recording a function call; the final one is forwriting
back the function hits data to a file. There are also three code
snippets for the instrumenter: the initial code snippet is used
to open a file; the commonly used intermediate one is to
increase the number of trace points and to write it to the file;
the final one is to close the file. All the code snippets are

carefully assembled with DynIsnt API and instrumented into
the original binary.

To pursue excellent performance, the instrumenter com-
pletes the assembly of file operations through using the low
level system call open, write, and close in Linux Opreating
System. The file for saving traces is created in the directory
that is mounted as a RAM file system. The RAM file system
uses memory as a disk in the Virtual File System (VFS) level
supported by the Linux Operation System. It means that only
several memory operations overhead is introduced into the
instrumentation of each function hit.

We provide a task speculation implementation with Pro-
Active Scheduler [5], which can be interacted with a control
script. The control script is interpreted in the javascript lan-
guage based on a script engine, called ’Rhino’, built-in inte-
grated with the distribution of Java Standard Edition 6 (Java
SE6). ProActive Scheduler provides the ability of interactive
with the scheduler instance at runtime as script engine can
access and invoke objects and methods in Java.

Our task scheduling policy generator calls the outliers
clustering module to establish outliers clustering with up-
dated trace data. Then it maintains a blacklist, each node of
which has a penalty value. The penalty could be eliminated if
no further outliers are found on a node and could be removed
from the blacklist. In summary, the blacklist is used for
keeping the speculative tasks away from the most possible
nodes that may produce outlier tasks. For each outlier, the
policy generater creates an urgency job description that has a
higher priority in ProActive Scheduler. This urgency job has
only one speculative task. Then all these urgency jobs are
submitted to ProActive Scheduler by a speculation priority
order. The constraint of no speculation taking place on irreg-
ular nodes can be achieved with a selection script and a claim
of nodes selection in the job description. The default specula-
tion interval is three seconds implying that the interactive
with the job scheduler is moderate. Each update of traces
information has little communication traffic and only several
bytes indicating the number of trace points are transmitted.
This lightweight implementation is acceptable to the job
scheduler and the impact of performance can be ignored
roughly.

We provide three extra shell scripts for splitting, wrapping
native program and merging the results if needed. The shell
scripts will be submitted and executed as normal tasks on the
job scheduler. They can be used immediately in ProActive
Scheduler. But it doesn’t mean any dependence. It is easy to
export to other schedulers with tiny modification. Taking a
picture rendering job for example, there may be three phases
for this job: 1. splitting the image into small pieces, 2. render-
ing them in parallel, and 3. merging the rendered parts. These
three phases exactlymatch ’s three shell script templates :
split script, operation script and merge script. Users just need
to add an image cutting command into the split script, which
may be optional for other jobs. The default procedure (i.e.,
copying input files to the destination), can also be modified if
needed. In the operation script, the native program must be
expressed as a command, a daemon process for traces trans-
ferring is also launched asdefault.Whenall parts of the results
has been collected, amerge image command is executed in the
merge script which is optional for other jobs too. As described
above, users have an extreme flexibility to make their native

Fig. 3. Tracepoints of two example executions.
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programs massive parallel. It also means does not
provide any file transfer, data placement service, or anything
like this, which have been provided by job schedulers or a
distributed file system of cluster itself.

7 EVALUATION

We deployed and evaluated on both a local high end
cluster and the cloud. Two representative applications, Cap3
and ImageMagick, were chosen for the evaluation purpose.
We focus on reducing the completion time of jobs. Besides, the
overhead and computing resource usage of are also
measured.

The first application, Cap3, is a well known sequence
assembly program in bioinformatics. There are many Ex-
pressed Sequence Tag (EST) sequence files in FASTA format.
So the job is split naturally according to the FASTA files.With
the job description engine and the shell script templates we
provided, it is simple todescribe a job. The secondapplication,
ImageMagick, is a classic open source picture processing tool.
Gaussian blur is afilter of ImageMagick, and it blurs an image
by a Gaussian function to reduce image noise. This effect is
widely used in graphics software, also known as Gaussian
smoothing. In this case, the job renders an image of a huge size
with Gaussian blur. The image is cut into small pieces with
ImageMagick and then is filtered. All pieces are joined
together in the end.

We use twometrics for the evaluation: job completion time
and computing resource usage. As a job consists of lots of
tasks that are processed in parallel, we define the job comple-
tion time as the duration between the submission of the job
and thefinishof all tasks. 1We runa job repeatedly anduse the
average job completion time as the system metric. Consider-
ing speculative executions call for extra computing resource,
we also measure the computing resource usage with CPU
utilization, monitored by the ProActive Resource Manager.
Given the baseline and CPU utilization, the cost of
speculative executions can be demonstrated.

acts as an extension to ProActive Scheduler. ProAc-
tive Scheduler is a high level job scheduling system based on
ProActive library. With ProActive Resource Manager, jobs
can be submitted and scheduled to use variable types of
computing resources. A job is described with an XML
description.

7.1 Verification

7.1.1 Outliers
In a high end cluster, each server node has powerful CPU,
sufficient memory, and is equipped with the high perfor-
mance network (e.g., InfiniBand) and usually a parallel file
system. The heterogeneity of hardware is limited. Will out-
liers come out in a short several-minute execution?

We randomly selected a hundred of JVM nodes, and
submitted a job with hundreds of parallel tasks. The test was
repeated in different periods of day. We found that even in a
several-minute execution, sometimes there are a few outliers,
and they appeared on random server nodes and at different
times.

We pick up two trials in this experiment, and make two
scatter plots respectively as shown in Figs. 4 and 5. In Fig. 5,
there are many more outliers than Fig. 4, and outliers need
nearly twice the time to complete the same task. As one server
node contains several CPU cores, the physical outliers are not
as many as outliers of CPU cores. With this simple observa-
tion, we can conclude that even in high end clusters, there are
a certain number of outliers in some server nodes and during
some periods of day, due to common computing resource
contention. For a further understanding about the outliers in
the local cluster,we loop this experiment several times to last a
whole day. Fig. 6 shows a rough statistics for the probability of
outlier each hour in one day.

As this experimentmayproduce some computing resource
contentions and the data is just in one day, the statistics is not
accurate. For a non-quantitative study with the outliers, we
simply make an assumption that a CPU core of the cluster
happens to be an outlier is a random event, and the events are
independent. As jobs often need lots of CPU cores to run

Fig. 4. Process durations of an Cap3 execution on 100 CPU cores in
cluster at 8:00 am. Fig. 5. Process durations of an Cap3 execution on 100 CPU cores in

cluster at 8:00 pm.

1. There are several iterations in a workflow for most of the scientific
computing jobs, and the successor jobs depend on the precursor ones. For
instance, the precursor’s output may be the the successor’s input.
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massive parallel tasks, the probability of a job running
parallel tasks without outlier is:

While is the probability of th task of the job happens
not to be a outlier at time , is the probability of th task of
the job happens to be a outlier at time .We choose themedian
of the Probability of outliers shown in Fig. 6: ,
for a job having 100 parallel tasks, the probability of running
without outliers is about 0.3660. When the job scales up
to 1000 parallel tasks, even with a very little probability of
outlier , the probability of running without
outliers is about 0.0067, which means that it is nearly
impossible to keep away from outliers. So an outlier-aware
tasks scheduling is extremely needed for a job with massive
parallel tasks.

7.1.2 Overhead and Accuracy of Instrumentation
Binary instrumentation often costs a very high overhead,
which may be tens of times slower than no instrumentation
executions. Although the static binary instrumentation is
more efficient than the dynamic, usually tens of percent points
of overhead is needed if all function entries are traced, as
shown in Figs. 7 and 8. Such high overhead prevents it from
being used in production clusters.

To evaluate our progress trace approach, we run Cap3 and
Gaussianblur from ImageMagick in one server node of the
cluster. Each application is tested repeatedly with different
inputs. Figs. 7 and 8 shows the results of this experiment. On
average, instrumentationwith all function entries costs 8-11%
extra time to complete the execution, while instrumentation
based on function hits statistics in needs only 0.03-0.1%
extra time costs.

Such low overhead makes efficient enough to deploy
on a production system. But the tracpoints are uneven, which
means the instrumentation may sometimes miss parts of
progress and the processes have caused the progress to report
inaccurate. Sowemake an inspectionwith some trace cases of
processes of Cap3, Gaussianblur and a combined image
rendering all from ImageMagick. We noticed that the prog-
ress trace with instrumentations with all function entries is a

little smoother than thosewith our instrumentation approach,
such as ImageMagick cases shows in Fig. 9. But in some cases
our approach is a little smoother than instrumentationwith all
functions, such as Cap3 case shows in Fig. 9.

Since each execution is completely arbitrary with different
inputs and conditions, every function may last short or long
period of time in different executions. Unfortunately, we can
not make an inference of absolute execution progress with
traces of the instrumentation with all function entries. Even
for the instrumentationwith all basic binary blocks, there is no
absolute accuracy. A reasonable approach may be a custom-
ized instrumentation in the kernel level, requiring the modi-
fication of the Operating System kernel, with a largemount of
time cost, which is nearly impossible to a production system.

But a relative smooth tracepoints hit rate canbe guaranteed
with the instrumentation with function entries in same gran-
ularity, as shown in Fig. 9, each line is composed of few
smooth segments. The outliers clustering approach we pro-
posed is inspired by this inspection. We use the relative
progress to catch the outliers, so the approach instrumenta-
tion based on function hits statistics is enough in our context.

7.2 In Local Cluster
The local cluster we used is a production one in Tsinghua
University, which has hundreds of server nodes. While each

Fig. 6. Probability of outliers during each hour of the day. Fig. 7. Cap3 instrumentation overhead.

Fig. 8. Gaussianblur instrumentation overhead.
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node has tens of GBs of RAM and two Intel Xeon X5670
2.93 GHz CPUs, each CPU has 6 cores. InfiniBand network
and LUSTRE parallel file system are deployed in the cluster.
With Load Sharing Facility (LSF) job scheduling system,
hundreds of Java Virtual Machines (JVMs) are launched as
a LSF job in the cluster. These JVMs are added as compute
nodes in ProActive Resource Manager. We used the cluster
just in this way: adding the cluster as a LSF node source to the
ProActive Resource Manager.

Reduction in job completion time is a critical metric. We
submitted Cap3 and Gaussian Blur jobs fifty times each to
ProActive Scheduler with and without . Figs. 10 and 11
show that job completion time has been improved by roughly
25% on average. The histogram plots the best, the worst, and
the average reduction of theCap3 jobs andGaussianBlur jobs.
In the worst case of Cap3, there is a little increment of job
completion with , caused by a worst choice of the specu-
lative execution. On average, the reduction of job completion
time with is significant. Without , caused by the
hinder of outliers, the completion time of jobs has a big
deviationwith the best case. However with , the comple-
tion time of jobs is reduced to the best case. These two
experiments show that mitigates the outliers efficiently.

can benefits job schedulers with reduction of job
completion time. At the same time, it needs some amount of

computing resource in addition. In the aforementioned test,
we collected the statistics data of CPU usage from ProActive
Resource Manager and plotted a histogram as shown in
Fig. 12.

As shown in Fig. 12, 20-30%more computing resource has
been used by for speculative executions. This makes
sense for some local clusters, which have low utilization in
most of the time of day. helps them to scheduel jobsmore
efficient, and reduces the server idle time. But for a busy
cluster or cloud, where computing resource is not free, we
expect that speculative executions use resource as little as
possible. We will analyze how to reduce waste of computing
resourcewith little loss of reduction of the job completion time
later, and for some error-prone environment can even
use less computing resource with less failure executions.

7.3 In Cloud
With attractive low price and demand payment, there are
more andmore computing tasks transferred to clouds in both
academia and industry. The virtual clusters has been more
and more popular, StarCluster [10] is a toolkit for Amazons
Elastic Compute Cloud (EC2), designed to automate and
simplify the process of building, configuring, and managing
clusters of virtual machines. We deployed such a virtual
cluster on EC2 with StarCluster. This cluster has hundreds

Fig. 9. Skewed tracepoint accumulation over time.

Fig. 10. Completion time of Cap3 jobs.

Fig. 11. Completion time of GaussianBlur jobs.

Fig. 12. Computing resource usage.
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of virtual machine nodes. Each node is a M1 small instance,
which has 1.7 GB RAM and one virtual CPU core with 1 EC2
Compute Unit. An Elastic Block Storage (EBS) device is
mounted as share storage and NFS file system is deployed
in the cluster. We deployed ProActive Scheduler on this
virtual cluster like in local cluster, by adding these virtual
machine nodes as an SSHInfrastructure type node source.
Hundreds of Java Virtual Machines (JVMs) are launched and
added as computing nodes in ProActive Resource Manager.

We began our evaluation in the cloud by measuring out-
liers, same as the verificationwehave done in the local cluster.
Unlike the high-end server nodes of local cluster, the EC2
instances are mediocre and less powerful. The outliers in the
cloud aremore obvious than the local cluster andprolong a 2X
or more completion time for jobs, which has been shown in
Fig. 13.

We submitted Cap3 jobs in the same scale as local one, and
plot the histogram in Fig. 14. As computing resources is not
sufficient in the cloud, we also try an aborting strategy, also
known as ’kill then restart’ which costs less computing re-
sources than speculation. We will discuss this strategy in the
next section.

There is roughly 15-22% job completion time reduction on
average shown in Fig. 14. At the same time, the resource usage
with the speculation strategy is 100%, implying that theremay
be more speculations not performed for any sufficient com-
puting resources and other jobsmay be blockedwith the same
reason. The aborting strategy is more economic, as it only
costs a 4-5% additional computing resource.

8 DISCUSSION

We will make a discussion on the threshold tuning in
system in this section and take one step further by evaluating a
different strategy to mitigate outliers.

8.1 Threshold Tuning
How slow will outliers mostly be? Or to what extent is the
process lagged behind themajority whenwe could judge it as
an outlier? The threshold of outlier clustering is critical for

. In our outlier clustering approach, we rely on a naive
one-degree kmeans clustering algorithm where , and

weuse the normalizedvariation of the centers of clusterings to
judge if one of the clusterings contains outliers. When the
normalized variation is larger than a dynamic threshold ,

realizes outliers exist. But the dynamic threshold
depends on the original threshold was determined a little
bit arbitrarily. So a fine-grained tuningwith the threshold is
an indispensable procedure for .

We use three fix JVM nodes running a shell script and
costing lots of CPU to act as outliers. In order to make sure
other nodes are running normally, if there are some unex-
pected outliers, we just drop the execution result. In this way,
the other variation is limited. Tuning the threshold from low
to high,we run aCap3 job thatwas split into 100 parallel tasks
to study the sensitivity of the threshold . In Fig. 16, as
threshold rises, the number of waste speculations declines
and keeps low, but successful speculations have no obvious
deviation. When the threshold still increases, finds out
few outliers and becomes lag to response.

A low threshold may be false positive, and cause a large
amount of speculative executions, as shown in Fig. 16, imply-
ing a low success rate of speculations and waste of a lot of
computing resource. With an optimized threshold, our out-
liers clustering approach can mitigate the false positive risk
and keep sensitive with outliers, which is critical for .

Fig. 14. Completion time of Cap3 jobs in the cloud.
Fig. 13. Process durations of an Cap3 execution on 100 instances in the
cloud.

Fig. 15. Computing resource usage in the cloud.
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8.2 Aborting Strategy
Considering that the idle computing resources may be insuf-
ficient to meet the speculations’ need in the cloud. We try an
aborting strategy, which is a bit different from speculation.
This strategy is more aggressive and adventurous. Rather
than speculates, it immediately aborts potential outliers and
restarts these tasks on other nodes that are not in the blacklist.
This extreme scheduling decision cuts lots of computing
resource usage for speculation, with the drawback of slowing
the completion time of a job. Because it is not sure if a
speculative process will complete earlier than a outlier.

We verified this strategy by repeating the same experiment
with modified equipmented with the aborting schedul-
ing strategy in the aforementioned local cluster. Figs. 17 and
18 show that the aborting strategy has a larger variation than
the speculation one in terms of job completion time. In the
worst case of Cap3 andGaussian Blur, the aborting strategy is
obviously slower than the case without and with the

’s speculation strategy. On average for Cap3 case, similar
to the speculation strategy, the aborting strategy reduces 25%
of job completion time. In contract, the aborting strategy has a
slowdown in theGaussianBlur case. There is nearly 10%more
time cost than the speculation strategy. These two

experiments show that the aborting strategy can reduce the
completion time of jobs, but is a little bit slower than the
speculation strategy.

With aminor performance degration, the aborting strategy
cuts down lots of CPU resource usage. As the same as the last
experiment,we collected the statistics data ofCPUusage from
ProActive Resource Manager and plotted a histogram as
shown in Fig. 19.

As shown in Fig. 19, about 20% CPU usage reduction was
obtained. With the aborting strategy, the waste of CPU
resource is bounded about 10%, which verifies that the abort-
ing strategy is valuable. This is also comfirmed by the experi-
ment in the cloud shown in Fig. 15.

9 RELATED WORK

A variety of studies have been done on the classic problem of
scheduling policies for task assignment in distributed sys-
tems, and theywere designed for different circumstances and
various requirements. TAGS [11] and SITA-V [12] deal with
scheduling independent tasks among lots of server nodes in a
cluster, such asweb servers that process HTTP requests.With
the goal of achieving low mean response time and low mean

Fig. 17. Cap3 job completion time with aborting strategy.

Fig. 18. GaussianBlur job completion time with aborting strategy.
Fig. 16. Number of speculative executions over threshold values.

Fig. 19. Computing resource usage of aborting strategy.
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slow down, they reach consensus to overcome the challenge
of heavy-tailed task size distribution due to load unbalancing.
Task duplication (TD) [13] formassive parallel processing has
been analyzed for its effectiveness. Using task duplication
based on dependency graphs of tasks, TDS [14] and some
other studies [15], [16] trade off between maximizing concur-
rency and minimizing inter-processor communication with
the primary objective of minimizing schedule length and
scheduling time.M. Silberstein et al. [17] propose a scheduling
policy for heterogeneous dynamic workloads composed of
massively parallel short tasks. Considering the communica-
tion cost and heterogeneous computing environment, some
dynamic task scheduling approaches [18], [19] have been
proposed. An extended version of Condor MasterWork
[20] dynamically measures the execution times of tasks and
uses this information to dynamically adjust the number of
workers to achieve a desirable efficiency, minimizing the
impact in loss of speedup. Some of these previous works are
old fashioned, as proposedmore than ten years ago.Ourwork
has a different background and different requirements with
these prior ones. We aim at improving response time for a job
consisting of massive parallel computing-intensive tasks of a
similar size.

Some job schedulers were designed for global administra-
tion over clusters or datacenters. Most of them focus on
overall throughput and fairness scheduling [21]. HTCondor
[22] is a scheduler for coarse-grained distributed paralleliza-
tion of computationally intensive tasks in hybrid computing
environment, which is well known for its high throughput
computing framework. ProActive is a platform and middle-
ware for parallel, distributed andmulticore computingwith a
java library provided and lots of features supported. ProAc-
tive Scheduler [5] is a job scheduler base on ProActive [23],
which is similarwithHTCondor.CooperatingwithProActive
Resource Manager [6], it can be used with a variety of
computing resources. HTCondor and ProActive are widely
deployed and used in grids and clusters. Our system is
implemented to interact with ProActive Scheduler’s inter-
faces. Our work mainly addresses the outliers problem of
massive parallel executions and helps Proactive Scheduler to
reduce the job completion time.

Speculative execution is borrowed from distributed file
systems [24] and some other work [25]. Unlike those that treat
parallel processes as a black box, our work launches specula-
tions in a more reasonable situation. With instrumentation,
we change the view to a white box.

It is attractive to use instrumentation for performance
analysis, system modeling and debugging. Although there
are still many open research problems in developing the
instrument tools, it is among the most reasonable ways to
understand complex system behaviors. Magpie [26] is a tool
chain for automatically modeling workload of cluster and
predicting performance with fine-grained instrumentation
in kernel, middleware, and application components. DTrace
[27] is an instrumentation framework on Solaris Operating
System, providing an option for lightweight dynamic instru-
mentation in kernel. Similar approaches on other operating
systems include the Linux Trace Toolkit (LTT) [28] and
Event Tracing for Windows (ETW) [29]. The PMaC Predic-
tion Framework [30] implements an automated prediction

model that takes into account attributes of applications,
input data, and target machine hardware (and other factors).
The model computes the expected performance as output.
It is a generalized framework for similar requirements
with our system. In our work, we use instrumentation for
a simple clear goal. In a specialized environment, our instru-
mentation is easier to implement than PMaC. As far as we
know, our work is the first case introducing an instrumenta-
tion approach to the scheduling of Massive Parallel
Processing.

Driven by the success of MapReduce [31] and its open-
source implementation Hadoop, lots of improvements [1], [2]
and adaptations [32] to varieties of applications have been
done. Dryad [33] is a general-purpose distributed execution
engine for coarse-grain data-parallel applications sharing the
same goal with MapReduce but extends the programming
model ofMapReduce. J. Ekanayake et al. [34]make a study on
comparison and evaluation of these technologies in scientific
computing. There are various strategies to choosewhich tasks
to duplicate. Hadoop uses slots that free up to duplicate any
task that has read less data than the others after all tasks have
been started. Dryad duplicates those that have been running
for longer than 75 percentage of task durations. LATE [1]
designs a new scheduling algorithm to robust Hadoop
with heterogeneity. Being cause-aware and resource-aware,
Mantri [2] detects and acts on outliers early in their lifetime.
All these prior scheduling strategies motivate our work with
the speculation idea. As MapReduce is designed for data-
intensive computing, these works naturally predict the prog-
ress of executions using data processing progress. But with
computing-intensive executions, this basic approche is not
always valid.

10 CONCLUSION

Asmost existing computing frameworks are oriented to data-
intensive tasks, we propose an efficient and robust frame-
work, , for massive compute-intensive tasks. Our frame-
work is based on ProActive, andwe focus on improvement of
its scheduler, one of the most performance-influencing com-
ponents. In a large-scale computing framework, a key respon-
sibility of the scheduler is to avoid outliers that may severely
prolong the job completion. To sum up, we introduced three
new techniques to the scheduler and the computing frame-
work: firstly, we use instrumentation to indicate the progress
of compute-intensive tasks, instead of using I/O proportion
for data-intensive tasks; secondly, we sample the program
before instrumentation to automatically select instrument
points so that overhead are limited; thirdly, the k-means
clustering method is employed in outlier identification with-
out resorting to biased progress calculation. Evaluation has
shown that largely reduces the job completion timewith
small instrumentation overhead and acceptable extra re-
source utilization.
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