
NosWalker: A Decoupled Architecture for Out-of-Core Random
Walk Processing

Shuke Wang
Tsinghua University

Beijing, China
wangsk17@mails.tsinghua.edu.cn

Mingxing Zhang∗
Tsinghua University

Beijing, China
zhang_mingxing@mail.tsinghua.edu.cn

Ke Yang
Tsinghua University & Beijing HaiZhi

XingTu Technology
Beijing, China

yangke@stargraph.cn

Kang Chen
Tsinghua University

Beijing, China
chenkang@tsinghua.edu.cn

Shaonan Ma
Tsinghua University

Beijing, China
msn18@mails.tsinghua.edu.cn

Jinlei Jiang
Tsinghua University

Beijing, China
jjlei@tsinghua.edu.cn

Yongwei Wu
Tsinghua University

Beijing, China
wuyw@tsinghua.edu.cn

ABSTRACT
Out-of-core random walk system has recently attracted a lot of
attention as an economical way to run billions of walkers over
large graphs. However, existing out-of-core random walk systems
are all built upon general out-of-core graph processing frameworks,
and hence do not take advantage of the unique properties of ran-
dom walk applications. Different from traditional graph analysis
algorithms, the sampling process of random walk can be decoupled
from the processing of the walkers. It enables the system to re-
serve only pre-sample results in memory, which are typically much
smaller than the entire edge set. Moreover, in random walk, it is not
the number of walkers but the number of steps moved per second
that dominates the overall performance. Thus, with independent
walkers, there is no need to process all the walkers simultaneously.

In this paper, we present NosWalker, an out-of-core random
walk system that replaces the graph oriented scheduling with a
decoupled system architecture that provides walker oriented sched-
uling. NosWalker is able to adaptively generate walkers and flexibly
adjust the distribution of reserved pre-sample results in memory.
Instead of processing all the walkers at once, NosWalker only tries
its best to keep a few walkers able to continuously move forward.
Experimental results show that NosWalker can achieve up to two
orders of magnitude speedup compared to state-of-the-art out-of-
core random walk systems. In particular, NosWalker demonstrates
superior performance when the memory capacity can only hold

∗Corresponding Author: Mingxing Zhang (zhang_mingxing@mail.tsinghua.edu.cn)

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582025

about 10%-50% of the graph data, which can be a common case
when the user needs to run billions of walkers over large graphs.

CCS CONCEPTS
• Theory of computation → Graph algorithms analysis; •
Hardware→ External storage; •Mathematics of computing
→ Probabilistic algorithms.

KEYWORDS
graph processing, random walk, out-of-core

ACM Reference Format:
Shuke Wang, Mingxing Zhang, Ke Yang, Kang Chen, Shaonan Ma, Jinlei
Jiang, and Yongwei Wu. 2023. NosWalker: A Decoupled Architecture for
Out-of-Core Random Walk Processing. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3 (ASPLOS ’23), March 25–29, 2023, Vancouver,
BC, Canada. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/
3582016.3582025

1 INTRODUCTION
Randomwalk is one of the most important building blocks for graph
analysis algorithms [10, 16, 20–22, 27, 56, 62, 63, 74]. It serves as
a foundation for many applications, such as DeepWalk [53] and
node2vec [31] for node embedding, RandomWalk Domination [44],
Graphlet Concentration [54, 55] and Network Community Profil-
ing [26] for graph mining, and so on. Nevertheless, as the size of
graphs increases rapidly, large graphs with billions of edges are
now widely used in industry [19, 69, 76], and their size can be
several terabytes, exceeding the memory capacity of a single ma-
chine. As the price of memory remains relatively high, it is still
expensive to build a distributed cluster that can hold all the data in
memory. In contrast, the price of SSDs has fallen substantially in
recent years, and their read bandwidth has increased to gigabytes
per second. This makes it attractive to build out-of-core random
walk processing systems that iteratively load only a necessary part

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

466

https://orcid.org/0000-0002-9741-4781
https://orcid.org/0000-0001-7518-0753
https://orcid.org/0000-0003-0537-635X
https://orcid.org/0000-0002-8368-1109
https://orcid.org/0000-0001-5718-5657
https://orcid.org/0000-0003-4034-7490
https://orcid.org/0000-0002-6651-7032
https://doi.org/10.1145/3582016.3582025
https://doi.org/10.1145/3582016.3582025
https://doi.org/10.1145/3582016.3582025
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3582016.3582025&domain=pdf&date_stamp=2023-03-25

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shuke Wang, Mingxing Zhang, Ke Yang, Kang Chen, Shaonan Ma, Jinlei Jiang, and Yongwei Wu

Cached block
region

In-memory
vertex data

Active
walkers

Pre-sample
pool

Graph
buffers

Load fine
-grained block

Load & cache
graph block

Load
vertex
data

Updated
vertex
data

External storage External storage
Walker
generator

(a) Existing graph analysis systems (b) NosWalker

Memory Memory

Figure 1: Memory layout of existing out-of-core graph analy-
sis systems v.s. NosWalker.

of the graph into memory for the current analysis epoch, which
democratizes large-scale graph analysis. Recent out-of-core ran-
dom walk systems [39, 68] have already achieved substantial im-
provements in reducing random I/O and increasing I/O utilization.
However, according to our investigation, these existing systems are
all built upon general out-of-core graph processing frameworks,
and hence cannot take advantage of many unique properties of
random walk applications. We advocate a specialized architecture
design to substantially accelerate the processing speed, especially
when the memory capacity can only hold about 10%-50% of graph
data.

Specifically, memory is undoubtedly the most precious resource
in an out-of-core processing system. Thus, it is of great importance
to study how existing systems use their memory, and whether
it is suitable for their workloads. According to our investigation,
the memory layout of all the existing out-of-core graph processing
systems [12, 17, 18, 33, 36, 40, 45, 57, 60, 65, 77, 81, 83] (including ex-
isting out-of-core random walk systems [39, 42, 68]) can be viewed
as a block-centric design that provides graph oriented schedul-
ing as depicted in Figure 1(a). The reason for this design is that
the execution and I/O patterns of most traditional graph analysis
applications [28, 51, 58, 82] can be reduced into Generalized Sparse
Matrix-Vector Multiplication (GSpMV) algorithms [13, 24, 75]. Thus,
the focus of existing out-of-core processing systems is how to im-
prove the read bandwidth of graph data. They carefully organize
the graph data on disk so that they can load a block of edge data
(a 1D [33, 36, 45, 57, 81] or 2D [12, 17, 18, 45, 65, 83] or a sliding
window [40, 60] partition of the graph) in a small set of sequential
disk reads using the memory layout shown in Figure 1(a). Almost
directly determined by this scheduling mechanism and memory
layout, the computation of these existing systems is partitioned
into several disjoint epochs. In each epoch, the system is required
to access only the data contained in the current block and the
corresponding properties.

Although it is natural for traditional graph analysis algorithms,
we find that this graph oriented scheduling is not optimal for ran-
dom walk applications. For traditional graph analysis tasks, the
computation states are statically attached to each vertex, where
the graph oriented scheduling is appropriate. In contrast, for ran-
dom walk applications, the walker states are dynamically attached
to vertices. If multiple walkers currently reside on the same ver-
tex, its vertex data will contain multiple walker states. Thus, the
computation states of the random walk application are unevenly
distributed among the vertices. Even worse, the walkers may jump
to other vertices after each step, leading to dynamic and uneven

Av
g.

 e
dg

es
re

ad
 p

er
 s

te
p 32

23

6.4
(a)

DrunkardMob
GraphWalker
NosWalker 10

20

30

0.5

5.6

84.7

Av

g.
 s

te
p

ra
te

 (
10

st

ep
s/

se
c)

6

(b)
1

10

100

Figure 2: (a) Comparing the average edges read per step. (b)
Comparing the average number of steps per second.

distribution by the computation. In this case, a pre-defined 1D/2D
graph partition and the corresponding graph oriented scheduling
frequently mismatches with the hot region of the walkers, and the
processing would frequently stall due to waiting for the graph data
to be loaded. This harms the performance.

The state-of-the-art out-of-core random walk system Graph-
Walker [68] also observes this problem and tries to mitigate it via
(1) prioritizing the loading order of blocks so that blocks with more
walkers (the hotter blocks) are loaded earlier, and (2) taking advan-
tage of CLIP [12]’s re-entry method to allow walkers to jump more
than one step in each epoch. However, since the current block is
only a small part of the large graph, the walkers tend to jump out
of it after moving forward. Even though GraphWalker tries to load
the current hottest block into memory, this block will cool down
very quickly after a few steps, so the system will soon have to
wait for another disk I/O to refill the memory. In other words, more
disk loading is needed to move the walkers forward. As we will
discuss later in §5.1, this “cool down” process also greatly reduces
the effectiveness of existing "dynamic" graph partition techniques.
To demonstrate this problem, we measure the “average edges read
per step” metric for two out-of-core randomwalker systems, Graph-
Walker and DrunkardMob [39, 68]. The metric is the average num-
ber of loaded edges that walkers are moved forward for each step.
In graph oriented scheduling system, this metric can be computed
by counting the total number of loaded edges divided by the to-
tal number of steps moved. As we can see from Figure 2(a), these
existing systems require much more edges to be loaded per step
than NosWalker, which leads to the significant performance gap in
Figure 2(b). This gap hurts the performance of the existing systems
even further when the graph has edge properties.

To improve the performance of random walk applications, we
exploit two unique properties that distinguish random walk from
traditional graph analysis algorithms. These properties enlighten
us to concentrate on walkers rather than the graph, leading to a
walker oriented scheduling. Property (a) the sampling process of
random walk is related to only edge data. Thus, the processing of
sampling can be decoupled from the processing of walkers, which
are only related to vertices. After reading a complete outgoing edge
set of a vertex, the system can use pre-sampling technique [72]
to compute multiple sampling results and store them for future
use. The key advantage of this pre-sampling technique is that the
sampled results can be viewed as a succinct representation of the
original edge data whose size are largely reduced. Property (b)
the walkers are independent from each other. It means that there
is no need to coordinate the pace among different walkers.
The real critical performance metric is the step throughput, i.e.
the number of steps moved per second, rather than the number of
walkers moved per second. In other words, instead of caring about

467

NosWalker: A Decoupled Architecture for Out-of-Core Random Walk Processing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

all the walkers, we just need to continuously make sure that there is
a small set of walkers (no need to be much larger than the number
of threads) that can be moved forward.

Based on the above two properties, we design a specialized decou-
pled memory layout (Figure 1(b)) for NosWalker, which provides
walker oriented scheduling. It gives the systemmore flexibility to re-
serve needed data in memory. The design of this novel architecture
is based on the decomposability of random walk, and is therefore
walker oriented. As we can see from Figure 1, instead of the cached
block region, a pre-sample result pool is located in the center of
the memory layout. Taking advantage of Property (a), this design
decouples the disk loading part and the walker processing part of
our system. The disk loading part reads the graph data and fills
the pre-sample results into this pool. The walker processing part
can keep moving as long as there are enough results in the pool. A
key benefit of this decoupled layout is that the system can flexibly
adjust the distribution of reserved sampling results in the pool as
opposed to being constrained in the currently loaded block. Thus,
with a careful pre-sampling strategy, the distribution of reserved
samples can represent our prediction of not only the current, but
also the future hot regions of the entire graph. To achieve this goal,
once a block is loaded from disk, if the system forecasts that other
walkers may jump into this block soon, edges more than currently
needed will be sampled from the block, the surplus sampled edges
will be reserved in the pool.

The walker management of NosWalker is also very different
from existing systems. Based on Property (b), we keep only a small
number of walkers in memory and never spill them out to disk, so
that the moving walkers never get stall due to swapping between
memory and disk. This management is possible for random walk
applications because, since all these walkers are independent of
each other, we can simply generate new walkers after old walkers
terminate. We also propose several implementation optimizations,
such as adaptive granularity of disk I/O and long-tail mitigation
described in §3.3.

We evaluate NosWalker on several real-world and synthetic
graph datasets with up to more than one hundred billion edges
and a set of representative real-world random walk applications.
According to our evaluation, NosWalker achieves up to two orders
of magnitude speedup compared to GraphWalker [68], Drunkard-
mob [39], and GraSorw [42] which are state-of-the-art out-of-core
randomwalk systems. We use different settings, such as the number
of walkers, the length of walkers, the memory budget, the num-
ber of SSDs, and the sensitivity to the graph structure to demon-
strate the impact and analyze the reason for our optimizations. We
also compare with two state-of-the-art in-memory random walk
systems [61, 73], which shows that NosWalker’s performance is
comparable to parallel in-memory processing in several realistic
settings.

2 BACKGROUND AND MOTIVATION
In this section, we first present some background on random walk
processing. Then, using a thorough example (Figure 3), we introduce
the state-of-the-art out-of-core random walk systems and their
limitations, which motivate our novel system.

2.1 RandomWalk
Random walk is a stochastic process consisting of a succession
of random steps on the graph [7]. Each “walker” starts from a
given vertex and executes a random step by 1) randomly sampling
an edge from the outgoing edges of the currently located vertex;
and then 2) moving the walker to the destination of the sampled
edge. The termination condition of the walker is determined by the
requirements of the specific application.

As one of the most important building blocks of graph analysis
applications, random walk typically serves as an upstream task of
the entire application pipeline. The task is to extract a large number
of random sequences from the same graph. These extracted random
sequences are considered a good representation of the relationships
between entities in the graph. Then, these sequences are fed to
the downstream learning task of the pipeline to compute gradients
and update models (e.g., a graph embedding model) [31, 53]. The
exact number of sequences depends on the convergence speed of
the downstream learning task, but 106 (for a median-size graph) to
109 (for a large graph) is typically sufficient and has been used by
existing works [39, 42, 68, 73].

More importantly, according to recent investigations, the random
walk process usually dominates the cost of the whole application
pipeline, such as Random Walk Domination [44], Graphlet Concen-
tration [54, 55] and Network Community Profiling [26], etc. Many
studies [6, 73, 80] have also observed that the cost of extracting the
random sequences accounts for even more than 90% of the whole
execution time in node embedding applications [31, 53]. Therefore,
all the existing random walk systems [39, 42, 61, 68, 72, 73] focus on
improving the performance of executing a large number of walkers.

2.2 Out-of-Core RandomWalk System
With the price of SSD dropping, out-of-core processing has recently
become more and more attractive. According to our investigation,
the current prices of memory and NVMe SSD are about 9.9$/GB [8]
and 0.13$/GB [9] respectively. Thus, if the size of the required
memory can be reduced to only 10% of a graph, the storage cost can
be reduced by 9.9/(0.99 + 0.13) = 8.8×. This calculation does not
even include the additional cost of machines, high-speed networks,
and management of a cluster when the graph size exceeds the
memory capacity of a single machine. As a result, many systems [12,
18, 18, 33, 40, 45, 47, 57, 65, 66, 77, 77, 81, 83] have been proposed to
make it practical and economical to analyze large graphs on a single
machine, which is particularly valuable in terms of democratizing
big data analysis.

Following this trend, DrunkardMob [39] proposes the first out-
of-core randomwalk system that allows users to simulate billions of
random walkers on large graphs. Its implementation is based on an
existing graph oriented out-of-core system GraphChi [40], so that
the edge data can be streamed from disk in a few sequential disk I/Os
for each iteration. In contrast, the walker states (contained in the
vertex data) are all held in memory. In each iteration, DrunkardMob
loads a subgraph from the disk into memory and moves all walkers
residing in that subgraph one step forward.

Figure 3(a) depicts a sample graph that is partitioned into two
subgraphs/blocks, where 𝑣0 ∼ 𝑣2 and all their outgoing edges be-
long to block A and the others in block B. Without loss of generality,

468

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shuke Wang, Mingxing Zhang, Ke Yang, Kang Chen, Shaonan Ma, Jinlei Jiang, and Yongwei Wu

Block B

Block A

Block B

Block A

Block B

Tim
e
Slots

In-
memory
Block

Walker
Pool A

Walker
Pool B

(c)

In-
memory
Block

Walker
Pool A

Walker
Pool B

Tim
e
Slots

Block A

Block A

Block A

Block A

Block B

Block B

Block B

w2

w0w1w3w2
w0w1w3

(b)Block B

Block A

(a)
Figure 3: (a) The partitioned graph, (b) execution process in
DrunkardMob and (c) execution process in GraphWalker.

we will use an application with four walkers to demonstrate the
process of random walk, and each walker will terminate after five
steps. As we can see from Figure 3(b), DrunkardMob first randomly
initializes all the walkers (states) in memory. Then, for each com-
putation epoch, it sequentially loads a subgraph into memory and
moves each movable walker for one step. So DrunkardMob first
loads block A. Since only walker𝑤2 locates on a vertex in block A,
DrunkardMob samples an destination vertex (𝑣2 in our example)
from the six outgoing edges (𝑣0 → 𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6) of 𝑣0 and
then moves 𝑤2 to 𝑣2. In the next epoch, DrunkardMob loads the
next block (block B) and moves all the walkers in that block for one
step – moves𝑤0,𝑤1 and𝑤3 to 𝑣0, 𝑣6 and 𝑣2 respectively. Drunkard-
Mob then iterates over these two types of epochs (loading block A
or B) and ends after all the walkers have been moved for five steps.
DrunkardMob finishes all its work after 7 epochs and loads a total
of 91 edges in our example.

2.3 Existing Optimizations
To further improve the I/O efficiency of existing out-of-core graph
analysis frameworks, DynamicShards [66] attempts to dynamically
adjust graph blocks to reduce the loading of useless data in each
iteration. DynamicShards still follows the old graph oriented sched-
uling and block-centric design so that, even if there is only one
active walker in the block, it still needs to load the entire block into
memory.

As far as we know, GraphWalker, which is also built on GraphChi,
is the current state-of-the-art out-of-core random walk system. To
solve the I/O efficiency problem of iteration-based synchronized
execution, GraphWalker introduces state-aware I/O model and
asynchronous walker updating. In GraphWalker, the blocks with
the maximum walkers can be loaded first, and walkers can move
as many steps as possible on the block under processing. As shown
in Figure 3(c), GraphWalker loads block B before block A because
the former has more walkers. Moreover, rather than move every
walker for only one step in each epoch, GraphWalker moves it as
much as possible until it goes out of the current block. For example,
GraphWalker first moves𝑤1 to 𝑣6, which is still in block B. Thus,
GraphWalker can move it one more step to 𝑣0. In this way, the I/O
efficiency is greatly improved, so as the walk performance — more
than an order of magnitude speedup can be achieved over Drunk-
ardMob. As we can see from Figure 3(c), GraphWalker finishes the
work in only 5 epochs with a total of 65 edges loaded.

Nevertheless, according to our investigation, the optimizations
made by GraphWalker are still not enough. The main reason is
that, even though GraphWalker tries to load the current hottest

Kron30
Kron31

6

A
cc

es
se

d
D

at
a

Pr
op

or
tio

n
in

 E
ac

h
I/O

0

0.5

1.0 N
um

ber of
U

nterm
inated

W
alkers (10)0

500

1000

I/O Number
0 500 1000

Figure 4: Results of tasks with 109 walkers on Kron30 and
Kron31. (Line) number of unterminated walkers. (Dots) the
accessed data proportion in each I/O.

block into memory, this block will cool down very quickly after a
few steps since the current block is only a small part of the large
graph. As we can see in Figure 3(c), in the toy graph, the walkers
are moved out of the block in less than 2 steps on average in each
epoch. This cooling phenomenon will become more apparent on
real-world graphs. In our evaluation, only about 3% of the walkers
remain in the currently processed block after one step when the
graph is partitioned into 33 blocks.

We also measure the proportion of data accessed in each epoch
of GraphWalker, which is an indirect indicator of I/O utilization
(only edge data I/O, not including vertex data I/O). It is calculated by
dividing the size of the data actually accessed (for moving walkers)
in disk page granularity by the total size of that block. As we can
see in Figure 4, even though GraphWalker uses a priority-based
scheduler, the proportion of data accessed is still not high, espe-
cially when the number of walkers decreases after several epochs.
This long tail problem reduces the efficiency of GraphWalker and
cannot be solved simply by loading the block containing straggler
walkers first. It is caused by the contradiction between the sparsity
of walkers and the inflexibility of graph data blocks.

2.4 Unique Properties of RandomWalk
As mentioned in §1, we observed that there are two unique prop-
erties in random walk applications that lead to the opportunity of
a walker oriented scheduling. In this section, we will describe our
motivation by using several evaluation results that demonstrate the
potential effectiveness of these two properties. When used properly,
they can substantially reduce the disk I/O for edge data and vertex
data (walker states), respectively. However, as we will discuss later
in this section, existing systems, such as DrunkardMob [39] and
GraphWalker [68], cannot directly take advantage of these opti-
mizations because they are built upon general out-of-core graph
analysis frameworks, and thus inherit many of their basic designs.
An architectural change is desired to build a specialized out-of-core
random walk system.

2.4.1 Pre-Sampling Edges. For the edge data, as discussed above,
we found that there is a huge gap between the size of the loaded
data and the actually accessed data in random walk applications.
This gap is rooted in the sampling mechanism of random walk
applications, and can be mitigated by the pre-sampling mechanism
demonstrated in Figure 5(a). In traditional systems, for each step
on a vertex, which may have an arbitrarily large number of edges,
the walker samples only one edge from the entire outgoing edge
set. Thus, the actually accessed data (only one destination vertex) is

469

NosWalker: A Decoupled Architecture for Out-of-Core Random Walk Processing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

much smaller than the loaded data (6 edges in our example). How-
ever, understanding this mechanism also opens up an opportunity
of reducing the gap. Specifically, after reading a complete outgoing
edge set of a vertex, the system can use pre-sampling technique to
compute multiple numbers of sampling results and store them in
memory for future use. As demonstrated in Figure 3(a), the system
samples three destination vertices and uses only one of them to
move the current walker𝑤2 from 𝑣0 to 𝑣2. The other 2 destination
vertices (𝑣3 and 𝑣4) can be reserved for future use. The key advan-
tage of the pre-sampling technique is that the sampled results can
be viewed as a succinct representation of the original edge data
whose size is largely reduced (2 reserved sample results V.S. 6 edges
in our example). Thus, it is possible that by holding the same size
of data in memory, a better system can move the walkers for much
more steps than existing systems. How we take advantage of these
reserved samples by designing a novel decoupled architecture will
be described in §3.

2.4.2 Dynamic GeneratedWalkers. Different from traditional graph
analysis algorithms, the size of vertex data (walker states) in ran-
dom walk is proportional to the number of walkers, not the number
of vertices. As a result, the cost of loading and evicting/saving
vertex data can be very large if the users need to run billions of
walkers. This is why DrunkardMob tries to manage all the walkers
in memory. But, even though it designs a compact data structure
to represent walker states, DrunkardMob’s scalability is limited
by memory capacity. In contrast, GraphWalker uses a small fixed-
length walker buffer to record the walker states, which is swapped
out when necessary. We evaluate the overhead of this swapping in
GraphWalker. The results show that it contributes up to more than
60% of the total disk I/O cost. However, although the number of
walkers can be very large, these walkers are actually independent
of each other. There is no need to coordinate the pace between
different walkers. Since GraphWalker is still based on GraphChi, it
inherits the classical architecture of first generating all the vertex
data (walker states) and updating them accordingly. In contrast,
we found that we only need to keep a part of the walkers in mem-
ory and never spill them out to disk. These walkers never stall
due to swapping their states between memory and disk, and we
can simply generate new walkers after old walkers terminate. This
mechanism, if it is possible, will reduce the cost of loading and
writing vertex/walker data directly to zero.

3 DESIGN OF NOSWALKER
To take advantage of the above two properties, NosWalker pro-
poses a novel decoupled architecture that enables walker oriented
scheduling. In this section, we first introduce the architecture and
workflow of NosWalker, which is designed based on the key idea
of keeping walkers always moving. In other words, besides try-
ing to load more and faster graph data, NosWalker tries its best
to make sure that there are always enough data in memory to
move a few walkers forward. Then, we present the programming
model of NosWalker and demonstrate with two examples how it
can be used to implement real-world random walk applications.
Finally, we present some optimization details that further improve
the performance.

Algorithm 1:Workflow of NosWalker.
1 Function BackgroundBlockLoad():
2 𝑏 ← 𝐴𝑙𝑙𝐵𝑙𝑜𝑐𝑘𝑠 .Unloaded().MaxNumWalker();
3 𝐵𝑙𝑜𝑐𝑘𝐵𝑢𝑓 𝑓 𝑒𝑟 .Insert(LoadBlock(𝑏));
4 Function Processing():
5 𝑛 ← 0
6 while 𝑛 < 𝑇𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑊𝑎𝑙𝑘𝑒𝑟 or not𝑊𝑎𝑙𝑘𝑒𝑟𝑠.Empty() do
7 While 𝑛 < 𝑇𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑊𝑎𝑙𝑘𝑒𝑟 and not𝑊𝑎𝑙𝑘𝑒𝑟𝑠.Full() do
8 𝑊𝑎𝑙𝑘𝑒𝑟𝑠.Insert(GenerateWalker(𝑛++));
9 foreach 𝑏𝑙𝑜𝑐𝑘 in 𝐵𝑙𝑜𝑐𝑘𝐵𝑢𝑓 𝑓 𝑒𝑟 do

10 PreSample(𝑏𝑙𝑜𝑐𝑘);
11 If exists walkers that can be moved then
12 MoveWalkers(𝑊𝑎𝑙𝑘𝑒𝑟𝑠);
13 FunctionMoveWalkers(Walker 𝑤𝑎𝑙𝑘𝑒𝑟𝑠 []) :
14 foreach 𝑤 in 𝑤𝑎𝑙𝑘𝑒𝑟𝑠 do
15 If 𝑃𝐸𝑏𝑢𝑓 𝑓 𝑒𝑟 [𝑤.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛] .Empty() then continue;
16 If not Active(𝑤) then 𝑤𝑎𝑙𝑘𝑒𝑟𝑠.Remove(𝑤);
17 If Action(𝑤, 𝑃𝐸𝑏𝑢𝑓 𝑓 𝑒𝑟 [𝑤.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛] .Top()) then
18 𝑃𝐸𝑏𝑢𝑓 𝑓 𝑒𝑟 [𝑤.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛] .Pop();
19 Function PreSample(Block 𝑏𝑙𝑜𝑐𝑘) :
20 foreach 𝑣 in 𝑏𝑙𝑜𝑐𝑘.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 do
21 While not 𝑃𝐸𝑏𝑢𝑓 𝑓 𝑒𝑟 [𝑣.𝑖𝑑] .Full() do
22 𝑃𝐸𝑏𝑢𝑓 𝑓 𝑒𝑟 [𝑣.𝑖𝑑] .Insert(Sample(𝑣));

3.1 Architecture and Workflow
Figure 6 depicts the decoupled architecture of NosWalker. The cor-
responding high-level workflow is presented in Algorithm 1. As
we can see, there are two parts of the architecture that are decou-
pled by the pre-sampled edge buffers (𝑃𝐸𝑏𝑢𝑓 𝑓 𝑒𝑟 in Algorithm 1),
which is the center of our new architecture. In NosWalker, the
system allocates only a small number of block buffers to support
uninterrupted graph loading via a background I/O thread (lines 1-3
in Algorithm 1). The rest part of the memory is allocated for the
walker pools and the pre-sampled edge buffers.

The workflow of the walker processing threads is presented
in the Processing() function. Instead of generating all the walkers
at once, NosWalker continuously generates new walkers without
exceeding the memory limit (line 7). It ensures that there is no
need of walker states swapping. Moreover, rather than caching
the outgoing edges, NosWalker pre-samples the edge block (lines
9-10) and reserves only the pre-sampled results in memory (lines
19-22). As a result, the system can keep the walkers moving by
using the pre-sampled edges (lines 17-18) even if the blocks are
evicted. The key advantage of this mechanism is two fold: 1) the
size of the pre-sampled edges is much smaller than the original
outgoing edge set of the vertex; 2) the distribution of the buffered
pre-sample results is not limited by the block partitioning.

A detailed example is demonstrated in Figure 5(b), which pro-
cesses the same randomwalk task as Figure 3. NosWalker partitions
the graph into smaller blocks than GraphWalker. In this example,
this mechanism is demonstrated by loading one vertex per epoch.
After loading all the edges of 𝑣0, NosWalker extracts three samples
from them and only one is used to move 𝑤2 to 𝑣2. In the second
epoch, NosWalker loads all the edges of 𝑣4 and, similarly, extracts
three samples from them and uses one to move 𝑤0. At this time,
after moving𝑤0 to 𝑣0, we find that although the edges of 𝑣0 have
been evicted from the memory, there are still two pre-sample results
reserved in the pre-sample buffer. Thus, the pre-sample is used to
move 𝑤0 further to 𝑣3. The following steps are also depicted in

470

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shuke Wang, Mingxing Zhang, Ke Yang, Kang Chen, Shaonan Ma, Jinlei Jiang, and Yongwei Wu

Sample
edges

w0 w1 w2 w3

Un-consumed
pre-sampled
edges in the
time window

Graph region
in memory

Pre-sampled edges
(reserved edges)

Time

Walkers

Pre-sampled edge state in a time window
Move without
stalling

Sample edges

. . .

Out-going edges

Sampling results sequence

Move walker2
from v0 to v2

Reserve
Pre-sampled edges

Sample 3 destinations

(a) (b)

Figure 5: (a) Pre-sampling and (b) execution process in NosWalker.

Sc
he
du
le
r

Disk 1

1
44

33

2

Block
buffers

Pre-sampled edge
buffers

Walker
pools Adjust

Figure 6: Architecture of NosWalker. ① Loading block to
block buffer. ② Adaptively generating walkers. ③ Moving
walkers. ④ Building or refilling pre-sampled edge buffers.

the figure. The leftmost part of the figure is the currently loaded
vertex and its all outgoing edges, which will be discarded soon after
pre-sampling. The center yellow part demonstrates the reserved
pre-sample results. An outstanding example is the second step of
𝑤1. After moving it to 𝑣0, the system successively moves it for three
steps by using only the reserved pre-samples, without the need to
load any edge data. In summary, NosWalker loads only 32 edges in
total to finish the same task shown in Figure 3.

3.2 Programming Model

Algorithm 2:Weighted random walk example.
1 Function GenerateWalker(Int 𝑛) : Walker
2 returnWalker{index: n, location: n, step: 0};
3 Function Sample(Vertex 𝑣) : VertexID
4 returnWeightedSample(𝑣.𝑒𝑑𝑔𝑒𝑠, 𝑣.𝑒𝑑𝑔𝑒𝑊𝑒𝑖𝑔ℎ𝑡𝑠) ;
5 Function Active(Walker 𝑤) : Bool
6 return 𝑤.𝑠𝑡𝑒𝑝 = 𝐿;
7 Function Action(Walker 𝑤, VertexID 𝑛𝑒𝑥𝑡) : Bool
8 𝑤.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ← 𝑛𝑒𝑥𝑡 ;
9 𝑤.𝑠𝑡𝑒𝑝++;

10 return True;

NosWalker provides four APIs for users to implement random
walk applications, which are also called in Algorithm 1. As de-
scribed above, GenerateWalker dynamically generates new walk-
ers, which is similar to the initialization procedure of existing sys-
tems. The Sample function defines how to sample an edge from
the outgoing edges of a vertex. This function, which describes the
core logic of different random walk applications, is widely used in

existing random walk systems [34, 39, 61, 68, 72, 73]. The return
value of Active indicates whether a walker has been terminated.
NosWalker calls it before moving a walker (line 16). Finally, the
Action called in line 17 is used to implement the specific step-
moving logic of random walk. It returns True to indicate that the
pre-sampled edge passed in is consumed. Algorithm 2 depicts a
random walk task on a weighted graph as an example. Every edge
in the graph has a weight property. It issues a walker starting from
each vertex with walk length 𝐿. The GenerateWalker is called to
generate the 𝑛-th walker starting from at the vertex whose ID is 𝑛.
The user implements the Sample to sample an edge with weight
from the outgoing edges of 𝑣 based on their weights. If the step
is equal to 𝐿, Active returns True to indicate that the walker is
terminated. The Action moves the walker 𝑤 to the destination
(next) of the pre-sampled edge. Each time it moves a walker, the
step is increased by one and the location is updated accordingly
(lines 8-9).

3.3 Implementation Challenges and
Optimizations

However, the realization of the architecture change is also not
straightforward. Many implementation challenges need to be solved
to reduce the possibility of stalling that occurs when suitable pre-
samples run out. Therefore, a compact data structure is designed to
reserve as many pre-samples as possible in memory (§3.3.2) and to
use the loaded data blocks to move more walkers (§3.3.5). Another
important challenge is the long tail problem depicted in Figure 4.
Near the end of execution, the sparsity of walkers is very high, and
thus the possibility of stalling without optimizations is high. To
mitigate this problem, we design several mechanisms to adaptively
adjust the behavior of NosWalker, including adaptive block granu-
larity (§3.3.1), recycling memory from finished walkers to reserve
more pre-sampled edges (§3.3.3), and prioritizing the allocation of
pre-sampled edges for frequently visited vertices (§3.3.2). In addi-
tion, NosWalker optimizes the inefficiency of reserving pre-sampled
edges for low-degree vertices (§3.3.4).

3.3.1 Adaptive Block Granularity. Modern SSD can achieve both
high throughput and high IOPS, but not simultaneously. Our bench-
mark shows that, for Intel SSD P4618, the sequential read bandwidth
can achieve up to about 3.1 GiB/s for large block read and the IOPS
can be up to more than 600k IOPS for 4 KiB random read (2.4GiB/s).

471

NosWalker: A Decoupled Architecture for Out-of-Core Random Walk Processing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

v0 v1

v1

v2

v2

v3 v4 v5 v6 v7 v8

1 0 1 1Fine-grained
blcok

Edges in disk

Edge buffer

Load fine-grained
blocks following

the bitmap
Bitmap

CSR index

Some walkers stay at v1 No walker stays at v2

Figure 7: Mark and load the fine-grained blocks.

It is desirable to make the best use of both these two sides of the
SSD.

In random walk applications, when there are plentiful active
walkers, the bottleneck of the system will be read throughput be-
cause most of the edge blocks will carry many active walkers. In
contrast, as active walkers become sparse, there will be very few
of them even in the hottest block. As discussed in §2.2, this long
tail problem is one of the important problems that reduce the ef-
ficiency of existing out-of-core random walk systems. Thus, it is
natural to consider that we can adaptively shrink the size of edge
blocks according to the sparsity of walkers. As a result, we can take
advantage of the high IOPS feature of modern SSD and improve
I/O utilization at the same time.

In particular, when the active walkers are dense enough com-
pared to the graph, NosWalker uses the coarse-grained block mode,
which continuously loads the hottest coarse-grained block. With
the help of the high-performance Linux-native asynchronous I/O
access library [4], a single thread is sufficient to achieve the peak
sequential read throughput of the SSD. When the active walkers
become sparse, only a fraction of the data in a large block is needed.
In this case, NosWalker switches to fine-grained block mode. In this
mode, NosWalker tries to identify which fine-grained blocks should
be loaded and launch precise I/O requests targeting those identified
blocks. Since the underlying hardware of SSDs typically sets 4 KiB
(one SSD page) as the smallest unit that can be read in an I/O oper-
ation, NosWalker conceptually divides each coarse-grained block
into 4 KiB fine-grained blocks and issues I/O operations at 4 KiB-
block-granularity. This ensures that the high IOPS of SSDs can be
fully utilized while bypassing the unrequired data as accurately as
possible.

Then, we introduce some implementation details to achieve the
above design. We use 𝑆𝐺 , |𝑊𝑎 |, and 𝛼 to represent the size of the
graph data, the number of active walkers, and the unevenness factor
of the walker distribution, respectively. Since the fine-block size is
4 KiB, NosWalker switches to the fine-grained block mode when
𝛼 |𝑊𝑎 | · 4 𝐾𝑖𝐵 < 𝑆𝐺 . We observe that the active walker density of
the hottest block is usually twice the average, and walkers also
distribute unevenly across the block. Therefore, the 𝛼 is set to 4 by
default. Since the number of walkers is monotonically decreasing,
once NosWalker switches to the fine-grained block mode, it will
stay in this mode until the task is completed.

In addition, to support the fine-grained block mode, NosWalker
uses a bitmap to indicate whether a fine-grained block should be
loaded. When the pre-sampled edges of a vertex are all consumed,
some walkers may stall at these vertices and thus cannot be moved.
For example, in Figure 7, the 1st block is marked due to 𝑣1, and the
3rd and 4th blocks are marked due to 𝑣4 and 𝑣6. NosWalker will load

cnt2idx2 031 11
4 2

Outgoing edges

(0,1) (1,0) (4,2) (5,2) (8,0)meta

edges

(a) (b)

Figure 8: A pre-sampled edge buffer for the four consecutive
vertices.

the marked blocks in the future according to the bitmap. The other
unmarked blocks, like the 2nd block, are therefore skipped to save
I/O. As depicted in the figure, these fine-grained blocks are loaded
into the corresponding addresses in the edge buffer. NosWalker
can thus access the edges through the CSR index as usual. This
simplifies the system implementation and improves the efficiency
of edge access. NosWalker uses fine-grained block mode only when
active walkers are sparse. In this case, the walker pools that initially
occupy most of the memory have released a lot of memory. Thus,
NosWalker can utilize this memory to accommodate the bitmap
arrays and keep the CSR index in memory.

3.3.2 Compact Data Structure for Pre-Sample Results. In our decou-
pled architecture, a walker can keep moving until the pre-sampled
edges of the vertex where it locates are consumed up. While the
number of pre-sampled edges is limited by memory, a special data
structure is needed to support more steps of walker moving. Since
the vertices tend to be visited unevenly by walkers, we design a
compact data structure to sample more edges for the vertex that
will be visited more frequently. Here, the future frequency of visits
is estimated by the number of historical visits. And this is a general
method for different random walk applications even with different
probability distributions.

Now we introduce the compact data structure. In NosWalker, a
certain number of consecutive vertices correspond to a pre-sampled
edge buffer. The buffer is similar to the CSR format as depicted in
Figure 8(b). It has two arrays: meta and edges. The pre-sampled
edges of a vertex are continuously stored in the edges. Each vertex
has a metadata in the meta to track the status of the pre-sampled
edges and the visiting history. It has two regions: 𝑖𝑑𝑥𝑣 (the starting
position of the pre-sampled edges of 𝑣) and 𝑐𝑛𝑡𝑣 (counting the con-
sumed edges), and is represented as (𝑖𝑑𝑥𝑣, 𝑐𝑛𝑡𝑣). The pre-sampled
edges of 𝑣 are stored at the position between 𝑖𝑑𝑥𝑣 and 𝑖𝑑𝑥𝑣+1 of
edges. This data structure compactly supports storing different
numbers of pre-sampled edges for each vertex for better allocation.

Then we introduce how it works. Every time a pre-sampled edge
is consumed, NosWalker increases 𝑐𝑛𝑡𝑣 by one (Algorithm 1 lines
17-18) to record the consumption. And before moving a walker,
NosWalker needs to ensure that the pre-sampled edges are not
consumed (Empty method in Algorithm 1 line 15) by checking
whether 𝑖𝑑𝑥𝑣 +𝑐𝑛𝑡𝑣 is less than 𝑖𝑑𝑥𝑣+1. If ensured, the edge stored in
edges[𝑖𝑑𝑥𝑣 +𝑐𝑛𝑡𝑣] can be the moving direction (get by Topmethod
Algorithm 1 line 17) of the walker’s next step. If not, NosWalker also
increases 𝑐𝑛𝑡𝑣 by one to record the visit. Thus, 𝑐𝑛𝑡𝑣 is an estimate
of the number of historical visits.

When the pre-sampled edge buffer is refilled (Algorithm 1 line
10), NosWalker reallocates the number of pre-sampled edges for
each vertex based on 𝑐𝑛𝑡𝑣 . Specifically, it uses the value of 𝑐𝑛𝑡𝑣 as the
weight to reassign the number of pre-sampled edges for the vertices.

472

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shuke Wang, Mingxing Zhang, Ke Yang, Kang Chen, Shaonan Ma, Jinlei Jiang, and Yongwei Wu

In fact, the number of pre-sampled edges of 𝑣 is approximately
proportional to 𝑐𝑛𝑡𝑣 . Since 𝑐𝑛𝑡𝑣 can be used to approximate how
often a vertex is visited, NosWalker achieves the goal of prioritizing
the allocation of pre-sampled edges for frequently visited vertices.
Thus, the limited buffer space can be used efficiently to move more
steps for walkers and reduce the walking stalls.

Both the on-disk and in-memory edge list/pre-samples data struc-
tures used by NosWalker are based on CSR, which is a static format
to which new edges cannot be added directly. Thus, the walk en-
gine consumes (and then deletes) the pre-sampled edge simply by
in-place updating the 𝑐𝑛𝑡 region of the metadata. And, NosWalker
will generate a new pre-sampled edge buffer according to the adap-
tive algorithm mentioned above when it should sample new edges.
The original buffer will be released, even if there are still some un-
consumed pre-sampled edges (instead of appending new samples
to the original buffer). The cost is acceptable since the size of the
pre-sampled edges is much smaller than the size of the graph, and
the buffer manages the pre-samples for only a part of the vertices
(more details in §3.3.3).

3.3.3 Manage the Dynamic Memory Space for Pre-Sampled Edges.
NosWalker uses one pre-sampled edge buffer for each coarse-grained
block to manage the pre-samples. And one buffer manages the pre-
samples for one block of vertices. It ensures that a few bits for the
𝑖𝑑𝑥 region of metadata is enough to manage pre-samples, which
saves memory especially when the number of vertices is large. Since
the memory will be released from the finished walkers, NosWalker
can recycle it to reserve more pre-samples.

Instead of initially allocating all the buffers with a small size
and gradually enlarging them, NosWalker supports dynamically
growing pre-sample buffers by first making the buffer size large
enough and fixed, and then allocating new buffers one by one.
This design has two advantages. 1) It avoids the metadata of the
small buffers that occupy most of the memory. 2) When a part of
the memory is released, only one memory allocation is made to
allocate a new buffer, instead of reallocating memory space for each
buffer.

3.3.4 Pre-Sampling on Low-Degree Vertices. Natural graphs usually
have skewed power-law degree distribution [23, 30]. Thus, most
vertices in these graphs have relatively few neighbors. It is not cost-
effective to pre-sample edges for these low-degree vertices. For
example, pre-sampling for a one-degree vertex violates the original
purpose of pre-sampling, which is to make the pre-sampled edges
a succinct representation of the original edge data. However, the
edges of the low-degree vertices are usually only a very small part
of the whole graph. For example, there are about 9% of vertices
with a degree of 1 in Kron30 [3], and these vertices have only
about 0.3% of the edges. This phenomenon is also observed by [72].
Therefore, NosWalker directly reserves the edges of low-degree (1
to 4 determined by the size of the graph) vertices in memory when
it should pre-sample edges from them. It alleviates the drawback of
the pre-sampling technique on low-degree vertices.

3.3.5 Use Loaded Edges as Pre-Sampled Edges. The pre-sampled
edges are the key resources that keep the walkers always moving.
However, the memory allocated for the pre-sampled edge buffers is
limited. In practice, NosWalker also makes use of the loaded edge

Table 1: Statistics of Datasets.

Dataset |𝑉 | |𝐸 | CSR Size
Twitter (TW) [38] 61.6M 1.5B 6.2GiB
YahooWeb (YH) [71] 1.4B 6.6B 37.6GiB
Kron30 (K30) [3] 1B 32B 136GiB
Kron31 (K31) [3] 2B 64B 272GiB
CrawlWeb (CW) [1] 3.5B 128B 540GiB
Weighted Kron 30 (K30W) 1B 32B 384GiB
G12 2.7B 33B 144GiB
𝛼2.7 4.2B 27B 134GiB

data in the block buffers to act as pre-sampled edges by prioritizing
moving the walkers staying at these blocks before their eviction
(just like existing out-of-core systems). Since NosWalker always
loads the hottest block similar to GraphWalker, a large number of
walkers can be moved without consuming the pre-sampled edges
retained in memory. As discussed above, a key advantage of pre-
sampling is that its distribution is not limited by block partitioning.
With this optimization, the pre-sample results are only consumed if
the corresponding edge block is not currently loaded, presumably
avoiding this costly loading.

4 EVALUATION
In this section, we evaluate NosWalker on several real-world and
synthetic graph datasets with up to more than one hundred bil-
lion edges. First, we compare the performance of NosWalker with
state-of-the-art out-of-core graph random walk systems on a set of
representative real-world random walk applications. We then use
several micro-benchmarks to demonstrate the impact and analyze
the reasoning behind our optimizations. Different settings, such as
the number of walkers, the length of walkers, the memory budget,
multiple SSDs, and higher-order random walks are all evaluated in
the experiments.

4.1 Experiment Settings
Testbed. All experiments are performed on a machine with 2 × 24
Intel(R) Xeon(R) Gold 6240R @ 2.40GHz processors. The memory
budgets of all the evaluated systems are set to 64GiB, which is
about 12% of the largest graph we evaluate. We use cgroups [2] to
force the sum of the memory used by the application and the page
cache [5] within our limit. All graph data are stored on Intel(R) SSD
DC P4618 Series 3.2 TB NVMe SSD unless otherwise noted.
Dataset. Table 1 lists the datasets we used. TW, YH and CW are
real-world graphs. K30 and K31 are two synthetic graphs generated
by the kronecker algorithm in Graph500 [3], which are widely used
to evaluate graph analysis systems [29, 36, 41, 45, 48, 52, 68]. Among
them, TT and YW are two graphs of small size to evaluate the in-
memory performance of the systems, while K30, K31, and CW,
whose size largely exceeds the memory budget in our testbed, can
help to evaluate the scalability on different graphs. We randomly
generate the weight property for each edge in K30 to conduct
the weighted random walk experiments in §4.4. It also includes
a pre-generated alias table [11, 37] for each vertex to replace the
adjacent edge list, which is widely adopted in many random walk
systems [61, 67, 72, 73] for a higher performance. The total weighted
graph data (K30W) is about 384GiB.

473

NosWalker: A Decoupled Architecture for Out-of-Core Random Walk Processing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Both the real-world graphs (TW, YH, CW) and the synthetic
graphs (K30, K31, K30W) listed above exhibit strong power-law
characteristics with highly skewed vertex degree distributions.
Therefore, to explore the sensitivity of the system performance
on different graph structures, we further generate two synthetic
flatter graphs, 𝛼2.7 and G12, with different characteristics. 𝛼2.7 is
an approximate power-law distribution graph generated by the
Configuration model [14, 50]. Its power-law constant 𝛼 is set to
2.7. This setting makes its vertex degree distribution much flatter
than the common power-law graphs including the six graphs above
(the 𝛼 of natural graphs is usually around 2 [30]). G12 is a uniform
graph with each vertex connected by 12 edges.

4.2 Real-World RandomWalk Applications
DrunkardMob [39] and GraphWalker [68] are the state-of-the-art
out-of-core graph randomwalk systems. To evaluate the speedup of
NosWalker against them, we use four representative and impactful
real-world random walk applications: 1) Personalized PageRank
(PPR) [25, 46] is one of the most important graph analysis algo-
rithms that measure the importance of each vertex. In our evalua-
tion, we run 2000 randomwalks with length 10, which is considered
to be sufficient to ensure accuracy, starting from each query source
vertex to approximate the PPR; 2) SimRank (SR) [35] is a general
graph similarity measure and is used in many important data min-
ing tasks [15, 32, 43]. The pair-wise vertex similarity 𝑠𝑖𝑚(𝑎, 𝑏) can
be interpreted as a measure of the time for two random walkers
expected to meet at the same vertex if they start at vertices 𝑎 and
𝑏. For each of the two vertices in a queried pair, we start 2000 ran-
dom walks with length 11 to compute the expected meeting time;
3) Random Walk Domination (RWD) [44] finds a vertex set with
the maximum influence diffusion. We start a walker with length 6
from each vertex in the graph to collect the vertex visit statistics; 4)
Graphlet Concentration (GC) [54, 55] estimates the ratio of a type
of graphlet in the graph. We use the graphlet triangle as a study
case. We randomly start |𝑉 |/100 walkers of length 3 to estimate it,
where |𝑉 | is the vertex number of the graph.

The results of our evaluation are depicted in Figure 9. Since the
reachable vertices for some vertices can be very few, there is a huge
difference in the time of a random walk starting from different
vertices. We measure the completion time of 1000 random selected
sources in the PPR experiments and 1000 randomly selected vertex
pairs in the SR experiments. DrunkardMob cannot process the large
K31 and CW graphs, due to the limitations of holding all the vertex
data in memory. As we can see from the figure, NosWalker achieves
6× to 64× speedup over with GraphWalker on the large datasets,
K30, K31 and CW. It also achieves 3.6× to 7.9× speedup on TW and
YH. The result that a larger graph leads to a larger speedup proves
the scalability of NosWalker. We also measure the total disk I/O of
each system, and the results show that NosWalker requires much
less I/O than the other systems (Figure 2). This indicates that our
optimizations achieve a better I/O utilization, which is the main
reason for NosWalker’s speedup.

4.3 Different Settings
In order to demonstrate the different aspects of NosWalker’s perfor-
mance, we also evaluate the basic random walk kernel and compare
NosWalker with the state-of-the-art systems in different settings.

Different Number ofWalkers. Figure 10 shows the performance
with different numbers of walkers, with the walk length fixed at 10.
Due to the memory limitation, DrunkardMob cannot support 10
billion walkers or large graphs such as K31 and CW. According to
our evaluation, when the number of walkers is less than 109 in these
experiments, the main bottleneck becomes graph loading, so there
is no significant change in the time cost of GraphWalker and Drunk-
ardMob. They inevitably load most parts of the graph many times.
In contrast, NosWalker can use pre-sampled edges to keep walkers
moving and adaptively shrink the block size to significantly reduce
I/O. This explains why the speedup of NosWalker achieves up to
two orders of magnitude when the number of walkers decreases.

Different Walk Lengths. Figure 11 shows the performance with
different walk lengths when the number of walkers is fixed to 106.
When the graph is smaller than the memory, for example TW and
YH, the performance of NosWalker can beat others because of
the more efficient walker management. When the graph is larger
than the memory, e.g. K30, K31 and CW, the execution time of all
three systems increases almost linearly with the walk length. But
NosWalker is always 30× to 95× faster than GraphWalker. Even
when the walk length is 512 for K31, NosWalker can still finish
within a reasonable time while DrunkardMob and GraphWalker
need several hours or even more than a day. The experiments also
demonstrate the scalability of NosWalker to support long random
walks with millions of walkers.
Different Memory Budget. To demonstrate the capability of
NosWalker to work with low memory budgets, we conduct exper-
iments under different memory budgets on the K30 dataset and
compare them with GraphWalker. As depicted in Figure 12(a), the
speedup of NosWalker has a notable improvement when the budget
varies from 10% to 20%. It is because little memory can be allocated
for pre-sampled edge buffers when the budget is only 10% of all
states. Performance is more sensitive to the memory budget when
the number of walkers is larger. In these cases, if there is enough
memory to manage a large number of walkers, NosWalker can
achieve a larger speedup as the number of walkers increases. Even
with very limited memory budgets, NosWalker can still achieve
significant performance improvements.
Performance on RAID. We also study the impact of storage
devices by running experiments on RAID-0 consisting of seven
Intel SSD D3 S4610 1.92 TB. Its sequential read-throughput is about
3.4GiB/s. But the IOPS is only about 150k for 4 KiB random read.
Figure 12(b) and (c) depict the experiment results on K30. Compared
to the experiments on NVMe SSD, the low IOPS leads to some
performance loss. However, NosWalker still achieves about 15.2×
to 41× speedup on the fixed walk length experiments (Figure 12(b))
and about 17.3× to 27.4× speedup on the fixed number of walkers
experiments (Figure 12(c)). It validates the broad applicability of
NosWalker on different hardware configurations.
Sensitivity to the Graph Structure. We also conduct experi-
ments on non-power-law graphs (G12 and 𝛼2.7) to evaluate the
sensitivity to the graph structure. As depicted in Figure 13, there
is some decrease in the speedup of NosWalker on non-power-law
graphs. In the Basic-RW, PPR, and SR tasks, the number of walkers
is independent of the number of vertices in the graph. The speedup
of NosWalker decreases from 18× to 8×, 35× to 20× and 25× to

474

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shuke Wang, Mingxing Zhang, Ke Yang, Kang Chen, Shaonan Ma, Jinlei Jiang, and Yongwei Wu

PPR

DrunkardMob
GraphWalker
NosWalker

Ti
m

e
C

os
t (

s)

1
101
102
103

TW YH K30K31CW
SR

1
101
102
103

TW YH K30K31CW
RWD

1
101
102
103
104

TW YH K30K31CW
GC

1
101
102
103

TW YH K30K31CW

Figure 9: Performance of random walk based applications.

DrunkardMob
GraphWalker
NosWalker

Number of Walkers

(TW)

Ti
m

e
C

os
t (

s)

1
101
102
103

103104105106107108
Number of Walkers

(YH)

1
101
102
103

103104105106107108109
Number of Walkers

(K30)

1
101
102
103
104

103104105106107108109101
0

Number of Walkers

(K31)

101
102
103
104

103104105106107108109101
0

Number of Walkers

(CW)

101
102
103
104

103104105106107108109101
0

Figure 10: Performance of random walks with different number of walkers by fixing walk length as 10.

DrunkardMob
GraphWalker
NosWalker

Walk Length

(TW)

Ti
m

e
C

os
t (

s)

1
101
102
103
104

22 23 24 25 26 27 28 29
Walk Length

(YH)

1
101
102
103
104
105

22 23 24 25 26 27 28 29
Walk Length

(K30)

101
102
103
104
105

22 23 24 25 26 27 28 29 Walk Length

(K31)

101
102
103
104
105

22 23 24 25 26 27 28 29
Walk Length

(CW)

101
102
103
104
105

22 23 24 25 26 27 28

Figure 11: Performance of random walks with different walk lengths by fixing the number of walks as 1 million.

0.5B
1B

2B
4B

(a) Memory / Graph Size

Sp
ee

du
p

10x

20x

30x

10%20%30%40%50%

GraphWalker
NosWalker

(b) Number of Walkers

Ti
m

e
C

os
t (

s)

1
101
102
103
104

103 106 109
(c) Walk Length

24 26 28

Figure 12: (a) The speedup of NosWalker relative to Graph-
Walker under different memory budgets with 0.5B, 1B, 2B
and 4B walkers. (b) Time cost with 10 walk length on RAID-0
devices. (c) Time cost with 1 million walkers on RAID-0 de-
vices.

Applications

GW-K30
NW-K30

GW-G12
NW-G12

GW-α2.7
NW-α2.7

Ti
m

e
(s

)

101

102

103

Basic-RW RWD GC PPR SR

Figure 13: Sensitivity of graph structure. Basic-RW: 1 billion
walkers with 10 length. Systems: GW (GraphWalker) and NW
(NosWalker).

21× respectively. This is because the lower average degree makes
the pre-sampling technique less effective. However, the overall
speedups are still notable, because the long tail problem is still
severe in the G12 and 𝛼2.7, so the effectiveness of “shrink block
size” mentioned in §3.3.1 is still high. More details can be found in

the following breakdown analysis (§4.4). As for applications RWD
and GC, the speedup of NosWalker drops more on datasets G12
and 𝛼2.7 compared with it on K30. This is because the number of
walkers is determined by the number of vertices in these applica-
tions, and the number of vertices on G12 (2.7B) and 𝛼2.7 (4.2B) is
significantly higher than on K30 (1B). In these tasks with a large
number of walkers, the long tail problem is not so severe. Thus, the
speedup from the pre-sampling technique dominates the overall
acceleration.

4.4 Optimizations Breakdown
We also conduct some experiments to measure the effectiveness of
our main optimizations, namely dynamically generating walkers
to support in-memoryWalker Management, adaptively Shrinking
Block Size, and decoupling edge sampling with moving walkers
(PreSample Edges). In addition, we further use the weighted ran-
dom walk to evaluate the efficiency of these optimizations on the
weighted graph (K30W).

The three optimizations are added to the base implementation
one by one, and their performance is evaluated on several applica-
tions. The base implementation has a degraded workflow similar
to GraphWalker’s, but is faster than GraphWalker. This mainly
because NosWalker uses asynchronous I/O to replace the origi-
nal buffered I/O of GraphChi and overlaps the disk I/O with com-
putation. The disk bandwidth utilization in NosWalker is about
70% ∼ 90% while it is about 20% ∼ 30% in GraphWalker. Thus,
using this special version of NosWalker with optimization knobs
in the breakdown analysis precludes the impact of the underlying
implementation details. I/O reduction breakdown analyses are also
performed to cross-validate the source of the performance gain
brought by these optimizations.

As we can see from the experiment results depicted in Figure 14,
the performance gain of NosWalker is mainly from its ability to

475

NosWalker: A Decoupled Architecture for Out-of-Core Random Walk Processing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Applications

Base Implementation
+Walker Management

+Shrink Block Size
+PreSample Edges

N
or

m
al

iz
ed

 T
im

e
an

d
I/O

0
0.2
0.4
0.6
0.8
1.0

1B10 1B80 4B10 K30W RWD GC PPR SR G12 α2.7

Figure 14: Effectiveness of optimizations. Bars: normalized
time. Lines: normalized I/O volume. Applications: basic ran-
dom walks which are 1 billion walkers with 10 length (1B10),
1 billion walkers with 80 length (1B80) and 4 billion walkers
with 10 length (4B10), weighted random walk with 1 billion
walkers and 80 length (K30W), four real-world random walk
applications mentioned in §4.2, and 1 billion walkers with
10 length on two synthetic flatter graphs, G12 and 𝛼2.7.

reduce I/O. For example, the collected “Total I/O” results for the 1B10
workload, is decreased from 1263GB to 1098GB/669GB/274GB
after adding the three major optimizations one by one. Thus, the
normalized I/O is 1/0.86/0.52/0.21 for each case and it is very similar
to the normalized time 1/0.81/0.60/0.20 presented in the figure.
(1) Walker Management. The baseline implements a swapping
mechanism for walker states that is similar to GraphWalker’s imple-
mentation. Our optimization of dynamically generating walkers is
able to reduce this swapping cost and thus improve the performance.
This optimization is almost independent of the graph structure, so
it has a similar effect on non-power-law graphs such as G12 and
𝛼2.7. And it is natural to find that a larger number of walkers leads
to a higher speedup of this optimization. In task 4B10, applying this
optimization alone achieves about 1.9× speedup.
(2) Shrink Block Size. The third bar in each group of Figure 14 de-
picts the effect after adding the optimization of adaptively Shrinking
Block Size described in §3.3.1. It is related to the long tail problem
mentioned above. As demonstrated in Figure 4, in GraphWalker,
the last 30% time of execution is used to execute the last 3% of
walkers. Thus, in the task 1B10, NosWalker can achieve 35% perfor-
mance improvement after just by enabling this optimization. And in
contrast to the first optimization, this optimization achieves better
speedup when the number of walkers becomes sparse. As we can
see from the figure, the optimization achieves a significant speedup
in the applications GC, PPR and SR, where the total number of
walkers is in the order of million. In the PPR application, enabling
this optimization achieves about 7.9× speedup. In addition, this op-
timization has a similar effect in non-power-law graphs. Compared
to simply enabling the first optimization, it reduces about 26% and
28% I/Os in G12 and 𝛼2.7, respectively, which are close to the I/O
reduction (37%) in K30.
(3) PreSample Edges. Finally, we enable pre-sampling edges and,
as we can see, the performance of NosWalker is further significantly
improved. The optimization is caused by the skipped I/O through
buffered pre-samples. As an example, about 18% of the total steps
are moved by pre-samples in the 1B10 workload, and hence the cor-
responding I/O is skipped. According to our further investigation,
the reason why an 18% skipping in steps leads to a 60% reduction in

I/O is related to the read amplification caused by block I/O (read an
entire block for a single vertex) and the power-law semantics of the
graph. The average degree of the vertex where the skipped steps are
located is about 382, which is much higher than the average degree
(32) of the whole graph, and thus leads to a higher I/O reduction.
This is because the walker will visit the high-degree vertex more
frequently.

As a result, for non-power-law graphs such as G12 and 𝛼2.7,
the effect of pre-sampling optimization is weaker. We perform an
additional evaluation on the 𝛼2.7 (about 6.4 edges per vertex). The
results demonstrate that the pre-samples lead to a 32% skipping
of steps but only about a 44% I/O reduction. In addition, we con-
duct experiments on a graph G2.5 with an even lower average
degree (about 2.5), which is close to the real-world road graphs.
The similar phenomenon is more evident due to the low degree.
The pre-sampling technique leads to only about a 9% I/O reduction.
And all the three optimizations result in a speedup of about 2×
compared to the base implementation.

For the heavy weight tasks, where the number of walkers is more
than a billion, NosWalker can achieve a total speedup of about 6.5×
(1B80). Even for the light-weight tasks which have been greatly
optimized by the first two optimizations, NosWalker achieves about
22× speedup in total. It is because our decoupling architecture and
pre-sampling mechanism is a generic optimization. In the weighted
random walk task, the size of the graph data is significantly larger
than the original graph. Just applying the first two optimizations
achieves only about 20% improvement. But NosWalker achieves
a total speedup of about 11.4× after applying this optimization.
This is a more significant performance improvement than it is
in experiment group 1B80. It is because the pre-sampled edges
stored in memory are notably smaller than the entire graph with
edge properties. This optimization is particularly effective for tasks
where there are properties attached to the graph.

The decoupled architecture based on walker oriented scheduling
makes NosWalker achieve a high performance improvement. It
can keep walkers always moving even when the blocks are not in
memory, as long as the succinct pre-sample results are reserved in
memory. In this way, NosWalker can make the best use of the CPU,
memory, and I/O resources.

4.5 Second-Order RandomWalk
Previous experiments concentrate on first-order random walk ap-
plications, which are most prevalently used in practice and assume
that the sampling of the next step only relies on the information of
the current vertex. To model higher-order structures in the data,
researchers have also proposed second-order random walks, which
select the next step based on more historical information. Taking
the random walk generation of Node2Vec [31] as an example, on a
given undirected graph, the edge weight for a walker𝑤𝑣

𝑢 is defined
as

𝛼𝑣𝑥 =


1/𝑝 if 𝑑𝑢𝑥 = 0
1 if 𝑑𝑢𝑥 = 1

1/𝑞 if 𝑑𝑢𝑥 = 2
(1)

where 𝑢 and 𝑣 are the vertices on which𝑤𝑣
𝑢 locates in the previous

step and the current step respectively, 𝑝 and 𝑞 are hyperparameters

476

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shuke Wang, Mingxing Zhang, Ke Yang, Kang Chen, Shaonan Ma, Jinlei Jiang, and Yongwei Wu

GraSorw
NosWalker

Dataset

Ti
m

e
C

os
t (

s)

101
102
103
104
105

TW YH K30 K31

Figure 15: Performance comparing with GraSorw [42] on
Node2Vec tasks.

of the model, and 𝑑𝑢𝑥 is the distance between𝑢 and 𝑥 . So, in second-
order random walks, the edge sampling weights depend not only
on the current vertex, but also on the vertex visited by the walker
in the previous step.

GraSorw [42] is a state-of-the-art disk-based system that sup-
ports second-order random walk. We compare NosWalker to it to
verify the superiority of the decoupled architecture. Its walk engine
is based on GraphWalker [68]. Thus, it achieves little performance
improvement over GraphWalker in the first-order tasks as described
in [42]. For second-order tasks, GraSorw develops a new triangular
bi-block scheduling strategy, bucket-based walk management, and
skewed walk storage to convert random I/Os into sequential I/Os.
It also designs a learning-based block loading model to improve
the I/O utilization. Compared to a naive extension from Graph-
Walker for the second-order task, GraSorw achieves a significant
performance improvement.

We extend NosWalker to handle the second-order random walk.
Using the rejection sampling method [64], NosWalker is able to
decouple edge sampling from determining the direction of walk-
ers’ movement. Specifically, (1) NosWalker samples edges uni-
formly into the pre-sampled edge buffer. Then (2) it consumes a pre-
sampled edge/neighbor 𝑥 in the buffer as a candidate direction/ver-
tex for𝑤𝑢

𝑣 , and randomly generates a valueℎ ∈ [0,max{1/𝑝, 1, 1/𝑞}].
Finally, (3) when the outgoing edges of 𝑥 are loaded in memory, it
calculates the distance between 𝑢 and 𝑥 to decide to reject/accept
this direction 𝑥 based on ℎ and Equation 1. Steps (1) and (2) to-
gether are equivalent to generating random horizontal coordinates
in the rejection sampling method. It ensures the correctness of
NosWalker in the second-order scenario. More details are described
in Appendix A.

We conduct the random walk generation of Node2Vec [31] on
4 datasets. These datasets are converted into undirected graphs
to satisfy the requirements of Node2Vec. Following the original
work [31], we start 10 walkers from each vertex, and set 𝑝 and 𝑞 to 2
and 0.5, respectively. To get the performance results in a reasonable
time, we set the walk length to 10. The evaluations on the CW
dataset are removed because GraSorw takes too long to complete
the task under our memory limitation. The performance compar-
ison between NosWalker and GraSorw is depicted in Figure 15.
NosWalker achieves about 3× speedup in TW due to its highly
efficient walker management. And NosWalker achieves about 10×
to 49× speedup in the graphs (YH, K30 and K31) whose sizes are
larger than memory. It is because NosWalker additionally benefits
from the decoupling between edge sampling and moving walkers.

5 RELATEDWORK
5.1 Out-of-Core Graph Systems
The explosion of graph size, in contrast with expensive and pre-
cious DRAM resources, leads to the birth of many out-of-core
graph systems. Most of these systems adopt an iterative computa-
tion model that repeatedly processes the input graph until conver-
gence [18, 33, 45, 47, 65, 77, 81]. Tomake better use of sequential disk
I/O, these systems will partition the graph into pre-defined blocks
at the beginning, and then either completely or selectively load
into memory in each iteration. This paradigm can be considered a
block-centric design. For example, GraphChi [40], X-Stream [57],
GridGraph [83] and AsyncStripe [18] all follow this paradigm. Re-
cent systems, such as CLIP [12] and Wonderland [77], develop
optimizations such as re-entry, abstract and asynchronous pro-
cessing to speed up the convergence of computation, but they can
also be considered to follow the block-centric design that provides
graph oriented scheduling. In contrast, NosWalker proposes a novel
decoupled architecture that is more suitable for random walk work-
loads, and hence it is much faster than existing out-of-core random
walks systems [39, 68] that are built upon general graph processing
frameworks.

As we have mentioned before in §2.2, several recent designs at-
tempt to optimize the I/O utilization of existing general out-of-core
processing frameworks without radically changing their architec-
tures. Some of these optimizations are not applicable to random
walk applications. For example, the dynamic partitioning mecha-
nism in DynamicShards [66] is not helpful for graph algorithms
that have non-distributive gather and apply functions, and thus
random walk cannot get benefit from it. Some others have already
been adopted in existing out-of-core random walk systems. LU-
MOS [65] proactively propagates values across iterations while
simultaneously providing synchronous processing guarantees. In
random walk tasks, the condition under which it can propagate
values across iterations is the same as in Clip [12]. And the latter is
adopted in GraphWalker[68]. The rest is orthogonal to NosWalker’s
optimizations.

As an illustration, Graphene [45] attempts to improve the I/O uti-
lization by proposing an on-demand I/O strategy that dynamically
adjusts the loaded graph block layout and skips loading blocks that
do not contain any walkers. Figure 16 shows the performance of
Graphene andNosWalker in different numbers of walkers withwalk
length as 10. As we can see from the figure, NosWalker achieves
up to 80× speedup over Graphene. Although Graphene can dynam-
ically adjust the loaded graph blocks, it only iterates through the
loaded data in the order in which they are stored on the disks. It
leads to a low I/O utilization for random walk applications, which
has also been discussed in [68].

5.2 In-Memory RandomWalk Systems
As random walk attracts increasing interest from both academia
and industry, a bunch of works have been proposed to speed up
its processing. ThunderRW [61], FlashMob [72], and [59] focus on
optimizing random walk processing in the shared-memory system.
FlashMob also uses pre-sampling to maximize cache utilization and
avoid high memory access latency. But its sampling policy and ob-
jective are different from NosWalker. C-SAW [52], NextDoor [34],

477

NosWalker: A Decoupled Architecture for Out-of-Core Random Walk Processing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Graphene
NosWalker

Number of Walkers

Ti
m

e
C

os
t (

s)

1
101
102
103
104

106 107 108 109 4x109

Figure 16: Performance comparing with Graphene [45] on
dataset Kron30 by fixing walk length as 10.

and SkyWalker [67] accelerate random walk with GPUs, taking
advantage of their high memory bandwidth and parallelism. These
systems provide fast in-memory processing speed, but cannot han-
dle large graphs beyond the memory capacity of a single server.
Since ThunderRW is more memory efficient than FlashMob, we
select it for comparison so that larger graphs can be evaluated in
memory. The experiments are conducted on a machine with more
than 360GB memory. The results of issuing 1 billion walkers with
walk length of 10, are depicted in Figure 17. As we can see from
the figure, ThunderRW is about 1.5× faster than NosWalker if only
the computation time is counted. On the other hand, if the data
loading time is also included in the execution time of ThunderRW,
the total time of ThunderRW is about 32% slower than NosWalker.
It is because that about 75% of ThunderRW’s time is graph loading
while NosWalker can pipeline graph loading with moving walkers.
These evaluation results demonstrate the efficiency of NosWalker’s
computation.

There are also some distributed random walk systems that re-
quire a distributed cluster connected by a high bandwidth network
to hold the large graph. All these systems require to hold all the
graph data in memory and therefore are less economical than out-
of-core approaches. For example, KnightKing [73] is the latest dis-
tributed random walk system. We evaluate KnightKing on TW and
YH. For all the datasets we have, the latter is the largest graph that
KnightKing can handle on our 4-node cluster with 10Gbps inter-
connection. We set 108 and 109 walkers, according to the graph
scale, with walk length 10 in the experiments on datasets TW and
YH, respectively. The results are depicted in Figure 17. Since there is
no network communication overhead, NosWalker is about 10% and
63% faster than KnightKing, respectively, if only the computation
time is counted. When the data loading time is also included in
the execution time, NosWalker can achieve about 5.4× and 5.2×
speedup compared to KnightKing on TW and YH respectively. Ac-
cording to our further experiments, when the number of nodes
increases to 8, the computation performance of KnightKing is equal
to (on TW) or very slightly faster than (on YH) NosWalker. The
evaluation results prove the resource friendliness of NosWalker.

5.3 Works on Concurrent Query Processing
There are some works that focus on concurrent query processing.
CGraph [78] and GraphM [79] are two representative out-of-core
systems designed for concurrent iterative graph processing jobs.
CGraph proposes a correlations-aware execution model and a core-
subgraph-based scheduling algorithm to enable the jobs to effi-
ciently share the graph structure data in cache/memory and the

NW
Walk
Total

ThunderRW

Ti
m

e
C

os
t (

s)

0
20
40
60
80

100

KnightKing (TW)
1

10

KnightKing (YH)

50

100

150

Figure 17: Comparing NosWalker (NW) with ThunderRW
in Kron30 and KnightKing on Twitter and Yahoo. The bars
markedwithWalk andTotal depict the computation time and
the total time (including the data loading time) respectively.

data accesses to the graph. GraphM achieves a similar effect by regu-
larizing the traversal order of the graph partitions and concurrently
processing the related jobs in a novel fine-grained synchronization.
MultiLyra [49] is a distributed framework designed for efficient
batched graph query evaluation. It optimizes query evaluation by
amortizing the communication and synchronization costs between
multiple queries. SimGQ+ [70] optimizes the simultaneous evalua-
tion of a group of vertex queries originating from different source
vertices on a single multicore shared-memory machine. It proposes
batching techniques to amortize runtime overheads and sharing
techniques to use the shared results to accelerate the query evalua-
tion within the batch.

The systems mentioned above process a few tens to thousands
of graph queries at a time. However, the footprint of each walker
is much smaller than in other kinds of graph applications, so the
benefit of concurrently executing a large number of walkers and
sharing the overlapped I/O is limited. In contrast, NosWalker only
tries its best to keep a small number of walkers always moving
with the pre-samples.

6 CONCLUSION
In this paper, we present NosWalker, a novel out-of-core graph
random walk system that exploits several unique properties of
random walk applications. NosWalker proposes a novel walker
oriented scheduling leading to an architecture that decouples the
graph loading and pre-sampling process from walker processing.
It enables the system to adaptively generate walkers and flexibly
adjust the distribution of reserved sampling results in memory.
These optimizations substantially reduce the disk I/O for vertex data
and edge data, respectively, resulting in much higher I/O utilization.
According to our evaluation, NosWalker can achieve up to two
orders of magnitude speedups compared to the state-of-the-art
out-of-core random walk systems, including DrunkardMob [39],
GraphWalker [68], and GraSorw [42].

ACKNOWLEDGMENTS
We thank our shepherd and all the reviewers for their valuable com-
ments and suggestions. This work is supported by National Key
Research & Development Program of China (2022YFB2404202), Nat-
ural Science Foundation of China (62141216, 61877035), Tsinghua
University Initiative Scientific Research Program, Young Elite Sci-
entists Sponsorship Program by CAST (2022-2024), Beijing HaiZhi
XingTu Technology Co., Ltd. and Department of Computer Science
and Technology, Beijing National Research Center for Information
Science and Technology (BNRist), Tsinghua University, China.

478

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shuke Wang, Mingxing Zhang, Ke Yang, Kang Chen, Shaonan Ma, Jinlei Jiang, and Yongwei Wu

A EXTEND NOSWALKER TO SECOND-ORDER
RANDOMWALK

In this appendix, we elaborate on our implementation that extends
NosWalker to support second-order random walk applications.

A.1 Second-Order RandomWalk
With the popularity of random walks, the sampling logic has be-
come more complex. To model higher-order structures in the data,
researchers have also proposed the higher-order random walk
which involves dynamic sampling. In higher-order random walks,
the sampling of the next step may rely not only on the current
vertex where the walker locates but also on the previous vertex (or
vertices) visited by the walker. As a result, the complex random
walk algorithms utilize more information about the graph topology
at the cost of sampling complexity.

Node2Vec [31] is one of the representatives of second-order ran-
dom walk models. We take it as an example. On a given undirected
graph, the edge weights for a walker𝑤𝑣

𝑢 in Node2Vec are defined
as

𝛼𝑣𝑥 =


1/𝑝 if 𝑑𝑢𝑥 = 0
1 if 𝑑𝑢𝑥 = 1

1/𝑞 if 𝑑𝑢𝑥 = 2
(2)

where 𝑢 and 𝑣 are the vertices on which 𝑤𝑣
𝑢 locates in the previ-

ous step and the current step, respectively, 𝑝 and 𝑞 are the hyper-
parameters of the model, 𝑑𝑢𝑥 is the distance between 𝑢 and 𝑥 .
Figure 18(a) depicts a sample graph segment in a Node2Vec task
where the parameters 𝑝 and 𝑞 are set to 2 and 0.5 respectively, and
𝑢 and 𝑣 have the same definition as in Equation 2. The edge weights
of 𝑣 ’s outgoing edges are computed dynamically after the walker is
moved from 𝑢 to 𝑣 and are labeled in the figure.

Since the edge weights for weighted sampling are computed
dynamically based on the walking history of the walker, we cannot
pre-generate the alias tables [11, 37] for each vertex to achieve effi-
cient sampling as analyzed in [73]. The second-order random walk
increases the computational complexity of sampling. Even worse,
the computation of the 𝑑𝑢𝑥 in Equation 2 requires the neighbor
information (outgoing edges) of vertex 𝑢 or vertex 𝑥 . It poses a
challenge for designing the out-of-core random walk system to
reduce random I/Os.

A.2 Rejection Sampling for Second-Order
RandomWalk in Out-of-Core Scenario

To overcome the problem, we leverage the rejection sampling
method [64], which is a general method to sample from an ar-
bitrary probability distribution. KnightKing [73] first applies re-
jection sampling in a distributed random walk system to improve
the computational efficiency of sampling for second-order tasks.
NosWalker applies it to extend the out-of-core random walk system
to efficiently handle second-order tasks. Next, we introduce how
the rejection sampling method is applied in second-order random
walk based on the Node2Vec model [31].

We assume that a walker has walked from vertex 𝑢 to vertex 𝑣
and is deciding where to go next in Figure 18(a). As depicted in Fig-
ure 18(b), the rejection sampling method obtains the weighted sam-
pling results by generating a randomly distributed two-dimensional

0.5 2

2
1 0

0.5
1

2

vu vx0 vx1 vx2

accept reject

(a) (b)

p=2 q=0.5

Figure 18: (a) A sample graph segment in Node2Vec [31] task.
(b) Rejection sampling for Node2Vec.

coordinate (𝑋,𝑌), where𝑋 is an integer corresponding to an outgo-
ing edge of 𝑣 , and𝑌 is a floating-point number uniformly distributed
in [0,max{1/𝑝, 1, 1/𝑞}]. We can calculate the weight of the edge
corresponding to the value of 𝑋 by Equation 2. And the weight
corresponds to the height of the colored rectangle of the edge in
the figure. If the value 𝑌 is less than the weight, it means that the
coordinate falls within the colored rectangle as the green dot in the
figure depicts. The coordinate is accepted here. And the sampled
edge is the one corresponding to 𝑋 . On the contrary, in the case de-
picted by the red dot, the coordinate is rejected, and we regenerate
a coordinate according to the above rules until it is accepted.

The computational cost for each attempt to generate and verify
(accept/reject) a generated coordinate is 𝑂 (1). And E, the average
number of attempts needed to sample an edge, can be calculated as
follows:

E =
max{1/𝑝, 1, 1/𝑞} · |𝐸𝑣 |

Σ𝑒∈𝐸𝑣
𝛼 (𝑒) (3)

where 𝐸𝑣 is the outgoing edge set of 𝑣 , and 𝛼 (𝑒) is the edge weight
of 𝑒 computed by Equation 1. In the Node2Vec task, E can be small
even with a huge graph and the total computational cost is also
small.

The key advantages of the rejection sampling method for the
out-of-core random walk system are not limited to the fact that
the number of trials E is small. In particular, we can generate the
coordinate in advance to obtain a candidate destination vertex 𝑐
only based on 𝑣 ’s outgoing edges, and then decide whether to accept
𝑐 as the vertex of the next step when 𝑐’s outgoing edges are loaded.
It is not necessary that the outgoing edges of 𝑣 and 𝑐 are loaded
at the same time. Thus, the method gives us the opportunity to
avoid a lot of random I/Os. And since the coordinate is randomly
generated, the process of obtaining the candidate destination vertex
is independent of the edge weights that are dynamically computed
by Equation 1. Thus, the pre-sampling technique in NosWalker can
also be used to get the candidate destination vertex. It means that
we can continue to decouple edge sampling with moving walkers.

A.3 Workflow and Programming Model
The workflow of NosWalker for second-order random walk tasks
is mostly the same as it for first-order. We present the different
parts in Algorithm 3. As we can see, when extended to support
second-order tasks, NosWalker adds a process RejectionProcess() in
line 7 to determine whether to accept or reject the candidate desti-
nation vertices of walkers. When the block is loaded into memory,
the RejectionProcess() processes all the walkers whose 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒s
belong to the block (lines 11-12).

479

NosWalker: A Decoupled Architecture for Out-of-Core Random Walk Processing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Algorithm 3: Workflow of NosWalker for second-order
random walk.
1 Function Processing():
2 while 𝑛 < 𝑁 or not𝑊𝑎𝑙𝑘𝑒𝑟𝑠.Empty() do
3 While 𝑛 < 𝑁 and not𝑊𝑎𝑙𝑘𝑒𝑟𝑠.Full() do
4 𝑊𝑎𝑙𝑘𝑒𝑟𝑠.Insert(GenerateWalker(𝑛++));
5 foreach 𝑏𝑙𝑜𝑐𝑘 in 𝐵𝑙𝑜𝑐𝑘𝐵𝑢𝑓 𝑓 𝑒𝑟 do
6 PreSample(𝑏𝑙𝑜𝑐𝑘);
7 RejectionProcess(𝑏𝑙𝑜𝑐𝑘);
8 If exists walkers that can be moved then
9 MoveWalkers(𝑊𝑎𝑙𝑘𝑒𝑟𝑠);

10 Function RejctionProcess(Block 𝑏𝑙𝑜𝑐𝑘) :
11 foreach 𝑤 in 𝑤𝑎𝑙𝑘𝑒𝑟𝑠 and 𝑤.𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ∈ 𝑏𝑙𝑜𝑐𝑘.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 do
12 Rejection(𝑤, 𝑏𝑙𝑜𝑐𝑘.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠);

Algorithm 4: Node2Vec based random walk example.
1 Function GenerateWalker(Int 𝑛) : Walker
2 returnWalker{prev: null, curv: 𝑛/10, candidate: null, step: 0};
3 Function Sample(Vertex 𝑣) : VertexID
4 return RandomSample(𝑣.𝑒𝑑𝑔𝑒𝑠) ;
5 Function Active(Walker 𝑤) : Bool
6 return 𝑤.𝑠𝑡𝑒𝑝 = 𝐿;
7 Function Action(Walker 𝑤, VertexID 𝑣𝑖𝑑) : Bool
8 If 𝑤.𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ≠ 𝑛𝑢𝑙𝑙 then
9 return False;

10 𝑤.𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑣𝑖𝑑 ;
11 𝑤.ℎ ←RandomFloat(0,max{1/𝑝, 1, 1/𝑞});
12 return True;
13 Function Rejection(Walker 𝑤, Vertex 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 []) :
14 If 𝑤.𝑝𝑟𝑒𝑣 = 𝑤.𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 then
15 𝑤𝑒𝑖𝑔ℎ𝑡 ← 1/𝑝 ;
16 elseIf 𝑤.𝑝𝑟𝑒𝑣 in 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 [𝑤.𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒] .𝑒𝑑𝑔𝑒𝑠
17 𝑤𝑒𝑖𝑔ℎ𝑡 ← 1;
18 else
19 𝑤𝑒𝑖𝑔ℎ𝑡 ← 1/𝑞;
20 If 𝑤.ℎ ≤ 𝑤𝑒𝑖𝑔ℎ𝑡 then
21 𝑤.𝑝𝑟𝑒𝑣 ← 𝑤.𝑐𝑢𝑟𝑣;
22 𝑤.𝑐𝑢𝑟𝑣 ← 𝑤.𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ;
23 𝑤.𝑠𝑡𝑒𝑝++;
24 𝑤.𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← null;

In addition to the four APIs mentioned in §3.2, NosWalker adds
a Rejection API, which is also called in Algorithm 3 line 12, for
second-order tasks. We continue to introduce these APIs with the
Node2Vec model as an example in Algorithm 4. The Generate-
Walker here dynamically generates newwalkers. After being called
multiple times, it will generate 10 walkers for a vertex. The𝑤.𝑝𝑟𝑒𝑣 is
set to 𝑛𝑢𝑙𝑙 to ensure that the first step of𝑤 is uniformly distributed.
The functions of Sample and Active are the same as those de-
scribed in §3.2. The Action is called to set a candidate destination
vertex𝑤.𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 for walker𝑤 . And the value𝑤.ℎ (line 11) com-
bined with the 𝑤.𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 together form the two-dimensional
coordinate, which is mentioned in §A.2, in the rejection sampling
method. The Rejection first gets the weight𝑤𝑒𝑖𝑔ℎ𝑡 corresponding
to the 𝑤.𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 by Equation 2 in lines 14-19. Then, it decides
whether to accept the candidate destination vertex (line 20). If it
accepts, it updates the𝑤 to move the walkers (lines 21-23).

NosWalker, which is designed according to the above workflow,
has almost no random I/Os due to the second-order nature of walk-
ing. And since the rejection sampling method provides the oppor-
tunity to continue decoupling edge sampling and moving walkers,

NosWalker can efficiently handle the second-order random walk
tasks.

REFERENCES
[1] 2022. The 2012 common crawl graph. http://webdatacommons.org/.
[2] 2022. cgroups(7) Linux manual page. https://man7.org/linux/man-pages/man7/

cgroups.7.html.
[3] 2022. Graph 500. https://graph500.org/.
[4] 2022. Linux-native asynchronous I/O access library. https://pagure.io/libaio.
[5] 2022. Linux System Administrators Guide: Chapter 6. Memory Management.

https://tldp.org/LDP/sag/html/buffer-cache.html.
[6] 2022. Node2vec on Spark. https://github.com/aditya-grover/node2vec.
[7] 2022. Random walk. https://en.wikipedia.org/wiki/Random_walk.
[8] 2023. Price of ECC Unbuffered Memory. https://www.amazon.com/Tech-

Unbuffered-Memory-PowerEdge-Server/dp/B07NQS57WZ?th=1.
[9] 2023. Price of Intel SSD D7-P5510 Series. https://www.amazon.com/Intel-SSD-

D7-P5510-Series-7-68TB/dp/B08R3YQN2V.
[10] Khushbu Agarwal, Tome Eftimov, Raghavendra Addanki, Sutanay Choudhury,

Suzanne Tamang, and Robert Rallo. 2019. Snomed2Vec: Random Walk and
Poincaré Embeddings of a Clinical Knowledge Base for Healthcare Analytics.
arXiv preprint arXiv:1907.08650 (2019).

[11] Joachim H Ahrens and Ulrich Dieter. 1989. An alias method for sampling from
the normal distribution. Computing 42, 2-3 (1989), 159–170. https://doi.org/10.
1007/BF02239745

[12] ZhiyuanAi, Mingxing Zhang, YongweiWu, Xuehai Qian, Kang Chen, andWeimin
Zheng. 2018. Clip: A disk I/O focused parallel out-of-core graph processing
system. IEEE Transactions on Parallel and Distributed Systems 30, 1 (2018), 45–62.
https://doi.org/10.1109/TPDS.2018.2858250

[13] Michael J Anderson, Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali
Patwary, Theodore L Willke, and Pradeep Dubey. 2016. Graphpad: Optimized
graph primitives for parallel and distributed platforms. In 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 313–322. https:
//doi.org/10.1109/IPDPS.2016.86

[14] Béla Bollobás. 1980. A probabilistic proof of an asymptotic formula for the
number of labelled regular graphs. European Journal of Combinatorics 1, 4 (1980),
311–316. https://doi.org/10.1016/S0195-6698(80)80030-8

[15] Yuanzhe Cai, Pei Li, Hongyan Liu, Jun He, and Xiaoyong Du. 2008. S-simrank:
Combining content and link information to cluster papers effectively and effi-
ciently. In International Conference on Advanced Data Mining and Applications.
Springer, 317–329. https://doi.org/10.1007/978-3-540-88192-6_30

[16] Mo Chen, Jianzhuang Liu, and Xiaoou Tang. 2008. Clustering via Random Walk
Hitting Time on Directed Graphs.. In Proceedings of the 23rd national conference
on Artificial intelligence-Volume 2. 616–621.

[17] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. PowerLyra: Differ-
entiated graph computation and partitioning on skewed graphs. In Proceed-
ings of the Tenth European Conference on Computer Systems. 1–15. https:
//doi.org/10.1145/3298989

[18] Shuhan Cheng, Guangyan Zhang, Jiwu Shu, and Weimin Zheng. 2016. Async-
stripe: I/o efficient asynchronous graph computing on a single server. In Proceed-
ings of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis. 1–10. https://doi.org/10.1145/2968456.2968473

[19] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. 2015. One trillion edges: Graph processing at facebook-scale.
Proceedings of the VLDB Endowment 8, 12 (2015), 1804–1815. https://doi.org/10.
14778/2824032.2824077

[20] Fan Chung and Wenbo Zhao. 2010. PageRank and random walks on graphs. In
Fete of combinatorics and computer science. Springer, 43–62. https://doi.org/10.
1007/978-3-642-13580-4_3

[21] Nick Craswell and Martin Szummer. 2007. Random walks on the click graph. In
Proceedings of the 30th annual international ACM SIGIR conference on Research and
development in information retrieval. 239–246. https://doi.org/10.1145/1277741.
1277784

[22] Wendy Ellens, Floske M Spieksma, Piet Van Mieghem, Almerima Jamakovic,
and Robert E Kooij. 2011. Effective graph resistance. Linear algebra and its
applications 435, 10 (2011), 2491–2506. https://doi.org/10.1016/j.laa.2011.02.024

[23] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. 1999. On power-law
relationships of the internet topology. ACM SIGCOMM computer communication
review 29, 4 (1999), 251–262. https://doi.org/10.1145/316194.316229

[24] Siying Feng, Jiawen Sun, Subhankar Pal, Xin He, Kuba Kaszyk, Dong-hyeon
Park, Magnus Morton, Trevor Mudge, Murray Cole, Michael O’Boyle, et al. 2021.
CoSPARSE: A Software and Hardware Reconfigurable SpMV Framework for
Graph Analytics. In 2021 58th ACM/IEEE Design Automation Conference (DAC).
IEEE, 949–954. https://doi.org/10.1109/DAC18074.2021.9586114

[25] Dániel Fogaras, Balázs Rácz, Károly Csalogány, and Tamás Sarlós. 2005. Towards
scaling fully personalized pagerank: Algorithms, lower bounds, and experiments.
Internet Mathematics 2, 3 (2005), 333–358. https://doi.org/10.1080/15427951.2005.
10129104

480

http://webdatacommons.org/
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://graph500.org/
https://pagure.io/libaio
https://tldp.org/LDP/sag/html/buffer-cache.html
https://github.com/aditya-grover/node2vec
https://en.wikipedia.org/wiki/Random_walk
https://www.amazon.com/Tech-Unbuffered-Memory-PowerEdge-Server/dp/B07NQS57WZ?th=1
https://www.amazon.com/Tech-Unbuffered-Memory-PowerEdge-Server/dp/B07NQS57WZ?th=1
https://www.amazon.com/Intel-SSD-D7-P5510-Series-7-68TB/dp/B08R3YQN2V
https://www.amazon.com/Intel-SSD-D7-P5510-Series-7-68TB/dp/B08R3YQN2V
https://doi.org/10.1007/BF02239745
https://doi.org/10.1007/BF02239745
https://doi.org/10.1109/TPDS.2018.2858250
https://doi.org/10.1109/IPDPS.2016.86
https://doi.org/10.1109/IPDPS.2016.86
https://doi.org/10.1016/S0195-6698(80)80030-8
https://doi.org/10.1007/978-3-540-88192-6_30
https://doi.org/10.1145/3298989
https://doi.org/10.1145/3298989
https://doi.org/10.1145/2968456.2968473
https://doi.org/10.14778/2824032.2824077
https://doi.org/10.14778/2824032.2824077
https://doi.org/10.1007/978-3-642-13580-4_3
https://doi.org/10.1007/978-3-642-13580-4_3
https://doi.org/10.1145/1277741.1277784
https://doi.org/10.1145/1277741.1277784
https://doi.org/10.1016/j.laa.2011.02.024
https://doi.org/10.1145/316194.316229
https://doi.org/10.1109/DAC18074.2021.9586114
https://doi.org/10.1080/15427951.2005.10129104
https://doi.org/10.1080/15427951.2005.10129104

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shuke Wang, Mingxing Zhang, Ke Yang, Kang Chen, Shaonan Ma, Jinlei Jiang, and Yongwei Wu

[26] Santo Fortunato and Darko Hric. 2016. Community detection in networks: A
user guide. Physics reports 659 (2016), 1–44. https://doi.org/10.1016/j.physrep.
2016.09.002

[27] Francois Fouss, Alain Pirotte, Jean-Michel Renders, and Marco Saerens. 2007.
Random-walk computation of similarities between nodes of a graph with appli-
cation to collaborative recommendation. IEEE Transactions on knowledge and
data engineering 19, 3 (2007), 355–369. https://doi.org/10.1109/TKDE.2007.46

[28] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. 1983. A dis-
tributed algorithm for minimum-weight spanning trees. ACM Transactions
on Programming Languages and systems (TOPLAS) 5, 1 (1983), 66–77. https:
//doi.org/10.1145/357195.357200

[29] Prasun Gera, Hyojong Kim, Piyush Sao, Hyesoon Kim, and David Bader. 2020.
Traversing large graphs on GPUs with unified memory. Proceedings of the VLDB
Endowment 13, 7 (2020), 1119–1133. https://doi.org/10.14778/3384345.3384358

[30] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed graph-parallel computation on natural graphs.
In the Proceedings of the 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12). Hollywood, CA, 17–30. https://doi.org/10.5555/
2387880.2387883

[31] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 855–864. https://doi.org/10.1145/
2939672.2939754

[32] Masoud Reyhani Hamedani and Sang-Wook Kim. 2016. SimRank and its variants
in academic literature data: measures and evaluation. In Proceedings of the 31st
Annual ACM Symposium on Applied Computing. 1102–1107. https://doi.org/10.
1145/2851613.2851811

[33] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo Kim,
Jinha Kim, and Hwanjo Yu. 2013. TurboGraph: a fast parallel graph engine
handling billion-scale graphs in a single PC. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining. 77–85.
https://doi.org/10.1145/2487575.2487581

[34] Abhinav Jangda, Sandeep Polisetty, Arjun Guha, and Marco Serafini. 2021. Ac-
celerating graph sampling for graph machine learning using GPUs. In Pro-
ceedings of the 16th European Conference on Computer Systems. ACM, 311–326.
https://doi.org/10.1145/3447786.3456244

[35] Glen Jeh and Jennifer Widom. 2002. Simrank: a measure of structural-context
similarity. In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining. 538–543. https://doi.org/10.1145/775047.
775126

[36] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu, et al. 2018. GraFBoost:
Using accelerated flash storage for external graph analytics. In 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA). IEEE,
411–424. https://doi.org/10.1109/ISCA.2018.00042

[37] Richard A Kronmal and Arthur V Peterson Jr. 1979. On the alias method for gen-
erating random variables from a discrete distribution. The American Statistician
33, 4 (1979), 214–218. https://doi.org/10.1080/00031305.1979.10482697

[38] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a social network or a news media?. In Proceedings of the 19th international
conference on World Wide Web. ACM, 591–600. https://doi.org/10.1145/1772690.
1772751

[39] Aapo Kyrola. 2013. Drunkardmob: Billions of random walks on just a PC. In
Proceedings of the 7th ACM conference on Recommender systems. 257–264. https:
//doi.org/10.1145/2507157.2507173

[40] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. Graphchi: Large-scale
graph computation on just a {PC}. In 10th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 12). 31–46. https://doi.org/10.5555/
2387880.2387884

[41] Kartik Lakhotia, Rajgopal Kannan, and Viktor Prasanna. 2018. Accelerating
{PageRank} using {Partition-Centric} Processing. In 2018 USENIX Annual Tech-
nical Conference (USENIX ATC 18). 427–440. https://doi.org/10.5555/3277355.
3277397

[42] Hongzheng Li, Yingxia Shao, Junping Du, Bin Cui, and Lei Chen. 2022. An
I/O-efficient disk-based graph system for scalable second-order random walk
of large graphs. Proceedings of the VLDB Endowment 15, 8 (2022), 1619–1631.
https://doi.org/10.14778/3529337.3529346

[43] Pei Li, Hongyan Liu, Jeffrey Xu Yu, Jun He, and Xiaoyong Du. 2010. Fast single-
pair simrank computation. In Proceedings of the 2010 SIAM International Confer-
ence on Data Mining. SIAM, 571–582. https://doi.org/10.1137/1.9781611972801.50

[44] Rong-Hua Li, Jeffrey Xu Yu, Xin Huang, and Hong Cheng. 2014. Random-walk
domination in large graphs. In 2014 IEEE 30th International Conference on Data
Engineering. IEEE, 736–747. https://doi.org/10.1109/ICDE.2014.6816696

[45] Hang Liu and H Howie Huang. 2017. Graphene: Fine-grained {IO} manage-
ment for graph computing. In 15th {USENIX} Conference on File and Storage
Technologies ({FAST} 17). 285–300. https://doi.org/10.5555/3129633.3129659

[46] Qin Liu, Zhenguo Li, John CS Lui, and Jiefeng Cheng. 2016. Powerwalk: Scalable
personalized pagerank via random walks with vertex-centric decomposition.
In Proceedings of the 25th ACM International on Conference on Information and

Knowledge Management. 195–204. https://doi.org/10.1145/2983323.2983713
[47] SteffenMaass, ChangwooMin, Sanidhya Kashyap,Woonhak Kang,MohanKumar,

and Taesoo Kim. 2017. Mosaic: Processing a trillion-edge graph on a single
machine. In Proceedings of the Twelfth European Conference on Computer Systems.
527–543. https://doi.org/10.1145/3064176.3064191

[48] Daniel Margo and Margo Seltzer. 2015. A scalable distributed graph partitioner.
Proceedings of the VLDB Endowment 8, 12 (2015), 1478–1489. https://doi.org/10.
14778/2824032.2824046

[49] Abbas Mazloumi, Xiaolin Jiang, and Rajiv Gupta. 2019. Multilyra: Scalable
distributed evaluation of batches of iterative graph queries. In 2019 IEEE Interna-
tional Conference on Big Data (Big Data). IEEE, 349–358. https://doi.org/10.1109/
BigData47090.2019.9006359

[50] Michael Molloy and Bruce Reed. 1995. A critical point for random graphs with a
given degree sequence. Random structures & algorithms 6, 2-3 (1995), 161–180.
https://doi.org/10.1002/rsa.3240060204

[51] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[52] Santosh Pandey, Lingda Li, Adolfy Hoisie, Xiaoye S Li, and Hang Liu. 2020. C-
SAW: A framework for graph sampling and random walk on GPUs. In SC20:
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 1–15. https://doi.org/10.1109/SC41405.2020.00060

[53] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710. https://doi.org/10.
1145/2623330.2623732

[54] Nataša Pržulj. 2007. Biological network comparison using graphlet degree
distribution. Bioinformatics 23, 2 (2007), e177–e183. https://doi.org/10.1093/
bioinformatics/btl301

[55] Natasa Pržulj, Derek G Corneil, and Igor Jurisica. 2004. Modeling interactome:
scale-free or geometric? Bioinformatics 20, 18 (2004), 3508–3515. https://doi.org/
10.1093/bioinformatics/bth436

[56] Bruno Ribeiro and Don Towsley. 2010. Estimating and sampling graphs with
multidimensional random walks. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. 390–403. https://doi.org/10.1145/1879141.
1879192

[57] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream: Edge-
centric graph processing using streaming partitions. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. 472–488. https://doi.
org/10.1145/2517349.2522740

[58] Semih Salihoglu and Jennifer Widom. 2013. Computing strongly connected com-
ponents in pregel-like systems. Technical Report. Technical report, Stanford
University.

[59] Yingxia Shao, Shiyue Huang, XupengMiao, Bin Cui, and Lei Chen. 2020. Memory-
aware framework for efficient second-order random walk on large graphs. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data. 1797–1812. https://doi.org/10.1145/3318464.3380562

[60] Peng Sun, Yonggang Wen, Ta Nguyen Binh Duong, and Xiaokui Xiao. 2017.
Graphmp: An efficient semi-external-memory big graph processing system on
a single machine. In 2017 IEEE 23rd International Conference on Parallel and
Distributed Systems (ICPADS). IEEE, 276–283. https://doi.org/10.1109/ICPADS.
2017.00045

[61] Shixuan Sun, Yuhang Chen, Shengliang Lu, Bingsheng He, and Yuchen Li. 2021.
ThunderRW: An in-memory graph random walk engine.. In Proc. VLDB Endow.,
Vol. 14. 1992–2005. https://doi.org/10.14778/3476249.3476257

[62] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. 2006. Fast random walk
with restart and its applications. In Sixth international conference on data mining
(ICDM’06). IEEE, 613–622. https://doi.org/10.1109/ICDM.2006.70

[63] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. 2008. Random walk with
restart: fast solutions and applications. Knowledge and Information Systems 14, 3
(2008), 327–346. https://doi.org/10.1007/s10115-007-0094-2

[64] John Von Neumann. 1951. 13. various techniques used in connection with random
digits. Appl. Math Ser 12, 36-38 (1951), 3.

[65] Keval Vora. 2019. {LUMOS}: Dependency-Driven Disk-based Graph Processing.
In 2019 {USENIX} Annual Technical Conference ({USENIX}{ATC} 19). 429–442.
https://doi.org/10.5555/3358807.3358844

[66] Keval Vora, Guoqing Xu, and Rajiv Gupta. 2016. Load the Edges You Need: A
Generic {I/O} Optimization for Disk-based Graph Processing. In 2016 USENIX
Annual Technical Conference (USENIX ATC 16). 507–522. https://doi.org/10.5555/
3026959.3027006

[67] Pengyu Wang, Chao Li, Jing Wang, Taolei Wang, Lu Zhang, Jingwen Leng, Quan
Chen, and Minyi Guo. 2021. Skywalker: Efficient Alias-Method-Based Graph
Sampling and Random Walk on GPUs. In 2021 30th International Conference on
Parallel Architectures and Compilation Techniques (PACT). IEEE, 304–317. https:
//doi.org/10.1109/PACT52795.2021.00029

[68] Rui Wang, Yongkun Li, Hong Xie, Yinlong Xu, and John C. S. Lui. 2020. Graph-
Walker: An I/O-efficient and resource-friendly graph analytic system for fast and
scalable random walks. In 2020 USENIX Annual Technical Conference (USENIX

481

https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1109/TKDE.2007.46
https://doi.org/10.1145/357195.357200
https://doi.org/10.1145/357195.357200
https://doi.org/10.14778/3384345.3384358
https://doi.org/10.5555/2387880.2387883
https://doi.org/10.5555/2387880.2387883
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2851613.2851811
https://doi.org/10.1145/2851613.2851811
https://doi.org/10.1145/2487575.2487581
https://doi.org/10.1145/3447786.3456244
https://doi.org/10.1145/775047.775126
https://doi.org/10.1145/775047.775126
https://doi.org/10.1109/ISCA.2018.00042
https://doi.org/10.1080/00031305.1979.10482697
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1145/2507157.2507173
https://doi.org/10.1145/2507157.2507173
https://doi.org/10.5555/2387880.2387884
https://doi.org/10.5555/2387880.2387884
https://doi.org/10.5555/3277355.3277397
https://doi.org/10.5555/3277355.3277397
https://doi.org/10.14778/3529337.3529346
https://doi.org/10.1137/1.9781611972801.50
https://doi.org/10.1109/ICDE.2014.6816696
https://doi.org/10.5555/3129633.3129659
https://doi.org/10.1145/2983323.2983713
https://doi.org/10.1145/3064176.3064191
https://doi.org/10.14778/2824032.2824046
https://doi.org/10.14778/2824032.2824046
https://doi.org/10.1109/BigData47090.2019.9006359
https://doi.org/10.1109/BigData47090.2019.9006359
https://doi.org/10.1002/rsa.3240060204
https://doi.org/10.1109/SC41405.2020.00060
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1093/bioinformatics/btl301
https://doi.org/10.1093/bioinformatics/btl301
https://doi.org/10.1093/bioinformatics/bth436
https://doi.org/10.1093/bioinformatics/bth436
https://doi.org/10.1145/1879141.1879192
https://doi.org/10.1145/1879141.1879192
https://doi.org/10.1145/2517349.2522740
https://doi.org/10.1145/2517349.2522740
https://doi.org/10.1145/3318464.3380562
https://doi.org/10.1109/ICPADS.2017.00045
https://doi.org/10.1109/ICPADS.2017.00045
https://doi.org/10.14778/3476249.3476257
https://doi.org/10.1109/ICDM.2006.70
https://doi.org/10.1007/s10115-007-0094-2
https://doi.org/10.5555/3358807.3358844
https://doi.org/10.5555/3026959.3027006
https://doi.org/10.5555/3026959.3027006
https://doi.org/10.1109/PACT52795.2021.00029
https://doi.org/10.1109/PACT52795.2021.00029

NosWalker: A Decoupled Architecture for Out-of-Core Random Walk Processing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

ATC 20). 559–571. https://doi.org/10.5555/3489146.3489184
[69] Wanjing Wei, Yangzihao Wang, Pin Gao, Shijie Sun, and Donghai Yu. 2020. A

distributed multi-GPU system for large-scale node embedding at Tencent. arXiv
preprint arXiv:2005.13789 (2020).

[70] Chengshuo Xu, Abbas Mazloumi, Xiaolin Jiang, and Rajiv Gupta. 2022. SimGQ+:
Simultaneously evaluating iterative point-to-all and point-to-point graph queries.
Journal of parallel and distributed computing 164 (2022), 12–27. https://doi.org/
10.1016/j.jpdc.2022.01.007

[71] Yahoo! 2002. Yahoo! AltaVista Web Page Hyperlink Connectivity Graph. https:
//webscope.sandbox.yahoo.com/catalog.php?datatype=g

[72] Ke Yang, Xiaosong Ma, Saravanan Thirumuruganathan, Kang Chen, and Yongwei
Wu. 2021. Random Walks on Huge Graphs at Cache Efficiency. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles CD-ROM.
311–326. https://doi.org/10.1145/3477132.3483575

[73] Ke Yang, MingXing Zhang, Kang Chen, Xiaosong Ma, Yang Bai, and Yong Jiang.
2019. KnightKing: A fast distributed graph random walk engine. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles. 524–537. https:
//doi.org/10.1145/3341301.3359634

[74] Luh Yen, Denis Vanvyve, Fabien Wouters, François Fouss, Michel Verleysen,
Marco Saerens, et al. 2005. clustering using a random walk based distance
measure.. In ESANN. 317–324.

[75] Serif Yesil, Azin Heidarshenas, Adam Morrison, and Josep Torrellas. 2020. Speed-
ing up SpMV for power-law graph analytics by enhancing locality & vectorization.
In SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 1–15. https://doi.org/10.1109/SC41405.2020.00090

[76] Dalong Zhang, Xin Huang, Ziqi Liu, Jun Zhou, Zhiyang Hu, Xianzheng Song,
Zhibang Ge, Lin Wang, Zhiqiang Zhang, and Yuan Qi. [n. d.]. AGL: A Scalable
System for Industrial-purpose Graph Machine Learning. Proceedings of the VLDB
Endowment 13, 12 ([n. d.]). https://doi.org/10.14778/3415478.3415539

[77] Mingxing Zhang, Yongwei Wu, Youwei Zhuo, Xuehai Qian, Chengying Huan,
and Kang Chen. 2018. Wonderland: A novel abstraction-based out-of-core graph
processing system. 53, 2 (2018), 608–621. https://doi.org/10.1145/3296957.3173208

[78] Yu Zhang, Xiaofei Liao, Hai Jin, Lin Gu, Ligang He, Bingsheng He, and Haikun
Liu. 2018. CGraph: A correlations-aware approach for efficient concurrent
iterative graph processing. In 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18). 441–452. https://doi.org/10.5555/3277355.3277398

[79] Jin Zhao, Yu Zhang, Xiaofei Liao, Ligang He, Bingsheng He, Hai Jin, Haikun
Liu, and Yicheng Chen. 2019. GraphM: an efficient storage system for high
throughput of concurrent graph processing. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1–14. https://doi.org/10.1145/3295500.3356143

[80] Chenguang Zheng, Hongzhi Chen, Yuxuan Cheng, Zhezheng Song, Yifan Wu,
Changji Li, James Cheng, Hao Yang, and Shuai Zhang. 2022. ByteGNN: efficient
graph neural network training at large scale. Proceedings of the VLDB Endowment
15, 6 (2022), 1228–1242. https://doi.org/10.14778/3514061.3514069

[81] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E Priebe,
and Alexander S Szalay. 2015. FlashGraph: Processing billion-node graphs on
an array of commodity SSDs. In 13th {USENIX} conference on file and storage
technologies ({FAST} 15). 45–58. https://doi.org/10.5555/2750482.2750486

[82] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. 2008. Large-
scale parallel collaborative filtering for the netflix prize. In International conference
on algorithmic applications in management. Springer, 337–348. https://doi.org/
10.1007/978-3-540-68880-8_32

[83] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-scale
graph processing on a single machine using 2-level hierarchical partitioning. In
USENIX ATC ’15 Proceedings of the 2015 USENIX Conference on Usenix Annual
Technical Conference. 375–386. https://doi.org/10.5555/2813767.2813795

Received 2022-10-20; accepted 2023-01-19

482

https://doi.org/10.5555/3489146.3489184
https://doi.org/10.1016/j.jpdc.2022.01.007
https://doi.org/10.1016/j.jpdc.2022.01.007
https://webscope.sandbox.yahoo.com/catalog.php?datatype=g
https://webscope.sandbox.yahoo.com/catalog.php?datatype=g
https://doi.org/10.1145/3477132.3483575
https://doi.org/10.1145/3341301.3359634
https://doi.org/10.1145/3341301.3359634
https://doi.org/10.1109/SC41405.2020.00090
https://doi.org/10.14778/3415478.3415539
https://doi.org/10.1145/3296957.3173208
https://doi.org/10.5555/3277355.3277398
https://doi.org/10.1145/3295500.3356143
https://doi.org/10.14778/3514061.3514069
https://doi.org/10.5555/2750482.2750486
https://doi.org/10.1007/978-3-540-68880-8_32
https://doi.org/10.1007/978-3-540-68880-8_32
https://doi.org/10.5555/2813767.2813795

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Random Walk
	2.2 Out-of-Core Random Walk System
	2.3 Existing Optimizations
	2.4 Unique Properties of Random Walk

	3 Design of NosWalker
	3.1 Architecture and Workflow
	3.2 Programming Model
	3.3 Implementation Challenges and Optimizations

	4 Evaluation
	4.1 Experiment Settings
	4.2 Real-World Random Walk Applications
	4.3 Different Settings
	4.4 Optimizations Breakdown
	4.5 Second-Order Random Walk

	5 Related Work
	5.1 Out-of-Core Graph Systems
	5.2 In-Memory Random Walk Systems
	5.3 Works on Concurrent Query Processing

	6 Conclusion
	Acknowledgments
	A Extend NosWalker to Second-Order Random Walk
	A.1 Second-Order Random Walk
	A.2 Rejection Sampling for Second-Order Random Walk in Out-of-Core Scenario
	A.3 Workflow and Programming Model

	References

