PCAF: Scalable, High Precision k-NN Search using
Principal Component Analysis based Filtering

Huan Feng*, David Eyers, Steven Millsf, Yongwei Wu*, Zhiyi Huang'
* Tsinghua University, China f University of Otago, New Zealand

Abstract—Approximate k& Nearest Neighbours (AXNN) search
is widely used in domains such as computer vision and machine
learning. However, AkNN search in high dimensional datasets
does not work well on multicore platforms. It scales poorly due to
its large memory footprint. Current parallel AXNN search using
space subdivision for filtering helps reduce the memory footprint,
but leads to loss of precision. We propose a new data filtering
method—PCAF—for parallel AkNN search based on principal
components analysis. PCAF improves on previous methods by
demonstrating sustained, high scalability for a wide range of high
dimensional datasets on both Intel and AMD multicore platforms.
Moreover, PCAF maintains high precision in terms of the AXNN
search results.

I. INTRODUCTION

Wide use of k Nearest Neighbours (k-NN) search is made in
domains such as bioinformatics [6], data analysis [9], machine
learning [37], computer vision [41] and handwriting recogni-
tion [42]. Given query data points, k-NN finds k data items
within a database (i.e., a set of features) that are most similar
to the query data, where the similarity is often measured by
Euclidean Distance. In general, a feature f can be defined as a
D dimensional vector: f = [ej, ea, .., ep|. The database DB is
defined as a set of N features: DB = {f1, fa, .., fn }. We call
the feature that is used to query the database DB the query
feature and the features in DB the reference features. Based on
these definitions, the k-NN problem can be formally described
as: given a query feature ¢, find the k reference features in DB
that have the shortest (Euclidean) distances to q.

To address the challenge of rapidly increasing amounts
of data being included for processing, many Approximate k
Nearest Neighbours (AKNN) algorithms [5l], [7], [21], [32],
[34] have been proposed. Instead of returning the actual k-
NN, they return k results that are highly likely to be the
k-NN. Although AKNN algorithms have better performance,
their searching precision is of great concern [[L7]], [23]], [36].

There are two main strategies in AkNN for finding approx-
imate nearest neighbours: data selection and data filtering.
The data selection strategy tries to find candidate features that
are most likely to be the precise k nearest neighbours. Most
AKNN algorithms adopt this strategy [11], [[7], [29]. However,
this strategy incurs a large memory footprint and the AkKNN

* Department of Computer Science and Technology; Tsinghua National
Laboratory for Information Science and Technology (TNLIST) Tsinghua Uni-
versity, Beijing 100084; Technology Innovation Center at Yinzhou, Yangtze
Delta Region Institute of Tsinghua University, Ningbo 315000, Zhejiang;
Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057,
China

i Department of Computer Science, University of Otago, New Zealand

algorithms have poor scalability on multicore systems due to
them performing a large number of random memory accesses
and thus causing cache misses [8], [34], [35].

The data filtering strategy [35] instead excludes unlikely
features based on distance estimation between the query
feature and the reference feature. If they have a high filtering
rate, much computation and many memory accesses can be
avoided. Typically, the scalability of AKNN can be greatly
improved on multicore systems by using a filtering strategy.

Subspace Clustering for filtering (SCF) [34] was the state-
of-art approach using the data filtering strategy in AkNN. It
greatly improves the scalability of AkNN algorithms. How-
ever, its search precision is unstable and depends on the nature
of the reference features. We will discuss this challenge in
detail in the next section.

In this paper, we propose a parallel AkKNN algorithm called
PCAF which uses principal Components Analysis (PCA) [18]]
to estimate the rank of distance between the query feature
and the reference feature. PCAF uses data filtering to exclude
those reference features that are not likely to be k-NN features
according to the PCA estimation. It has high scalability on
multicore systems with stable, high search precision on high-
dimensional datasets (e.g., 561 dimensions).

The remainder of this paper is organised as follows. Sec-
tion[[I] describes the motivation of the idea. Section [ITI] presents
our PCAF algorithm. Section demonstrates the detailed
technical implementation of PCAF. Section [V] provides experi-
mental results and evaluation compared with four widely-used
k-NN algorithms. Section [VI|discusses the most related work.
Finally, Section [VII|summarises the contributions of this paper.

II. MOTIVATION

As discussed previously, data filtering in AkNN greatly
improves its parallel performance on multicore systems. We
have previously proposed a parallel AKNN algorithm called
SCF using data filtering to exclude unlikely £-NN features.
Before searching, SCF needs to build an index for the refer-
ence features, as needed in all AkNN algorithms. SCF divides
the reference features into a number of subspaces with low
dimensionality in order to alleviate the problem of curse of
dimensionality [4]], [9]. Then in each subspace, SCF uses k-
means [26], [29] clustering method to divide the reference
features into clusters. The centre of each cluster is used
to estimate the distance between the query feature and the
reference features of the cluster in the subspace. Finally the
distance between the query feature and any reference feature in

TABLE I: The rank estimation using SCF with different subspaces and PCAF in an example

e;] | e2 | e3 | es RED | Rank SCE [e1 e2] [e3 eq] [e1 e3] [e2 eq] PCAF p1 EED | Rank
q 1 1 1 1 - - EED Rank EED Rank q -10.77 - -
A 1 1 14 | 15 | 19.10 A 16.66 3 17.12 4 A 7.29 18.06 4
B 2 3 7 11 | 11.87 2 B 8.67 1 13.19 2 B -0.73 10.04 2
C 4 5 5 5 7.55 1 C 10.32 2 9.57 1 C -7.05 3.72 1
D 5 6 12 | 10 | 14.90 3 D 17.57 4 14.51 3 D 0.48 11.25 3

(a) A 4-dimensional case with one query fea-
ture, g, and four reference features, A, B, C,
and D. RED and the exact rank of the reference

features are listed.

D (5,6)

“.5)C (45,5.5)

B (2,3)

a 1)A(1’5'2)

Dimension [e; e,]

(1,14) A
D(5,12)

2,7) :@
——FC@5

Dimension [e, ;]

Dimension [e; e,]

C(7,11)
(6’ 8)
(5,5)B

(a) Forming subspaces in a se-
quential manner, so that features
in subspace [e1 e2] are divided
into 2 groups with centres gi1
and g12, while features in sub-
space [e3 e4] are divided into 2
groups with centres g21 and g22

A(14,15)
(13, 12.5)
D(12, 10)

Dimension [e; e,]

(1,15 A 3
B3, 11)

(5.5 C
(b) Forming subspaces in an in-
terleaved manner, so that features
in subspace [e1 e3] are divided
into 2 groups with centres g¢i1
and gj2, while features in sub-
space [e2 e4] are divided into 2
groups with centres g21 and go2

D (6, 10)
(55.75)

(b) EED and rank using SCF with a
different formation of subspaces, se-
quential manner ([e1 e2][es es]) and
interleaved manner ([e1 es][e2 ea])

Fig. 1: Using SCF to divide space into two subspaces with
two groups, each formed in a different way

the original high-dimensional space is estimated by summing
up the distance between the query feature and the reference
feature in each subspace.

gives an example of k-NN search with one query
feature and four reference features in a 4-dimensional space.
The Real Euclidean Distance (RED) and the rank based on
it are also listed in the table. Though we use only one query
feature and four reference features here, it is worth pointing out
that in real applications such as image processing, there will
typically be tens of thousands of query features and reference
features in each pair of images and tens of thousands of images
to be searched and matched pair by pair. This domain thus
demands high-performance parallel computing if results are
to be calculated rapidly.

We use the aforementioned example to demonstrate how
SCF works. Suppose SCF divides the feature space into two
subspaces in a sequential manner: the dimensions [e;, ez form
one subspace and [es,e4] form the other. In each subspace,
two clusters are formed and the centre of each cluster is
used to estimate the distance between the query feature and
the reference features of the cluster, as shown in
Based on the subspaces in the Estimated Euclidean
Distance (EED), which is calculated by summing up distances
from the query to each group centres, is shown in (for
more details about how the EED is calculated refer to [34]).

From the table, we know the rank of the reference features
is B,C, A, D according to the EED. However, according to

(c) EED and rank using PCAF with
only 1 principal component for projec-
tion. p; lists the projections of each
feature

the RED in the rank is C, B, D, A. Based on the
estimation of SCEF, if only one nearest neighbour is requested,
in this case, the precision of the 1-NN result using SCF is
0—the matched feature is not actually the closest.

However, if we change the partitioning of dimensions for the
subspaces as in SCF can produce the correct 1-NN
result. In the figure, we instead choose [e1, €3] to form the first
subspace and [es, e4] to form the second subspace. Likewise
we create two clusters in each subspace. According to the
EED calculated by SCF, the rank of the reference features is
C, B, D, A which is exactly the same as their rank in RED.
Therefore, the precision of each of k-NN for k£ € 1..4 using
SCF would be 100%.

From the above example, we can see that the precision of
SCF is seriously affected by how the subspaces are formed.
Forming the best subspaces to achieve the highest precision is
data dependent, and difficult to determine in SCF [10]], [34]]
—it depends on the nature of the reference features, which are
different in different applications.

In the following section, we propose a PCA based filtering
method, PCAF, for AkNN search. It has the same advantages
of using the data filtering strategy: high scalability, small
memory footprint, and reduced computational overhead. More
importantly, compared with SCF, PCAF has stable, higher
precision k-NN results due to its accurate rank estimation
of Euclidean distance using the principal components of the
reference features.

ITII. PCA-BASED FILTERING (PCAF)

Principal Components Analysis (PCA) is a popular algo-
rithm used to reduce dimensionality, that can alleviate the
curse of dimensionality in some contexts. It uses an orthogonal
transformation to convert a set of data values of possibly
correlated variables into a set of data values of linearly
uncorrelated variables called principal components.

For a high dimensional dataset, if the correlation between
the dimensions is strong, the information of the dataset can
be represented by a small number of principal components,
which taken together have lower dimensionality. By using
these principal components, the dataset can find a projection,
which has the same dimensionality of principal components,
containing most of its original information.

For example, the reference features in can be repre-
sented by projection p;, when using one principal component
after PCA is applied to the set of four reference features, as

shown in The space of the principal components is
called the projected space of PCA.

PCAF uses the projections under principal components to
estimate the rank of distances between the query feature and
the reference features. Note that we use the projections to esti-
mate the rank of distances instead of the real distances, since
the distances calculated with projections are in a different,
transformed low-dimensional space, which is different from
the original, high-dimensional feature space. As the principal
components are the main factors deciding the relationships
among the reference features, the rank estimation of distances
with corresponding projections should be similar to the rank
of distances in the original feature space, if the dimension
reduction has not lost too much data. That is, if the distance
between the query feature and a reference feature is small in
the original feature space, the distance of the feature from the
query in the projected space of PCA should be proportionally
small. From we can see that the rank of distances
between the query feature and the reference features in the
projected 1-dimensional space is C, B, D, A, which is exactly
the same as the rank of those in the original feature space.

In many real-world domains, the feature dimensions are
more or less correlated [28]]. For example, SIFT features,
which are popular in computer vision applications, have many
dimensions that are correlated with each other [10], [38]].
From our experiments, often we only need around 10 dimen-
sions in the PCA space projected from spaces of hundreds
of dimensions. This shows us that we could possibly use
very low-dimensional PCA-converted features to accurately
estimate the rank of distances between the query feature and
the reference features. This approach can save a large amount
of computation by calculating the distances of a very low-
dimensional, surrogate space.

In PCAF, before searching, PCA is applied to the reference
features to find the principal components denoted as the PCA
space. That is, the reference features are projected into the
surrogate PCA space. Then the query feature is projected
into the same PCA space. PCAF maintains two heaps for
the current k£ nearest neighbours. The main heap contains the
current k nearest neighbours ranked by the distance of the
original feature space. The assistant heap contains the current
k nearest neighbours ranked by the distance of the PCA space.

During searching, the distance between a reference feature
and the query feature in the PCA space is calculated first. If
the distance is larger than the largest distance in the assistant
heap, we simply drop the reference feature as it is unlikely
to be one of the k£ nearest neighbours. In this way, we can
filter out a large number of reference features without much
computational overhead. However, if the distance is smaller
than the largest distance in the assistant heap, PCAF calculates
the real distance between the reference feature and the query
feature in the original feature space, which has much higher
computational overhead. If the distance is larger than the
largest distance in the main heap, we drop the reference
feature; otherwise, the distance of the reference feature is
inserted into the main heap and the corresponding distance

in the PCA space is inserted into the assistant heap. After
each reference feature is processed as described above, the k
nearest neighbours are in both heaps.

In PCAF, there are two overheads that are related to PCA.
The first is the PCA transformation applied to the reference
features, which projects the reference features into the PCA
space. Since the projected features will be used by a quarter
of billion queries from tens of thousands of images, this one-
off overhead is negligible and equivalent to the overhead of
building indices in other AkNN algorithms according to our
experiments. Moreover, if necessary, this PCA process could
be parallelised to further reduce the overhead, as many parallel
PCA algorithms have been proposed already [22], [24], [43].

The second overhead is the projection of the query feature
into the PCA space. It involves a multiplication between a
D xd matrix and a vector of size D, where D is the dimension-
ality of the original feature space and d is the dimensionality
of the PCA space. This one-off overhead is amortised by
the distance computation against tens of thousands reference
features as the same projected query feature will be reused by
each of those reference features. Our experimental results will
show this one-off overhead is negligible. It is worth noting
that, if necessary, this overhead could be easily parallelised
by multiple cores or the SIMD-based floating point unit e.g.,
SSE, though it is a relatively small overhead.

The advantages of PCAF can be summarised below. First,
in most cases, it replaces the distance calculations between
features in a high-dimensional space with the calculations in a
surrogate low-dimensional space. The computational overhead
is substantially reduced. Second, the memory footprint is
greatly reduced as only the low-dimensional projections are
accessed most of time. This is extremely helpful for those
multicore systems with limited memory bandwidth. Third, the
precision of k-NN results is significantly improved compared
to other AkNN algorithms due to the use of principal compo-
nents for distance estimation.

IV. IMPLEMENTATION OF PCAF

The main idea of PCAF is to use the distance rank in the
surrogate PCA space to filter out the reference features that are
unlikely to be k-NN. In this section, we will discuss: (a) the
rank estimation in the PCA space, (b) the filtering algorithm
in detail, and (c) our fine-grained data parallelism in PCAF.

Note that, like other AKNN algorithms, to reduce compu-
tational overhead, we use the following Squared Euclidean
Distance (SED), instead of Euclidean Distance, to measure the
distance between two features f4 and fp in a D dimensional
space in the rest of the paper:

D
SED(fa, f5) = |fa— fBl = > _(fali] — fzli)?
i=1
A. Rank Estimation with PCA

In our implementation, we use Singular Value Decomposi-
tion (SVD) [11] to find the principal components, which is
represented by a D x d matrix denoted as W, where D is the

dimensionality of the feature space, and d is the dimensionality
of the PCA space or the number of principal components,
which is much smaller than D. Specifically, the two-sided
Jacobi R-SVD decomposition provided by the Eigen library
[12] is used to ensure optimal reliability and accuracy of PCA.
With the principal components matrix W, for the reference
feature set R = (f1, fo, ..., fn) or query feature ¢, we need
to project everything into the PCA space using the following
matrix-matrix or vector-matrix multiplication:
Ty = (fiffmean) 1=0,1,..,N
Rpco = Ry x W R, = (r1,72,...,TN)

Apca = (q - fmean) x W
where f,cqn 1S the mean of the reference features, which
is available after PCA is done. This process can be acceler-
ated through parallel computing since either parallelisation of
SVD or matrix-vector structured multiplication has been well-
studied [14], [22], [40].

As W and R, are used by all queries, the computation is
one-off preprocessing. Although the complexity of this over-
head is O(D?), other AKNN algorithms have similar overhead
for building search indices. According to our tests, using a
single core of the Intel Xeon processor in our experimental
environment, this one-off time overhead of PCAF is between
0.01s and 4.5s, which can be further shortened if we only
compute necessary components during the SVD decomposi-
tion process [13[], while the index building overhead of other
AKNN algorithms is between 0.01s and 70.5s depending on
precisimﬂ However, this overhead is negligible as it is one-off
and used by tens of thousands queries.

After the projection, the distance in the PCA space between
the query feature gp., and each reference feature f,., in set
Ry, is calculated. This distance is used to rank the reference
feature in the following filtering method.

B. Filtering Method

Algorithm] gives the detailed description of data filtering in
PCAEF. For each reference feature f, PCAF first calculates the
distance between the projected query g,., and the projected
reference feature f,.q. If the distance dist,., is smaller than
the maximum distance in heap,,,, the distance between ¢ and
f, dist, is calculated. If dist is smaller than the maximum
distance in heap, then the maximum is replaced by dist in
heap, and dist ., replaces the current maximum distance in
heap,,., . The final k-NN results are in heap after the above
process is repeated for each reference feature. Note that, in
Algorithm (I} m is used to adjust the size of heap,., to
accommodate fluctuation of rank estimation. A value of 2 is
enough for most cases, which incurs little overhead.

C. Data parallelism

PCAF is particularly suitable for parallel implementation
since there is no dependence in the search of k-NN within each
query. This is different from other AKNN algorithms which

ISee code and raw data of experimental results available on GitHub.
https://github.com/c30268056/PCAF

Algorithm 1: PCAF data filtering
Input: R: set of reference features
Input: R,.,: set of projected reference features
Input: ¢: query feature
Input: g,.,: query projection
Input: k: number of nearest features required
Input: m: heap size scaling
Output: heap: contains the k-NN results
Initialise max heap heap with size k;
heap.mazx < oo ;
Initialise temporary max heap heap,,., with size k x m;
heap ,cq-max <= o0 ;
for foco € Rpeq do
diStpca < SED(Qpca; fpca);
if distyca < heap,.,.maz then
dist + SED(q, f);
if dist < heap.maz then
L heap,,.,-replace(distpeq);
heap.replace(dist);

e e NN R W N =

-
L —)

return heap with the k nearest features;

—
5]

Reference Dataset Partition ID Query Dataset heap
o
N S
S 0 |
oL
1
N S
s | |
ool
T
T $
N S-1] .
< b
I

Fig. 2: Fine-grained parallel implementation based on data
partition. Each task searches a set of % features and maintains
its own k-NN results in a heap.

require sequential execution when the same query is retrieving
the index of reference features.

In PCAF, the reference features in the PCA space are
divided into S subsets which are searched in parallel by
threads using the same query as shown in In the
figure, each parallel processable task works on a subset of
reference features and maintains its own heaps. As the size
of the heaps is very small (2 for most image processing
applications), the extra space overhead has no noticeable
impact on the performance but the fine-grained parallelism
supports high performance of PCAF.

After the k-NN results are obtained with each subset, the
final &-NN results are computed using a simple selection
algorithm among the results, like a k sized max heap structure
for accumulation in our experiment.

https://github.com/c30268056/PCAF

D. Time and Space Complexity

We now analysing the complexity of our algorithm. PCAF
takes little space to store the d x D transformation matrix, W,
and D sized fp,eqan vector. During runtime, it will cost O(Nd)
space to store the projection of reference features, and O(d)
for each query projection. As the magnitude of N dominates
the other parameters, the space complexity for PCAF can be
simplified as O(N).

PCAF can save time by reducing the number of SED
calculations. Supposing the time for SED computing with all
reference features for each query is denoted as Tp, and the fil-
tering rate of excluded reference features is represented as F'R,
then theoretically PCAF takes (1 — FR) x Tp + & x T time
for SED computation. According to our experimental results, d
is much smaller than D, and the F'R reaches high above 95%
for most cases. Besides, the extra cost for query projection
during searching is only O(dD). Thus, PCAF is very efficient
by reducing many unnecessary distance computations.

We will illustrate detailed performance comparison with
other k-NN algorithms in Also note that by adjust-
ing d, m (heap scale) and S (the number of data subsets) in
PCAF, the performance and precision changes. Usually when
d, m and S increase, the rank estimation accuracy improves
with higher cost of time.

V. EVALUATION

In this section, we evaluate the performance of our method
against a brute-force k-NN algorithm, two state-of-art data se-
lection AENN algorithms and a data filtering AkKNN algorithm
on six real-world and synthetic datasets. The performance
improvement that they attain on two multicore platforms is
analysed.

A. Experimental Setup

1) Multicore platforms: Two multicore platforms are used

in our evaluations:

a) Intel16: Intel(R) Xeon(R) CPU ES5-2665, 8 cores x 2
sockets @ 2.40GHz, 20 MiB L3 shared cache, 128GiB
DDR3 (1600 MHz) memory;

b) AMD64: AMD Opteron Processor 6276, 16 cores x 4
sockets @ 2.3 GHz, 16 MiB L3 shared cache, 512GiB
DDR3 (1600 MHz) memory;

The Intel16 and AMDG64 are two typical multicore platforms.
The icc-14.0 compiler is used on Intel16 platform while gcc-
4.8 is used on the AMDG64 platform.

2) Algorithms: We compare our proposed algorithm with

the four algorithms listed below:

a) Brute-force (BF): searches k-NN exhaustively in the
whole database and gives the accurate results of k-NN.

b) Randomized kd-Trees (RKD): an efficient variant of the
popular kd-tree [29] algorithm. Multiple trees are built
as its index structure. During searching, it traverses these
kd-trees and puts promising candidate nodes in a queue
for distance calculation in the next step. The £-NN results
searching within these nodes are considered to be the
approximate k-NN results for the dataset.

¢) Random Ball Cover (RBC): the state-of-art scalable
k-NN algorithm on multicore platforms [7]]. First, it
randomly chooses several representative features to rep-
resent a number of reference subsets with size s, each
of which contains s reference features that are nearest to
one representative. When searching for approximate k-
NN results, it finds the nearest representatives and then
searches k-NN within those subsets of the representatives
using BF.

d) Subspace Clustering for Filtering (SCF): the latest algo-
rithm which implements data filtering strategy into k-NN
search problem [34]], as discussed before.

We implement BF and RKD by using the FLANN library
[30], which provides fast approximate k-NN search function-
ality for computer vision related tasks. The implementations
of RBC and SCF are taken from the open sourced code
mentioned in previous work. The parallelisation is carried out
by using OpenMP.

3) Datasets: The datasets listed in are used to
evaluate the performance of the aforementioned algorithms.
Though practical query datasets are much larger, we use small
query datasets to save the time of experimental runs, which
does not affect the validity of our results. As a matter of
fact, the benefit of PCAF will be amplified using larger query
datasets since PCAF reduces computational and memory costs
for each query.

TABLE II: Overview of test datasets

Name Size Dimen- Number of Number of
(MiB) | sionality | reference features | query features
Digits 0.93 64 3823 1797
Random 12.21 128 25000 7500
SIFT 27.38 128 56074 9929
Madelon 3.81 500 2000 1800
GIST 5.86 512 3000 1000
HAR 15.73 561 7352 2947

a) “Digits” is the smallest dataset in both size and di-
mensionality. It is a real-world dataset [3] that contains
handwritten digits that have been size-normalised and
centred into a fixed 8 x 8 image.

b) “Random” is a synthetic dataset, which contains features
that are chosen from a uniform distribution.

c) “Madelon” is an artificial dataset [15] containing data
points grouped in 32 clusters placed on the vertices of a
five dimensional hypercube.

d) “SIFT” is the largest dataset and generated by extracting
SIFT descriptors [25] from real images. SIFT is one of
the most widely-used image feature detectors in com-
puter vision [20].

e) “GIST” contains features collected from 4000 images
by using GIST descriptors [33]. GIST summarises the
gradient information of different parts of an image and
converts them into one high dimensional feature. It is
also a frequently used algorithm in computer vision.

f) “HAR” [2]] has the highest dimensionality of the datasets
that we use. It contains sensor readings related to 30
real-world subjects performing activities of daily living,

which are recorded by the embedded sensors in a waist-
mounted smart phone.

4) Parameter Settings: In order to find the performance
bounds of each algorithm, we conduct as many scenarios as
possible by adjusting parameters. For simplicity, we denote a
parameter X € [start..end, Astep] as the value of X is set
from start to end with an increase of step.

The RKD algorithm has two important parameters. The
number of trees to build for indices greatly affects both
indexing time and searching precision. The checks parameter
represents the number of neighbouring buckets that should be
checked during the search. As these parameters are increased,
search time increases, but the results will be more precise [29].
We set trees as 4, 8, 16, 32, 64 or 128 and tested checks
€ [128..5120, A128].

The number of randomly chosen representatives in RBC
positively affects the precision and negatively affects the
searching time [7]. Suppose n = [v/N| where N is the
number of the reference features, then the number of repre-
sentatives is chosen from [n..N, An].

For SCF, the number of subspaces and clusters are
important parameters [34] and are set within [4..64, A4] and
[8..32, A8] respectively.

The bounds of d in PCAF is decided by the percentage of
information/variance in the reference dataset that is retained
in PCA space. The lower and upper bound of d are set using
the case when 50% and 90% of the variance is retained,
respectively. The heap scale is set from 1 to 5, while reference
features are partitioned into either 1, 2, 4, 8, 16 or 32 parts.

5) Evaluation Metrics: We consider three common metrics
to evaluate the parallel performance, and we also use two more
metrics to evaluate the filtering effectiveness of each of the
data filtering algorithms:

a) Time: the total time used for searching.

b) Improvement: defined as the searching time of the exact
(using BF) solution divided by searching time after
applying an AkNN algorithm.

c) Speedup: defined as sequential searching time of an
algorithm divided by its parallel searching time. It is used
to measure the scalability of each algorithm.

d) Precision: defined as the percentage of k-NN results that
are correctly found.

e) Filtering Rate: represents the percentage of reference
features that are excluded. It is used to help measure
the effectiveness of filtering method.

B. Comparison with Brute-force

Brute-force (BF) is the traditional and straightforward im-
plementation of a k-NN algorithm that provides accurate
results. PCAF shows a great enhancement over BF in both
speed improvement and scalability when exact results (100%
precision) are retrieved.

1) Improvement: In this section, we evaluate the parallel
performance improvement when using all available cores. The
improvements that PCAF can achieve over BF on various
datasets are listed in [Table 111}

TABLE III: Performance improvement compared with BF
runtime after applying PCAF to each dataset on each platform
using all available cores without losing precision

Platform || Digits | Random | SIFT | Madelon | GIST| HAR
Intel16 2.47 1.07 3.66 | 1.99 5.85 | 2.25
AMD64 || 2.54 3.51 10.29| 1.95 6.76 | 7.95

TABLE 1V: Filtering Rate (F'R) and dimensionality in PCA
space (d) for PCAF to produce exact k-NN results for each
dataset

Digits | Random | SIFT | Madelon | GIST| HAR
FR(%) 95.27 | 94.70 98.60| 87.53 96.81| 62.93
d 5 90 15 53 8 24

The improvement mainly comes from the saved distance
computation. As the distance computation complexity of BF
is O(N x D), however in PCAF, itis O((1— FR) x N x D)+
O(N x d), where FR is the filtering rate of excluded reference
features for distance computation, and d is the dimensionality
in PCA space. From we can observe a high FR
and a small d in most of the datasets, which results in a large
amount of computation reduction by PCAF.

The improvement varies from different datasets because the
amount of computation reduction varies. Take the datasets
“SIFT” and “Random”, which have the same dimensionality
of 128, as the example. The dimensionality greatly reduced
in “SIFT”: a 15-dimensional PCA space is enough to present
most of the information from the original 128-dimensional
features. However for “Random” dataset, 90 principal com-
ponents have to be used for projections. As the filtering rates
between “SIFT” (reaching 98.60%) and “Random” (94.70%)
are close to each other, the searching time is highly affected
by the cost of the rank estimation, which is based on SED
distances of projections.

2) Scalability: PCAF has outstanding scalability for very
high-precision k-NN search on multicore platforms. Compared
with BF, PCAF only frequently accesses % of the memory dur-
ing computation, which requires significantly fewer memory
accesses—d is much smaller than D. Due to space restrictions
we only use the largest dataset (“SIFT”) as the example here
to compare the scalability with BF for highly precise (in this
case exact) k-NN searching.

As shown in both PCAF and BF have consider-
able scalability on Intel platforms. Note that from examining
the hardware performance monitoring counters, PCAF has
a 20% reduction in L2 cache misses compared to BF, but
the scalability improvement due to fewer memory accesses is
minor. This is because the Intel platform has a high memory
bandwidth, so that the memory wall problem is not obvious.
However, as the trend of parallel computing development
engages more and more cores, the memory bandwidth will
eventually become an unavoidable issue.

shows the scalability on AMD platform, where
PCAF provides significant scalability while the curve of BF
is quite flat. This is because unlike the Intel platform, the 64-
core AMD platform suffers serious memory latency issues.
The statistics from performance monitoring counters shown in

—o—PCAF ——PCAF
—BF —BF

1 4 8 12 16 1
number of threads number of threads

() Intel16 (b) AMD64
Fig. 3: Scalability of PCAF and BF for “SIFT” dataset to find
exact k-NN results on Intel16 and AMD64 platforms

8 16 24 32 40 48 56 64

30

Digits Random SIFT Madelon GIST HAR

0
I Pc_PCAF Il IPC_BF MPKI_PCAF ' == MPKI_BF
Fig. 4: Performance monitoring counter statistics on the
AMDO64 platform

help explain the results: the improvement of retired
Instructions Per Cycles (IPC), which indicates the computation
efficiency of the algorithm, is highly related to the reduction of
last-level cache Misses Per (1000) Instructions (MPKI). That is
when MPKI decreases significantly, IPC increases accordingly
which leads to better scalability. Since the MPKI of PCAF is
really small in all the cases, PCAF can be seen to be cache-
friendly, and thus achieves substantial scalability.

C. Compared with Data Selection Algorithms

Randomized kd-Trees (RKD) and Random Ball Cover
(RBC) are two typical data selection algorithms for AEKNN
search. RKD is highly efficient but its tree-based index
structure becomes a barrier to achieving high parallel perfor-
mance. RBC is developed as a state-of-art k-NN algorithm
for multicore platforms, however it involves a large amount of
unnecessary distance computations.

Compared with RKD and RBC where approximate k-NN
results are required, PCAF produces higher precision results
within shorter searching times, and shows large improvements
in scalability.

1) Improvement: shows the searching time of each
algorithm on the Intell6 platform when using all available
cores for different datasets reaching above 90% precision.
We also marked the searching time of BF in the figure for
reference. Due to space constraints, we don’t present the
AMD64 results as they show the same general pattern as the
Intel16 platform.

As we can see from PCAF is the only method
that can provide exact results for every dataset. It is also the
quickest to produce high precision k-NN results. As the ma-
jority of unnecessary distance computation of between original
features is filtered, the advantage becomes more obvious when
the dimensionality of dataset increases.

RKD produces k-NN results with good precision in a
very short time only for lower-dimensional datasets such as
“Digits”. This is because RKD divides the reference space into
bins along the axis of dimensionality, which makes it efficient
for searching in low dimensional space [29]. When it comes
to high-dimensional space where the curse of dimensionality
arises, RKD needs to spend much more time on visiting many
more branches to achieve high precision [31]. Moreover, the
precision of £-NN results found by RKD converges at a certain
precision (< 100%).

Apparently RBC performs better than RKD in most of
the cases but it still produces high precision results more
slowly than PCAF. The only exceptions to this occur for
lower precision (<99%) k-NN results from the “Digits” and
“SIFT” datasets, where RBC is slightly faster than PCAF.
However RBC cannot sustain results at high precision. Above
99.55% (“Digits”) and 99.99% (“SIFT”) respectively, RBC
takes 5.18x and 2.91x the searching time of PCAF.

The improvement mainly comes from computation being
avoided in PCAF, as shown in Based on perfor-
mance monitoring counters, in the figure, the ratio of total
retired instructions compared with BF in PCAF is the lowest.
The large proportion of computation avoided, compared to
RKD and RBC brings PCAF the substantial improvement
observed in the experiment. Note that the reason why the
number of retired instructions in RBC is more than that in
BF is that RBC requires redundant distance computation to
achieve high precision.

2) Scalability: In this section, we evaluate the scalability of
our algorithm compared with RKD and RBC. Given the space
available, we only choose “Madelon”, “SIFT” and “HAR”
datasets as examples. As similar characteristics and scalability
patterns are shared across all datasets, these three are sufficient
to be representative. “Madelon” is quite a small dataset, as are
“Digits” and “GIST”. “HAR” is much larger than “Madelon”,
and the dimensionality is the highest of all the datasets.
“SIFT” is the biggest dataset in our experiments, but the
dimensionality is only a quarter of “HAR”, and “Random”
is similar. To consider the scalability of each algorithm under
a reasonable search precision, we plot the average speedup of
selected cases that produce results that are more than 95%
accurate. We also excluded results that have longer search
times than brute force.

The difference of scalability between each algorithm run-
ning on Intel platform is not significant shown in
But we can still observe an vivid inferior rank of either RBC
or RKD, especially when dataset becomes larger. (The reason
has been explained in Section [V-B2])

Unlike the Intel platform, the AMD platform showed sig-
nificant variance within repeated runs of our experiments. We
thus add the maximum speedup that we observed in each case
as a dotted line on the graphs in As “Madelon” is
small enough to fit in the last-level cache, similar to the Intel
platform, the scalability improvement is not obvious. However
in the case of “SIFT” and “HAR”, a disparity is seen. In
all cases, PCAF reaches the best maximum scalability, and

o PCAF :s

003 * fBo ¥ 4
o]
E 0.02 »* aszv*

o ©o°
o ©°,%

&
o0 ©0° '
L *% %o .

0
90 92 94 96 98

100 “90 92 94 96 98 100 90 92 94 96 98 100
precision (%) precision (%) precision (%)
(a) Digits (b) Random (c) SIFT
0.1 j 0.1 PO ¥ ™
:’:3 0.6 * * -:
0.08 a 0.08 g™ * .
PTY] 0.5 ., * **)
©0.06 w© am ©0.06 - ©04 * . P .
g re g T £03 MER)
£0.04 £ 0. A £ Y * %
Eoo0 o oo0® 3®° E0.04 w o FE £ ¥
s IR v 4 :
002 $Fo o who 0.024 "* 0.1
0 OQEROO . R
o o s SERTE
90 92 94 96 98 100 90 92 94 96 98 100 90 92 94 96 98 100
precision (%) precision (%) precision (%)
(d) Madelon (e) GIST (f) HAR

Fig. 5: Searching time under different precision (> 90%) for each dataset on the Intel16 platform using all available cores.
Note that the black line shows the time cost for BF. The legend in (a) also applies to (b)—(f).

&
s

©

05

instructions ratio

L3 cache misses ratio
o

o

Digits Random SIFT Madelon GIST = HAR Digits Random SIFT Madelon GIST ~HAR

[PCAF IERKD [CX]RBC [PCAF IRKD [C]RBC
(a) Computation reduction (b) Memory reduction
Fig. 6: Ratio of performance monitoring counters compared
with BF for each algorithm on AMDG64. Bars below 1.0 present
desirable reductions, otherwise show the undesired overhead.

provides the best average speedup.

The last level cache misses recorded in performance monitor
counters indicates the size of memory footprint. From the
ratio of misses compared with BF shown in PCAF
can be seen to gain memory performance in almost all cases
except “Digits”, which is a small dataset. For very small
datasets like “Digits”, the benefit of reduced memory footprint
is overshadowed by the non-contiguous, interleaved memory
accesses to features and PCA-projected features, though the
benefit of reduced computation still dominates the overall
performance of PCAF.

D. Compared with Data Filtering Algorithms

As far as we know, SCF is the only other published
approach to AENN searching that adopts a data filtering
strategy. Compared to SCF, PCAF produces stable and higher
precision results with less searching time, while exhibiting
similar scalability. In this section, we evaluate both the parallel
performance and the effectiveness of the filtering.

The frequently accessed index in SCF has an O(N S) space
complexity, where S is the number of subspaces (usually
S < 64) (for detailed analysis refers to [34]). While PCAF
spends O(Nd) to store the counterparts—projected reference
set denoted as R,,. Supposing each element in R, is a 32-
bit floating point number in PCAF, while the index for each

feature in SCF requires one byte of storage, then in the cases
when d < %, PCAF will have a smaller memory footprint. As
the dimensionality of projections in PCA space depends on
the properties of the dataset, the d in our implementation for
“Random” and “Madelon” is quite large (when 50% of the
variance is retained, d is 61 and 53 respectively), while for
other datasets, d is relative small —less than the dimensional-
ity needed in the case of exact searching shown in
Still, the difference between d and % is not significant, which
results in comparative scalability. The speedup curves shown
in support our analysis. As we can see, PCAF is only
slightly better in scalability compared with SCF.

However, while achieving comparable performance in terms
of scalability, PCAF greatly improves the speed for high pre-
cision AkNN searching. This is because the filtering strategy
of PCAF is more effective than SCF’s, so that PCAF has a
higher F'R in most cases, and thus avoids computation more
effectively. Likewise, when achieving the same filtering rate,
PCAF produces more precise results. As for a data filtering
algorithm, the £-NN results found come from the non-filtered
features, thus we compare the filtering effectiveness by plotting
the precision achieved under the same filtering level shown
in Due to limited space, we only present the
high FR levels between the range of (95,97] and (97,100],
which are also key regions of concern for data filtering AKNN
algorithms. Also note that the blank in “Madelon” for SCF
is because the highest F'/R SCF can reach for “Madelon” is
only 82.74%. As we can see, PCAF produces nearly 100%
precise results when F'R > 95, which is higher than SCF in
all datasets. Thus there is a higher probability of the PCAF
filtering method discovering the true k-NN features during
searching, while false filtering occurs in SCF.

VI. RELATED WORK

The focus of our work is speeding up high dimensional,
high precision k-NN search on multicore architectures. We

1 4 8 12 16 1 4
number of threads

(a) Madelon

Fig. 7: Scalability of each algorithm on the Intel16 platform, for precision above 95%. The

sequential algorithm.

8 12 16 1 4 8 12 16
number of threads number of threads
(b) SIFT (c) HAR

y-axis represents the speedup over

—e— —
-o PCAF -o- PCAF
60 || —w— =
o -» RKD s
=1 PR 4
E 40 RBC e~
o [3s
3 -
20 =
0 0
1 8 16 24 32 40 48 56 64 1 8 16 24 32 40 48 56 64 1 8 16 24 32 40 48 56 64
number of threads number of threads number of threads
(a) Madelon (b) SIFT (c) HAR

Fig. 8: Scalability of each algorithm on the AMDG64 platform, for results with a precision above 95%. The y-axis represents
the speedup over the sequential algorithm. The dotted line represent the maximum speedup that was observed.

—e—PCAF —o—PCAF
SCF 40 SCF

wof

0 0
1 4 8 12 16 1 8
number of threads number of threads

(a) Intel16 (b) AMD64
Fig. 9: Scalability of SCF and PCAF for “SIFT” dataset on
Intel16 and AMD64 platforms.

16 24 32 40 48 56 64

100

©
&
©
&

precision (%)
©
8
precision (%)

®
&

I 85
80

Digits Random SIFT Madelon GIST HAR

@
8

I PCAF [SCF . an;PCAFg’;CF
(a) FR between (95,97] (b) FR between (97,100]
Fig. 10: Precision of PCAF and SCF for the same filtering

level

are not aware of many similar efforts to optimise AEKNN
algorithms for performance and precision in this way. Still,
the idea behind our method stems from related research.

The algorithm previously proposed by Tang [34], [35] is
the key work defining the notion of data filtering for AkXNN.
The rationale is to use a low-cost method to filter away
many expensive distance computations, and maintain a small
memory footprint at the same time to achieve high parallel
performance. We adopt the notion of data filtering in our work.
However, the precision of Tang’s SCF algorithm is not stable,
and is highly dependent on the nature of the dataset used.

Many real-world high dimensional datasets are actually
governed by a small number of dominant dimensions, as

discussed in [10] which inspires our data filtering method
using lower dimensional projections. The idea of using low-
dimensional intrinsic structure in high dimensional space is
popular in computer vision [4]], [[16]], [27]]. Many solutions pro-
posed for k-NN search in computer vision use dimensionality
reduction techniques to either form lower dimensional feature
descriptors [19]] or sort features in advance [39]]. However,
these techniques either reduce the dimensionality of the feature
space directly which results in loss of feature information,
or incur extra overhead e.g. sorting, while in PCAF we use
dimensionality reduction for filtering process without changing
the original feature space for searching, which retains high
precision of k-NN search and reduces computation.

VII. CONCLUSIONS

Data selection AkNN algorithms have serious memory bot-
tlenecks on multicore systems. Using a data filtering strategy
that reduces computation and memory footprint can improve
scalability. However it can be challenging to maintain the
accuracy of the result set with reduced computation. In this
paper, a novel filtering method, PCAF, is proposed to exclude
unlikely k-NN features with accurate estimation of similarity
in high-dimensional space. Experimental results show that
PCAF achieves substantial speedups and good scalability on
multicore platforms compared with many data selection AANN
algorithms, and provides higher precision than an existing data
filtering algorithm.

VIII. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable com-
ments. Huan Feng would like to thank the University of Otago
and China Scholarship Council for offering and sponsoring her
internship during the course of this research. We are grateful
to Xiaoxin Tang for his generous provision of source code and

support for the evaluation of the SCF algorithm. This work is
supported by Natural Science Foundation of China (61433008,
61373145, 61170210, U1435216), the National Basic Re-
search (973) Program of China (2014CB340402), National
High-Tech R&D (863) Program of China (2013AA01A213),
and the Chinese Special Project of Science and Technology
(2013zx01039-002-002).

[1]

[2]

[3]
[4]

[5]

[6]
[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

M. Al Hasan, H. Yildirim, and A. Chakraborty. SONNET: Efficient
approximate nearest neighbor using multi-core. In Data Mining (ICDM),
2010 IEEE 10th International Conference on, pages 719-724. 1IEEE,
2010.

D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz. Human
activity recognition on smartphones using a multiclass hardware-friendly
support vector machine. In Ambient assisted living and home care, pages
216-223. Springer, 2012.

K. Bache and M. Lichman. UCI machine learning repository, 2013.
K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is “nearest
neighbor” meaningful? In Database Theory ICDT99, pages 217-235.
Springer, 1999.

A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest
neighbor. In Proceedings of the 23rd international conference on
Machine learning, pages 97-104. ACM, 2006.

J. Buhler. Provably sensitive indexing strategies for biosequence similar-
ity search. Journal of Computational Biology, 10(3-4):399-417, 2003.
L. Cayton. Accelerating nearest neighbor search on manycore systems.
In Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE
26th International, pages 402—413. IEEE, 2012.

G. Cong and K. Makarychev. Optimizing large-scale graph analysis
on multi-threaded, multicore platforms. In Parallel & Distributed
Processing Symposium (IPDPS), 2012 IEEE 26th International, pages
414-425. IEEE, 2012.

D. L. Donoho et al. High-dimensional data analysis: The curses and
blessings of dimensionality. AMS Math Challenges Lecture, pages 1—
32, 2000.

H. Feng, S. Mills, D. Eyers, X. Shen, and Z. Huang. Optimal space
subdivision for parallel approximate nearest neighbour determination. In
Proceedings of 30th Internation Conference on Image and Vision New
Zealand. 1EEE, 2015.

G. H. Golub and C. Reinsch. Singular value decomposition and least
squares solutions. Numerische mathematik, 14(5):403-420, 1970.

G. Guennebaud, B. Jacob, et al. Eigen: a C++ template library for linear
algebra: matrices, vectors, numerical solvers, and related algorithms,
2012.

G. Guennebaud, B. Jacob, et al. Eigen v3.2.8 JacobiSVD class template
reference. http://eigen.tuxfamily.org/dox/classEigen_1_1JacobiSVD.
html/, 2016.

J. A. Gunnels, G. M. Henry, and R. A. Van De Geijn. A family of
high-performance matrix multiplication algorithms. In Computational
Science, ICCS 2001, pages 51-60. Springer, 2001.

I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror. Result analysis of the NIPS
2003 feature selection challenge. In Advances in Neural Information
Processing Systems, pages 545-552, 2004.

G. Hua, M. Brown, and S. Winder. Discriminant embedding for local
image descriptors. In Computer Vision, 2007. ICCV 2007. IEEE 11th
International Conference on, pages 1-8. IEEE, 2007.

H. Jegou, M. Douze, and C. Schmid. Product quantization for nearest
neighbor search. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 33(1):117-128, 2011.

I. T. Jolliffe. Principal Components Analysis, Second Edition. Springer,
2002.

Y. Ke and R. Sukthankar. PCA-SIFT: A more distinctive representation
for local image descriptors. In Computer Vision and Pattern Recognition,
2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society
Conference on, volume 2, pages 1I-506. IEEE, 2004.

N. Khan, B. McCane, and S. Mills. Better than SIFT? Machine Vision
and Applications, 26(6):819-836, 2015.

J. M. Kleinberg. Two algorithms for nearest-neighbor search in high
dimensions. In Proceedings of the twenty-ninth annual ACM symposium
on Theory of Computing, pages 599-608. ACM, 1997.

S. Lahabar and P. Narayanan. Singular value decomposition on GPU
using CUDA. In Parallel & Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on, pages 1-10. IEEE, 2009.

[23]

[24]

[25]

[26]

[27]

(28]

[29]
[30]

(31]

(33]

[34]

[35]

(36]

(391

[40]

[41]

[42]

[43]

T. Liu, A. W. Moore, K. Yang, and A. G. Gray. An investigation
of practical approximate nearest neighbor algorithms. In Advances in
Neural Information Processing Systems, pages 825-832, 2004.

W. Liu, H. Zhang, D. Tao, Y. Wang, and K. Lu. Large-scale paralleled
sparse principal component analysis. Multimedia Tools and Applications,
pages 1-13, 2014.

D. G. Lowe. Object recognition from local scale-invariant features. In
Computer vision, 1999. The proceedings of the seventh IEEE interna-
tional conference on, volume 2, pages 1150-1157. Ieee, 1999.

J. MacQueen et al. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium
on Mathematical Statistics and Probability, pages 281-297. Oakland,
CA, USA,, 1967.

K. Mikolajezyk and J. Matas. Improving descriptors for fast tree
matching by optimal linear projection. In Computer Vision, 2007. ICCV
2007. IEEE 11th International Conference on, pages 1-8. IEEE, 2007.
K. Mikolajczyk and C. Schmid. A performance evaluation of local de-
scriptors. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 27(10):1615-1630, 2005.

M. Muja and D. G. Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. VISAPP (1), 2:331-340, 2009.

M. Muja and D. G. Lowe. Scalable nearest neighbor algorithms for
high dimensional data. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 36(11):2227-2240, 2014.

S. A. Nene and S. K. Nayar. A simple algorithm for nearest neighbor
search in high dimensions. Pattern Analysis and Machine Intelligence,
1IEEE Transactions on, 19(9):989-1003, 1997.

S. O’Hara and B. A. Draper. Are you using the right approximate nearest
neighbor algorithm? In Applications of Computer Vision (WACV), 2013
IEEE Workshop on, pages 9-14. IEEE, 2013.

A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic
representation of the spatial envelope. International Journal of Computer
Vision, 42(3):145-175, 2001.

X. Tang, Z. Huang, D. Eyers, S. Mills, and M. Guo. Scalable multicore
k-NN search via Subspace Clustering for Filtering. Parallel and
Distributed Systems, TPDS, IEEE Transactions on, 26(12):3449-3460,
2015.

X. Tang, S. Mills, D. Eyers, K.-C. Leung, Z. Huang, and M. Guo.
Data filtering for scalable high-dimensional k-NN search on multicore
systems. In Proceedings of the 23rd international symposium on High-
performance Parallel and Distributed Computing, HPDC 2014, pages
305-310. ACM, 2014.

Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and efficiency in high
dimensional nearest neighbor search. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of data, pages 563—
576. ACM, 2009.

A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A
large data set for nonparametric object and scene recognition. Pattern
Analysis and Machine Intelligence, 30(11):1958-1970, 2008.

G. Treen and A. Whitehead. Efficient SIFT matching from keypoint
descriptor properties. In Applications of Computer Vision (WACV), 2009
Workshop on, pages 1-7. IEEE, 2009.

G. Treen and A. Whitehead. A PCA-based binning approach for
matching to large SIFT database. In Computer and Robot Vision (CRV),
2010 Canadian Conference on, pages 9—-16. IEEE, 2010.

S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel.
Optimization of sparse matrix—vector multiplication on emerging mul-
ticore platforms. Parallel Computing, 35(3):178-194, 2009.

Z. Wu, Q. Ke, M. Isard, and J. Sun. Bundling features for large scale
partial-duplicate web image search. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009, pages 25-32. IEEE, 2009.

C. Zanchettin, B. L. D. Bezerra, and W. W. Azevedo. A KNN-SVM
hybrid model for cursive handwriting recognition. In Neural Networks
(IJCNN), The 2012 International Joint Conference, pages 1-8. IEEE,
2012.

J. Zhang and K. H. Lim. Implmentation of a covariance-based principal
component analysis algorithm for hyperspectral imaging applications
with multi-threading in both CPU and GPU. In 2012 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), pages 4264—
4266. IEEE, 2012.

http://eigen.tuxfamily.org/dox/classEigen_1_1JacobiSVD.html/
http://eigen.tuxfamily.org/dox/classEigen_1_1JacobiSVD.html/

