
OOCC: One-round Optimistic Concurrency Control
for Read-Only Disaggregated Transactions

Hao Wu, Mingxing Zhang, Kang Chen, Xia Liao, Yingdi Shan, Yongwei Wu
Tsinghua University,Beijing China

hao-wu19@mails.tsinghua.edu.cn,zhang mingxing@mail.tsinghua.edu.cn,chenkang@tsinghua.edu.cn
liaoxia5018@163.com,yingdi.shan@gmail.com,wuyw@tsinghua.edu.cn

Abstract—Read-only transactions predominate in many critical
real-world scenarios. Yet, the presence of even a small proportion
of read-write transactions poses challenges for existing Two-Phase
Locking (2PL) and Optimistic Concurrency Control (OCC) based
disaggregated transaction solutions. These approaches require
either atomic operations or double reads to maintain consistent
data for serializability, leading to suboptimal performance.

This paper introduces OOCC, a novel One-round Optimistic
Concurrency Control method tailored for disaggregated trans-
actions. We propose that by intentionally postponing updates
in write transactions for a moderate duration (a lease), it’s
possible to skip the validation phase in most OCC cases. This
method enables read-only transactions to be completed within a
single Round Trip Time (RTT) without involving any atomic
operations. Additionally, we introduce several enhancements
to boost OOCC’s effectiveness in high-contention and write-
intensive scenarios by reducing lock durations to just 1 RTT.

Our experimental results demonstrate that OOCC significantly
boosts transaction throughput in read-heavy environments, show-
ing improvements ranging from 1.2 to 4 times. OOCC consis-
tently achieves the lowest average latency (40%-45% lower than
the best counterpart) in both read- and write-heavy workloads.

Index Terms—disaggregated system, distribute transaction

I. INTRODUCTION

A. Motivation

The rapid evolution of disaggregated architectures, powered
by the efficiency of one-sided Remote Direct Memory Access
(RDMA) operations, has attracted many research interests
in the development of disaggregated transaction processing
systems [1]–[3]. However, despite the advancements in this do-
main, the performance of distributed transactions, particularly
those that are read-only, remains suboptimal. This fundamental
issue stems from the necessity to maintain a consistent view
of the data to ensure serializability.

Specifically, Figure 1 demonstrate the basic procedure of
Two-Phase Locking (2PL) [4] and Optimistic Concurrency
Control (OCC) [5], two fundamental frameworks for managing
concurrency in transaction processing. As we can see from
the figure and the comparison in Table I, OCC-based read-
only transactions require a minimum of two communication
rounds: one for reading and another for validation. This
process, known as “double read”, is even more taxing in
disaggregated systems than in single-node systems. In a single-
node environment, the latency for the second communication
round is often mitigated by cache hierarchies. If there are
no other threads concurrently updating the same data (i.e.,

Server

Coordinator

(a) 2PL

Different protocols of handling read operation. Data record consists of data field, version field and lock
field, they are co-located so that can be read in a single RDMA operation. 2PL only needs 1 RTT to get
the data and the lock, the locking operation and the getting the data can be overlapped. But it needs
another atomic operation to release the lock. OCC needs 2 RTT, one RTT to get the data, one RTT to
validate.

Data Version LockData Record

Lowest Bit Highest Bit

Server

Coordinator

(b)OCC

Execution

Execution Validation

Server

Coordinator

(c)OOCC

Execution

Lock
Unlock
Data Record
RDMA Read
RDMA CAS

A
n
n
o
ta
ti
o
n
s

RTT

Fig. 1: Different protocols of handling read operation. The
data/version/lock fields of each data record are co-located so
that they can be read in a single RDMA operation. The locking
and data fetching phase in 2PL can be overlapped in 1 RTT.

no data conflict), the read data is likely residing in nearby
caches and hence allowing for swift validation. Conversely,
in a disaggregated environment, each round of RDMA-based
communication incurs a significant cost.

OCC 2PL OOCC (ours)
Round Trip 2 1 1

Primitive RDMA Read
only

Require RDMA
CAS

RDMA Read
only

Operations 2 Reads 2 CAS + 1 Read 1 Read

TABLE I: Comparisons of the costs of each protocol.

Alternatively, 2PL can process read-only transactions in just
one round if the network layer ensures a specific message order
(RDMA standard specifies that RDMA Read and CAS are
totally ordered with all prior operations at the responder) [6].
The release-locking operations can be done in the background
which only impacts the throughput. But this method requires
the acquiring of read locks for each data partition, which in-
volve heavy operations that involve remote atomic primitives.
This requirement often cancels out the time saved from fewer
round trips, especially when the conflict ratio is not high.

As demonstrated in Figure 2, the maximum Operations
Per Second (OPS) for remote Compare-And-Swap (CAS)
operations executed via RDMA is considerably lower than a
standard RDMA read, attributable to additional synchroniza-

8 16 24 32 40 48 56 64 72 80

Threads

110

100

90

80

70

60

50

40

30

20

10

0

T
h
ro
u
g
h
p
u
t(
M
o
p
/s
)

READ CAS

Fig. 2: OPS of different ops with different threads.

tion costs needed for atomicity. This observation aligns with
other research in the field [7].

It is easy to imagine that, in scenarios involving only read-
only transactions, a single RDMA read round trip should be
sufficient. However, even in workloads dominated by reads,
where only a few transactions involve updates, read-only
transaction performance is significantly lowered. This is due
to either the OCC’s double read requirement or the overhead
from 2PL’s atomic operations. Yet, optimizing read-only trans-
actions is essential as they make up a large portion of real-
world workloads. For instance, Facebook’s TAO reports 99.8%
read operations [8], and Google’s F1 on Spanner has three
orders of magnitude more reads than write transactions [9].

Therefore, we believe improving read-only transaction per-
formance is crucial in many important scenarios, even at the
cost of a moderate additional latency for read-write transac-
tions, to enhance overall system responsiveness.

B. Our Contributions

To address the above challenge, our work presents One-
round Optimistic Concurrency Control (OOCC), a novel ap-
proach that is a combination of OCC and lease. OOCC
leverages independent leases to establish a global lease period.
The records remain unchanged during the lease, so read-only
transactions can be quickly committed in the first communica-
tion round if they are within the lease. If they are, they can skip
the second validation round, hence speeding up the transaction
process. If not, the process reverts to standard OCC, avoiding
any extra overhead in worst-case scenarios.

While our strategy prioritizes read operations, it does not
unduly penalize read-write transactions. The additional latency
delay for write transactions is consistent, resembling a lease
duration. Additionally, by overlapping the lease period with the
inherent latency in logging operations, we can further reduce
the perceived latency increases. Thereby our strategy maintains
a balanced approach that favors read-heavy workloads without
severely impacting writes.

Moreover, similar to OCC, high contention scenarios
present a unique set of challenges to our system. Even in read-
dominate workloads, it is possible that only a small number
of read-write transactions can lead to high contentions. Our
analysis of OCC indicates that increasing skewness to 0.99
results in a significant decrease in throughput, primarily due

to increased transaction failures and retries. To strengthen
our system in such environments, we have introduced two
additional features named “delayed write lock” (§IV) and
“write unlock” (§V). These innovations are designed to shorten
the lock duration for read-write transactions, thereby reducing
the transaction aborts and retries. Moreover, our system also
integrates a Two-Phase Commit(2PC) like protocol, which
correctly coordinates the lease across coordinators (§VII).

To prove the correctness of OOCC, we present a detailed
proof in §VI demonstrating that OOCC guarantees strict
serializability. Additionally, a TLA+-based automatic proof of
OOCC’s correctness is included in the supplementary material.

To demonstrate the efficacy of OOCC, we conducted com-
parative analyses with both OCC-based and 2PL-based state-
of-the-art solutions [1], [10], [11]. The experimental outcomes
reveal that in read-dominant settings, for which OOCC is
tailored, our system enhances transaction throughput by 1.2×-
4× and simultaneously decreases the average latency by 40%-
45% lower than the best counterpart (§VIII-C). In write-heavy
scenarios, OOCC’s throughput is only about 30% lower than
DSLR [11], a system specifically optimized for write-intensive
workloads (§VIII-E). Conversely, OOCC significantly outper-
forms DSLR in read-heavy contexts and achieves minimal
latency in both read- and write-heavy workloads.

II. BACKGROUND

A. Disaggregated Transaction

Traditionally, computing systems have relied on a tightly
integrated architecture, where memory is closely coupled with
processing units within a single server. Disaggregated systems
redefine this model by separating memory resources from
individual servers, consolidating them into a shared pool
linked to compute nodes via a high-speed network. This design
enhances resource utilization, scalability, and failure isolation
by allowing each compute and memory pool to be deployed
and scaled independently. A pivotal focus in this field is the
application of Remote Direct Memory Access (RDMA) to im-
plement advanced concurrency control schemes, notably two-
phase locking (2PL) [4] and optimistic concurrency control
(OCC) [5].
2PL based methods. For instance, an exemplary implemen-
tation in this context is DrTM [10], which utilizes RDMA to
apply a 2PL scheme. DrTM’s novel lease-based shared lock
mechanism overcomes the drawbacks of releasing the locks. It
attaches a timestamp along with the record as the valid time
of the lease. When the coordinator visits the record, it will
first extend this timestamp using RDMA CAS operation. This
approach requires two or more operations to read a record
and the length of the lease is hard to tune. A small lease
will cause frequent extensions of the lease which will further
degrade the performance, while a large lease will block the
read-write transactions. In a different approach, DSLR [11]
employs RDMA’s Fetch-And-Add (FAA) operation to create
a ticket lock system. Unlike the potentially failing Compare-
And-Swap (CAS) operations, the FAA operation is guaranteed
to succeed, thus enabling DSLR to avoid starvation and

unnecessary retries. This mechanism ensures first-come-first-
serve scheduling, promoting fairness in transaction processing
and benefits the conflict transactions.

Despite these advancements, it’s noteworthy that 2PL-based
concurrency control systems rely heavily on atomic RDMA
operations, even in read-only transactions. This reliance can
significantly impede performance, making these systems less
suitable for read-dominant scenarios.

State of art solution of OCC. Read-only transaction only needs two phases. Read-write
transaction needs 4 phases in which the Execution Phase and the Locking Phase are
overlapped and the Validation Phase and Logging Phase are overlapped.

Tx_committed

Coordinator

Server A

Tx:Read A
 Read B

Execution Validation

Server B

Data Record
Undo Log
Lock
Write Unlock
RDMA Read
& Write
RDMA CAS

A A

B B

Tx_committed

Coordinator

Server A

Tx:Read A
 Write B

Execution
&Locking Commit

Validation
&Logging Release

Server B

A A

B'B

(a) Read-only Transaction

RTT
(b) Read-write Transaction

Fig. 3: State of art solution of OCC. Read-only transaction
only needs two phases. The read-write transaction needs 4
phases in which the Execution Phase and the Locking Phase
overlap, and so does the Validation Phase and Logging Phase.

OCC based methods. Thus, in our paper, we focus on opti-
mizing solutions based on OCC. Figure 3 presents a standard
framework used by existing RDMA systems for processing
distributed transactions via OCC. The protocol only encom-
passes two sequential phases for the read-only transactions:
Execution and Validation. The read-only transactions will be
committed if the results of the Validation phase match the
results of the Execution phase. Otherwise, they will be aborted.

In contrast, the OCC protocol encompasses four sequential
phases for the read-write transactions: Execution and (over-
lapped) Locking, Validation and (overlapped) Logging, Com-
mit, and Release. During the Execution phase, the coordinator
reads records from the read set and locks the write set. In the
Validation and Logging phase, the coordinator’s tasks include:
1) verifying the integrity of the read set records (ensuring
they have not changed); 2) concurrently sending the undo
log to the server; and 3) waiting for the completion of all
these operations, ideally within a single RTT. The transaction
then moves to the Commit phase, where records are updated.
Finally, during the Release phase, the records are unlocked,
which prevents partial reads and allows these modifications
to become visible to other transactions. To avoid the issue of
partial reads, existing works typically update all the records
before releasing any locks. Consequently, the Commit and
Release phases cannot be overlapped.

B. Read-only Transaction

Due to the importance of read-only transactions, there
are also many specialized optimizations in traditional non-
disaggregated environments. A notable concept is the NOCS
Theorem [12], which highlights a fundamental challenge: it

is not possible to simultaneously achieve non-blocking read-
only transactions (N), one-round communication (O), constant
metadata (C), and strict serializability (S). Solutions such as
SNOW-optimal, PORT, and DST have managed to attain three
attributes (N+O+C) at the cost of strict serializability (S).

Commonly, these optimizations utilize timestamps to con-
vert read-only transactions into snapshot reads, thereby ensur-
ing the transactions are non-blocking. This process typically
includes the coordinator checking and atomically updating the
timestamp of a tuple when the transaction’s commit timestamp
is larger. Such a step is essential to maintain serializability.
However, applying one-sided RDMA operations for these
tasks in disaggregated memory systems can lead to increased
round trips and dependence on expensive atomic operations,
ultimately impairing performance.

III. GLOBAL LEASE PERIOD

For a better understanding, we initially assume uniform
clock rates across all replicas, thereby sidestepping the issue of
clock drift. We will delve into strategies for mitigating clock
drift in Section VII-B, but it does not significantly alter the
primary concepts outlined in our subsequent discussion.

As described above, the primary objective of our research is
to obviate the need for a validation phase in OCC. To achieve
this, we must ensure that all data records accessed during the
execution phase remain unaltered by concurrent updates. The
cornerstone of our approach is the use of leases to establish
a global lease period. In OOCC, leases are commitments
made by updaters. They ensure that the releasing of locks for
updates is temporarily deferred for a specific, limited, and
predetermined period. Consequently, if all the data records
accessed during a read-only transaction fall within the lease
period, their consistency can be directly inferred from the
initial states, eliminating the need for subsequent verification.
It significantly reduces the likelihood of needing double reads,
especially in the context of short read-only transactions.

A. Transactional Write

The process for handling writes in OOCC adheres to the
principles of OCC, but it incorporates an additional constraint
that writes must secure the safety of the lease. Furthermore,
Sections 4 and 5 outline optimizations to the write pro-
cedure aimed at reducing write contention and enhancing
performance. However, we will first discuss the fundamental
procedure. When a coordinator successfully locks a tuple, it
operates under the assumption that an implicit read lease has
been set on the record, even in the absence of an actual
concurrent read transaction. The coordinator waits until this
implicit lease expires before releasing the locks.

As depicted in Figure 4, read-write transactions in OOCC
still undergo four phases. In the initial Execution&Locking
phase, the coordinator sets the lock using RDMA CAS, and
later, in the Releasing phase, it releases the lock with RDMA
Write. The primary distinction between OOCC and traditional
OCC lies in the lock release timing. In OOCC, the lock is only
released after the lease has expired. This ensures that the lock

Execution
&LockingCoordinator 1

Validation
&Logging

T1:Write A
 Write B

Coordinator 2

Server A

T2:Read A
 Read B

Release
 Commit

Server B

Commit

lease

Data Record
Undo Log
Lock
Write Unlock
RDMA Read
& Write
RDMA CAS

A

Execution

B

A

B

A'

B'B B'

lock duration>lease

A'

Validation
Case1:
Successful Commit
with Validation omit

Case3:
Validation because processing
time is larger than lease.
Abort because modification of A

Case2：Abort
because of lock

processing duration > lock duration> lease

B'

OOCC的流程

Fig. 4: The process of OOCC handling transactions. The coordinator1 handles a read-write transaction while the coordinator2
handles a conflicting read-only transaction. The three cases are the possible situations that happened in OOCC.

duration always exceeds the lease period. This characteristic is
crucial for verifying the atomicity of a read-only transaction.

B. Transactional Read

With the help of the aforementioned leases, OOCC en-
ables read-only transactions to be executed efficiently, often
requiring just a single round of RDMA reads. In OOCC, data
and its associated lock are co-located, allowing them to be
accessed simultaneously through a single RDMA Read op-
eration during the Execution phase of read-only transactions.
When performing read operations, the coordinator retrieves the
record along with its lock status. The data is deemed valid if
the corresponding lock field indicates that the record is not
locked by other concurrent transactions.

Importantly, this read operation serves a dual purpose. Apart
from fetching the record, it also implicitly establishes a read
lease. This implies that if all the records read are unlocked
and the read duration does not surpass the lease period, there
is a certainty that no concurrent read-write transaction will
intervene, thus preventing inconsistent states. This guarantee
is based on the protocol that even if a concurrent writer locks a
record immediately after the read, this writer will intentionally
delay releasing its locks for at least a lease period.

To be more explicit, we illustrate all three possible scenarios
of executing read-only transactions in OOCC with Figure 4. In
this example, Coordinator 2 is attempting to commit a read-
only transaction involving two shards, while Coordinator 1
concurrently executes a read-write transaction. In Case 1, all
read operations by Coordinator 2 occur before Coordinator
1’s locking, resulting in both returning an unlocked status
and within the lease period. This indicates that Coordinator
2 has secured implicit read leases, valid during its Execution
phase, ensuring that no data changes occurred. Consequently,
the Validation phase can be omitted. OOCC thus ensures that
most read-only transactions can complete in a single RTT in

conflict-free scenarios. In Case 2, however, the transaction will
abort as the read operation for record B encounters a lock.

More importantly, Case 3 presents a more complex scenario
where a read-only transaction T2 reads two records updated by
transaction T1 but only encounters one modified record B. This
partial read scenario cannot be identified merely from the lock
status as Coordinator 1 has already released the lock. However,
the processing duration of T2 exceeds T1’s lock duration,
which is guaranteed to surpass the lease. Thus, Coordinator
2 can identify a potential serializability violation by differen-
tiating Case 3 from Case 1. In such instances, Coordinator 2
reverts to the standard OCC procedure, executing an additional
validation phase to ensure atomicity.

In summary, the implicit lease-setting method employed in
OOCC simplifies the read process by eliminating the need for
additional validation. However, this approach may potentially
increase latency for write operations. Each write must wait
until this lease expires to maintain consistency. Therefore,
carefully determining the lease duration is crucial. A lease
duration that is too long could unnecessarily extend the latency
for read-write transactions, whereas a very short lease might
result in unnecessary validations in read-only transactions.
Further details and analysis are discussed in §VIII-F.

C. Unknown Read Set or Write Set

The design of OOCC targets non-interactive transactions,
which is a common approach [3], [11]–[14]. There are also
transactions in this category where the read and write sets are
unknown. For these transactions, we utilize a method that is
leveraged in OCC. The coordinator issues RDMA reads during
the execution phase to obtain the necessary read and write sets.
After that, we can continue executing the transaction based on
the read data and validate this data before committing. Clearly,
the execution phase of such transactions will take longer.
Therefore, we need a longer lease to skip the validation phase.

The results in VIII-C show that OOCC still outperforms other
systems by up to 1.5× in this kind of transaction.

IV. REDUCE LOCK DURATION

Since OOCC is still based on OCC, it is also susceptible
to high transaction abortion ratios in scenarios of intense
conflict. To alleviate this issue, a key strategy is to minimize
the lock duration, thereby reducing the potential for conflicts.
Prior research has explored lock duration reduction through
techniques like early lock release [15], [16], which allows
a transaction to release its lock on a data record after its
final update, permitting other transactions to access the data.
Such methods have been shown to enhance performance by
enabling transactions to read uncommitted data. However, they
necessitate complex algorithms and data structures for tracking
dependencies and managing cascading aborts, making them
less suited for disaggregated systems. In our approach, we
introduce a mechanism called “delayed write lock”.

Notably, in OCC, the standard approach is to maintain
consistency by detecting potential conflicts during the Exe-
cution phase. If a transaction finds that a record is locked, the
pragmatic approach is to abort the transaction which ensures
strict serializability. However, for read-only transactions con-
currently executed with read-write transactions, this decision
can lead to numerous false aborts. This issue is especially
pronounced in OOCC due to the intentional lease waiting.

For instance, the aborted Case 2 in Figure 4 exemplifies
a false abort. Transaction T2 could have been committed
instead of aborted since record B had not yet been modified
by transaction T1. T2 could be scheduled before T1 without
violating strict serializability. The issue is that the lock is held
too long for other read-only transactions to read, leading to
false aborts. We observe that strict serializability between read-
write and read-only transactions can be maintained if the read-
write transaction sets the locks before updating the record.

Therefore, to commit T1, it’s essential to find a method to
delay the write lock causing aborts only for concurrent read-
only transactions, without hindering the lock for read-write
transaction conflicts. OOCC addresses this by splitting the
write lock into an intention lock and a write lock. During the
execution phase, the coordinator sets the intention lock for the
write set to block other read-write transactions, but read-only
transactions can still read the records. However, the record is
forced to undergo the validation phase as the coordinator does
not secure the read lease for the record.

The introduction of intention locks adds an additional lock
operation, leading to questions about efficiently sending lock
requests to remote servers. A straightforward approach is to
allocate a dedicated round trip for sending the lock request
before the Commit phase, incurring an extra RTT. However,
we note that lock requests can be initiated at any stage before
the actual modifications. This realization has prompted the
strategy of a parallel locking scheme, where lock requests are
generated and dispatched simultaneously during the Commit
phase. This strategy enables the combination of the lock and
data update requests into a single RDMA Write operation,

Execution
&LockingCoordinator 1

Validation
&Logging

T1:Write A
 Write B

Coordinator 2

Server A

T2:Read A
 Read B

Release
 Commit

Server B

Commit

A

Execution

B

Validation
Case2.1：
Successful
Commit with only
validate B.

A A'

B B'B B'

Case2.2：Abort
because of the lock

delay write lock的流程 图例在上面

Data Record
Undo Log

Intention Lock RDMA CAS
Lock

Write Unlock
RDMA Read & Write

Fig. 5: Progress of intention lock.

thus obviating the need for an additional RTT. Illustrated in
Figure 5, Coordinator 1 sets intention locks in the Execution
& Locking phase and the write lock in the Commit phase.

This mechanism further refines the original aborted Case 2
in Figure 4 into two subcases in Figure 5. In case 2.1, Coor-
dinator 2 does not abort the transaction but instead validates
record B and commits since record B remains unchanged.
Conversely, in Case 2.2, the transaction is aborted due to the
presence of a write lock on record B. By employing delayed
locking, the actual lock duration for read-only transactions is
effectively reduced to a mere one RTT.

V. ONE-OP WRITE UNLOCK OPTIMIZATION

The above “delayed write lock” optimization we introduced
effectively reduces the duration of write locks to a single RTT,
which in turn decreases the likelihood of unnecessary aborts
of read-only transactions. However, the read-write transactions
still need four RTTs to commit. In this section, we aim to re-
duce the number of RTTs required for read-write transactions.
While the introduced lease can reduce the additional validation
phase’s RTT, simply applying leases to read-write transactions
does not decrease the required RTTs.

write unlock undo redo lease

Execute
Validate

Undo log
Write Unlock

Execute Write UnlockUndo log

Execute
Write-
Unlock Redo log

(a)

(b)

(c)

1 RTT 1 RTT 1 RTT 1 RTT

Fig. 6: The brief progress in which (a) is the origin transaction
progress, (b) is the progress with lease shows that the RTTs
can’t be reduced since sending logs requires an RTT and (c)
is the progress with lease and write-unlock.

As process (a) shows in Figure 6, existing approaches
leverage the undo log to ensure the crash consistency because
the undo log can be sent during the validation phase which
saves 1 RTT. However, this overlapping can not fit with the

lease to reduce the transaction procedure. As process (b)
shows, the transaction still needs 4 RTTs to commit even
with the validation omitted as the undo log still needs 1
RTT to be stored. To further reduce the round trips of the
transaction, we have proposed the Write Unlock to combine
the data update operation and the lock releasing operation into
a single operation. As shown in progress (c), the read-write
transaction only needs 3 RTTs with lease and Write-Unlock.

The “write unlock” optimization leverages the fact that
RDMA writes occur in increasing address order [17]–[19]. It
is important to note that, in OOCC, the write lock is located
at the highest address, typically as a footer. Consequently, an
RDMA write that updates a value can simultaneously release
the lock. OOCC employs this RDMA Write operation for
in-place updates of the remote replica, with the entire write
process being completed once the write lock is released. This
effectively inlines the unlock operation into the data updates,
hence updating the record and releasing the lock in a single
operation and reducing the transaction process by 1 RTT.

While the Write-Unlock enhances performance, it also in-
troduces a challenge in the event of a failure with undo logs.
The issue with the undo log is that when a failure occurs, the
transaction needs to roll back. This characteristic can lead to
inconsistencies when combined with write unlock, as a record
may be read by other transactions but then rolled back during
recovery. To solve this, it is essential to ensure that once
any updated data record is unlocked, the entire transaction
has already been committed. In such situations, replaying
the transaction is more appropriate rather than aborting it, to
guarantee that any committed data, which might have been
read by another transaction, is not lost. Thus, OOCC relies
on redo logs instead of undo logs. In case of failure, the
transaction will be replayed with the redo logs if the redo
logs are successfully stored. Otherwise, the transaction can be
simply aborted since the transaction has not been committed
and all the data have not been modified.

Execution
&LockingCoordinator 1

Validation
&Logging

T1:Write A
 Write B

Server A

 Commit

Server B

Commit

A

B

A'

B'

write unlock

Data Record
Redo Log

Intention Lock RDMA CAS
Lock

Write Unlock
RDMA Read & Write

lease

Fig. 7: The progress of OOCC after applying the “One-OP
Write Unlock” optimization.

The modified process, after applying the “write unlock”
optimization, is illustrated in Figure 7. The primary change
is that both the logging and locking operations are executed
within the same RTT. The operations for updating the record
and releasing the lock are consolidated into a single RDMA
Write in the Commit phase. Note that this operation needs

Algorithm 1: OOCC algorithm

1 Function Execute&Locking(T):
2 // read and set the implicit lease
3 issue RDMA read requests to get all the records in

the read set and set the implicit lease
4 if any record is locked or (intention-locked and T

is read-write) then
5 abort the transaction
6 // handle write set
7 if T is not read-only then
8 issue RDMA CAS requests to set the intention

locks on the records in the write set
9 if any CAS request fails then

10 abort the transaction
11 Function Validate&Logging(T):
12 // check if the validation can be omit
13 if lease expires or any record is intention-locked

then
14 issue the RDMA reads to validate the records

with intention-lock or expired lease
15 if any record version does not match then
16 abort the transaction
17 // handle write set
18 if T is not read-only then
19 issue the RDMA writes to set the locks on the

write records
20 issue RDMA writes to store the redo logs
21 Commit(T)
22 Function Commit(T):
23 if T is not read-only then
24 wait for the lease if it is not expired and the

redo log acks
25 issue the RDMA write to update the records

and release the locks
26 return to client

to be operated after the lease expires to prevent partial reads.
Consequently, the entire process comprises only three phases.

VI. ALGORITHM AND CORRECTNESS

A. OOCC Algorithm

The algorithm of OOCC is shown in Algorithm1. The whole
algorithm consists of multiple functions corresponding to the
different phases of OOCC.

Execute&Locking(T). During this phase, the coordinator
will issue the RDMA reads to get the records in the read
set. The implicit lease is also set by this operation. If any
record is locked by other coordinators, the transaction will be
aborted. For the write set, the coordinator will issue the RDMA
CAS requests to set the intention lock. If any CAS request
fails which means the record is locked by other concurrent
transactions, the coordinator simply aborts the transaction.

ValidateTxn&Logging(T). During this phase, the coordina-
tor will validate the records in the read set. For each record

in the read set, if the lease is still valid and no intention-
lock encounters, the validation can be omitted. Otherwise,
the record needs to be validated through RDMA reads. If
the validation fails due to a version has been changed, the
coordinator aborts the transaction. Otherwise, the coordinator
continues to handle the write set. For the write set, the
coordinator will update the intention lock to the lock to prevent
other readers. Since all the records in the write set have
already been intention-locked, the coordinator can simply issue
RDMA writes to upgrade the locks. Additionally, the redo-logs
need to be stored using the RDMA writes. As we can see, if the
validation is omitted, the read-only transactions can skip this
phase and commit directly. The read-write transactions only
need to update the locks and store the redo logs in parallel.

Commit(T). If the transaction is read-only, the coordinator
directly returns to the client. Otherwise, the coordinator will
first wait for the lease to expire to ensure the correctness of the
lease and the redo log acks to ensure that the redo logs have
already been stored. Then, the coordinator can update each
record and release the lock using one RDMA write operation.

Figure 8 shows some examples of the OOCC algorithm.
Transaction T1 is a read-write transaction that modifies records
A and B and transaction T2 is a read-only transaction
that reads records A and B. Coordinator1 sets the intention
locks during the Execution&Locking phase. In the Valida-
tion&Logging phase, it sets the locks and stores the redo log
without validation, then commits in the Commit phase after the
lease expires. Transaction T2 may encounter several cases. In
case 1, T2 commits with validation omitted since it gets A and
B within the lease, and no intention locks are encountered. In
case 2, T2 encounters the intention lock on record B, so it
has to validate record B as in Validate&Logging() line 12.
Coordinator 2 finds the record has not been modified during
the validation and then commits the transaction. In case 3, T2
will abort due to the lock on record B.

Execution
&Locking

Coordinator 1

Validation
&Logging

T1:Write A
 Write B

Server A

 Commit

Server B

Commit

A

B

A'

B'

algorithm examples

Data Record
Redo Log

Intention Lock RDMA CAS
Lock

Write Unlock
RDMA Read & Write

lease

Coordinator 2
T2:Read A
 Read B

B

Execution

BB

Validation
Case 1：
Commit with
validation omit

Case 2：Read B with
intention lock.
Commit with validate.

Case 3：Abort
because of lock.

B

A

Fig. 8: The examples of OOCC algorithm.

B. Formal Proof

Theorem VI.1 (SERIALIZABILITY). OOCC implements se-
rializable read-only transactions, which always read a consis-
tent snapshot generated by concurrent serializable read-write
transactions.

PROOF SKETCH. In this section, we provide a proof sketch
by contradiction, based on the intuition that if a read-only
transaction cannot be serialized with read-write transactions,
it leads to a contradiction. Before presenting the proof, we
need to establish the following lemma:

Lemma VI.2. Given a committed read-only transaction
TXRO and a committed read-write transaction TXRW , if
TXRO observes any TXRW ’s update, then TXRO can ob-
serve all the updates made by TXRW .

Proof. Assume TXRW updates record A and B to A
′

and B
′
.

TXRO has already read A
′
. It will read B in either 1) before

the Execution&Locking phase of TXRW , or 2) during the
Validation&Logging phase of TXRW . In scenario 1), TXRW

will wait until the lease of record B expires before it releases
the lock on record A. Since TXRO has already read A

′
, the

execution time of TXRO must have exceeded the lease. TXRO

will have to go through the Validation phase and abort due to
lock or modification of B. In scenario 2), TXRO will also go
through the Validation phase since it does not get the lease of
record B and abort due to the reasons above. Thus TXRO can
only commit with reading both A

′
and B

′
.

Proof Of The Theorem. TX1 updates record A to A
′
, TX2

updates record B to B
′
and TX2 depends on TX1. Assume a

read-only transaction TXRO only observes TX2’s update on
record B but does not observe TX1’s update on record A(i.e.,
inconsistent reads). Since TX2 depends on TX1, we assume
the TX2 reads the record C updated to C

′
by TX1 during the

Execution&Locking phase. Then TXRO will observe the C
′

otherwise it will fall to scenario 1 in Lemma VI.2 and abort
if it reads record C. Therefore, TXRO observes C

′
but does

not observe A
′
, which is contradictory to Lemma VI.2.

Serializability proved above in OOCC is also strict: the
serialization point is always between the start of execution
and the completion being reported to the application. A
TLA+-based automatic proof of OOCC is provided in the
supplementary material.

C. Discussion of Generalizability

Using leases to accelerate read-only transactions is a general
approach that can be applied to other non-RDMA environ-
ments. Our current design mainly leverages certain charac-
teristics of RDMA’s one-sided verbs, such as the optimal
performance of one-sided reads, which is why we incorporated
implicit leases into OCC. In non-RDMA environments, like
RPC, explicit leases can be implemented and handled by the
remote CPU. Additionally, other concurrency control proto-
cols, such as 2PL, can be explored for further possibilities.
Besides leases, other optimizations in the paper can also be
applied in non-RDMA settings; for instance, the write unlock
optimization can be more easily implemented in RPC.

VII. DYNAMIC ADJUSTMENT OF THE LEASE

When the workload changes, the lease needs to be changed
to suit the workload for better performance. In this section,

we will show how to dynamically change the lease during the
transaction executions. The challenge is that, since each client
uses the lease stored in the local machine, different leases may
cause the transaction to read the partial updates, leading to an
inconsistency. Even using the Two-Phase Commit (2PC) [20]
to update the lease value across coordinators cannot resolve
this issue, as there can always be scenarios where some
coordinators receive updates sooner than others.

To address this problem, we separate the lease into two
leases. The lease in OOCC serves two functions during the
commit phase. Firstly, it is used to verify the validity of records
in the read set, using the read-validate lease. Secondly, it
is employed for coordinators to wait for the lease to expire
before applying updates. We denote this lease as write-
wait lease. Previously, we used the single term lease for
both read and write operations. This is because, typically,
“read-validate lease = write-wait lease = lease”. We maintain
the following property. Property 1. All coordinators hold
the same leases when they are not in the lease-adjustment
process. By differentiating these leases, we ascertain that the
system remains secure as long as “read-validate lease ≤ write-
wait lease”. Specifically, to maintain safety, the following
property must be upheld during lease adjustments: Property 2.
max(read-validate lease of all coordinators) ≤min(write-wait
lease of all coordinators).

A. Lease Adjustment

To facilitate this, a new role known as the Lease Manager
has been introduced to update each coordinator’s lease in a
2PC-like manner. The lease adjustment process also comprises
two stages: the Prepare phase and the Commit phase.
Prepare Phase. In this phase, the Lease Manager initiates
the process by informing all coordinators about the new
lease. Initially, all the read-validate lease and write-wait lease
remain at leaseold. Upon receiving the prepare request, the
coordinator transitions to an intermediate state where the
read-validate lease is adjusted to min(leaseold, leasenew),
and the write-wait lease to max(leaseold, leasenew). The
corresponding possible states of leases are detailed in Table II.
Even though in this phase the coordinator can be in one of
two states, Property 2 is maintained in both states and hence
ensures the system’s safety.

Before changing Intermediate
read-validate lease leaseold min(leaseold, leasenew)
write-wait lease leaseold max(leaseold, leasenew)

TABLE II: The leases during the Prepare phase.

Commit Phase. The Commit phase begins once the Lease
Manager has notified all coordinators of the new lease and
they have moved to the intermediate state. The Lease Man-
ager then sends a commit request to all coordinators. Upon
receiving this request, a coordinator updates both the read-
validate lease and the write-wait lease to leasenew. The
coordinator can be in one of two states, as shown in Ta-
ble III, where max(read-validate lease) = leasenew and

min(write-wait lease) = leasenew. Property 2 is also
upheld during the Commit phase, maintaining safety.

Intermediate After changing
read-validate lease min(leaseold, leasenew) leasenew

write-wait lease max(leaseold, leasenew) leasenew

TABLE III: The leases during the Commit phase.

Prepare
Lease Manager

Commit

change lease progess with wait

Intermediate state

Coordinator 1

Coordinator 2

Read-validate
lease
Write-wait
lease

short lease before
adjustment

long lease after
adjustment

Wait

Fig. 9: An example of a successful lease adjustment in which
the lease is adjusted to a longer lease.

The previous sections described how to adjust leases, ensur-
ing that the leases remain the same when not adjusted. Next,
we introduce the specific implementation of lease adjustment.
In this implementation, the read-validate lease and write-wait
lease are compressed into an 8B value shared among all
coordinators on the same machine. When a coordinator begins
a transaction, it reads the lease from this value. Therefore, the
lease adjustment process only involves modifying this variable.
When the Lease Manager needs to adjust the lease, it first
issues RDMA write operations to update the leases to an
intermediate state. Once this process is complete, the Lease
Manager must wait a period of the old lease duration to expire
the old lease set on the record. After that, the Lease Manager
will issue another round of RDMA writes to update all leases
to their latest state. The entire process is illustrated in the
figure, and Properties 1 and 2 are maintained throughout. We
observe that the entire lease adjustment process requires two
rounds of RDMA writes and a waiting period, totaling ∼20us.

During transaction processing, the coordinator records
statistics for read-only transactions, including delays for each
phase, commit delays, and omission rates. The lease manager
periodically reads these statistics via RPC and calculates the
success rate of transactions that omit the validation phase.
In our experimental setup, the statistics are read once per
second. If the lease manager finds that the lease is either
too large or too small for the transactions, it will compute a
new lease and initiate adjustments. In our system, the lease
is set to be large enough to omit the validation phase for
at least 80% of read-only transactions. For example, if the
omission rate drops below 80% in our setup, the lease manager
will calculate a larger new lease based on the delays in the
statistics. Conversely, if it finds that the lease is significantly
larger than the execution delay, it will adjust the lease to a
smaller value, as the lease is deemed too large.

B. Handle Clock Drift
In our system, each replica’s clock is regulated by a crystal

oscillator. Oscillators in production networks can have a fre-
quency variation of ±100 ppm (parts per million), meaning a
drift within the range of ±100µs per second [21]. However,
the magnitude of this clock drift, typically within the range
of ±1ns per lease, is significantly smaller than the lease
duration(tens of microseconds, comparable to network RTT),
thus having a negligible impact on design correctness.

To further accommodate clock drift, we introduce an offset
to the lease, allowing tolerance for a bounded level of drift.
Similar to Spanner’s approach [22], the lease intervals in
replicas can be conceptualized as uncertainty intervals of [lease
- offset, lease + offset] in which the offset can be seen
as the buffer bound. Then the read-validate lease is set to
lease - offset, while the write-wait lease is set to lease +
offset. Currently, we use a bound of 1000ppm which is 10
times higher than the maximum observed rate drift across 6.5
million server hours [23]. Then the offset in our system is
set to be 20ns if the lease is 20us which does not impact the
performance as the experiment VIII-G shows.

The above mechanism is sufficient assuming the buffer
bound is ensured. To identify and isolate replicas with ex-
cessive clock drift, replicas periodically measure their clock’s
offset from others using the Precision Time Protocol (PTP).
PTP [24] now can achieve a deviation of 100ns which provides
sufficiently high accuracy for our design. Any replica exceeds
max drift offset by more than 80% will self-terminates.

VIII. EVALUATION

A. Evaluation Setup
Testbed. We use four machines to simulate a distributed

environment and evaluate the performance benefits of OOCC,
each with two Intel Xeon Gold 6240R CPUs (96 cores
in total), 384 GB DRAM (32 GB×12), and a 200 Gbps
Mellanox ConnectX-6 InfiniBand RNIC. These machines
are installed with Ubuntu 20.04 LTS (Linux kernel 5.4.0)
and Mellanox OpenFabrics Enterprise Distribution for Linux
(MLNX OFED) v5.3-1.0.0.1. Two machines are leveraged as
the compute pools to run coordinators.
Comparisons. We implement OOCC using C++ and compare
it with three state-of-the-art RDMA-based distributed trans-
action processing systems, i.e., FORD [1], DrTM [10], and
DSLR [11]. We re-implement their transaction process in our
framework for an apples-to-apples comparison.
Implemetion. In this framework, we use the hash tables with
the MurmurHash [25] hash function to organize the data
store. The data are stored in the hash table as the fix-size
records for direct access. There is a global cache in a single
machine shared by all the coordinators in the machine to
cache the remote data addresses for efficient one-sided RDMA
operations. The coordinator can directly access the record if
the cache hits. Otherwise, the coordinator needs to calculate
the remote bucket address by the MurmurHash function and
retrieve the whole bucket to find the record. The lease of DrTM
is set to be 400us as set in the origin paper.

B. Methodology

Following the methodology of existing disaggregated trans-
action works [1], [26], we conduct transactions on a disag-
gregated hash-based key-value store to assess the influence
of various factors on our design. We vary the number of
coordinators for each workload until the bandwidth is saturated
and choose the configuration with the best performance to
report. We explore five key questions about our OOCC design:
Q1: Advantages of OOCC in Read-Heavy Scenarios
OOCC’s primary strength lies in optimizing read-only trans-
actions, significantly improving both throughput and latency.
We use the YCSB [27], TAOBench [28], and TATP [29] as
typical read-heavy workloads. Yahoo! Cloud Serving Bench-
mark(YCSB) is a representative workload of large-scale online
services. It features queries accessing single random tuples
following a Zipfian distribution, where the θ parameter dictates
the level of contention. Similar to existing works, we report
on two read-write ratios: Read-only, comprising solely read-
only transactions, and Read-intensive, with 90% read-only
transactions. The record size of YCSB in our experiment is
set to be 8 Byte. The TAOBench that captures the social
graph workload at Meta represents a read-mostly workload
that contains 95% read-only transactions and 5% read-write
transactions. A read-only transaction may query ranging from
a few to hundreds of objects and edges. We generate 500k
edges and 1 million objects following the distribution given
by TAOBench. The TATP benchmark, derived from a telecom
equipment manufacturer’s test program, includes 4 tables with
record sizes up to 48B, and a workload of 80% read-only and
20% read-write transactions, in which we implement the read-
only transactions to include two key reads for our experiments.
Q2: OOCC’s Performance in High Contention Scenarios
To assess how effectively OOCC handles high contention, we
utilize various configurations of the YCSB benchmark. We
focus on skewed access patterns, with a Zipfian distribution
skewness of 0.99, and write ratios ranging from 0 to 20%.
This experiment is designed to showcase the effectiveness of
OOCC’s optimizations, such as delayed write lock and write
unlock, in read-intensive yet high-contention environments.
Q3: OOCC’s Impact on Read-write Transactions Although
OOCC is optimized for read-heavy environments, our goal
is to implement it without compromising the performance
of write transactions. To assess this, we incorporate the
TPCC [30] benchmark, a widely recognized benchmark for
OLTP systems that includes 9 tables and 92 columns. It
features five transaction types, with three being read-write.
This experiment will help determine whether OOCC adversely
affects write-intensive workload performance.
Q4: Impact of Lease Adjustments We employ the YCSB
benchmark with varying lease durations to assess the lease’s
influence on the design. This experiment aims to highlight
performance improvements associated with lease adjustments.
Q5: Impact of Offset and Data Size We employ the YCSB
benchmark with varying offsets to assess the influence of
offsets and demonstrate the performance degradation caused

by various offsets. The lease of OOCC is set to be 10
microseconds with three different offsets—0.5, 1.0, and 1.5
microseconds. We also employ the read-intensive YCSB work-
load with different value sizes to see the impact on OOCC.

C. Read Heavy Workloads

The key is selected uniformly in the read-only and read-
intensive experiments. The subscriber ID is generated using a
non-uniform-random method following the specification.

As indicated in Fig. 10a, OOCC displayed superior perfor-
mance in all scenarios. It achieved a remarkable throughput
of approximately 41 million transactions per second with only
read-only transactions. When compared to OCC/DrTM/DSLR,
OOCC exhibited throughput improvements of 2×/3.3×/2.8×
and reduced the median latency by 40%/70.6%/60% in this
read-only experiment. In read-intensive, TAOBench, and TATP
experiments, OOCC enhanced throughput by 1.2-4× and
reduced median and tail latency by 39%-87%.

Our analysis reveals that OOCC’s advantage over OCC
stems primarily from the omission of the validation phase.
OOCC surpasses DrTM and DSLR because they both leverage
2PL which uses expensive atomic operations. Although DrTM
employs a lease-based shared lock to avoid explicit shared lock
release, it did not perform optimally. Selecting an appropriate
lease duration in DrTM is challenging; a longer lease ex-
cessively delays read-write transactions, while a shorter lease
often expires under uniform workload access patterns. In such
cases, DrTM coordinators initiate additional communications
using RDMA CAS to set the lease and RDMA Read to access
data until the lease is valid, which are expensive. In YCSB,
DrTM processes a single read in two or more RTTs. In TATP,
due to TATP’s non-uniform access pattern, the hotkeys are
more likely to be read again by coordinators in a short time.
DrTM’s read operations are more likely to encounter records
with a valid lease, allowing these reads to be committed in
one RTT. However, DrTM still needs to issue two operations,
one RDMA CAS to get the read lock and one RDMA Read
to get the data. As a result, although DrTM’s latency in TATP
is lower than OCC, it remains higher than OOCC.

The tail latency represents the latency of the read-write
transactions as the read-write transactions have a longer trans-
action processing progress. Although OOCC needs to wait
for the lease to expire, it saves one RTT for the read-write
transactions than OCC. Thus the tail latency of OOCC is
slightly lower than OCC which achieves the lowest tail latency.
DrTM and DSLR have a much larger tail latency due to the
use of expensive atomic operations.

For the transactions with an unknown read set or write set,
we conduct an experiment of the read-intensive workload that
contains 95% read-only transactions. In the experiment, we
simulate the transactions with an unknown read set in which
the transaction will read two records in the first round and
generate another two keys based on these two records. The
lease is set to be 12us due to the longer execution phase. In this
experiment, all the systems will need 1 more RTT to commit
the transactions. Thus, the read-only transaction will cost 2

RTTs for OOCC and 3 RTTs for OCC. As the result shows,
OOCC exhibited throughput improvements of 1.7×/2.3×/2.1×
when compared to OCC/DrTM/DSLR. OOCC also achieves
the lowest median latency and tail latency as explained above.

D. High Contention.

Reducing lock duration plays a critical role in improving
the performance of high-contention workloads. To show how
OOCC works in these scenarios, we conduct experiments with
varying write ratios with high conflict. For instance, a 10%
write ratio indicates that 10% of transactions are write opera-
tions while the remaining 90% are read-only. We also conduct
experiments to see the performance of varied contention using
the read-intensive workload. The θ is controlled to vary the
contention. For instance, θ = 0.6 indicates very few conflicts
and θ = 0.9 indicates very high conflicts. We also analyze the
performance differences between OOCC and OCC by incre-
mentally implementing each technique: (1) adding Lease; (2)
incorporating Write Unlock; and (3) employing Delay Write
Lock. Additionally, we also assess the maximum theoretical
throughput, where read-write conflicts are intentionally not
checked, allowing read-only transactions always commit in
one RTT. These results are shown in Figure 11.
+Lease. As shown in Figure 11a, introducing the lease im-
proves throughput by 1.46× in scenarios with only read-only
transactions. However, this performance gain diminishes as
the write ratio increases. At a 5% write ratio, throughput
reverts to OCC levels. As shown in Figure 11b, the throughput
drops as the θ increases which means more conflicts. The
throughput improves by 1.28× when θ = 0.99. The abort
rate in Figure 11c shows that transaction abort rates increase
to 70% and drop about 10% than OCC when θ = 0.99.
+Write Unlock. The implementation of ’Write Unlock’ re-
duces the lock duration by 1 RTT, leading to a 1.2× improve-
ment in throughput at a 5% write ratio. This is also reflected
in Figure 11b, where the throughput increases by about 5%
than OCC+Lease. The abort rates drop more slowly than OCC
as the contention increases.
+Delay Write Lock. With ’Delay Write Lock’, the lock
duration for read-only transactions is shortened to just 1
RTT, enabling more read-only transactions to be committed.
This strategy enhances throughput further by 1.1× by the
optimization above. The abort rates drop about 17% than OCC
which shows the optimization works in contentions.

New-Order Payment Order-Status Delivery Stock-Level
ratio 45% 40% 4% 4% 4%

TABLE IV: TPC-C mix ratio in our experiment.

E. TPCC Results

TPCC is a widely used write-intensive benchmark to eval-
uate transaction performance. We utilize this benchmark to
demonstrate if the write-intensive workload is harmed by the
OOCC. Table IV shows the mix ratio of the transactions used
in our experiment. The experiment uses 8 threads and each

read-only read-intensive TATP TAO Unkown

40
35
30
25
20
15
10

5
0

Th
ro

ug
hp

ut
(M

 tx
n/

s)
OOCC OCC DrTM DSLR

(a) Throughput

read-only read-intensive TAO TATP Unknown

60
55
50
45
40
35
30
25
20
15
10
5
0

La
te
nc
y(
us
)

OOCC OCC DrTM DSLR

(b) 50th latency

read-only read-intensive TAO TATP Unknown

140

120

100

80

60

40

20

0

La
te
nc
y(
us
)

OOCC OCC DrTM DSLR

(c) 90th latency

Fig. 10: Performance of read-heavy benchmarks.

0 5 10 15 20
write ratio

18
16
14
12
10

8
6
4
2
0

Th
ro

ug
hp

ut
(M

 tx
n/

s)

Highest Theoretical Throughput
OCC+Lease+Write Unlock+Delay Write Lock
OCC+Lease+Write Unlock

OCC+Lease
OCC

(a) Throughput with varied write ratio.

	
� 	
� 	
 	
� 	
��
�����������

��
��
��
�	

�
�
�
	

��
��

��
��

��
��

���
��

��

������������������ �����������
!""#$����#%�����&� ��'#(� �)�%�����$��'
!""#$����#%�����&� ��'

!""#$����
!""

theta

(b) Throughput with varied contention.

	
� 	
� 	
 	
� 	
��
�����������

�	
�	
�	
�	
�	
�	
�	
	

�
��
���
��
��
��

�

������������������������ ��! �
"##$%����$&�����'(���)$*���+�&�����%��)
"##$%����$&�����'(���)

"##$%����
"##

theta

(c) Abort rates with varied contention.

Fig. 11: Performance of micro-benchmark with varying write ratio and contention.

OOCC OCC DrTM DSLR

7

6

5

4

3

2

1

0

Th
ro

ug
hp

ut
(K

 tx
n/

s)

(a) Throughput
OOCC OCC DrTM DSLR

140

120

100

80

60

40

20

0

La
te
nc
y(
us
)

(b) 50th latency

OOCC OCC DrTM DSLR

1800
1600
1400
1200
1000
800
600
400
200
0

La
te
nc
y(
us
)

(c) 90th latency

NewOrder Payment OrderStatus Delivery StockLevel

5.5
5

4.5
4

3.5
3

2.5
2

1.5
1

0.5
0Th

ro
ug

hp
ut

(tx
n/

s l
og

10
)

OOCC OCC DrTM DSLR

(d) Breakdown performance.

Fig. 12: Performance of TPCC.

thread generates 4 coroutines as a total of 32 coordinators
to evaluate the throughput and latency of each system. We
generate 8 warehouses with 10 districts per warehouse. The
lease is set to be 80us since the progress of the transaction is
very complicated. The performance of each system is shown
in Figure 12. As we can see, OOCC still outperforms OCC
and DrTM by 1.1×/3.1× and it also achieves the lowest 50th
latency since it can omit the validation phase. The tail latencies
of all the systems are the latencies of StockLevel transaction as
this type of transaction requires dozens of rounds of retrieving
the records. In this case, the lease does not help with OOCC as
it will expire. Thus OOCC and OCC have similar tail latency.

In contrast, DSLR is a queue-based read-write lock design
that is specially designed for write-intensive workloads. DSLR
will queue the conflict transaction instead of aborting them.
However, DSLR will wait for dozens of locks before executing
the transaction due to the complexity of TPCC. OOCC’s

0 10 20 40 60 80
write ratio

26
24
22
20
18
16
14
12
10
8
6
4
2
0

Th
ro

ug
hp

ut
(M

 tx
n/

s)

OCC OOCC 7 OOCC 10 OOCC 14 OOCC 20

(a) Throughput

0 10 20 40 60 80
write ratio

30

25

20

15

10

5

0

La
te

nc
y(

us
)

OCC OOCC 7 OOCC 10 OOCC 14 OOCC 20

(b) 50th latency

0 10 20 40 60 80
write ratio

45

40

35

30

25

20

15

10

5

0

La
te

nc
y(

us
)

OCC OOCC 7 OOCC 10 OOCC 14 OOCC 20

(c) 90th latency

� 	
 �
���������

�

	

�

	�

	�

	�

		

	�

��

��

��
�
��
��
��
��
���
��
��

������������� �������������� ������������	�

lease adjustment

(d) Throughput of lease adjust-
ment.

Fig. 13: Performance of micro-benchmark with varying lease
time and write ratio.

throughput is 30% slower than DSLR due to a higher abort
ratio. While the latency of OOCC is still 40% lower since
DSLR will wait for all the conflict transactions to commit.

The performance breakdown is shown in Figure 12d. OOCC
achieves the best throughput in all the transaction types except
the Payment. The transaction type OrderStatus is the read-
only transaction that reads dozens of keys. OOCC achieves
the best throughput of 282K in this transaction type with
an improvement of 1.3×/1.6×/1.8× than OCC/DrTM/DSLR.
StockLevel is also a read-only transaction but with dozens of
rounds of reads. All systems achieve the lowest throughput in
StockLevel transactions. The other types of transactions are all

read-write transactions. The operations in Payment are writes
mostly which benefits DSLR. OOCC only achieves a through-
put of 1.5K which is only half of DSLR. But in NewOrder and
Delivery, OOCC has an improvement of 1.2×/15.3×/1.52×
and 1.1×/4.6×/1.46× than OCC/DrTM/DSLR.

F. Varying The Lease

OOCC uses the lease to optimize the read operations with
a trade-off of delaying the updates until the lease expires.
Clearly, the performance of OOCC highly depends on the
length of the lease. To analyze how the lease impacts the
performance of the transactions, we use the YCSB workload
to show the results with increasing lease length. The leases
used are set to be 4, 7, 10, and 14us respectively.

The results are shown in Figure 13a. As the write ratio
increases, the throughput drops quickly with the longer lease
because it hampers write transactions more. When the lease
is 4us, the lease is too small for transactions to omit the
validation phase. The performance of OOCC and OCC is
the same. When the lease is 7us and 10us, the throughput
of OOCC is higher than OCC in all experiments.

As shown in Figure 13b, the median latency of the transac-
tions will all increase as the write ratio increases. We can see
that with a proper lease, the median latency will not increase.
As shown in Figure 13c, when the lease is 7us, the tail latency
of OOCC is smaller than OCC because of the Write-Unlock.
With a longer lease, the latency of read-write transactions
becomes longer due to the waiting.

OOCC dynamically changes the lease to achieve better
performance. To verify the effectiveness of the lease-changing
scheme, we conduct a simple experiment with the YCSB
workload which doesn’t change throughout the whole exper-
iment. The lease is first set to be 4us which is too small to
omit the validation. Then the lease is changed by the Lease
Manager lately, so most of the transactions will commit the
transaction within the lease. The result is shown in Figure 13d
which increases by up to 1.5×. And the lease adjustment can
be quickly finished without harming the performance.

G. Offset Experiment

0 10 20 40
write ratio

34
32
30
28
26
24
22
20
18
16

Th
ro

ug
hp

ut
(M

 tx
n/

s)

offset=0 offset=0.5 offset=1 offset=1.5

(a) Varying Offset

8 16 32 64 128 256 512 1024
Data Size(bytes)

22
20
18
16
14
12
10

8
6
4
2
0

Th
ro

ug
hp

ut
(M

 tx
n/

s)

(b) Varying Data Size

Fig. 14: Performance with different offsets and data sizes.

In OOCC, the lease is calculated by the offset to handle the
clock drift problem Clearly, the length of the offset can impact
the performance of OOCC. To explore the effect of the offset
on OOCC performance, we demonstrate the outcomes with
increasing offset length. The result is shown in Figure 14a.
The performance all degrades as the offset increases. The

throughput barely degrades when the offset is 0.5us and 1us.
And we believe these two offsets are large enough for most
scenarios. The throughput drops quickly with 10% degradation
after the offset passes 1.5us with less validation omitted.

To explore the impact of the data sizes, we have conducted
an experiment with varied record sizes from 8B to 1024B.
The results are shown in Figure 14b in which the performance
remains steady until the record size becomes very large such
as 512B or 1024B. The performance quickly drops as the large
record size consumes the bandwidth. Thus, the record size has
little impact on OOCC unless the record is too large.

IX. RELATED WORKS

Lease. Lease is widely used in file systems for the client-
side metadata cache such as NFS v4 [31], PVFS [32], and
LocoFS [33]. However, these designs only work in the client-
server architecture, not for the disaggregated architecture.
Sundial [34] utilizes logical lease and data caching which
benefits from the high workload skewness and OOCC works
better in read-intensive workloads. However, the logical lease
can only guarantee serializability while OOCC guarantees
strict serializability. Additionally, the implicit lease of OOCC
is more suitable for disaggregated systems.

Disaggregated Memory. Disaggregated memory has be-
come popular in data centers due to high resource utilization
and elasticity. Existing works explore memory disaggregation
in networks [35], KV stores [36], [37],and hash indexes [38].
rTX [2] uses OCC to build the index on disaggregated mem-
ory. Our proposed OOCC is orthogonal to these systems to
build a faster transaction system.

Read-Only Optimized Transactions. Due to the impor-
tance of read-only transactions, Several works are proposed
to optimize read-only transactions with a variant of times-
tamp schemes [12], [39], [40]. These works all trade the
isolation level for the performance of read-only transactions.
OOCC shows comparable performance of read-only transac-
tions while preserving strict serializability.

X. CONCLUSION

This paper introduces One-round Optimistic Concurrency
Control (OOCC), a technique that integrates a lease mecha-
nism to bypass the validation phase in disaggregated trans-
actions. By processing the majority of read-only transactions
within a single RTT, OOCC achieves a throughput that is 1.2 to
4 times higher in read-heavy workloads. Additionally, we have
developed “delayed write lock” and “write unlock” strategies
to reduce the lock duration to just 1 RTT. Consequently,
OOCC not only demonstrates comparable performance in
write-intensive workloads but also achieves minimal latency.

XI. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
their comments and feedback. This Work is supported by
National Key Research & Development Program of China
(2022YFB4502004), Natural Science Foundation of China
(62141216, 61877035) and Tsinghua University Initiative Sci-
entific Research Program.

REFERENCES

[1] M. Zhang, Y. Hua, P. Zuo, and L. Liu, “Ford: Fast one-sided rdma-
based distributed transactions for disaggregated persistent memory,” in
20th USENIX Conference on File and Storage Technologies (FAST 22),
2022, pp. 51–68.

[2] X. Wei, H. Wang, T. Wang, R. Chen, J. Gu, P. Zuo, and H. Chen,
“Transactional indexes on (rdma or cxl-based) disaggregated memory
with repairable transaction,” arXiv preprint arXiv:2308.02501, 2023.

[3] M. Zhang, Y. Hua, P. Zuo, and L. Liu, “Localized validation accelerates
distributed transactions on disaggregated persistent memory,” ACM
Transactions on Storage, vol. 19, no. 3, pp. 1–35, 2023.

[4] P. A. Bernstein and N. Goodman, “Concurrency control in distributed
database systems,” ACM Computing Surveys (CSUR), vol. 13, no. 2, pp.
185–221, 1981.

[5] H.-T. Kung and J. T. Robinson, “On optimistic methods for concurrency
control,” ACM Transactions on Database Systems (TODS), vol. 6, no. 2,
pp. 213–226, 1981.

[6] S. Kashyap, D. Qin, S. Byan, V. J. Marathe, and S. Nalli, “Correct, fast
remote persistence,” arXiv preprint arXiv:1909.02092, 2019.

[7] A. Kalia, M. Kaminsky, and D. G. Andersen, “Design guidelines for
high performance rdma systems,” in 2016 USENIX Annual Technical
Conference (USENIX ATC 16), 2016, pp. 437–450.

[8] A. Cheng, X. Shi, A. Kabcenell, S. Lawande, H. Qadeer, J. Chan, H. Tin,
R. Zhao, P. Bailis, M. Balakrishnan et al., “Taobench: an end-to-end
benchmark for social network workloads,” Proceedings of the VLDB
Endowment, vol. 15, no. 9, pp. 1965–1977, 2022.

[9] B. Samwel, J. Cieslewicz, B. Handy, J. Govig, P. Venetis, C. Yang,
K. Peters, J. Shute, D. Tenedorio, H. Apte et al., “F1 query: Declarative
querying at scale,” Proceedings of the VLDB Endowment, vol. 11, no. 12,
pp. 1835–1848, 2018.

[10] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen, “Fast in-memory
transaction processing using rdma and htm,” in Proceedings of the 25th
Symposium on Operating Systems Principles, 2015, pp. 87–104.

[11] D. Y. Yoon, M. Chowdhury, and B. Mozafari, “Distributed lock manage-
ment with rdma: Decentralization without starvation,” in Proceedings of
the 2018 International Conference on Management of Data, 2018, pp.
1571–1586.

[12] H. Lu, S. Sen, and W. Lloyd, “{Performance-Optimal}{Read-Only}
transactions,” in 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), 2020, pp. 333–349.

[13] X. Chen, H. Song, J. Jiang, C. Ruan, C. Li, S. Wang, G. Zhang,
R. Cheng, and H. Cui, “Achieving low tail-latency and high scalability
for serializable transactions in edge computing,” in Proceedings of the
Sixteenth European Conference on Computer Systems, 2021, pp. 210–
227.

[14] R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger,
K. Niemi, A. Woods, A. Birzin, R. Poss et al., “Cockroachdb: The
resilient geo-distributed sql database,” in Proceedings of the 2020 ACM
SIGMOD international conference on management of data, 2020, pp.
1493–1509.

[15] G. Graefe, M. Lillibridge, H. Kuno, J. Tucek, and A. Veitch, “Controlled
lock violation,” in Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, 2013, pp. 85–96.

[16] Z. Guo, K. Wu, C. Yan, and X. Yu, “Releasing locks as early as you
can: Reducing contention of hotspots by violating two-phase locking,”
in Proceedings of the 2021 International Conference on Management of
Data, 2021, pp. 658–670.

[17] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “{FaRM}:
Fast remote memory,” in 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14), 2014, pp. 401–414.

[18] P. Fent, A. van Renen, A. Kipf, V. Leis, T. Neumann, and A. Kemper,
“Low-latency communication for fast dbms using rdma and shared mem-
ory,” in 2020 IEEE 36th International Conference on Data Engineering
(ICDE). IEEE, 2020, pp. 1477–1488.

[19] T. Ziegler, C. Binnig, and V. Leis, “Scalestore: A fast and cost-efficient
storage engine using dram, nvme, and rdma,” in Proceedings of the 2022
International Conference on Management of Data, 2022, pp. 685–699.

[20] Y. J. Al-Houmaily and G. Samaras, “Two-phase commit.” 2009.
[21] Y. Li, G. Kumar, H. Hariharan, H. Wassel, P. Hochschild, D. Platt,

S. Sabato, M. Yu, N. Dukkipati, P. Chandra et al., “Sundial: Fault-
tolerant clock synchronization for datacenters,” in 14th USENIX sympo-
sium on operating systems design and implementation (OSDI 20), 2020,
pp. 1171–1186.

[22] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild et al., “Spanner:
Google’s globally distributed database,” ACM Transactions on Computer
Systems (TOCS), vol. 31, no. 3, pp. 1–22, 2013.

[23] A. Shamis, M. Renzelmann, S. Novakovic, G. Chatzopoulos, A. Drago-
jević, D. Narayanan, and M. Castro, “Fast general distributed transac-
tions with opacity,” in Proceedings of the 2019 International Conference
on Management of Data, 2019, pp. 433–448.

[24] F. Rezabek, M. Helm, T. Leonhardt, and G. Carle, “Ptp security
measures and their impact on synchronization accuracy,” in 2022 18th
International Conference on Network and Service Management (CNSM).
IEEE, 2022, pp. 109–117.

[25] A. Appleby, “Murmurhash,” URL https://sites. google.
com/site/murmurhash, 2008.

[26] A. Dragojević, D. Narayanan, E. B. Nightingale, M. Renzelmann,
A. Shamis, A. Badam, and M. Castro, “No compromises: distributed
transactions with consistency, availability, and performance,” in Pro-
ceedings of the 25th symposium on operating systems principles, 2015,
pp. 54–70.

[27] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing, 2010, pp. 143–154.

[28] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, H. Li et al., “Tao:facebook’s
distributed data store for the social graph,” in 2013 USENIX Annual
Technical Conference (USENIX ATC 13), 2013, pp. 49–60.

[29] S. Neuvonen, A. Wolski, M. Manner, and V. Raatikka, “Telecom appli-
cation transaction processing benchmark,” Retrieved January, vol. 18,
p. 2022, 2011.

[30] T. P. P. C. TPC-C, “Standard specification,” Version, vol. 1, p. 0, 2014.
[31] B. Pawlowski, D. Noveck, D. Robinson, and R. Thurlow, “The nfs

version 4 protocol,” in In Proceedings of the 2nd International System
Administration and Networking Conference (SANE 2000. Citeseer,
2000.

[32] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur, “{PVFS}: A
parallel file system for linux clusters,” in 4th Annual Linux Showcase
& Conference (ALS 2000), 2000.

[33] S. Li, Y. Lu, J. Shu, Y. Hu, and T. Li, “Locofs: A loosely-coupled
metadata service for distributed file systems,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2017, pp. 1–12.

[34] X. Yu, Y. Xia, A. Pavlo, D. Sanchez, L. Rudolph, and S. Devadas, “Sun-
dial: harmonizing concurrency control and caching in a distributed oltp
database management system,” Proceedings of the VLDB Endowment,
vol. 11, no. 10, pp. 1289–1302, 2018.

[35] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal,
S. Ratnasamy, and S. Shenker, “Network requirements for resource
disaggregation,” in 12th USENIX symposium on operating systems
design and implementation (OSDI 16), 2016, pp. 249–264.

[36] J. Shen, P. Zuo, X. Luo, T. Yang, Y. Su, Y. Zhou, and M. R. Lyu,
“Fusee: A fully memory-disaggregated key-value store,” in 21st USENIX
Conference on File and Storage Technologies (FAST 23), 2023, pp. 81–
98.

[37] P. Li, Y. Hua, P. Zuo, Z. Chen, and J. Sheng, “Rolex: A scalable rdma-
oriented learned key-value store for disaggregated memory systems,” in
21st USENIX Conference on File and Storage Technologies (FAST 23),
2023, pp. 99–114.

[38] Q. Wang, Y. Lu, and J. Shu, “Sherman: A write-optimized distributed
b+ tree index on disaggregated memory,” in Proceedings of the 2022
International Conference on Management of Data, 2022, pp. 1033–1048.

[39] X. Wei, R. Chen, H. Chen, Z. Wang, Z. Gong, and B. Zang, “Unifying
timestamp with transaction ordering for {MVCC} with decentralized
scalar timestamp,” in 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21), 2021, pp. 357–372.

[40] H. Lu, C. Hodsdon, K. Ngo, S. Mu, and W. Lloyd, “The snow theorem
and latency-optimal read-only transactions,” in 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), 2016, pp.
135–150.

	Introduction
	Motivation
	Our Contributions

	Background
	Disaggregated Transaction
	Read-only Transaction

	Global Lease Period
	Transactional Write
	Transactional Read
	Unknown Read Set or Write Set

	Reduce Lock Duration
	ONE-OP Write Unlock Optimization
	Algorithm and Correctness
	OOCC Algorithm
	Formal Proof
	Discussion of Generalizability

	Dynamic Adjustment of the Lease
	Lease Adjustment
	Handle Clock Drift

	Evaluation
	Evaluation Setup
	Methodology
	Read Heavy Workloads
	High Contention.
	TPCC Results
	Varying The Lease
	Offset Experiment

	Related Works
	Conclusion
	Acknowledgments
	References

