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Abstract
The efficiency of distributed shared memory (DSM) has been
greatly improved by recent hardware technologies. But, the
difficulty of distributed memory management can still be
a major obstacle to the democratization of DSM, especially
when a partial failure of the participating clients (e.g., due
to crashed processes or machines) should be tolerated.
In this paper, we present CXL-SHM, an automatic dis-

tributed memory management system based on reference
counting. The reference count maintenance in CXL-SHM
is implemented with a special era-based non-blocking algo-
rithm. Thus, there are no blocking synchronization, memory
leak, double free, and wild pointer problems, even if some
participating clients unexpectedly fail without freeing their
possessed memory references. We evaluated our system on
real CXL hardware with both micro-benchmarks and end-
to-end applications, which demonstrate the efficiency of
CXL-SHM and the simplicity/flexibility of using CXL-SHM
to build efficient distributed applications.

CCS Concepts: • Computer systems organization →
Multicore architectures; • Hardware → External storage.
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Figure 1. A CXL-based RDSM test platform with two com-
pute nodes sharing a single external CXL memory device.

1 Introduction
1.1 Motivation
Recent highly efficient and byte addressable remote memory
access technologies have led to the resurgence of Distributed
Shared Memory (DSM) systems [24, 59, 68, 73]. We believe
this trend of DSM will continue because the efficiency of
distributed cache coherence will be greatly improved by new
hardware technologies such as CXL 3.0 [1, 38].
However, since the original DSM systems mainly focus

on improving the efficiency of accessing and coordinating
remote memory, their memory management systems are
usually implemented in a straightforward manner, and do
not pay much attention to the automatic management of
allocated memory spaces. As an illustration, many existing
DSM systems [22, 37, 78, 89] employ a typical two-tier al-
locator, which first allocates a large chunk of memory via
global synchronization, and then performs fine-grained al-
locations locally. This simple method leaves the burden of
memory lifecycle management to the programmers them-
selves. Programmers must ensure that each allocation of the
large chunk is freed once and only once after all the machines
have stopped accessing any part of that chunk. This may
not be a big problem for data analysis applications where
only a few large chunks of data need to be allocated and the
processing lifecycle is well modeled by a DAG. But, it will
become a major obstacle in promoting DSM to a wider
range of application scenarios.
For example, refactoring a monolithic application into

multiple microservices is a common need today. But, the iso-
lation between different microservices comes at the cost of
high-latency inter-process communication, especially when
using the original pass-by-value RPC. In contrast, with a
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highly efficient, byte-addressable, and cache-coherent DSM,
different processes/machines can communicate by exchang-
ing zero-copy data references through a shared concurrent
memory queue [80]. It avoids the cost of (de)serializing and
I/O stack processing of input arguments and return values.
As we will show in §6.3, a CXL-based pass-by-reference RPC
framework can greatly reduce the cost of inter-process and
inter-machine communication to a level that is even compa-
rable to the cost of inter-thread communication.
However, the flexibility of microservices places a signifi-

cant burden on application programmers to manage the life-
cycle of shared data objects exchanged via pass-by-reference
RPC. Some of their references may even be lost silently (with-
out explicit destruction) due to network and microservice
failures. In addition, requiring amicroservice process to track
the global reference count of distributed objects in its own
business logic breaks the isolation semantic of microservice
architecture. Thus, we argue that an automatic distributed
memory management system that can tolerate possible net-
work, process, and machine failures is necessary in this and
many other important scenarios (§2.2).

1.2 Challenges
To formalize the above challenge, we propose the model of
Partial Failure Resilient DSM (RDSM), where the shared
distributed objects allocated from RDSM and the clients
(threads/processes/machines) that hold their references have
separate failure domains. In RDSM, clients are free to join,
exit, and even fail during the processing. They are also free to
create, release, and even exchange references of fine-grained
remote memory spaces that are allocated from the RDSM.
Consider the CXL-based RDSM test platform shown in

Figure 1: all three devices have independent power supply
unit (PSU) and PCIe/MCIO connections [6], so they have
separate failure domains. In this scenario, a memory alloca-
tion from Client A on Compute Node 1: 1) cannot simply
be released, even if Compute Node 1 unexpectedly crashes,
because it could lead to double free or wild pointer problems
if its reference has been passed to another client that is still
alive on another machine (i.e. Compute Node 2); 2) should be
reclaimed to avoid a memory leak, when all the clients that
originally held its reference have terminated, even if some
of those clients terminated unexpectedly. More details about
this test platform are given in §2.1.

Since memory management is a well-known difficult task,
there are many related design efforts [23, 47, 73, 77, 78, 84]
to solve this problem automatically in various scenarios.
However, according to our investigation (§4), existing works
mainly focus on the complete failure scenario. Thus, even
for persistent [25, 39] and shared [90] memory allocators
that also need to tolerate unexpected failures, their recovery
is typically implemented in a blocking manner, where all
participating clients could be blocked by the crash of a single
client. But, a non-blocking system is desired to tolerate

partial failures, because clients sharing a RDSM may serve
long-running services that handle latency-sensitive requests.

1.3 Our Contribution
In this paper, we present the design of CXL-SHM (Figure
1), an efficient automatic memory management system for
RDSM backed by CXL or other hardware distributed cache
coherency technologies. CXL-SHM can recover from a par-
tial failure of processing clients in a non-blockingman-
ner, as long as the underlying RDSM provides compare-and-
swap (CAS) instructions to atomically update the shared
distributed memory space. Our implementation is based on
a modern memory allocator, mimalloc [8], which does not
involve any cross-thread synchronization in the fast path. It
turns out that it is particularly challenging to preserve this
property for ensuring the performance, and simultaneously
guarantee partial failure safety in a non-blocking manner.

In CXL-SHM, we use reference counting to avoid the over-
head of global distributed garbage collection. But, maintain-
ing per-object reference count leads to another challenge of
executing distributed transactions. As we will demonstrate
later in §4, an existing implementation [90] that uses a redo
log for atomicity and locks for concurrency control may
lead to indefinite blocking, if the client unexpectedly exits
without releasing the locks.

Fortunately, we found that, in this reference count main-
tenance transaction, only the increment/decrement of ref-
erence count is not idempotent. All the other steps (e.g.,
modifying the value of reference), if designed carefully, can
be transformed into idempotent operations. This gives us an
opportunity to design a non-blocking era-based algorithm
(§4.3), which is inspired by the Hazard Era algorithm [64].
The crux is that we use the successful execution of reference
count increment/decrement as a commit point. This incre-
ment/decrement will never be redone. In contrast, once the
commit point is passed, the following idempotent steps will
be performed at least once either by the client itself, or by
the recovery service as a helper if the client fails during the
execution, or both.
According to our experiments (§6.1) on real CXL hard-

ware and representative benchmarks, CXL-SHM can allo-
cate/deallocate tens of millions of distributed objects per sec-
ond. Even after our extension of partial failure recovery, the
speed of CXL-SHM is still comparable to state-of-the-art per-
sistent memory allocators, and only an order of magnitude
slower than single-machine volatile allocators. The slowness
is mainly because, although there is no cross-thread synchro-
nization, at least one memory fence is required to enable
recovery from a partial failure by enforcing the execution
order of several instructions in the same thread.

The contribution of this paper is two-fold. First, we high-
light the importance of handling partial failures directly in
low-level concurrent data structure design, where existing
solutions from traditional distributed systems become overly



Table 1.Comparisons between local NUMAmemory, remote
NUMA memory and CXL-attached memory. Demonstrated
by millions operations (8 byte accesses) executed per second.

Type Seq Rand RandCAS Latency

local NUMA 5200 562 3.3 110 ns
remote NUMA 4312 350 3.3 200 ns
CXL 1487 250 3.3 390 ns

burdensome. We model this problem through the RDSM ab-
straction and use a variety of examples to illustrate RDSM’s
advantages. RDSM is different from traditional DSMs that
primarily target less flexible applications (e.g., those where
object ownership can be easily modeled as a DAG). We ar-
gue that RDSM may emerge as a distinctive topic worthy of
further exploration.

Second, we design a novel non-blocking algorithm, which
is based on our observations of the idempotent part of the ref-
erence countmaintenance procedure. Based on it, we develop
CXL-SHM, which is the first realization of the above RDSM
model. We also use several examples to demonstrate the sim-
plicity and flexibility of using CXL-SHM to build efficient
distributed applications, including a pass-by-reference RPC
framework (described in §2.2.1 and evaluated in §6.3) and a
shared-everything distributed key-value store (described in
§2.2.2 and evaluated in §6.4). Our implementation is available
at https://github.com/madsys-dev/sosp-paper19-ae.

2 The Potentials and Challenges of RDSM
In this section, we demonstrate the potential of RDSM by
1) reporting the performance of CXL, the most promising
technique for implementing RDSM; and 2) several important
scenarios that would benefit from a partial failure resilient
automatic memory management system over RDSM.
2.1 Compute Express Link
Compute Express Link (CXL) [3] is an interconnect pro-
tocol based on the PCI Express (PCIe) interface. It can at-
tach remote byte addressable CXL-memory into the physical
address space of the host machine, which appears to the
program as a CPU-less NUMA node. Recently, the CXL Con-
sortium announced version 3.0 of CXL [1], which supports
memory sharing. As demonstrated by Figure 2, unlike mem-
ory pooling of CXL 2.0, memory sharing of 3.0 will allow the
CXL Switch to map the same region of a remote memory
pool to multiple host machines’ physical addresses at the
same time, which can be concurrently updated in the same
coherency domain (i.e., a CXL-hardware-assisted DSM).

Since CXL 3.0 has just been announced without any real-
world realization, our evaluation is based on a host platform
where two compute nodes share an external CXL 2.0 device
(Figure 1). However, since the current hardware implementa-
tion is not yet capable of creating a single cache coherency do-
main, additional cache invalidation mechanisms are needed
to share the data between different machines. We used only

two compute nodes due to real-world device limitations. In
contrast, our software design doesn’t impose a limit on the
number of compute nodes. Our model treats different clients
on the same machine in the same manner as those on dif-
ferent machines and hence we can use multiple clients to
simulate the scenario of multiple compute nodes.

As we can see fromTable 1, the latency of randomly access-
ing this remote CXL-memory is higher than (but still com-
parable to) the latency of accessing another NUMA node’s
memory of the same machine. Similar evaluation results
have been reported by other researchers [38, 72]. Major CPU
vendors confirm that a future CXL 3.0 device that imple-
ments hardware-assisted distributed cache coherence will
lead to even smaller memory access latency, with the same
topology and parallelism [11, 69].

2.2 Typical Application Scenarios of RDSM
Given the promising performance of modern hardware as-
sisted distributed cache coherence, we argue that the current
resurgence of DSM will continue. However, the lack of par-
tial failure resilience deters many important scenarios from
stopping applications from using DSM, which leads to the
design of RDSM. In this section, we will use two typical
examples to demonstrate the benefits and challenges.
2.2.1 Pass-by-referenceRPC. Unlike the traditional pass-
by-value RPC, pass-by-reference can avoid the expensive
data copying in many cases and is therefore widely used in
modern distributed processing systems [57, 58, 71, 80]. In
these systems, large input arguments and returning values
are first stored in a distributed object store [9, 10] and then
only the references are passed through the RPC.
The advantage of using RDSM instead of a distributed

object store to implement pass-by-reference RPC is two-fold.
First, as demonstrated by Lightning [90], the traditional ob-
ject store architecture mandates that clients interact with
the server via RPC/IPC. This interface poses a significant
performance bottleneck for low-latency workloads and can
be largely mitigated with a shared memory based design. Al-
though Lightning is only a POSIX SHMbased single-machine
multi-process in-memory object store, it is possible to extend
its architecture to a distributed environment with RDSM. The
main challenge will be refactoring Lightning’s current block-
ing recovery method into a non-blocking algorithm, which
will be further discussed later in §4.2.

Second, unlike the original object interface, RDSM pro-
vides a memory allocator interface which allows the con-
struction of dynamic data structures with link pointers and
in-place updates. These features further eliminate serializa-
tion and deserialization costs for complex data structures.
Even the I/O stack processing costs can be avoided by using
a concurrent memory queue as a communication channel,
where the memory queue is also a shared object.

However, as discussed in §1.1 and [80], the lack of a par-
tial failure resilient automatic memory management system

https://github.com/madsys-dev/sosp-paper19-ae


// 1. Allocation of an object
CXLRef ref1 = cxl_malloc(data_size, embedded_ref_cnt);
// 2. Clone a reference in the same thread
CXLRef ref2 = ref1;
// 3. Send the reference to another thread/process/ 
// machine via CXL-based shared memory queue
cxl_send_to(client_b, ref1);

// 5. Get raw pointer for direct (concurrent) access
void *obj = ref2.get_addr();
...

...
// 4. Receive a reference from 
//  another thread/process/machine
CXLRef ref3 
         = cxl_receive_from(client_a);
// 6. Get raw pointer for direct access
void *obj = ref3.get_addr();
...
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Figure 2. The architecture of CXL-based RDSM and CXL-SHM, a distributed allocator and smart pointer alike system for
RDSM. The shared CXL-attached memory pool is mapped to multiple compute nodes’ physical memory as a direct access
device. The clients are free to join and exit via POSIX shm/mmap APIs without blocking other clients.

places a significant burden on application programmers to
manage the lifecycle of distributed objects. In many scenar-
ios such as microservices and serverless, the processing logic
cannot be fully modeled by a DAG and therefore requires
a generic automatic memory management method. Even
worse, despite the challenge of non-blocking, it is also diffi-
cult to decide whether a sent reference is received or not in
a distributed environment, which leads to a very ambiguous
situation when the sender crashes immediately after sending
the reference. We will discuss our solution to this problem
in §5.2, which also takes advantage of the atomic operation
provided by RDSM to implement exactly-once RPC.

2.2.2 Shared-Everything Distributed Processing. Un-
like the shared-nothing architecture, RDSM’s efficient hardware-
assisted cache coherency enables broader adoption of the
shared-everything architecture. As demonstrated by exist-
ing studies [79], a shared-everything service typically can
achieve better load balance and higher availability. For exam-
ple, in §6.4, we will demonstrate a non-blocking distributed
key-value store over RDSM, where all reader clients from
different machines can read the entire store directly, so there
is less read imbalance. Writer clients are still sharded into
disjoint partitions to ensure a single-writer-multi-reader con-
currency model (needed by our current non-blocking algo-
rithm), but repartitioning triggered by write load imbalance
or writer failure can be performed very efficiently because no

data transfer is required. Only light metadata modification
and notification are required to complete the repartitioning.
However, the above shared-everything architecture also

comes with many complexities that should be hidden by
RDSM’s memory management system. Besides the lifecy-
cle management problem discussed in §2.2.1, an important
feature necessary for the implementation of a non-blocking
concurrent data structure is the capability of atomically mod-
ifying link pointers embedded in shared objects (called em-
bedded references in this paper). Although atomic operation
is already provided by RDSM, the atomic modification of
link pointers is much more complex because it also involves
the maintenance of reference counters. More details about
our solution are given in §5.4.

3 Overview of CXL-SHM
To solve the challenges inherent in RDSM, we design and im-
plement CXL-SHM, the first realization of the RDSM model.
Our current implementation is backed by CXL, but the im-
plementation of distributed cache coherency is orthogonal to
our design. It can tolerate partial failures in a non-blocking
way as long as the underlying RDSM provides the basic
load/store/fence/flush and, most importantly, CAS instruc-
tions to read/update the shared distributed memory space.
In this section, we give an overview of our system, including
the user interface, main components, and limitations of the



system. Then, §4 presents the core non-blocking algorithm
used in CXL-SHM and §5 discusses more details that are
necessary for using this algorithm in a real-world memory
management system.

3.1 Interface
Figure 2 presents an example of using CXL-SHM’s API. A
client can use cxl_malloc to frequently allocate fine-grained
CXLObj objects from the memory pool, similar to malloc.
Alongwith the size of the data to allocate, a second parameter
specifies the number of embedded references in this object.
In §5.4, we describe how this count enables the recycling of
embedded objects during recovery from partial failure.

The invocation of cxl_malloc returns a CXLRef that works
like a shared pointer except that 1) it enables the toleration of
partial failure and hence can be used to maintain the refer-
ence counting across different host machines; and 2) it is not
thread safe and hence clone a reference in the same thread.
Thus, an explicit copy procedure should be used if another
client (may or may not be in the same process/machine)
wants to use the same memory object. As demonstrated
by step 3/4 in Figure 2, in order to explicitly copy a refer-
ence across the boundary of threads/processes/machines, the
client needs to send a CXLRef with an explicit cxl_send_to
function. At the receiver side, the receiver client needs to
invoke cxl_receive_from, which contains necessary steps for
increasing the reference counting and will also return a CXL-
Ref that points to the same remote CXL memory space (more
details in §5.2). Each thread can use their CXLRef to obtain a
standard process-dependent void* raw pointer for concur-
rently and directly accessing the remotememory viamemory
load/store instructions or CAS instructions.
Moreover, besides the allocated CXLObj object stored on

CXL shared memory pool and the returned CXLRef object
stored on local memory, an implicit RootRef object is cre-
ated by every invocation of cxl_malloc for tolerating failures.
More details are given in §5.1

3.2 Recovery
Similar to Lightning [90], CXL-SHM uses a standalone mon-
itor to detect client failures (due to process or machine fail-
ures) and initiate the recovery process asynchronously. The
mechanism of detecting failed clients is orthogonal to our
main contribution, and a hardware Reliability, Availability,
and Serviceability (RAS) feature [2] is desired to ensure that
the failed client cannot modify the shared memory pool
after its recovery has started. Moreover, in this paper, we
consider only the failure of processing clients and comput-
ing nodes, not the failure of backend RDSM nodes. Client-
side [37, 88, 89] or hardware-based replication [48] or a pre-
cise membership protocol [28, 30] can be used to achieve
data availability, which is another orthogonal problem in our
disaggregated architecture.

In CXL-SHM, recovery does not block the execution of
other threads and the recovery service itself is asynchronous,
stateless, and fail-safe. Thus, if the recovery service crashes
(e.g., due to the machine failure), it can be simply restarted
on another machine without any issues.

3.3 Memory Management
The implementation of CXL-SHM is based on amodernmulti-
thread memory allocator mimalloc [8]. In mimalloc, a thread-
exclusive segment is first allocated from the entire memory
arena via global synchronization. The region after the header
of each segment is further partitioned into pages that are
dedicated for allocating objects of specific size classes. For
example, a page for 16 bytes size class is partitioned into
fixed-size 16 bytes data blocks. The free blocks in a page can
be organized as an intrusive linked list [7]. The head of this
list is stored as a free pointer in the page meta (a field in the
segment header). It points to the first free block in this page.
Each free block contains a pointer to the next free block,
or NULL if it is the last free block in this page. With this
design, any further fine-grained allocations from a segment
are performed locally and hence do not need cross-thread
synchronization, i.e., the fast path.

Similar to mimalloc, the layout of CXL-SHM is also parti-
tioned into four layers (arena, segment, page, block) as shown
in Figure 3. Specifically, the whole shared memory pool is
organized as an arena, and two global variables SegmentAllo-
cationVec and ClientLocalVec are stored at the head of arena.
The following spaces are partitioned into fixed-size (64MB)
segments. For allocation, each thread will first allocate an
exclusive segment from arena, and hence further allocation
from a segment does not need cross-thread synchronization.

The aforementioned SegmentAllocationVec is a meta vector
for coordinating concurrent segment allocations with other
threads. Each meta item in this vector represents a segment
and the thread can use CAS to update the “occupied client
ID” field for allocation. Objects larger than a single segment
are supported by a simple retry and rollback method that
occupies continuous segments, because this is a rare case
even in slow path. The other three fields are used in memory
reclamation that will be further discussed in §5.3.
Most fields in ClientLocalState are the same as mimalloc,

such as a size class list that points to pages that still have
free space for further allocation. The main differences are:

• Our size class starts from 16 bytes rather than 8, be-
cause every CXLObj will be attached with a header.

• Besides normal size classes, there is a special size class
for pages that allocate RootRef only. This is a critical
design because, after a failure, we can use the con-
tent in and only in these pages to destroy the RootRef
references possessed by this failed thread.

• There is a transaction meta field and a fixed-size redo
log area in the thread local state. They are used for
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Figure 3. Structure of shared remote memory pool.

recovery from failed transactions, which will be de-
scribed later in §4.3.

4 Partial Failure Resilient Automatic
Memory Management

As we have discussed before, the development of a partial
failure resilient automatic memory management system is
necessary for many important potential application scenar-
ios of RDSM. But, although automatic memory management
is a well studied topic that can be achieved by either tracing
garbage collection or reference counting, the existence of
partial failures makes it a complex problem in RDSM, which
is the key problem we face when designing CXL-SHM.
In this section, we will first introduce the problem and

solution of failure recovery in a persistent memory manage-
ment environment, which is similar to RDSM but does not
require the recovery algorithm to be non-blocking. Then, we
further demonstrate the challenge of achieving non-blocking
automatic memory management with two straw-man im-
plementations. Finally, we will describe our novel era-based
algorithm that is used in the implementation of CXL-SHM.

4.1 Failure Recovery in Persistent Memory
Since all the memory of a process can be safely reclaimed by
the operating system after the process fails, volatile mem-
ory management systems do not need to recover from a
failure. In contrast, a persistent memory (pmem) alloca-
tor [19, 25, 39, 61, 75, 83, 84] must consider the problem of
“crash consistency”. Memory allocation and reference link-
ing (storing the value of the allocated space’s pointer into
the reference) are two separate operations that cannot be
implemented with a single atomic instruction. Thus, there
is a persistent memory leak if the allocation is done but the

linking is not. In the other case, if the linking is done but the
allocation is not, there is a wild pointer problem.

To solve this problem, persistent memory allocators typi-
cally provide a setRoot() function for users to indicate that an
object is a root object. Root objects are recorded in special
locations that can still be found after a failure, and hence
pmem allocators can perform garbage collection to reclaim
spaces that are not linked from any root object. However,
pmem allocators typically assume a complete failure model
and hence use “stop-the-world” garbage collection [25] to
recover from the failure of a single process. As we will show
in §6.2.1, this recovery can result in a global pause of several
or even tens of seconds when there are a large number of
objects. This assumption simplifies their implementation and
is reasonable in the single-machine scenario of persistent
memory, because garbage collection is only executed during
the initialization process of the application restart.
However, as described in §2.1, remote CXL memory can

be powered by a separate PSU and connected to processing
machines via independent PCIe/MCIO connections. A partial
failurewill not affect the accessibility of other alive compute
nodes. Thus, a non-blocking recovery method is desired.
Why Not Use a Mostly-concurrent Garbage Collector?
Recent developments in mostly-concurrent garbage collec-
tors, such as Shenandoah [32] and ZGC [86], have greatly
reduced the duration of stop-the-world pauses. However,
these algorithms 1) still involve blocking procedures during
root scanning and relocation, which is undesirable for RDSM
where the number of objects can be very large and the collec-
tor itself may fail during the blocking procedure; 2) need to
insert memory fences during the dereferencing, which can
lead to high overhead without custom hardware [84]; and 3)
periodically scan the huge remote memory pool, which can
become a performance bottleneck [77]. Thus, we focus on
developing a non-blocking reference counting based method,
and leave the exploration of tracing garbage collectors as
future work. Essentially, we view reference counting and GC
not as replacements for one another, but as distinct tools,
each having its unique applications, even within the RDSM
context (akin to their roles in multi-threaded programming).

4.2 Challenges
Unlike complex mostly-concurrent garbage collectors, the
implementation of a reference counting based automatic
memory management system is much simpler, if the possi-
bility of failure is not considered. With a reference count
attached to each allocated object, the most basic reference
count maintenance procedure – “attach/release a reference”
involves only two steps: 1) ModifyRefCnt: increment or decre-
ment the reference count by one; and 2) ModifyRef: link the
reference by setting the value of the reference to the pointer
of the object, or unlink the reference by setting the value of
the reference to NULL. However, although there are only two
steps, this basic procedure 1) modifies two separate spaces;



(a) The Global Era Matrix, and All The Fields Related to Client i

(b) Layout of an Allocated Memory Block

    /* Attach the reference at ref to the data block at refed.
    Essentially there are two main steps in this transaction:
        1) refed->header.ref_cnt++; // ModifyRefCnt: Increase ref count, line 10
        2) *ref = refed; // ModifyRef: Link the reference, line 11 */
1.  void AttachReference(Client client, Addr *ref, Block *refed) {
2.    do {
3.      saved = refed->header;
4.      saw_cid, saw_era = saved.lcid, saved.lera;
5.      if (Era[client.cid][saw_cid] < saw_era)
6.        Era[client.cid][saw_cid] = saw_era;
7.      cur_era = Era[client.cid][client.cid];
8.      client.redo = {Attach,cur_era,ref,refed,saved.ref_cnt};
9.      newh = Header(client.cid, cur_era, saved.ref_cnt+1);
10.   } while(!refed->header.compare_and_exchange(saved, newh));
11.   *ref = refed;
12.   Era[client.cid][client.cid]++;
13. }

* All the above variables in bold orange color are stored in the shared RDSM.
  The others are local variables that stored in local memory of each compute node.

(c) Pseudo Code of Era based Reference Attach Transaction
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Figure 4. The era-based non-blocking algorithm for reference count maintenance.

2) involves multiple read/write steps; 3) is not idempotent;
and 4) can be concurrently executed from multiple machines
on the same shared object. As a result, it is already enough
to form a distributed read-write transaction that requires a
lot of considerations to tolerate partial failures in an efficient
and non-blocking way.
Here, we use two straw-man implementations to further

demonstrate the difficulty.
The first straw-man implementation uses redo logs. The

entire procedure can be: 1) record the execution in a local
redo log; 2) perform the reference count maintenance pro-
cedure; and 3) mark the log as committed. As ModifyRefCnt
is not idempotent, simply redo it after failure will leads to
error if it is already executed by the failed client. But, if the
client fails after step 1 and before step 3, there is no way for
the recovery service to decide whether or not to redo the
ModifyRefCnt step.

The second straw-man implementation further uses locks,
where each object is associated with not only a reference
count but also a spinlock. With the lock, the thread can 1)
lock the object and read its current reference count; 2) record
the new count according to the current value in the redo
log; 3) perform the reference count maintenance procedure;
and 4) release the lock and mark the log as committed. This
implementation does not cause memory leak and double free
problems because the recorded new count makes ModifyRe-
fCnt an idempotent step. In fact, this is the method used in
Lightning [91]. Although Lightning only tolerates process
failures, extending this method to tolerate partial machine
failures is straightforward with the hardware-assisted dis-
tributed cache coherence provided by RDSM.
However, this second straw-man implementation is still

blocking, and therefore may block other participating clients
indefinitely if the current client unexpectedly exits without
releasing the lock. The blocked clients will not be able to

resume their execution until the recovery service detects the
failure and releases the lock during recovery. This problem
is acknowledged in Lightning’s paper as a major drawback
of its current implementation.

4.3 An Era based Algorithm
To solve the above problem, we propose an era-based al-
gorithm that is inspired by the Hazard Era algorithm1. It
is based on the observation that the entire reference count
maintenance procedure can be divided into two phaseswhere
1) the ModifyRefCnt phase is not idempotent but can be ex-
ecuted atomically; and 2) the following ModifyRef phase is
idempotent before the application tries to modify the value of
the reference once again. Thus, in our algorithm, ModifyRe-
fCnt is never redone and therefore we can use the successful
execution of ModifyRefCnt as a commit point.
In order to identify whether ModifyRefCnt has been exe-

cuted or not, each client 1) is assigned with a unique client
ID (cid); 2) maintains a client-local strictly increasing era
that is incremented after each commitment of the reference
count maintenance transaction; 3) maintains an array of the
largest era it has seen for every other client. As we can see
from Figure 4 (a), this auxiliary information is organized as a
M×M two-dimensional era matrix Era[i][j] that is stored in a
well-known shared memory location (the Era fields of each
ClientLocalState as illustrated in Figure 3) where the maxi-
mum number of clients is M. In this matrix, Era[i][i] stores
the current era of client i and will be incremented by one
after each commitment of the reference count maintenance
transaction from client 𝑐𝑖𝑑1. In contrast, Era[i][j] where i is
not equal to j stores the largest era number of client j that
has been seen by client i. We also pack two more fields into
the same cache line of each object’s reference count, which
are 1) the client ID of the last client (lcid) that successfully

1Hazard Era is a non-blocking memory reclamation algorithm [64].



executed ModifyRefCnt on this object; and 2) the era of that
last reference count maintenance transaction (lera).

With the above information, the main process of our era-
based algorithm is demonstrated by Figure 4 (c) with at-
taching reference as an example (the process of releasing
a reference is similar). As we can see from the figure, if
a client aims to perform the reference count maintenance
transaction on an object (a data block) refed, it will first read
the current header of refed into a local variable saved. This
read header is used to: 1) update the largest era of saved.lcid
that has been seen by the current client through updating
Era[client.cid][saved.lcid] if it is smaller than saved.lera (line
4-6); and 2) record a redo log entry in its client-local log area
with the new count calculated from the read saved.ref_cnt
(line 8). A separate log area is allocated for each client and
all these log areas are stored on well known spaces of the
shared RDSM.
Then, the client will try to overwrite the header of refed

through an atomic CAS instruction to ensure that no other
client has interleaved in between (ModifyRefCnt, line 9-10).
Finally, the client can modify the value of the reference (Mod-
ifyRef, line 11) and finish the transaction by incrementing
its local era Era[client.cid1][client.cid] by one (line 12).
This algorithm is non-blocking (lock-free but not wait-

free) because only a single CAS instruction is used, and at
least one of the concurrent executions will make progress.
But, its correctness depends on the following two questions.
How to identify a client that fails immediately after
executingModifyRefCnt and beforeModifyRef? As de-
scribed above, the successful execution of ModifyRefCnt is
the commit point of the entire transaction. Thus, the recov-
ery service should redo ModifyRef if the client fails in the
middle of these two steps. In our algorithm, if ID of the failed
client is i, the recovery service should first check the header
of the last object (lo) that is modified by the failed client. The
address of lo is recorded in client i’s redo log entry. If lo.lcid
== i and lo.lera == Era[i][i], a redo is needed (Condition 1).
Otherwise, the recovery service also needs to compare the
failed client’s era, with the maximum era of client i that has
been seen by any other clients. If Era[i][i] <= max(Era[j][i],
j!=i), a redo is also needed (Condition 2).
The above conditions are sufficient because if the Modi-

fyRefCnt operation is successfully executed on object lo from
client i at era Era[i][i] (i.e., the commit point is passed): 1)
Condition 1 will be true, if no other client has overwritten
lo’s header during the time between client i’s failure and its
recovery; otherwise 2) if the header is overwritten by another
client j, it must have updated its Era[j][i], which guarantees
the truth of Condition 2. Essentially, the Era matrix can also
be viewed as a collection of distributed vector clocks [45].
We use the happen-before relationship established during
the reference count maintainaince operation to determine
whether an event has happened or not.

A rare corner case occurs when the above condition check-
ing process of the recovery service is running concurrently
with a reference count maintaining transaction on the same
object lo from client j. However, this data race will not af-
fect the correctness of our algorithm as long as the recovery
service strictly checks Condition 1 before Condition 2 via a
memory fence.
Is there any prerequisite for the correctness? The most
important assumption of our algorithm is that all the steps
following ModifyRefCnt are idempotent. This assumption is
needed to ensure that it is OK for the asynchronous recovery
service to redo the following steps even if the failed client has
actually already executed them before the failure. However,
this assumption is true only with the cooperation of the
memory management system.

First, each reference pointer should be owned (and hence
modified) by only a single writer. This single-writer-
multi-reader concurrency model ensures that the value of
the reference will not be modified after the writer’s failure,
and hence the idempotence ofModifyRef. As illustrated later,
this restriction does not affect our support for the scenarios
described in §2.2, because 1) only the reference should fol-
low the single-writer-multi-reader model, the referenced
data objects can still be updated concurrently. Multiple
references (owned by different clients) can point to the same
shared object; 2) our memory management system provides
specific functionality to atomically transfer the ownership
of references between clients.
Second, unlike adding a reference, releasing a reference

may further trigger a space reclaim operation if the reference
count is decremented to zero. This reclaim operation is not
idempotent in existing implementations. Our solution will
be discussed in §5.3.

5 Implementation of CXL-SHM
§4 outlines the core algorithm used in CXL-SHM, which
is based on the idempotency of ModifyRef. However, it is
only a simplified model that cannot be directly used in a
real-world memory management system. Additional design
considerations are necessary to ensure the efficiency and
idempotency in many corner cases. In this section, we will
discuss the detailed implementation of CXL-SHM separately
in memory 1) allocation; 2) sharing; and 3) reclaiming. For
allocation, we design a special algorithm for the initialization
of reference count, which is involved in the fast path of
allocation to further improve the efficiency of CXL-SHM. For
sharing, we handle the problem of achieving exactly-once
reference transferring described in §2.2.1. For recovery, we
solve the problem of non-idempotent memory reclamation.
Finally, we also discuss the design of embedded reference,
which is important for designing dynamic data structures.



5.1 Memory Allocation

CXL-SHM Allocation The great feature of no cross-thread
synchronization in the fast path is preserved in CXL-SHM.
However, to tolerate partial failures, we integrate a built-in
reference count mechanism in CXL-SHM and hence a header
(Figure 4 (b)) is added to each allocated object. Moreover,
even the fast path of CXL-SHM allocation involves 4 separate
steps that must be executed in a carefully designed order
to tolerate failures.

As we can see from Figure 2, besides the CXLObj object in
the shared memory pool and the returned CXLRef object in
the client’s local memory, cxl_malloc also implicitly allocates
a RootRef object in the shared memory pool. The pointer
contained in CXLRef points to RootRef, which contains a
pointer to the CXLObj object. These are process-independent
pointers that can be implemented by an offset value from the
beginning of the arena like PMDK [39], or a self-contained
off-holder pointer [27].
The use of RootRef is similar to pmem allocators’ root

objects, but created automatically to guarantee atomicity and
avoid blocking recovery, which is achieved by the following
carefully designed step order. First, the client allocates a
RootRef object from special segment pages (Figure 3) that
are dedicated to allocate only RootRef objects, and sets the
in_use bit to 1. These pages are implemented by a specialized
size class so that, after a failure, the recovery service can
use the content in and only in these pages to release the
RootRef possessed by the failed client. The allocated RootRef
object can be safely reclaimed if the client fails immediately
after this first step because they are all client local objects
(single-writer).

The next step is to find a free data block for the allocated
CXLObj and write the address of this block into RootRef to
establish the link. Then, in the third step, the client that is
allocating the CXLObj should advance the thread-exclusive
free pointer of the corresponding page. The execution of
these two steps should strictly follow this order (via a
memory fence). If the allocation is performed before link-
ing, the allocated CXLObj may become a memory leak if
the thread fails just in between these two steps. In contrast,
linking first may lead to a double free problem, because the
RootRef is pointing to a CXLObj that has not yet been allo-
cated. However, this double free problem can be detected
and avoided by checking the free pointer of each page pos-
sessed by the failed client during the recovery. A releasing
is skipped if the pointer stored in RootRef is equal to the
free pointer of a page. This free pointer remains the same
if the client fails just in between the above two substeps of
allocation, because the page is exclusively owned only by
the failed client and will not change before its recovery. The
final step is to increment the reference count of CXLObj by
one. A volatile CXLRef object that points to the allocated
RootRef is also constructed and returned to users.

         Queue Header: <Sender A, Receiver B>

Client A

Tail

Head
cxl_send_to

Client Bcxl_receive_from

ref ref
refref

Figure 5. Exchange References between Clients.

With the above order, the fast path of CXL-SHM’s alloca-
tion does not need any cross thread/process/machine syn-
chronization. Slow path is invoked when there is no free
space and hence new pages or even new segments are needed,
which is protected by redo logs for atomicity.

5.2 Cross Thread/Process/Machine Sharing
To reduce coordination overhead, we restrict the use of
RootRef to thread local. Thus, cloning a new reference in
the same thread simply increases the ref_cnt of the RootRef
by one. For example, the ref_cnt of RootRef 1 in Figure 2 is 2
because it is referenced by both ref 1 and ref 2 of Client 1. In
contrast, the sharing of reference across threads/processes is
much more complex because it needs to change the ref_cnt
field in the header of shared CXLObj. As an illustration, the
ref_cnt of CXLObj in Figure 2 is also 2 because it is referenced
by both RootRef 1 and RootRef 2 on different machines.
CXL-SHM provides a cxl_send_to() function to wrap a

CXLRef object in bytes and send it to another thread (another
client that has a separate failure domain). The serialization
format of a CXLRef contains only an offset-based machine
independent pointer that directly points to the CXLObj.
However, as discussed in §2.2.1, there is an ambiguous

situation in the transfer of reference count based shared
objects in a distributed environment. It is possible that when
the receiver calls the receive procedure, the original CXLObj
is already released, leading to a wild pointer problem. To
avoid this, the application should hold at least one reference
before there is no further remote reference attachment to
this object.
A straw-man solution can ask the receiver to send an

ack back to the sender and require that the sender never
release its reference before receiving the ack. But this straw-
man solution may still lead to wild pointer problems if the
sender crashes after sending its reference. In our partial
failure model, the recovery service may detect the sender’s
failure and release all of its references to avoid a memory
leak. It is possible that this recovery is performed before the
receiver receives the reference.
Thus, in CXL-SHM, the exchange of references between

two clients is handled by explicit calling built-in APIs, which
are based on shared single-producer-single-consumer (SPSC)
fixed-size non-blocking queues. As shown in Figure 5, before
transferring any reference from client A to another client



B, client A should first allocate a queue on the shared mem-
ory pool and then record the client IDs of both sender and
receiver in the queue’s header. All these queues should be
stored in well known locations so that the recovery service
can read them.
Then, to send a reference of a specific shared CXLObj o

through the queue, A must first attach the reference of o to
the current tail of the queue. This step is implemented with
the same era based reference attaching procedure described
in Figure 4 (c). It increments the reference count of o by
one, and then records the offset-based machine-independent
pointer of o to the tail of the queue as an atomic transaction.
Finally, client A can send the recorded reference to client B
by advancing the tail offset of the non-blocking queue.
On the receiver side, the receiver should 1) use the same

era based reference attaching procedure to link the reference
stored at the head offset of the queue to a local reference; 2)
release the reference recorded in the queue; and finally 3)
advance the head offset of the queue.

The crux of the above transfer protocol is that ownership
of the reference recorded in the queue is transferred atom-
ically from A to B at the point where A advances the tail
offset of the queue. This is different from network transfer,
where the ownership of an in-flight reference is ambiguous.
With a SPSC queue stored on the shared memory and manip-
ulated with atomic instructions, the transfer of ownership
is precise and atomic. Thus, the recovery service can use
this information to identify whether a reference has been
transferred or not and hence avoid wild pointer problems.

In summary, CXL-SHM uses a two-tiered reference count.
Within the same thread, cloning/destroying an object refer-
ence only alters the corresponding RootRef object’s count
without using atomic instruction and flush, which is good
for efficiency. All cross-thread/process/machine exchanges
will create new RootRef objects, leading to modifying the
reference count in CXLObj’s header. These modifications
are primarily encapsulated by the cxl_receive_from function,
used in both cross-thread and cross-process/machine com-
munication. Further reading/writing to the data with the
reference does not need to modify the reference count.

5.3 Release a Reference
To release a CXLRef, the client will decrement the ref_cnt of
the RootRef that this CXLRef points to. The release process
terminates if the ref_cnt is not zero after decrementing. In
contrast, the client needs to further unlink the RootRef from
theCXLObj it points to, which is also an era-based distributed
transaction, and reclaim spaces as needed.

However, as discussed in §4.3, the correctness of our era-
based algorithm relies on the assumption that all steps fol-
lowing ModifyRefCnt are idempotent. But, unlike setting the
value of the reference to NULL, reclaiming memory space
is not idempotent and hence can lead to double free prob-
lems if it is redone. Thus, in this rare case, instead of redoing

the reclamation, the recovery service will mark the state of
the segment that contains that object as a special POTEN-
TIAL_LEAKING state by modifying the Segment State fields
of the Global Segment Allocation Vec, shown in Figure 3. Seg-
ments in POTENTIAL_LEAKING state can only be recycled
asynchronously with a block-local full scan.
The asynchronous scan will check the ref_cnt field of all

the data blocks in this segment, and recycle the segment only
if they are all zero. This is possible because each page of the
segment is partitioned into fixed-size blocks and hence the
location of all the ref_cnt fields can be found by calculation.
To avoid data race problems, this asynchronous full scan is
performed periodically in the slow path of the client that
had exclusive possession of this segment.
This periodic asynchronous recycling is different from

a typical garbage collection method’s full scan and hence
is acceptable in two main ways. First, it is only required
when a client crashes between executing two specific in-
structions, which is an unlikely event. More importantly, is
only a segment-local garbage collection that does not block
other clients and the cost of this scan can be amortized.
It only scans a single segment (64MB in our configuration,
not the whole memory space) and the cost of postponing
recycling is also only postponing the recycling of a single
segment. Therefore, there is unnecessary to perform the full
scan frequently. More details will be discussed later in §6.2.1.

5.4 Embedded Reference
In §5.1∼§5.3, we only talk about plain objects that do not
contain embedded references in a CXLObj, where all the
references are held by CXLRef in local memory. However,
embedded references are essential for implementing dynamic
data structures that originally use pointers.
In our implementation, the value of an embedded ref-

erence is simply an 8 bytes machine-independent pointer
without any other header information. Similar to RootRef, an
embedded reference is stored on the shared memory pool (as
it is embedded in a CXLObj that is stored on the shared mem-
ory pool), and hence it can directly point to a CXLObj. Thus,
the number of embedded references will also be added to
the reference counting (ref_cnt) field of the CXLObj’s header.
Adding and removing an embedded reference is also per-
formed by the era based algorithm. As discussed in §4.3,
upper-layer applications should ensure that that there are no
multiple threads concurrently modifying the same embedded
reference (i.e., single-writer-multi-reader).
Although linking and removing an embedded reference

is supported by the era based algorithm described in §4.3,
directly changing the value of an embedded reference from
pointing to a CXLObj A to another CXLObj B cannot be im-
plemented by first removing and then linking the embedded
reference separately if atomicity is needed.
CXL-SHM provides a specific change function that exe-

cutes the following steps:



1. Record both CXLObj A and B in redo log.
2. Decrement CXLObj A’s reference count via CAS.
3. Increment the client’s era by one.
4. Increment CXLObj B’s reference count via CAS.
5. Change the value of the embedded reference.
6. Increment the client’s era by one once more.

This function is implemented as two ModifyRefCnt and a
following idempotent ModifyRef. The crux is that the era is
added twice so that the recovery service can use information
to decide whether the failed client has executed or not.

Moreover, if the readers are allowed to concurrently read
the linked list without notifying the writer, there is a classical
ABA problem for the reclamation of deleted values. This
problem can be solved with a standard Hazard era based
reclamation [64], because the era is already maintained by
our era based reference count algorithm.
Since the destructor function of a specific CXLObj is not

available during the recovery, we disable the use of custom
destructor in CXL-SHM. The application can specify the
number of embedded references in its allocated CXLObj and
make sure that these embedded references are stored at the
first few of bytes in the data area. This information of the
number of embedded references will also be stored in the
header meta of the object (Figure 2) and hence the recovery
can use a depth-first search to recursively unlink and release
these references if it is needed.

6 Evaluation
Our experiments are based on the same CXL platform de-
scribed in §2.1. Even though CXL 2.0 driver is not fully up-
streamed, developers can leverage EFI_MEMORY_SP attribute [4]
marked by BIOS. We use daxctl to initialize CXL-attached
memory in devdax (device direct access), where CXL-attached
memory is configured into dax device. Thus, we can freely
use CXL-attached memory by mapping the dax device via
mmap. However, the detailed implementation of distributed
cache coherency is orthogonal to our design, as long as the
underlying RDSM provides CAS instructions to update the
shared distributed memory space atomically.
To show the efficiency of CXL-SHM’s memory manage-

ment system, we first compare it with state-of-the-art alloca-
tors, which also demonstrates CXL-SHM’s overhead. Then,
we study the correctness and execution time of CXL-SHM’s
recovery procedure. Finally, we demonstrate the usability
and ease-of-use of CXL-SHM with several real-world appli-
cations. Specifically, we present our PoC implementation of
a pass-by-reference RPC and a shared everything distributed
key-value store to demonstrate the potential of using RDSM
in real-world scenarios.

6.1 Overhead of CXL-SHM
To demonstrate the overhead of CXL-SHM, we compare it
with: 1) mimalloc [8] and jemalloc [31], two state-of-the-art
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Figure 6. The comparison between CXL-SHM and other
state-of-the-art allocators under threadtest/shbench.

volatile allocators; and 2) Ralloc [25], a state-of-the-art pmem
allocator that can recover from failures through a “stop-the-
world” garbage collection and is reported to be much faster
than PMDK [39]. Our evaluation is based on two well-known
allocator benchmarks: 1) Threadtest, which allocates and
deallocates a large number of 64-byte objects without any
sharing between threads. It is introduced by Hoard [17] as a
representative micro-benchmark; and 2) Shbench [56], which
allocates and deallocates variable-size (from 64 to 400 bytes)
objects. It is designed as a stress test for small-size allocation
and reclaiming. All the benchmarks are executed for ten
times to obtain converged performance results.

Our experimental results in Figure 6 show that CXL-SHM
is able to allocate/deallocate tens of millions of fine-grained
objects per second (e.g., peak throughput is 43.2/47.4 MOPS
in Threadtest/Shbench) for both fixed-size (Threadtest) and
variable-size (Shbench) scenarios. This performance is com-
parable with Ralloc, but the objects allocated by Ralloc can-
not be shared across processes/machines.

Moreover, the throughput of CXL-SHM is about an order
of magnitude lower than mimalloc and jemalloc. There are
three noticeable sources of overheads are added by CXL-
SHM to mimalloc’s fast path: additional allocations of CXL-
Ref/RootRef, a memory fence, and a cache flush, resulting in
2× (4 threads)∼5× (62 threads) slowdown when compared to
pure-DRAM mimalloc. To measure the effect of these opera-
tions in CXL-SHM, they were gradually removed to evaluate
the resulting time difference (Figure 7).
Although there is no cross-thread/machine synchroniza-

tion, at least one flush and memory fence (a sfence instruc-
tion [5]) is added in the fast path of CXL-SHM’s allocation to
enforce the order, as described in §5.1. But, as demonstrated
by Figure 7, step-by-step breakdown analysis show that the
fence account for less than 5% of the slowdown. We also
add an additional CLWB instruction to flush the cache line
of RootRef to persist the modification because our current
implementation is still based on CXL 2.0, which can occupy
27%∼50% of the total time. This flush may not be required
in a CXL 3.0 based implementation that implements hard-
ware distributed cache coherence (e.g., with an eADR-like
assistance to flush cache data at the time of node failure).

6.2 Recovery of CXL-SHM
6.2.1 Performance of Recovery. We also evaluate the
cost of recovery from a client’s failure for varying numbers
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Figure 7. Breakdown of the costs of CXL-SHM.

of RootRef possessed by the failed client. According to our
experiments, recovery throughput is around 23.5 million
objects per second to recover a client that fails without cor-
rectly destroying references it possesses. This is much faster
than the garbage collection based pmem allocators, which,
according to their experiments [25], require 10-100 seconds
to recover from the same amount of references (e.g., less
than 10k objects per second). The main difference is that
CXL-SHM is based on reference counting and hence avoids
the cost of conservative garbage collection that may scan
the whole memory space. In other words, the cost of recov-
ery is proportional to the number of RootRef possessed by
the failed client. In contrast, it is proportional to the size of
the whole remote memory pool if a conservative garbage
collection is used.
Most importantly, the recovery procedure of CXL-SHM

is started by an asynchronous monitor and the whole pro-
cess can proceed asynchronously without blocking other
processes. This is the main advantage of using per-object
reference counting mechanism and only becomes possible
with our non-blocking algorithm for executing the reference
count maintaining procedure as a distributed transaction.
Moreover, as described in §5.3, an additional periodical

segment-local scan may be triggered by the recovery service
if a client crashes between executing two specific instruc-
tions — an unlikely event not seen in our normal evaluations
(except the correctness experiment that deliberately injects
this kind of failure). It only scans a single 64MB segment (not
a full scan). It takes less than 20us and doesn’t need to be
performed more than once per second, leading to a minimal
impact on throughput.

6.2.2 Correctness of Recovery. Besides theoretical cor-
rectness analysis of our algorithm,we also use a fault-injection
test to validate the correctness of our implementation. The
fault-injection test is designed according to the common prac-
tice of pmem crash-consistency validation studies [20, 84].
We develop a test program that starts multiple clients on
different machines and randomly creates, releases, and ex-
changes a certain number of distributed references. This
test program is compiled with a special compilation flag,
hence a code snippet that randomly brings down the current
client is injected in all the critical points of memory allo-
cation/deallocation, reference count increment/decrement,
and reference exchange procedures. Then, we execute the
fault-injected programmore than 100 thousand times and ex-
ecute post-crash validation to check whether there is leaked

memory, double-free, or wild pointers. Our implementation
passed all the tests in both memory benchmarks and appli-
cations like RPC.

6.3 Pass-by-Reference RPC
Besides the basic memory allocator benchmarks, we imple-
ment CXL-RPC, a pass-by-reference RPC described in §2.2.1
to demonstrate the simplicity and flexibility of using CXL-
SHM to build efficient distributed applications. We will first
introduce the support of embedded reference in CXL-SHM,
which is necessary for implementing dynamic data struc-
tures. Then, we will describe the implementation of our RPC
system and evaluate it with both micro benchmarks and a
MapReduce framework as an end-to-end application.

6.3.1 RPC Protocol. With the support of embedded refer-
ence, a pass-by-reference remote function call that accepts I
input arguments can be implemented very straightforwardly
in CXL-RPC. The client just needs to 1) allocate a CXLObj
rpc_msg that contains the function ID and I+1 embedded
references; 2) link the first I embedded references to input
arguments; 3) allocate a CXLObj output and link the last em-
bedded reference of rpc_msg to output; and finally 4) send
the reference of rpc_msg to RPC server via cxl_send_to. The
server simply polls for rpc_msg with cxl_recv_from and di-
rectly uses the embedded references to access input argu-
ments and modify the output, hence no data copy is needed.

As we can see from Figure 8, the throughput of CXL-RPC
is 3.83∼4.62× higher than RDMA-based RPC with 64-bytes
payload (similar to Herd RPC [42] under RC mode and tested
with a commercial 50GBps ConnectX-5 RDMANIC), because
it avoids the overhead of serialization, deserialization, net-
work transfers, etc. The performance of CXL-RPC is also
insensitive to the size of payload because only zero-copy
references are exchanged. In fact, our evaluation shows that
when the number of threads is low, the main bottleneck is
still object allocation and destruction, not transfer. We also
implement inter-thread communication, which can be con-
sidered as the performance upper bound of CXL-RPC, which
spawns 2-64 pairs of threads and assigns a lock-free SPSC
queue [55] to each pair. One thread in each pair allocates
the same number of objects and pushes pointers to those
objects into the queue; the other thread simultaneously pops
pointers from the queue, executes the function, and then
deallocates the objects. The results show that CXL-RPC can
achieve a performance that is only 46.1%∼52.7% lower than
pure SPSC reference exchange. We argue that this perfor-
mance improvement and the ability to exchange distributed
objects that can be updated in-place will further enhance the
current trend of RPC by reference [21, 80].

6.3.2 CXL-RPC based MapReduce. We also build CXL-
MapReduce, a MapReduce framework based on CXL-RPC,
as an end-to-end application. Our implementation is similar



CXL-RPC
SPSC

RDMA (64KB)
RDMA (64B)

Th
ro

ug
hp

ut
 (M

O
PS

)

0

20

40

RPC/IPC Server/Client Number
14 8 16 32 48 64

CXL-RPC
RDMA-based RPC

Th
ro

ug
hp

ut
 (K

O
PS

)

0

200

400

600

Size (Bytes)
64 512 4096 32768 524288

Figure 8. Comparisons between CXL-SHM and RDMA
based RPC with different numbers of client/server (payload
size is 64Bytes in the left subfigure) and payload size (single
client/server in the right subfigure). Simple RPC protobuf is
used to achieve the maximum throughput.

WordCount (CXL-SHM)
WordCount (Phoenix)

Ti
m

e 
(s

)

0

20

40

60

Executor(Map/Reduce) Number
20 40 60

Kmeans (CXL-SHM)
Kmeans (Phoenix)

Ti
m

e 
(s

)

0

0.5

1.0

1.5

Executor(Map/Reduce) Number
20 40 60

Figure 9. Performance of CXL-MapReduce.
to Phoenix [65], a single-machine, shared-memory MapRe-
duce implementation. Figure 9 shows our evaluation results
on word count and kmeans, two of the most popular data-
intensive benchmarks. We use a 1GB text dataset for word
count and a randomly generated dataset (1k clusters and
500k 8-dimension points) for kmeans. Similar to Phoenix,
both map and reduce phase share the same (RDSM) memory
region, thus avoiding data copying. As we can see, the per-
formance of CXL-MapReduce based kmeans is comparable
with Phoenix 1.0. In the case of word count, the execution
time is reduced by 80.0%∼87.2% 2. At the same time, CXL-
MapReduce can 1) take advantage of remote storage; and 2)
scale out to multiple machines. CXL-MapReduce also demon-
strates good scalability. For example, the execution time is
reduced by 8.31× (this number is 9.54×) when the number
of map executors is increased from 2 to 64.
6.4 Shared-everything Key-Value Store
In this section, we use distributed key-value store as an
end-to-end example of using CXL-SHM to build shared-
everything distributed applications as described in §2.2.2.
We will first describe the implementation of our key-value
store and then the evaluation results.
6.4.1 Key-Value Store. Distributed key-value store is one
of the most important distributed applications that is widely
used in the real-world. With CXL-SHM, a rack-scale dis-
tributed key-value store can be implemented in the same
way as concurrent multi-thread data structures with less
than 500 lines of code. The main data structure of our imple-
mentation is a concurrent fixed-size latch-free hash index
2The PoC implementation of CXL-MapReduce is simpler than Phoenix,
which is the source of performance improvements in WordCount. This
experiment is only a demonstration of the potential of low overhead and
scalability of CXL-SHM, not an apples-to-apples comparison.

that holds embedded references to key-value records. Hash
collisions are handled by organizing records as linked lists.
This implementation is possible in CXL-SHM because we
allow: 1) frequent allocation of fine-grained shareable dis-
tributed objects; 2) atomic in-place updates of the distributed
object; and 3) machine independent pointers that can be
embedded in other distributed objects.
Since only single-writer-multiple-reader is supported in

CXL-SHM, the keys are partitioned into disjoint ranges, each
assigned to a specific writer. The liveness of these writers can
be maintained with application-level heartbeats and leases,
so that a deadwriter can be taken over by another writer after
its lease is expired. This application-level takeover procedure
does not necessitate coordination with the recovery service.
The single-writer enforcement is due to the atomic swapping
of pointers required by many concurrent data structures. In
CXL-SHM, such a swap triggers additional modifications
to the reference count, precluding atomic execution. The
recovery service, on the other hand, isn’t bounded by this
constraint as it doesn’t need to swap pointers. This takeover
is quick because there is no need for copy based data reparti-
tioning in our shared-everything architecture. Unlike the dis-
joint writers, readers can directly read the whole key-value
store to achieve a better load balance and read scalability.

Moreover, some persistent root objects (akin to pmem al-
locators) are needed if users intend to keep alive certain data
even if all clients are temporarily crashed. This functionality
can be implemented by adding a special API to CXL-SHM.

6.4.2 Evaluation Results. Figure 10 (a) and (b) present
the comparison between CXL-SHM based key-value store
(CXL-KV) with 1) a single-process multi-thread key-value
store implemented in Intel TBB [63] (TBB-KV), and 2) Light-
ning [90], the state-of-the-art single-machine multi-process
object store that uses shm to avoid the cost of IPC. CXL-KV
can also achieve one to three orders of magnitude higher
throughput than Lightning. This performance gap is because
memory allocation is not the main focus of Lightning and
hence Lightning’s memory management is based on a simple
lock-based buddy system. CXL-KV is only 1.40∼2.61× slower
than the concurrent multi-thread hash map, which is mainly
due to the performance gap between CXL-attached memory
and local memory. Figure 10b shows the throughput of CXL-
KV will increase with a lower write/read ratio. With 8 clients,
it can reach 117.20 MOPS in 1:9 write/read ratio which is
12.57× larger than the all write case (9.20 MOPS). This is
because the writing operations involve memory allocations
that execute memory fences. In contrast, the read operations
are pure CXL memory loads.
Both CXL-KV and Lightning use reference counting and

an asynchronous recovery system for fail-safe memory man-
agement. But, in Lightning, all the clients must wait for the
recovery even if only one client crashes (the entire recov-
ery process is 9 ms for 10000 objects.), which is avoided in
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Figure 10. The performance of CXL-KV under different workloads (YCSB and transaction benchmarks).

CXL-KV through our era based non-blocking algorithm. In
contrast, Lightning’s isolation technique (not implemented
in CXL-KV) is not the reason for Lightning’s lower perfor-
mance [62]. Thus it can be a future work to combine CXL-KV
and Lightning or other security protection mechanism [85]
to implement a multi-processes object store that is more
secure (isolated from incorrect modifications) and scalable.

We also evaluate CXL-KV with several other benchmarks,
such as 1) a key-value oriented benchmark YCSB generating
offline workloads, which use our own custom configuration
(different zipf parameters); and 2) transaction benchmarks
TATP and Smallbank (only the read write workload is used
because currently we have not implemented transaction sup-
port in CXL-KV). As shown in Figure 10c, the throughput of
CXL-KV increases with a higher zipf value. This is because
the key-value store can benefit from a skewed distribution
that has better cache locality. Figure 10d shows the through-
put of transactions under TATP and Smallbank. Compared to
using intel TBB, CXL-KV achieves a comparable performance
which is 46.1.2∼78.8%/40.7∼70.4% in TATP and Smallbank
(SB) of TBB-KV respectively. As we can see, CXL-SHM leads
to good scalability on all the above scenarios.

7 Related Works
Our work is based on previous development of DSM [15, 18,
29, 34, 47, 49, 78]. However, existing works typically focus on
improving the efficiency of software-based [24] or hardware-
assisted [47, 78] cache coherency, or avoid the need of cache
coherency in upper layer applications [29, 53]. Our system
relies on hardware advancements, such as CXL 3.0, to solve
the cache coherency problem. The main focus of CXL-SHM
is automatic memory management, which is orthogonal to
existing works. CXL has demonstrated potential in various
applications such as HPC [76], AI/ML training [40, 43] and
IO/memory-intensive applications [41, 44, 70, 87]. At the
same time, new processing paradigm such as Fabric-Centric
Computing (FCC) [52] has been proposed. There are also sev-
eral works that use CXL to mitigate the memory utilization
problem in data centers [16, 35, 36, 50, 54].

The advent of high-speed network technologies has led to
another trend of building memory disaggregation systems
from the perspective of OS [51, 67], network [33], data struc-
tures [13, 60], key-value store [46, 74] and runtime [26]. For
example, FaRM [29, 30] offers low latency and high through-
put updates to DSM via RDMA. It also implements a precise

membership protocol [28] to recover from a backend server’s
failure, which can be integrated into CXL-SHM as currently
we focus only on tolerating compute nodes’ failure.

In principle, CXL-SHM is also a kind of object-based mem-
ory disaggregation. Thus, it can achieve the same benefit of
improving memory utilization as other works [12, 14, 37].
AIFM [66] is an object-based memory disaggregation system
that also provides a remote memory allocator abstraction.
It allows users to integrate remote memory with applica-
tion data structures for fine-grained partial remote accessing
of data structures without amplification or high overheads.
There are many other object-based memory disaggregation
systems [14, 29, 81] that focus on intelligently swapping only
part of the data to remote memory and keeping the hot data
in local memory. These works can be integrated into CXL-
SHM by adding an intelligent local cache within the CXLRef
object. rTX [82] is a recent work that provides transactional
indexes on disaggregated memory. It can handle multi-writer
scenarios via logging, but at a cost of larger overheads.

8 Conclusion
In this paper, we present CXL-SHM, an efficient, partial fail-
ure resilient, and non-blocking memory management sys-
tem. We also demonstrate the simplicity/flexibility of using
CXL-SHM to build efficient distributed applications, through
several end-to-end applications such as pass-by-reference
RPC and shared-everything distributed key-value store.
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