This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2748131, IEEE

Transactions on Computers

Principal Component Analysis based Filtering
for Scalable, High Precision k-NN Search

Huan Feng, David Eyers, Steven Mills, Yongwei Wu, Member, IEEE, and Zhiyi Huang,

Abstract—Approximate k£ Nearest Neighbours (AkNN) search is widely used in domains such as computer vision and machine
learning. However, AkNN search in high-dimensional datasets does not scale well on multicore platforms, due to its large memory
footprint. Parallel AkNN search using space subdivision for filtering helps reduce the memory footprint, but its loss of precision is
unstable. In this paper, we propose a new data filtering method—PCAF—for parallel AkNN search based on principal component
analysis. PCAF improves on previous methods, demonstrating sustained, high scalability for a wide range of high-dimensional datasets
on both Intel and AMD multicore platforms. Moreover, PCAF maintains highly precise AkNN search results.

Index Terms—K nearest neighbours, approximate knn search, parallel algorithms, multicore, principal component analysis, data

filtering, scalability.

1 INTRODUCTION

IDE use of k Nearest Neighbours (k-NN) search is
made in domains such as bioinformatics [1], data
analysis [2], machine learning [3], computer vision [4] and
handwriting recognition [5]. Given query data points, k-NN
finds the k£ data items within a database that are most similar
to the query data, where the similarity is often measured by
Euclidean Distance. In general, a data point p can be defined
. . T
as a D-dimensional vector, p = [e1 ez ep] . The
database is a set of N data points, R = {py,P3,---;Pn}-
Based on the definitions, the £-NN problem can be formally
described as: given a query point q, find the k£ data points
in R that have the shortest (Euclidean) distances to q.

To address the rapidly increasing amounts of data being
produced for processing, many Approximate k Nearest
Neighbours (AkNN) algorithms have been proposed [6],
[7], [8], [9], [10], [11]. Instead of returning the actual k-NN,
they return £ results that are highly likely to be the k-NN.
Although AENN algorithms are significantly more efficient,
search precision becomes a concern [12], [13], [14].

There are two main strategies in AKNN for finding ap-
proximate nearest neighbours: data selection and data filtering.
The data selection strategy tries to find candidate points that
are most likely to be the precise k nearest neighbours. Most
AENN algorithms adopt this strategy [6], [7], [9]. However,
this strategy incurs a large memory footprint and requires
a large number of random memory accesses. This leads
to many cache misses, and therefore poor scalability on
multicore systems [8], [15], [16].

The data filtering strategy [16] instead excludes unlikely
data points based on distance estimation between the query

e H. Feng and Y. Wu are with the Department of Computer Science
and Technology, Tsinghua National Laboratory for Information Science
and Technology (TNLIST), Tsinghua University, Beijing 100084, China;
Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057,
China. E-mail: see http://madsys.cs.tsinghua.edu.cn/

e D. Eyers, 5. Mills and Z. Huang are with the Department of Computer
Science, University of Otago, New Zealand.

Manuscript received December 05, 2016; revised August 3, 2017.

and the data points. If they have a high filtering rate, much
computation and many memory accesses can be avoided.
Typically, the scalability of AKNN can be greatly improved
on multicore systems by using a filtering strategy.

Subspace Clustering for Filtering (SCF) [8] is a state-of-
the-art approach to AkNN that uses data filtering. It greatly
improves the scalability of AKNN algorithms. However, its
search precision is unstable and depends on the nature of
the datasets. We will discuss this challenge in detail in the
next section.

In this paper, we propose a parallel AkNN algorithm
called PCAF which uses Principal Component Analysis
(PCA) [17] to estimate the rank of distance between the
query and the data points. PCAF uses data filtering to
exclude those data points that are not likely to be k-
NN results according to the PCA estimation. It has high
scalability on multicore systems with stable, high search
precision on high-dimensional datasets (our experiments
include datasets with up to 960 dimensions).

The remainder of this paper is organised as follows.
Section 2 describes the motivation of our research. Section 3
presents our PCAF algorithm, and Section 4 describes its
technical implementation details. Section 5 provides a per-
formance evaluation against four widely-used k-NN algo-
rithms. Section 6 assesses the impact of different param-
eter selections on precision and performance, and gives
appropriate choices of parameters for six example datasets.
Section 7 discusses related research work. Finally, Section 8
summarises the contributions of this paper.

2 MOTIVATION

As discussed above, data filtering in AkKNN greatly im-
proves its parallel performance on multicore systems. We
have previously proposed a parallel AkNN algorithm called
SCF using data filtering to exclude unlikely £-NN points.
Before searching, SCF must build an index over the dataset,
as needed in all AkKNN algorithms. SCF divides the data
points into a number of subspaces with low-dimensionality

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2748131, IEEE

Transactions on Computers

TABLE 1
The rank estimation using SCF with different formations of subspaces and PCAF in an example.

(a) A 4-dimensional example with query, ¢, and
points, A, B, C, D. RED and the exact rank of

points are listed. le1 e3] [e2 e4].

(b) EED and rank of using SCF with different
formations of subspaces: [e1 e2] [e3 es] and

(c) EED and rank using PCAF with
only 1 principal component. p; lists the
projections of all of the points

e1 | ea | es | es RED | Rank SCF [e1 e2] [es e4] [e1 e3] [e2 e4] PCAF p1 EED | Rank
q 1 1 1 1 - - EED Rank EED Rank q -10.77 - -
A 1 1 14 | 15 | 19.10 4 A 16.66 3 17.12 4 A 7.29 18.06 4
B 2 3 7 11 11.87 2 B 8.67 1 13.19 2 B -0.73 10.04 2
C 4 5 5 5 7.55 1 C 10.32 2 9.57 1 C -7.05 3.72 1
D 5 6 12 | 10 | 14.90 3 D 17.57 4 14.51 3 D 0.48 11.25 3

in order to alleviate the problem of the curse of dimensional-
ity [2], [18]. Then, in each subspace, SCF uses k-means [9],
[19] clustering to divide the points into clusters. The centre
of each cluster is used to estimate the distance between the
query and the points of the cluster in the subspace. Finally
the distance between the query and any given point in the
original high-dimensional space is estimated by summing
up the distance between the query and the point’s projection
within each subspace.

Table 1la gives an example of k-NN search with one
query and four points in a 4-dimensional space. The Real
Euclidean Distance (RED) and the rank based on it are also
listed in the table. We use only one query and four points
here, but in real applications, there will typically be tens of
thousands of queries and data points in each pair of images
and thousands of images to be searched and matched pair
by pair. This domain thus needs high-performance parallel
computing if results are to be calculated rapidly.

To demonstrate how SCF works, suppose SCF divides
the original space into two subspaces: the first two di-
mensions form one subspace and the remaining two form
the other. In each subspace, two clusters are formed and
the centre of each cluster is used to estimate the distance
between the query and the points of the cluster. Based
on that, the Estimated Euclidean Distance (EED), which is
calculated by summing up distances from the query to each
group centres, is shown in Table 1b (for more details about
how the EED is calculated refer to [8]).

From the table, the rank of the points is B,C, A, D
according to the EED. However, according to the RED in
Table 1a, the rank is C, B, D, A. Based on the estimation,
if only one nearest neighbour is requested, in this case, the
precision of the result using SCF is 0—the matched point is
not actually the closest.

However, if we change the partitioning of dimensions
for the subspaces, SCF may produce the correct results. For
example, we instead choose the first and third dimensions
to form the first subspace and the remainder to form the
second. Likewise we create two clusters in each subspace.
According to the EED calculated by SCF listed in Table 1b,
the rank of the points is C, B, D, A, which is exactly the
same as their rank in RED. Therefore, the precision of each
search of k-NN for k € [1,4] using SCF would be 100%.

The above example demonstrates that the precision of
SCF is seriously affected by how the subspaces are formed.
Forming the optimal subspaces to achieve the highest pre-
cision is data dependent. It is difficult to determine how
much it will depend on the nature of a given dataset, and
thus may vary significantly between applications.

* 2 dimensional point

* principal component

- vertical line to v
distance between points

Fig. 1. The first principal direction v of the dataset having p,, ¢ € [0, 10],
where all points lie close to v except p

In the following section, we propose a PCA-based filter-
ing method called PCAF for AENN search. It has the same
advantages of using the data filtering strategy: high scala-
bility, small memory footprint, and reduced computational
overhead. More importantly, compared with SCF, PCAF has
stable, higher precision k-NN results due to its accurate
rank estimation of Euclidean Distance using the principal
components of the dataset points.

3 PCA-BASED FILTERING (PCAF)

Principal Component Analysis (PCA) is a popular algorithm
used to reduce dimensionality, that can alleviate the curse
of dimensionality in some contexts. It uses an orthogonal
transformation, ¢ : V. — V’/, to convert a set of data
values of possibly correlated variables denoted as p into
a set of data values of linearly uncorrelated variables ¢(p)
called principal components. The D-dimensional space V is
the original space containing p, while V"’ is called the PCA
space holding the principal components ¢(p)—the projec-
tions of p in V. According to the definition of orthogonal
transformations, it preserves distance in Euclidean space.

Vp;,p; € V = 3p(p;). p(p;) € V'and

le(Pi), w(p))Il = lIpis Pyl @)
where o(p) =U" - p

So that the rank of distance to a query in V' is maintained in
the D-dimensional PCA space V.

For a high-dimensional dataset, if the correlation be-
tween the dimensions is strong, the information of the
dataset can be represented by a small number of principal
components, which taken together have lower dimensional-
ity. Using this small set of principal components denoted as
&(p), the data set can be projected into a lower-dimensional
space while preserving most of the original information i.e.
the distance rank between ¥p € V. The projection ¢(p) is
calculated as follows, where U is split into the submatrix U
that we care about, and unused columns A,

¢(p)=U" -p, U= [U] A)

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2748131, IEEE

Transactions on Computers

We use Figure 1 to illustrate the distance rank relationship
between V and ¢(p). We suppose there is a group of points
p;, ¢ € [1,10] in a 2-dimensional space V. The first principal
direction found by using PCA is represented by the arrow-
pointed vector v. Since most of the points lie close to v, the
distance rank of the points p;, € [1,10] is preserved in the
principal component ¢(p)—the projection of the points on
v, in the PCA space. As shown in Figure 1, except for p,,
the distances of all points to q have the same rank in both
V and the PCA space. More detailed theoretical analysis is
beyond the scope of this paper and can be found in [20],
[21], [22]. Based on this property of PCA, PCAF uses the
projections/principal components to estimate the rank of
distances between the query and the points. Note that dif-
ferent from most AkNN algorithms, what we estimate is the
rank of distances instead of the real distances, because the
distances calculated with projections are in a transformed
low-dimensional space, which is different from the original,
high-dimensional space. From Table 1c, we can see that
the rank of distances between the query and the points
in the 1-dimensional PCA space presented by the principal
components p; is C, B, D, A, which is exactly the same as
the rank of those in the original space.

In many real-world domains, the dimensions are more or
less correlated [23]. For example, SIFT features [24], which
are popular in computer vision applications, have many
dimensions that are correlated with each other [25], [26],
[27]. From our experiments, often we only need around
10 dimensions in the PCA space projected from the space
of hundreds of dimensions. This shows us that we could
possibly use very low-dimensional PCA-converted points’
projections to accurately estimate the rank of distances
between the query and the points. This approach can save a
large amount of computation by calculating the distances in
a very low-dimensional surrogate space.

In PCAF, before searching, PCA is applied to the centred
dataset to find the principal axes in the PCA space. Then,
the points are projected into the surrogate PCA space, and
the query is projected into the same PCA space. PCAF
maintains two heaps for the current k nearest neighbours.
The main heap contains the current k nearest neighbours
ranked by the distance of the original space. The filter heap
contains the current k£ nearest neighbours ranked by the
distance of the PCA space.

During search, the distance between a point and the
query in the PCA space is calculated first. If the distance
is larger than the largest distance in the filter heap, we
simply drop the point as it is unlikely to be one of the
k nearest neighbours. In this way, we can filter out many
points with a low computational overhead. For example,
in Figure 1, for 2-NN search in the projected PCA space, 9
points (p;, 4 € [2, 10]) out of 11 will be filtered.

However, as the reader can notice, the false 2-NN result
Py is kept as a candidate but one true 2-NN pg is incorrectly
filtered. The reason is that the difference between the query
q and p, mainly lies along the other directions rather than
the principal directions. Therefore, the projection of p, to
the principal direction is very close to the projection of q.
Fortunately, according to the principle of PCA, statistically
most points should lie around the principal directions and
the cases of p, are very rare [20]. To counteract the effect

3

of the rare cases of py, PCAF uses a scale factor to enlarge
the selection scope of k-NN in the PCA space and verifies
the selected potential k-NN points using the real distances.
That is, the filter heap is larger than the main heap and when
the distance is smaller than the largest distance in the filter
heap, PCAF calculates the distance between the point and
the query in the original space, V. If the distance is larger
than the largest distance in the main heap, we drop the
point; otherwise, the distance of the point is inserted into the
main heap and the corresponding distance in the PCA space
is inserted into the filter heap. In this way, points like p,
are excluded while the true candidates are included. After
each point is processed as described above, the k nearest
neighbours are in both heaps.

In PCAF, there are two overheads that are related to
PCA. The first is the PCA transformation applied to the
dataset, which projects the points into the PCA space. This
is a one-off cost, and is similar to the overhead of building
indices in other AkKNN algorithms according to our exper-
iments. Moreover, if necessary, this PCA process could be
parallelised to further reduce the overhead, as many parallel
PCA algorithms have been proposed already [28], [29], [30].

The second overhead is the projection of the query into
the PCA space. It involves a multiplication between a d x D
matrix and a vector of size D, where D is the dimensionality
of the original space and d is the dimensionality of the
PCA space. This one-off cost is amortised over the distance
computation against tens of thousands of points, as the
same projected query will be reused by each point in the
dataset. In order to simulate a real k-NN problem, we
execute the query projection process as part of the searching
in the current algorithm. Thus our performance evaluation
includes the aforementioned overhead. It is worth noting
that, if necessary, this overhead could be preprocessed in
most practical applications and easily parallelised by using
multiple CPU cores or SIMD floating point units (e.g. SSE),
but it is a relatively small cost in any case.

The advantages of PCAF can be summarised as follows.

e Itreplaces the distance calculations between points in
a high-dimensional space with the calculations in a
surrogate low-dimensional space. The computational
overhead is substantially reduced.

e The memory footprint is greatly reduced as only
the low-dimensional projections are accessed most of
time. This is extremely helpful for multicore systems
that suffer from memory bottlenecks.

o The precision of k-NN results is significantly im-
proved compared to other AkNN algorithms due to
the use of principal components for rank estimation.

4 IMPLEMENTATION OF PCAF

The main idea of PCAF is to use the distance rank in the
surrogate PCA space to filter out the points that are unlikely
to be in the k-NN set. In this section, we will discuss: (i) the
rank estimation in the PCA space, (ii) the filtering algorithm
in detail, and (iii) our fine-grained data parallelism in PCAF.

Note that, like other AkNN algorithms, to reduce com-
putational overhead, we use the squared Euclidean distance,
[p; — P, to measure the distance between two points p;
and p; in the rest of the paper.

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2748131, IEEE

Transactions on Computers

4.1 Rank Estimation with PCA

We use the Singular Value Decomposition (SVD) [31] to find
the principal components of the dataset after it is centred.
The principal axes in the PCA space are represented by a
d x D matrix denoted as UT, where D is the dimensionality
of the original space, and d < D is the dimensionality of the
PCA space or the number of principal components. Having
computed U' for the dataset R = {p;,Pq,--.,Py} We
need to project everything into the PCA space using

73’:{13’17~--,p'zv}]
={U"(p; = P),--..UT(py — D)} 3)
d=0"(qg-p),)

where p is the mean of the points in R, that is p =
+ Zf\il p;- These processes can be accelerated through
parallel computing since either parallelisation of SVD
or matrix-vector structured multiplication has been well-
studied [28], [32], [33].

As UT and R’ are used by all queries, the computation
of these two matrixes is one-off preprocessing. Although
the complexity of this overhead is O(D?), other AKNN
algorithms have similar overhead for building search in-
dices. According to our tests, using a single core of the Intel
Xeon processor in our experimental environment, this one-
off time overhead of PCAF is between 0.01s and 4.5s. This
time can be further shortened if only necessary components
are computed during the SVD decomposition process [34].
In contrast, the index building overhead of other AKNN
algorithms is between 0.01s and 70.5s depending on pre-
cision (for detailed experimental results refer to [35]). How-
ever, this one-off overhead is amortised over large numbers
(thousands) of queries.

After the projection, the distance in the PCA space be-
tween the query projection g’ and each projected point, p’ in
set R’ is calculated. This distance is used to rank the points
using the filtering method described in the next section.

4.2 Filtering Method

Algorithm 1 gives the detailed description of data fil-
tering in PCAF. For each point p,;, PCAF first calculates the
distance between the corresponding projected point, p;, and
the projected query q'. If this distance, ¢’ is smaller than the
maximum distance in heap’, then §, the distance between
p; and q, is calculated. If § is smaller than the maximum
distance in heap, then § is inserted into heap, and &’ is
inserted into heap’. The final k-NN results are in heap after
the above process is repeated for each point in the dataset R.
Note that, in Algorithm 1, m > 1 is used to adjust the size
of heap’ to accommodate slight errors in the ranking under
the principal axes U'. A value of 2 is enough for most cases,
and incurs a negligible overhead. We will elaborate on this
in Section 6.2.

4.3 Data parallelism

PCAF is particularly parallelisable since the there is no de-
pendence in the search of k-NN within each query and the
points can be searched in parallel for the same query. This
is different from other AKNN algorithms like a kd-tree [9]
where each query has to retrieve the index sequentially.

Algorithm 1 PCAF data filtering

Input: R = {py,...,py}: set of points
Input: R’ = {p},...,p'v}: set of projected points
Input: q: query point
Input: q': query point’s projection
Input: k: number of nearest required
Input: m: heap scaling factor
Output: heap: contains the k-NN results
1: Initialise each element of heap of size k with co
2: Initialise each element of the temporary filter heap heap’
of size km with oo
3: foralli € [1,N] do

4 0 lq" — pilf?

5. if & < heap’.maz then
6 d« la—pl

7 if 6 < heap.max then
8 heap'.insert(5")

9 heap.insert(0)

10: end if

11: end if

12: end for

13: return heap with the k nearest points

Reference Dataset Partition ID Query Dataset heap
v N— !
EAS N
i |
o T
N N
s |1 |
Lo .

1 N
N |
5 1S-1
A

Fig. 2. Fine-grained parallel implementation based on data partitioning.
Each task searches a set of % points and maintains its own k-NN results
in a heap.

Though the retrieval of the index within a query could
be parallelisable, this complex parallel algorithm does not
appear in available in k-NN implementations.

In PCAE, the projections in the PCA space are divided
into S subsets, which are searched in parallel by threads
using the same query as shown in Figure 2. In the figure,
each task works on a subset of projections and maintains its
own heaps. As the sizes of the heaps are very small (2 and
4 for most image processing applications), the extra space
overhead has no noticeable impact on the performance but
the support of fine-grained parallelism allows PCAF to run
with high performance.

After the k-NN results are obtained from each subset,
the final k-NN results are computed using a simple selection
algorithm, such as the k-max heap used in our experiments.

4.4 Time and Space Complexity

The preprocessing of PCAF includes four steps. The first
is centring the dataset R, which also produces the mean
vector p for later projection of points. The time complexity
of this step is O(IND). Secondly, computing the covariance
matrix has a time complexity of O(ND?). Then, SVD must

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2748131, IEEE

Transactions on Computers

be applied on the covariance matrix to obtain the singular
values ¥ and U matrix. X helps to compute the variance
retained in the PCA space. The SVD process has O(D?) cost.
Finally, generating U, which is a submatrix consisting of the
first d columns in U, and projecting all the points in the
dataset into the PCA space using U', costs O(N). As the
magnitude of N dominates the other parameters, the time
complexity for preprocessing can be simplified to O(NV).

During the searching, PCAF takes little space to store
the d x D projection matrix U', and D-vector p. During
runtime, storing the projection of points takes O(Nd) space,
and the query O(d) space. As the magnitude of N domi-
nates the other parameters, the space complexity for PCAF
can be simplified to O(V).

PCAF can save time by reducing the number of dis-
tance calculations. Supposing the time for distance com-
putation with all points for each query in the original (D-
dimensional) space is Tp, and the filtering rate of excluded
reference features is F' € [0, 1). Theoretically PCAF takes
(1— F + &) Tp time for distance computation. According
to our experimental results, d is much smaller than D, and
F > 95% in most cases. The extra cost for query projection
during searching is only O(dD). PCAF is very efficient and
avoids many unnecessary distance computations.

We will illustrate detailed performance comparison with
other k-NN algorithms in Section 5. Also note that by adjust-
ing d, m (heap scaling) and S (the number of data subsets)
in PCAF, the performance and precision changes. We will
discuss the impact of each parameter on performance and
precision in Section 6.

5 EVALUATION

In this section, we evaluate the performance of our method
against a brute-force k-NN algorithm, two state-of-the-art
data selection AkNN algorithms and a data filtering AKNN
algorithm on one synthetic dataset, five real-world datasets
and a very large benchmark. The performance improve-
ments attained on two different multicore platforms are
analysed. All experiments are executed at least three times
to make sure that stable results are obtained.

5.1 Experimental Setup
5.1.1 Multicore platforms

Two multicore platforms are used in our evaluations:

a) Intell6: Intel(R) Xeon(R) CPU E5-2665, 8 cores x 2
sockets @ 2.40 GHz, 20 MiB L3 shared cache, 128 GiB
DDR3 (1600 MHz) memory, icc-14.0 compiler.

b) AMD64: AMD Opteron Processor 6276, 16 cores x 4
sockets @ 2.3 GHz, 16 MiB L3 shared cache, 512 GiB
DDR3 (1600 MHz) memory, gcc-4.8 compiler.

5.1.2 Algorithms
We compare our algorithm with the four algorithms below:
a) Brute-force (BF): searches k-NN exhaustively in the
whole database and gives the accurate k-NN results.
b) Randomized kd-trees (RKD): an efficient variant of
the popular kd-tree algorithm [36]. Multiple trees
are built as its index structure. During searching, it

5

traverses these kd-trees and puts promising candi-
date nodes in a queue for distance calculations. The
k-NN results contained within these nodes are the
approximate £-NN results.

¢) Random Ball Cover (RBC): a state-of-the-art scalable
k-NN algorithm for multicore platforms [6]. First,
it randomly chooses several representative points
to represent a number of subsets of size s, each
of which contains s points that are nearest to one
representative. To produce the AENN results, it finds
the nearest representatives and then searches within
those subsets using BF.

d) Subspace Clustering for Filtering (SCF): a recent algo-
rithm that implements a data filtering strategy within
the k-NN search problem [8], as discussed before.

We implement BF and RKD using the FLANN library
[37], which provides fast AKNN search functionality for
computer vision related tasks. The implementations of RBC
and SCF are taken from the open source code provided in
previous work. The parallelisation is carried out by using
OpenMP. Note that all of our code uses Eigen [38] to per-
form matrix algebra. Eigen is a popular C++ library for lin-
ear algebra, matrix and vector operations, numerical solvers
and related algorithms. In particular, the SVD decomposi-
tion in PCAF is adopted from Eigen and is a two-sided
Jacobi R-SVD decomposition [34]. Although this Jacobi R-
SVD is slower than the bidiagonalizing SVD algorithm [39],
it ensures optimal reliability and accuracy. All of our code is
available from our repository [35] on GitHub.

5.1.3 Datasets

The test datasets listed in Table 2 are used to evaluate
the performance of the aforementioned algorithms. Among
them, four are real-world datasets from the fields of com-
puter vision and machine learning. “Digits” contains hand-
writing digits that have been size-normalised and centred
into an 8 x 8 image. “SIFT” and “GIST” are generated from
real images by extracting SIFT [24] and GIST [40] descrip-
tors, which are two of the most widely used image feature
detectors in computer vision [41]. “HAR” contains sensor
readings related to 30 real-world subjects performing daily
living activities, which are recorded by waist-mounted, em-
bedded sensors. The others are artificial datasets: “Random”
contains points that are chosen from a uniform distribution,
and “Madelon” contains data points grouped in 32 clusters
placed on the vertices of a five-dimensional hypercube.

TABLE 2
Overview of test datasets.
Size Dimen- | Number of | Number of

Name (MB) | sionality points queries
Digits [42] 0.93 64 3823 1797
Random 12.21 128 25000 7500
SIFT 27.38 128 56074 9929
Madelon [43] 3.81 500 2000 1800
GIST 5.86 512 3000 1000
HAR [44] 15.73 561 7352 2947

We separately analyse a dataset called “GISTIM” [12]
in Section 5.6 to further evaluate the performance of the
algorithms for a ‘big data” use case on multicore platforms.

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2748131, IEEE

Transactions on Computers

The dataset is 3.8 GB in size and contains one million 960-
dimensional points and 1,000 queries extracted from a vari-
ety of images by using global colour GIST descriptors [40].

5.1.4 Parameter Settings

In order to find the performance bounds of each algorithm,
we conduct as many scenarios as possible by adjusting
parameters. We use X € [start ... end, Astep] to denote that
parameter X ranges from value start to value end with an
increase of step.

The RKD algorithm has two important parameters. The
number of trees to build for indices greatly affects both
indexing time and searching precision. The checks parameter
represents the number of neighbouring buckets that should
be checked during the search. As these parameters are
increased, search time increases, but the results will be more
precise [9]. We set trees as 4, 8, 16, 32, 64 or 128 and tested
checks € [128...5120, A128].

The number of randomly chosen representatives in RBC
positively affects the precision and negatively affects the
search time [6]. Suppose n = |V/N|, then the number of
representatives is chosen from [n ... N, An].

For SCE the number of subspaces and clusters are im-
portant parameters [8] and are set within [4...64, A4] and
[8...32, A8] respectively.

The dimensionality of the PCA space, d, in PCAF is
determined by the percentage of information/variance in
the dataset that is retained in the PCA space. The lower
and upper bounds of d listed in Table 3 are determined by
the cases when 50% and 90% of the variance is retained,
respectively. The heap scaling factor, m, is set from 1 to 5,
while the datasets are partitioned into S parts, where S is
set either 1, 2, 4, 8 or 16.

TABLE 3
The setting of d is chosen starting from the derived value when 50% of
the variance in the dataset that is retained to the 90% case with an
increase of step.

Digits| Random| SIFT | Madelon| GIST| HAR
50% 5 61 10 53 8 1
90% 21 114 58 223 67 34
step Al Al Al Ab Al Al

5.1.5 Evaluation Metrics

As a baseline for performance we use the brute-force (BF)
method that checks the query, q, against each of the points
p;. Although computationally expensive, this method is
guaranteed to return the exact k-NN results. We use three
metrics to evaluate the parallel performance, and two more
metrics to evaluate the filtering effectiveness of each data
filtering algorithm:
a) Time: the total time used for searching.
b) Improvement: the search time of the exact BF solution
divided by the search time of the AkNN algorithm.
c) Speedup: the sequential search time of an algorithm
divided by its parallel search time. It measures the
scalability.
d) Precision: the percentage of k-NN results that are
correctly found.
e) Filtering rate, F: the percentage of points that are
excluded. It is used to help measure the effectiveness
of the filtering method.

5.2 Comparison with Brute-force

Brute-force (BF) is the traditional and straightforward im-
plementation of a k-NN algorithm that provides accurate
results. PCAF shows a great enhancement over BF in both
speed improvement and scalability when exact k-NN results
are retrieved.

5.2.1 Performance Improvement

In this section, we evaluate the parallel performance im-
provement when using all available cores. The improve-
ments that PCAF can achieve over BF on various datasets
are listed in Table 4.

TABLE 4
Performance improvement compared with BF search time (in seconds)
after applying PCAF to each dataset on each platform using all
available cores without losing precision.

Platform|| Digits| Random| SIFT | Madelon| GIST| HAR

Intel16 2.47 1.07 3.66 | 1.99 585 | 2.25

AMD64 || 2.54 3.51 10.29| 1.95 6.76 | 7.95
TABLE 5

Filtering rate, F', and the required PCA space dimension, d, for PCAF
to produce exact k-NN results for each dataset.

Digits| Random| SIFT | Madelon| GIST| HAR
F(%) 95.27 | 94.70 98.60| 87.53 96.81| 62.93
d 5 90 15 53 8 24

The improvement mainly comes from the reduction in
distance computations. The complexity of distance compu-
tation in BF is O(N D), but in PCAF itis O((1 — F)ND) +
O(Nd), where F is the filtering rate of excluded points
for distance computation, and d is the dimensionality in
PCA space. From Table 5, we can observe a high F' and
a small d in most of the datasets, which allows PCAF
to significantly reduce the computation needed, and thus
provides a considerable speed improvement.

The improvement varies between different datasets be-
cause the amount of computation reduction varies. Take, for
example, the datasets “SIFT” and “Random”, which both
consist of 128-dimensional data points. The dimensionality
is greatly reduced in “SIFT”: a 15-dimensional PCA space
is sufficient to preserve most of the information from the
original 128-dimensional space. However for “Random”,
90 principal components have to be used for projections.
Although the filtering rates between “SIFT” (98.60%) and
“Random” (94.70%) are similar, the search time is signifi-
cantly affected by the cost of the rank estimation, which is
based on distance computations between projected points.

5.2.2 Scalability

PCAF has outstanding scalability for very high-precision
k-NN search. Compared with BF, PCAF only frequently
accesses % of the dataset. Due to space restrictions we only
use the dataset (“SIFT”) as the example here to compare
the scalability with BF for highly precise (in this case exact)
k-NN search.

As shown in Figure 3a, both PCAF and BF have consider-
able scalability on the Intel16 platform. By examining hard-
ware performance monitoring counters, we find that PCAF
has a 20% reduction in L2 cache misses compared to BF, but

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2748131, IEEE

Transactions on Computers

——PCAF —o—PCAF
—BF —BF

1 4 16 1 8 16 24 32 40 48 56 64

numberaof 1hread152 number of threads

(a) Intel16 (b) AMD64
Fig. 3. Scalability of PCAF and BF for “SIFT” dataset to find exact k-NN
results on the Intel16 and the AMD64 platforms.

Digits Random SIFT Madelon GIST HAR

0
I Pc_PCAF I \PC_BF
Fig. 4. Performance monitoring counter statistics for the AMD64.

MPKI_PCAF ' == MPKI_BF

the scalability improvement due to having fewer memory
accesses is minor. This is because the Intel16 platform has a
high memory bandwidth, so that the memory wall problem
does not emerge. However, as the current trend is for CPUs
to include more and more cores, the memory bandwidth
will eventually be an inevitable issue.

Figure 3b shows the scalability on AMD64, where PCAF
provides significant scalability while the curve of BF is quite
flat. This is because unlike the Intel16 platform, the 64-core
AMD64 platform suffers serious memory latency issues.
The statistics from performance monitoring counters shown
in Figure 4 help explain the results: the improvements to
retired Instructions Per Cycle (IPC), which indicates the
computation efficiency of the algorithm, is highly related
to the reduction of last-level cache Misses Per (1000) In-
structions (MPKI). When MPKI decreases, IPC increases
accordingly, which leads to better scalability. Since the MPKI
of PCAF is really small in all the cases, PCAF can be seen to
be cache-friendly, and thus achieves substantial scalability.

5.3 Comparison with Data Selection Algorithms

Randomized kd-trees (RKD) and Random Ball Cover (RBC)
are two typical data selection algorithms for AkNN search.
RKD is highly efficient but its tree-based index structure
becomes a barrier to achieving high parallel performance.
RBC is developed as a state-of-the-art £-NN algorithm for
multicore platforms, however it involves a large amount of
unnecessary distance computations.

Compared with RKD and RBC where approximate k-NN
results are required, PCAF produces higher precision results
within shorter search times, and shows large improvements
in scalability.

5.3.1 Performance Improvement

Figure 5 shows the search time of each algorithm on the
Intel16 platform when using all available cores for different
datasets reaching above 90% precision. The search time of
BF is marked in the figure for reference. Due to space
constraints, we omit the AMD64 results as they show similar
trends to the Intel16 platform.

7

Figure 5 shows PCAF to be the only method that can
provide exact results for every dataset. It is also the quickest
to produce high precision k-NN results. As the majority
of unnecessary distance computations between points is
filtered, the advantage becomes much clearer as the dimen-
sionality of dataset increases.

RKD produces k-NN results with good precision in a
very short time only for lower-dimensional datasets such as
“Digits”. This is because RKD divides the reference space
into bins along the axis of dimensionality, which makes it
efficient for searching in low-dimensional space [9]. When
it comes to high-dimensional space where the curse of di-
mensionality arises, RKD needs to spend much more time on
visiting many more branches to achieve high precision [45].
Moreover, the precision of k-NN results found by RKD
converges at a precision that is less than 100%.

RBC performs better than RKD in most cases, but it
produces high precision results more slowly than PCAF. The
only exceptions to this occur for lower precision (<97%) k-
NN results from the “Digits” and “SIFT” datasets, where
RBC is slightly faster than PCAF. However RBC cannot
sustain results at high precision. Above 99.55% (“Digits”)
and 99.99% (“SIFT”) respectively, RBC takes 5.18x and
2.91x the search time of PCAF.

The improvement mainly comes from PCAF avoiding
computation, as shown in Figure 6a. Based on performance
monitoring counters, the ratio of total retired instructions
compared to BF is the lowest for PCAF. A large proportion
of computation is avoided compared to RKD and RBC,
which brings PCAF the substantial improvements observed.
Note that the number of retired instructions in RBC is more
than that in BF since RBC performs redundant distance
computations to achieve high precision.

5.3.2 Scalability

In this section, we evaluate the scalability of our algorithm
compared with RKD and RBC. Given the space available, we
only examine the “Madelon”, “SIFT” and “HAR” datasets,
which were found to be representative. The sizes of “Made-
lon”, “Digits” and “GIST” are all quite small. “HAR” is
much larger than “Madelon”, and the dimensionality is the
highest of all the datasets. “SIFT” is the biggest dataset
among all the datasets, but the dimensionality is only a
quarter of “HAR”, and “Random” is similar. To consider
the scalability of each algorithm under a reasonable search
precision, we plot the average speedup of selected cases that
produce results that are more than 95% accurate. We also
excluded results that have longer search times than BE.

The difference in scalability between each algorithm on
Intell6 is not substantial, as shown in Figure 7, and which
has been explained in Section 5.2.2. While the AMD64
platform showed significant variance between repeated ex-
perimental runs. We thus add the maximum speedup that
we observed in each case as a dotted line on the graphs
in Figure 8. As “Madelon” is small enough to fit in the
last-level cache, as on the Intell6 platform, the scalabil-
ity improvement is not obvious. However for “SIFT” and
“HAR”, a disparity is seen. In all cases, PCAF reaches the
best maximum scalability, and provides the best average
speedup.

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2748131, IEEE

Transactions on Computers

2 ©
0000 o0 00%

0.04
o PCAF
* RKD
0.03 RBC
O
o 0.02 n
E *
- A
0.01 oo %%)
o0 ©°° *
o % 0% &0 *%‘%%OOM

L RE A

0
90 92 94 96 98

100 "90 92 94 96 98 100 90 92 94 96 98 100
precision (%) precision (%) precision (%)
(a) Digits (b) Random (c) SIFT
0.1 0.1 -
’ *ay 0.6
0.08 A 0.08 g™ ’
« %, 05
- _ *1 =
©0.06) ©0.06 - o ©04
o) * o o) - 1)
£0.04 o 9° £004 1 e " E03
® 00 "?g o 0.2
002}, 3855 < Gibwhe 3 oozl favt 2
T o
0 0 0
90 92 94 96 98 100 90 92 94 96 98 100 90 92 94 96 98 100
precision (%) precision (%) precision (%)
(d) Madelon (e) GIST (f) HAR

Fig. 5. Search time under different precision (>90%) for each dataset on the Intel16 platform using all available cores. Note that the black line shows

the time cost for BF. The legend in (a) also applies to (b)—(f).

o
IS

©

instructions ratio

L3 cache misses ratio
° ~

Digits Random SIFT Madelon GIST HAR Digits Random SIFT Madelon GIST HAR

[PCAF EEIRKD [CIRBC I PCAF IEIRKD [CTIRBC

(a) Computation reduction (b) Memory reduction
Fig. 6. Ratio of performance monitoring counters compared with BF
for each algorithm on the AMD64 platform. Bars below 1.0 present
desirable reductions, otherwise show the undesired overhead.

The last level cache misses recorded in the performance
monitoring counters indicates the size of memory footprint.
From the ratio of misses compared with BF shown in Fig-
ure 6b, PCAF can be seen to gain memory performance in
almost all cases except “Digits”, which is a small dataset.
For very small datasets like “Digits”, the benefit of reduced
memory footprint is overshadowed by the non-contiguous,
interleaved memory accesses to points and projected points,
though the benefit of reduced computation still dominates
the overall performance of PCAF.

5.4 Comparison with a Data Filtering Algorithm

As far as we know, SCF is the only other published approach
to AkNN search that adopts a data filtering strategy. Com-
pared to SCF, PCAF produces stable and higher precision
results within less time and with similar scalability. In this
section, we evaluate both the parallel performance and the
effectiveness of the filtering.

The frequently accessed index in SCF has an O(Ns)
space complexity, where s is the number of subspaces
(usually s < 64)—for detailed analysis refer to [8]. PCAF’s
projections set R’ needs O(Nd) space. Supposing each
element in R’ is a 32-bit floating point number, while each
element of the index in SCF requires one byte of storage,
then when d < i, PCAF will have a smaller memory
footprint than SCE. As the dimensionality of projections in
PCA space depends on the properties of the dataset, the d in
our implementation for “Random” and “Madelon” is quite
large (when 50% of the variance is retained, d is 61 and 53

respectively), while for other datasets, d is relative small—
less than the dimensionality needed in the case of exact
searching shown in Table 5. Still, the difference between d
and i is small, which results in comparative scalability. The
speedup curves shown in Figure 9 support our analysis.
As we can see, PCAF is only slightly better in scalability
compared with SCE.

However, PCAF greatly improves the speed for high
precision AkNN search. This is because PCAF’s filtering
strategy is more effective than SCF’s, having a higher F' in
most cases, and thus avoids computation more effectively.
Likewise, when achieving the same filtering rate, PCAF pro-
duces more precise results. In a data filtering algorithm, the
AENN results come from the non-filtered points, thus we
compare the filtering effectiveness by plotting the precision
achieved under the same filtering level in Figure 10. Due to
limited space, we only present the high F' levels between the
range of (95,97] and (97, 100], which are also key regions of
concern for data filtering AkNN algorithms. Also note that
the blank in “Madelon” for SCF is because the highest F'
SCF can reach for “Madelon” is only 82.74%. As we can
see, PCAF produces nearly 100% precise results when F' >
95%, which is higher than SCF in all datasets. Thus there is a
higher probability of the PCAF filtering method discovering
the true k-NN points during searching, while false filtering
occurs in SCF.

5.5 Preprocessing Comparison

In this section, we evaluate the preprocessing cost of PCAF
with all the other algorithms’ indexing cost using the six test
datasets.

The preprocessing cost of PCAF and the indexing costs
of all other algorithms on Intell6 are listed in Table 6. The
left part of the table shows the time consumed in seconds
when achieving a precision of >90% while the right part
shows the preprocessing time for achieving a precision of
>99%. The indexes are built by a single CPU core for all
algorithms except RBC. RBC provides a parallel algorithm
for index construction, so its index is built using 16 cores.

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2748131, IEEE

Transactions on Computers

4 8 12 16

number of threads

(a) Madelon

1 4 8 12 16 1 4 8 12 16
number of threads number of threads
(b) SIFT (c) HAR

Fig. 7. Scalability of each algorithm on the Intel16 platform, for results with a precision above 95%. The y-axis represents the speedup over the

sequential algorithm.

——
-o- PCAF

——
-# RKD

1

8

number of threads

(a) Madelon

16 24 32 40 48 56 64

—

-o- PCAF
—— -
-» RKD 0

RBC e

S -%- -y -g--p -y

8 16 24 32 40 48 56 64
number of threads

(b) SIFT

1 8

16 24 32 40 48 56 64
number of threads

(c) HAR

Fig. 8. Scalability of each algorithm on the AMD64 platform, for results with a precision above 95%. The y-axis represents the speedup over the
sequential algorithm. The continuous lines represent the average and dotted lines the maximum speedups that were observed.

15

—o—PCAF
SCF

—o—PCAF
SCF

TABLE 6

Preprocessing cost of AkNN algorithms on Intel16

1 4 8 12
number of threads

(a) Intel16

%

//

16 1

8 16 24 32 40 48 56 64
number of threads

(b) AMD64

Fig. 9. Scalability of SCF and PCAF for the “SIFT” dataset on the Intel16
and the AMDG64 platforms.

100 100

)
©
&
©
&

precision (%,
8
precision (%)

©
&

80 I 80

Digits Random SIFT Madelon GIST HAR
I PCAF [EISCF
(a) Filtering rate, F', between (b) Filtering Rate, F', between
(95,97] (97,100]
Fig. 10. Precision of PCAF and SCF in the same filtering level

Digits Random SIFT Madelon GIST ~HAR

B PCAF I SCF

As suggested by the time complexity analysis in Sec-
tion 4.4, PCAF’s preprocessing is efficient when the di-
mensionality (D) of the dataset is relatively small com-
pared with the dataset scale (V). Thus, in “Digits”, “Ran-
dom” and “SIFT” datasets, PCAF is the fastest. For the
other higher-dimensional datasets “Madelon”, “GIST” and
“HAR”, PCAF is slower than the others. This is because in
these datasets, the number of points included is small (sev-
eral thousands) compared with the dimensionality (of over
500). However, in reality, IV is usually very large and dom-
inates D. In the further tests on the real-world “GISTIM”
dataset in Table 8, PCAF shows significant advantages over
the others. We expect that datasets will increase faster in NV
than in D, and thus that PCAF will be increasingly efficient
compared to other algorithms in dealing with such future
datasets.

Besides, PCAF has relatively fixed preprocessing time.
To produce more accurate results, PCAF usually projects

Dataset Precision > 90% Precision > 99%
PCAH RKD| RBC|] SCF || PCAF| RKD | RBC | SCF

Digits 0.01 | 0.03] 0.02] 0.06 || x1.17| x7.68| x2.40| x1.76
Random|| 0.11 | 547 | 2.61| 2.70 || x1.05| x8.13| x2.96| x1.00
SIFT 023 | 643 | 057] 451 || x1.01| x1.00] x2.73| x1.40
Madelon|| 2.81 | 0.09| 0.03| 0.62 | x1.00] x1.99| x1.48| x1.00
GIST 343 | 1.18| 0.04| 0.62 || x1.00| x1.00| x2.23| x1.18
HAR 431 | 0.39| 0.08] 1.94 || x1.00| x1.00] x1.82] x1.26

points into a higher-dimensional PCA space, which means
only redoing the last step of the preprocessing with a new U
while the results of all the other steps are exactly the same.
Thus, the time consumed for PCAF does not vary much in
all the datasets, which is shown in the right part of Table 6.
However, for the other algorithms, the indexing time in-
creases since RKD has to build more indexing trees, RBC has
to choose more representatives with more duplicated points,
and SCF has to divide the space into more subspaces and
form more clusters. Moreover, since all the other algorithms
have to rebuild entirely the indexes but PCAF only needs to
redo the last step, the precision tuning cost of PCAF is much
cheaper compared to the others.

5.6 Case Study of a Very Large Dataset

PCAF is very efficient in processing very large, high-
dimensional datasets and offers high search precision.
We use a very large and high-dimensional dataset—
“GIST1IM”—to evaluate the performance of PCAF and other
algorithms in a real ‘big data” application. We set the preci-
sion to be 95% for all algorithms. In our study, we show
the best parallel execution results for each algorithm that
satisfies the required precision.

Table 7 shows the performance of each algorithm on the
Intel16 and the AMD64 platforms. Compared with BF, the
performance improvements of PCAF on the Intel16 and the
AMD64 are 28.9x and 70.46x respectively, which are the
best of all the algorithms. In these cases, PCAF estimates the

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2748131, IEEE

Transactions on Computers

TABLE 7
Performance of the parallel k-NN algorithms with precision over 95%.

Algorithm Precision Intell6 AMDo4

< (] <o L[]
PCAF 95.20% 2.22 | 28.90 2.72 | 70.46
BF 100.00% 64.22 1 191.64 1
RKD 95.15% || 13.35 4.81 32.67 5.87
RBC 95.00% 10.35 6.21 31.80 6.03
SCF 95.10% 12.75 5.04 16.61 | 11.54

o denotes the search time in seconds when using multiple cores.
o denotes the improvement against parallel BF when using multiple
cores.

TABLE 8
Parameters and preprocessing time of each algorithm.
Preprocessing (s)

Algorithm || Parameters Tntell6 T AMDGA
PCAF [dm ST [29 2 16] 1987 | 11161
RKD [trees checks]: [128 55000] 2930.63 | 3884.36
RBC [representatives]: [60000] 1294.14 | 2700.19
SCF [subspaces clusters]: [176 120] 2925.34 4884.64

rank of points based on a projected 29-dimensional (instead
of 960-dimensional) space, which results in a high filtering
rate of 99.79%.

Other algorithms do not perform as well as PCAF for
the dataset due to the following observations of our experi-
mental statistics in Table 8. RKD needs to build hundreds of
index trees and check thousands of branches for each query
to achieve a high precision of over 95% in such a high-
dimensional space, which is very time consuming. RBC
needs to duplicate > 59x the number of points in total to
ensure the high precision, which increases the search time.
Similar to PCAF, SCF can reduce computation by filtering
99.97% of the points from the distance calculations. How-
ever, the cost of estimation in the 960-dimensional space
using hundreds of subspaces and clusters is quite high.

Figure 11 shows PCAF has better scalability than other
algorithms on both Intel16 and AMD64 platforms, validat-
ing our previous conclusion that PCAF has much better
memory performance when the dataset is larger. Nonethe-
less, the scalability curve of PCAF flattens after 40-threads
on AMD64, when it hits a memory bottleneck. This is later
than the others, which flatten at or before 24-threads.

Table 8 also lists the preprocessing time for each algo-
rithm on the two platforms. The preprocessing is executed
by a single core for all algorithms except RBC, which is run
with all available cores. Although preprocessing is a one-
off cost, PCAF only takes 49.87s on the Intel16 and 111.61s
on the AMD64 to preprocess the “GISTIM” dataset—the
shortest among all the algorithms.

6 PARAMETER SELECTION

Balancing performance and search precision is a relevant
issue for AkNN algorithms. Typically, higher performance
can be obtained by sacrificing precision. However, very low
precision is definitely not acceptable in many application
domains. Balancing this trade-off requires the careful choice
of parameter values. In this section, we discuss the impact
of each parameter upon performance and precision in PCAF
to help with parameter selection.

There are three important parameters within PCAF: (i)
the dimensionality of PCA space, d, (ii) the scaling factor,

10
15
801 =—pcar
—-8-BF
210 S a0 |T*RKD
el o
3 3
Q o
® 5 @20
-
0 0
1 4 8 12 16 1 8 16 24 32 40 48 56 64
number of threads number of threads
(a) Intel16 (b) AMD64

Fig. 11. Scalability of the parallel k-NN algorithms for “GIST1M” on the
Intel16 and the AMDG64 platforms.

m, for adjusting the size of the heap, and (iii) the number of
partitions, S, for parallel processing of the dataset.

Including the metrics that have been introduced in
Section 5.1.5, we add an extra metric named effectiveness
(&) to evaluate PCAF. It is the product of filtering rate
and precision—{ = F' X precision. In this case, neither
low filtering rate nor poor precision would lead to good
effectiveness as high filtering rates are useless when they
result in poor precision, and low filtering rates with good
precision involve a high computational load.

6.1 Selection of Dimensionality in PCA space

Selection of the dimensionality, d, of the PCA space is very
important to PCAF as it impacts on every evaluation metric.
Theoretically, d can be chosen within the range of [1,
D]. If d is chosen to be identical to D, then the complete
variation information is contained in the projected space,
which can provide accurate ranks. But in this case, the
rank estimation requires distance computation between the
D-dimensional projections, which has the same high cost
compared with the real distance computation between the
original points. At the other extreme, if only one principal
component is used, the rank estimation has the least over-
head but may cause a large loss of precision. Therefore, an
optimal choice of d is vital to balance between the precision
and performance of PCAF. However, the choice is diffi-
cult to make because different datasets have different data
variation patterns. For some datasets, like “HAR”, a small
proportion of principal components is sufficient to contain
sufficient information about variance, but for others, like
“Random”, about one half of the components are needed
to guarantee the required precision. In our experiments,
we require a fixed percentage of variation to be retained
in the PCA space. Based on the percentage, we can derive
the required number of components. This method is more
adaptive and evidence-based than setting a fixed number of
components. More specifically, the lower and upper bound
of d in the experiments are set respectively to 50% and 90%
of the variance that is retained in the PCA space. The range
of d according to this method has been listed previously in
Table 3. In order to have a fair comparison, the settings of
other parameters are kept the same, e.g., the heap scaling is
set to 2 and the datasets are partitioned into 16 parts.
Figure 12 shows that both F' and precision increase with
d, thus so will £, which indicates that with more components
used for the PCA space, PCAF becomes more effective—
a larger number of points are filtered without calculating
their real distances but the k-NN results are more precise.
This is because projection into a higher-dimensional PCA

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2748131, IEEE

Transactions on Computers

90% 100% [~z 90%1009
88 1
86% 86% 80%
L P —————— 84% 70% [
829 98.5% | == 82% 60% |

—— 82%

o 80% 50%

8 18 28 38 48 58 1 6 11 16 21 26 31
(a) Digits (b) GIST (c) HAR

Fig. 12. The precision and filtering rate (F') under different dimensional-

ity of the PCA space (d). The axes of x, left-y and right-y are the number

of d, precision and filtering rate in percentage. The legend in (c) applies

to all subfigures.

98% 80% 98%

oo~

G
T

IS

©
w

n

2 |===-CR === Improvement

5 10 15 20 8 18 28 38 48 58 11 6 11 16 21 26 31
(a) Digits (b) GIST (c) HAR
Fig. 13. Computation reduction (CR) and sequential improvement of
PCAF over the brute force k-NN with an increasing d values Intel16.
The x-axis is the number of d. The left y-axis represents the value of CR
or improvement. The legend in (c) applies to all subfigures.

space contains more variance information about the original
reference dataset. Also, in a higher-dimensional PCA space,
the rank of the projected points in the PCA space gets closer
to the rank of the original data points. Thus more data points
can be correctly filtered.

Although a larger d raises the effectiveness of PCAF, it
also results in higher cost on distance computation in rank
estimation. According to our algorithm, the total cost of
distance computation, denoted as DC', consists of two parts:
the distance calculation for the d-dimensional projected
points during the rank estimation and the real distance
calculation for the unfiltered original points. Assuming the
distance computation cost of the brute force k-NN is DCpgF,
then DC can be derived in Equation 5. The computation
reduction of PCAF over the brute force k-NN algorithm,
CR, is expressed in Equation 6.

d

DC%EXDCBF—F(I—F)XDCBF 5)
D 1

cr = Dlsr _ (6)

DC 14+ 4&£-F

The search speed is highly affected by distance compu-
tation cost. This is supported by Figure 13, which shows
a high relevance between the improvement of PCAF in
sequential execution and CR. Equation 6 also indicates that
when d is much smaller than D, CR should be dominated
by F, as validated by Figure 13. For example, in the case
of “HAR”, the curve rises at the start due to the increasing
filtering rate when the ratio of d to D is between - and
Wil' Then the curve becomes flat until d reaches 12. After
that the performance gain from the increasing filtering rate
is overshadowed by the distance computation in the PCA
space with a larger d, which explains the drop of the curve.
For other datasets, the ratio of d to D dominates CR either
from the beginning or at an early stage, so the curve of CR
starts to drop at the beginning.

Note that only “Digits”, “GIST” and “HAR” datasets
running on the Intell6 platform are included in Figure 12
and Figure 13; the other datasets running on either Intel16
or AMD64 were found to show similar patterns.

11

3
3

~~~~~~~~
~~~~~
~—’

percentage (%
N @ o
3 3 8
.
N,
.
.
.
N,
\,
Y,
!
i
i
/
7
/
7
7
/
/
s
s
effectiveness (&)
o o o
>
<

=
3

—~=~precision 02
——F —#—5=1 —=-5=2

1 2 3 4 5 1 2 3 4 5
number of heap scaling (m) number of heap scaling (m)

(a) The precision and F with dif- (b) Effectiveness with different
ferent m whend = 7,S = 8. values of m and S whend = 7.
Fig. 14. The precision, filtering rate (F) and effectiveness (¢) of PCAF
with increasing heap scaling (m) applied to the “HAR” dataset.

S=4 —6—5=8 —7— 5=16]

12

- - °
1o I e B 00 o 25%
E k3]
o b S
8 8 2% =
o 2 o B
5 6 ©1.5% =
[3]
4 £ 1% o 3
5

2 £ 05% .
2

0 0%

1 2 3 4 5
number of heap scaling (m)

(a) Ratio of distance compu- (b)

number of heap scaling (m)

Percentage of number of
points that cause heap operations
search time on the Inteli6 and of heap operational instruc-
and the AMD64 platforms. tions on the AMDG64 platform.

Fig. 15. The analytical statistics with an increasing value for m applied
to the “HAR” dataset when d = 7, S = 8.

tation (DC') and sequential

In summary, with increasing d, the precision at first
rises up quickly, along with the performance improvement
of PCAF. Later, the performance improvement is over-
shadowed by the increasing cost of distance computations.
Therefore, we suggest choosing the value of d based on
a critical point where the performance improvement stalls
and yet the required precision is met.

6.2

The heap scaling factor, m, adjusts the size of the filter
heap that stores distances in the PCA space. Usually, for
an application searching for k-NN results, the size the filter
heap should be m x k, where k is set to 2 in most of the
real-world applications we investigated. m is set within the
range [1,5] in our experiments.

In PCAE the purpose of adjusting the size of the filter
heap is to mitigate the negative effect brought about by
false filtering. False filtering may occur when both the
query and a true k-NN candidate lie closely along a non-
principal component vector in the PCA space. In this case,
the projection distance between the query and a true k-
NN candidate point is incorrectly larger than the filtering
threshold—the maximum value in the filter heap. When the
heap size is enlarged, the filtering threshold becomes higher
accordingly. More points are kept for further verification.
This results in a falling filtering rate, but as more promising
candidates are included in these points, it helps increase the
precision. Figure 14a shows a typical case when m increases,
F decreases and the precision becomes higher. Note that,
since all the results are very similar, we only present the
results of “HAR” dataset in this subsection.

Since the variation patterns of precision and the filtering
rate under an increasing m act in an opposite manner, the
effectiveness £ plotted in Figure 14b can better demonstrate
the impact of m on the effectiveness of PCAF. From the
curves in the figure, each of which represents the variation

Impact of Heap Scaling

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2748131, IEEE

Transactions on Computers

12

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
number of partitions (S) number of partitions (S) number of partitions (S)

(a) Digits (b) Random (c) SIFT

1 2 4 8 16 1 2 4 8 16
number of partitions (S) number of partitions (S)

(d) Madelon (e) GIST

number of partitions (S)

(f) HAR

Fig. 16. The maximum speedup with a different number of partitions (S) and heap scaling (m) for results with precision above 99% when using all
cores on the AMD64 (upper plots) and the Intel16 (lower plots) platforms. The legend in (f) applies to all subfigures.

of £ under the same S with different m, we can observe
that with an increasing m, £ always ascends to a peak, and
then starts to drop. That means that in the beginning as
m increases, the precision grows at a faster speed than the
dropping of F', which conforms to our expectations, but the
situation eventually reverses. This indicates that it is not
worth trading the filtering rate for higher precision beyond
that point.

Patterns in & are also affected by the number of par-
titions of the reference data, S. Based on Figure 14b, the
effectiveness & reaches the peak sooner with a smaller m
and a larger number of partitions. Although the highest ¢
usually happens at a large m with a small S (in the example
case in Figure 14b that m = 4 and S = 1), the variation of
the peaks’ value under different S is less than 0.1 among all
six datasets. Thus, the setting of (m,S) pair at peaks is a
guarantee of high filtering effectiveness.

The search time also increases with m due to the higher
distance computation cost, which is brought about by F
dropping, according to Equation 5. The relationship be-
tween the DC and search time can be used to verify our
analysis. We illustrate this in Figure 15a, where we choose
the case where m is 1 as a baseline and plot the ratio of
DC (curve) and the ratio of search time (bars) for different
m against this baseline. The consistent value and growth
between the two ratios well demonstrates our point.

Note that besides the distance computation cost, the
enlarged heap size theoretically adds extra system overhead
thus slowing down the speed. However, this overhead is
small enough to be neglected. This is because (i) each heap
operation is cheap, (ii) the number of heap operations barely
increases. In PCAF, the heap only involves one kind of
operation—insertion—which has a theoretical time com-
plexity of O(log km). Thus, the overhead of every operation
remains small when k or m varies within a range of small
values, which is the practical case in most of the real-world
applications in many domains. From the bars in Figure 15b
showing the average percentage of data points that are
pushed into the filter heap, we can observe that increasing m
does cause more frequent heap operations as the percentage
increases, but that the growth rate is quite small (< 0.5%).
Thus, the total cost of heap operations remains low. In ad-
dition, the percentage of total heap operational instructions
on the AMD64 platform, as plotted in Figure 15b further
verifies our point. The percentage is less than 0.52% and
keeps dropping when m increases because of the rapid
increase in the computation cost. We confidentially conclude
that the heap overhead is negligible to PCAF.

Based on the above, with increasing m, the precision
keeps rising but the performance drops. Thus, the effective-
ness (£) is helpful to find the balance between the precision
and performance. We suggest choosing m at the peak in
when the required precision is first met in order to achieve
the best overall performance.

6.3 Evaluation of Data Partitioning

Data partitioning is a fine-grained parallel implementation
for PCAF. The intention behind it is to take advantage of the
independence in the search of k-NN within each query to
increase the parallelism of the execution. In this section, we
will discuss the impact of data partitioning on performance
and the precision of k-NN results. In our experiments,
the dataset is partitioned into S € {1,2,4,8,16} parts. In
practice, S' can be set larger, but our experimental setting is
already sufficient for discussion.

In parallel execution of OpenMP, smaller granularity
of parallelism brings more parallel tasks for the parallel
threads so the speedup is larger due to better load balance
among threads. However, if the granularity is too small,
the benefit of balanced load may be overshadowed by task
scheduling overhead. On the other hand, if the number of
threads is small, the granularity of parallelism has little
impact on performance as each thread has sufficient tasks to
execute. Our experimental results conform to these general
principles of parallel execution.

Figure 16 plots the maximum speedup that can be
achieved under different S and m on both AMD64 and
Intel16 platforms for all the datasets. Each speedup is com-
puted against the sequential PCAF algorithm with the same
S and m. The general impression of Figure 16 is that, when
S is larger, the speedup is higher due to better load balance.
However, there are some exceptions.

The first exception is that the results on the Intell6
platform stay almost the same when S becomes larger. This
is because the Intell6 platform only has 16 cores so the
parallelism is sufficient for it to have very high speedups
even when S is 1. The second exception is that, when the
dataset’s size is small, e.g. for “Digits” or “Madelon”, or
when the heap scaling m is small in large datasets like
“SIFT” and “HAR”, the speedups stay the same on AMD64
for increased S. The reason is that the computation load
is low in these cases, so the granularity of parallelism is
already small enough even when S is 1. Therefore, a larger S
has little impact on the load balance. In contrast, according
to the analysis in Section 6.2, when the heap scaling m is
large, the filtering rate is quite low, which leads to higher

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2748131, IEEE

Transactions on Computers

3
3

e

©
3
o
@

®
3
=4
>

..
.
~..
..
~

o
kY

\1
3
effectiveness (&)

percentage (%)

@
3
e
N

—-=-precision
——F

50 0
1 2 4 8 16 1 2 4 8 16

number of data partitions (S) number of data partitions (S)
(a) The precision and F with dif- (b) Effectiveness with different S
ferent S whend =7, m = 3. and m whend = 7.

Fig. 17. The precision, filtering rate (F') and effectiveness (¢) of PCAF
under increasing values of partitions (.S) applied to the “HAR” dataset.

——m=1 m=2 m=3 =8—m=4 —§—m=5

computational load. Therefore, a larger S has more impact
on the speedup of the algorithm as it greatly reduces the
granularity of parallelism and achieves better load balance
in OpenMP.

One interesting observation is that the increasing .S also
causes higher computation load in total, and it produces
more precise k-NN results. Figure 17a gives the typical
relationship between precision and filtering rate with S—
that the filtering rate drops with increasing S. Although
the precision improves, it is not wise to keep increasing S
since the computational cost will be high due to a very low
filtering rate. To find the best trade-off, we suggest using the
effectiveness (§) as an indicator. Taking the “HAR” dataset
as an example, Figure 17b shows the ¢ under different
values of S and m. Observed from the figure, the filtering
strategy is more effective with an increasing S when m is
small. However, when m is larger than 2, the effectiveness
curve drops from the very beginning, which indicates that it
is not cost-effective anymore to increase .S for high precision.

To summarise, as .S increases, both the precision and the
computational cost increase. For large .S, the scalability of
PCAF improves due to more parallelism and better load
balance, especially for larger m values, that result in both
higher speedup and higher precision. On the other hand,
when m is small, S can only be increased to the point where
the desired precision is met in order to prevent encountering
problematic computational costs.

6.4 Discussion

Based on the evaluation described above, in Table 9 we show
the values of the parameters of the fastest parallel searching
case with a precision loss within 5% for each dataset.

TABLE 9
Parameter selection of the fastest parallel searching case with
precision over 95%.

Name dlml g F| Pro Intell6 AMD64

S D S °
Digits 8| 2| 2]96.86 | 95.21 4.63 | 1597 || 4.92 | 45.87
Random || 65| 3| 8]90.34 | 95.16 1.54 | 14.51 5.16 | 60.09
SIFT 10| 216 |97.72 | 96.79 8.30 | 14.50 || 31.34 | 56.95
Madelon |[58 | 2| 4[91.07 | 95.08 || 4.27 | 1591 4.37 | 58.06
GIST 20 2| 197829530 || 12.20 | 15.74 || 12.68 | 49.05
HAR 28 | 2| 298.09|95.22 || 11.53 | 15.04 || 44.74 | 58.71

Pr% denotes precision: the percentage of correctly found k-NN.

© denotes improvement: the search time ratio of PCAF to BF when
using all available cores.

e denotes speedup: the search time ratio of parallel PCAF when
using all cores to sequential PCAF execution.

In our experiments, there are lots of suitable sets of (d,
m, S) that meet the requirement of a precision loss within

13

5%, thus we have to compare the performance of each case
to get the best set among them. In practice, the evaluation
of parameters can only help with parameter selection to
some degree. Although it is relatively easy to find suitable
sets of (d, m, S) that achieve desirable precision—since the
precision increases with any of d, m and S—it is not an
easy task to find the set with the best performance. First,
even if the variation pattern of each parameter is observed,
there are still quite a few possible sets to search, which is
time consuming. Second, the three metrics to some degree
depend upon each other which makes the selection more
complex. Thus, it is worth devoting effort in future to seek
intelligent parameter learning approaches or to select ap-
propriate training samples to help find targeted parameter
sets at a reasonable cost.

7 RELATED WORK

The focus of our work is speeding up high-dimensional,
high precision k-NN search on multicore architectures. We
are not aware of many similar efforts to optimise AXKNN
algorithms for performance and precision in this way. Still,
the idea behind our method stems from related research.

7.1 Data Filtering for AXNN on multicore systems

The algorithm previously proposed by Tang [8], [16] is the
key work defining the notion of data filtering for AKNN.
The rationale is to use a low-cost method to filter away
many expensive distance computations, and maintain a
small memory footprint at the same time achieving high
parallel performance. We adopt this notion of data filtering.
However, the precision of Tang’s algorithm is not stable, and
is highly dependent on the nature of the dataset used.

7.2 Data Selection for AXNN on multicore systems

Apart from the two popular algorithms RKD and RBC
evaluated previously, there are other algorithms such as
SONNET [7] using data selection strategy. SONNET seeks
the kNN candidates based on the value rank along each
dimension. However, the point near the query in one di-
mension is not highly likely the true candidate in the whole
D-dimensional space, so the precision of SONNET is of
concern. We have conducted extra experiments for SON-
NET [35]. According to our experiments, PCAF is much
faster and produces results of higher precision than SON-
NET.! PCAF is also better in scalability since every distance
computation in SONNET requires one extra random access
to fetch the point from the dataset, and the index size of
SONNET is 132 x the size of projections in PCAF. The
precision of SONNET was too low in our preliminary tests
for us to include it in our full experimental evaluation.

1. In our experiments, the highest 2-NN search precision of SONNET
under frac = 0.05 is 17.71% (for “HAR” dataset). Under equal filtering
rate that FR = (1 — frac) x 100% = 95%, PCAF produces results
with precision over 90% and has a 2.17x speedup on the synthetic
“Random” dataset and at least 7.74x for other datasets over SONNET.

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2748131, IEEE

Transactions on Computers

e 3
8 8
2

%)

precision (%
s g
5 8

£

N
S

sequential time (s)

LELLL

Digits Random SIFT Madelon GIST HAR

I vPLsH E Forest CIRTLSH

)
<.

Digits Random SIFT Madelon GIST ~HAR

[PcAF IIMPLSH [Forest [__1RTLSH

(b) Time cost of PCAF with pre-
cision >90% and of LSH algo-
rithms near their converged pre-
cision (< 85%)

Fig. 18. Performance of PCAF and various LSH algorithms when using
one core for searching on Intel16.

(a) The converged precision of
various LSH algorithms.

7.3 Dimension Reduction

Many real-world high-dimensional datasets are actually
governed by a small number of dominant dimensions, as
discussed in [25] which inspires our data filtering method
using lower-dimensional projections. The idea of using low-
dimensional intrinsic structure in high-dimensional space
is popular in computer vision [18], [46], [47]. Many solu-
tions proposed for k-NN search in computer vision use
dimensionality reduction techniques to either form lower-
dimensional feature descriptors [48] or sort points in ad-
vance [49]. However, these techniques either reduce the
dimensionality of the space directly which results in loss
of information, or incur extra overhead e.g. using sorting. In
PCAF we use dimensionality reduction for filtering process
without changing the original space for searching, which
retains high precision of k-NN search and reduces compu-
tation.

7.4 Feature Hashing

Hashing based similarity searching represents a category
of algorithms [10], [50], [51], [52] dealing with high-
dimensional data points. The most popular algorithm in
this category is Locality-Sensitive Hashing (LSH), which
has much in common with nearest neighbour search. LSH
applies a hash function to each point and aims for similar
points to have the same hash value with high probability.
Search can be efficient [53], but its precision is not stable, as
it is highly dependent on the hash function.

Figure 18a shows that the highest precision achieved by
three LSH based AkNN algorithms are all less than 85%. The
algorithms, Multi-probe LSH (MPLSH) [10], [54], Forest [52]
and Random Thresholding LSH (RTLSH), are taken from a
popular LSH library named LSHKIT [55]. An appropriate
hash function for LSH may improve the precision, but
designing such functions is always time consuming [6], [10].
In contrast, PCAF can easily achieve high precision by ad-
justing the parameter d due to the principle of the principal
component analysis. Figure 18b plots the fastest cases found
by LSH variants achieving near-converged precision over a
large number of trials using various parameter settings in
comparison of the case of PCAF over 90% precision. PCAF
produces results of higher precision within less time for
most of the datasets. Since LSHKIT only provides sequential
implementations, the results in Figure 18b are obtained
from sequential executions. LSH requires a memory space
of O(LN), where L is the number of hash tables from
tens to hundreds. In contrast, the memory footprint of

14

PCAF, O(%'),d < D, is much smaller. Considering the
memory wall in multicore systems and the better sequential
performance of PCAF, the parallel performance of PCAF is
presumed to be better than parallel LSH based algorithms,
of which no implementations appear to be available yet.

7.5 Subspace Learning

Linear subspace learning algorithms are dimensionality
reduction techniques that represent data as vectors and
then search for an optimal linear mapping to a lower-
dimensional space. The PCA algorithm adopted in PCAF is
a typical example of such algorithms. Other popular meth-
ods include Independent Component Analysis (ICA) [56]
and Linear Discriminant Analysis (LDA) [57].

ICA focuses on independent and non-Gaussian com-
ponents and performs a non-orthogonal transformation to
separate a set of source signals from a set of mixed signals
with little or no information about the signals. ICA is often
applied [58] to Blind Signal Separation (BBS) applications,
such as speech isolation [59], brain imaging [60], and stock
prediction [61]. LDA and its variants [62], [63] are usually
used in statistics and pattern recognition to find a linear
combination of features that characterises or separates two
or more classes of objects or events. LDA is closely related
to PCA, but PCA does not consider classification. Linear
dimensionality reduction algorithms are restrictive in the
sense that the spaces are linear.

Recently, there have been many manifold learning algo-
rithms [64], [65], [66] proposed for nonlinear dimensionality
reduction. These algorithms work towards extracting the
low-dimensional manifold that can be used to describe
the high-dimensional data distributed in the space with
complex (e.g. twisted or rolling) shapes.

8 CONCLUSIONS

Data selection AkNN algorithms encounter serious memory
bottlenecks on multicore systems. Using a data filtering
strategy that reduces computation and memory footprint
can improve scalability. However it can be challenging to
maintain the accuracy of the result set with reduced compu-
tation. In this paper, a novel filtering method, PCAF, is pro-
posed to exclude unlikely k-NN points with accurate esti-
mation of similarity in high-dimensional space. Experimen-
tal results show that PCAF achieves substantial speedups
and good scalability on multicore platforms compared with
many data selection AKNN algorithms, and provides higher
precision than an existing data filtering algorithm. This
paper extends [67] with more details and many more exper-
imental results, including new parameter selection analyses
for finding appropriate parameter settings for precision and
performance.

9 ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable com-
ments and suggestions. Huan Feng would like to thank
the University of Otago and China Scholarship Council for
offering and sponsoring her internship during the course
of this research. We are grateful to Xiaoxin Tang and Mo-
hammad Al Hasan for their generous provision of source

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2748131, IEEE

Transactions on Computers

code. This work is partially supported by National Key Re-
search & Development Program of China (2016YFB1000504),
Natural Science Foundation of China (61433008, 61373145,
61572280, U1435216), National Basic Research (973) Program
of China (2014CB340402), Shenzhen City Branch Committee
under contract No. 2016-092.

REFERENCES

(1]

(2]

(3]

(4]

(5]

6]

(71

(8]

(9]

[10]

[11]

[12]

(13]

[14]

(15]

[16]

(17]
(18]

[19]

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

J. Buhler, “Provably sensitive indexing strategies for biosequence
similarity search,” Journal of Computational Biology, vol. 10, no. 3-4,
pp. 399417, 2003.

D. L. Donoho et al., “High-dimensional data analysis: The curses
and blessings of dimensionality,” AMS Math Challenges Lecture, pp.
1-32, 2000.

A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images:
A large data set for nonparametric object and scene recognition,”
Pattern Analysis and Machine Intelligence, vol. 30, no. 11, pp. 1958—
1970, 2008.

Z. Wu, Q. Ke, M. Isard, and J. Sun, “Bundling features for large
scale partial-duplicate web image search,” in Computer Vision and
Pattern Recognition, 2009. CVPR 2009. 1EEE, 2009, pp. 25-32.

C. Zanchettin, B. L. D. Bezerra, and W. W. Azevedo, “A KNN-
SVM hybrid model for cursive handwriting recognition,” in Neural
Networks (IJCNN), The 2012 International Joint Conference. IEEE,
2012, pp. 1-8.

L. Cayton, “Accelerating nearest neighbor search on manycore
systems,” in Parallel & Distributed Processing Symposium (IPDPS),
2012 IEEE 26th International. 1EEE, 2012, pp. 402-413.

M. Al Hasan, H. Yildirim, and A. Chakraborty, “SONNET: Ef-
ficient approximate nearest neighbor using multi-core,” in Data
Mining (ICDM), 2010 IEEE 10th International Conference on. IEEE,
2010, pp. 719-724.

X. Tang, Z. Huang, D. Eyers, S. Mills, and M. Guo, “Scalable
multicore k-NN search via Subspace Clustering for Filtering,”
Parallel and Distributed Systems, TPDS, IEEE Transactions on, vol. 26,
no. 12, pp. 3449-3460, 2015.

M. Muja and D. G. Lowe, “Fast approximate nearest neighbors
with automatic algorithm configuration,” VISAPP, vol. 2, pp. 331-
340, 2009.

Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-
probe LSH: efficient indexing for high-dimensional similarity
search,” in Proceedings of the 33rd international conference on Very
large data bases. VLDB Endowment, 2007, pp. 950-961.

D. Nister and H. Stewenius, “Scalable recognition with a vocab-
ulary tree,” in Computer vision and pattern recognition, 2006 IEEE
computer society conference on, vol. 2. IEEE, 2006, pp. 2161-2168.
H. Jégou, M. Douze, and C. Schmid, “Product Quantization for
Nearest Neighbor Search,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 33, no. 1, pp. 117-128, Jan. 2011.

T. Liu, A. W. Moore, K. Yang, and A. G. Gray, “An investigation of
practical approximate nearest neighbor algorithms,” in Advances
in Neural Information Processing Systems, 2004, pp. 825-832.

Y. Tao, K. Yi, C. Sheng, and P. Kalnis, “Quality and efficiency in
high dimensional nearest neighbor search,” in Proceedings of the
2009 ACM SIGMOD International Conference on Management of data.
ACM, 2009, pp. 563-576.

G. Cong and K. Makarychev, “Optimizing large-scale graph anal-
ysis on multi-threaded, multicore platforms,” in Parallel & Dis-
tributed Processing Symposium (IPDPS), 2012 IEEE 26th International.
IEEE, 2012, pp. 414-425.

X. Tang, S. Mills, D. Eyers, K.-C. Leung, Z. Huang, and M. Guo,
“Data filtering for scalable high-dimensional k-NN search on mul-
ticore systems,” in Proceedings of the 23rd international symposium on
High-performance Parallel and Distributed Computing, HPDC 2014.
ACM, 2014, pp. 305-310.

I. T. Jolliffe, Principal Component Analysis, 2nd. Springer, 2002.

K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When
is “nearest neighbor” meaningful?” in International conference on
database theory. Springer, 1999, pp. 217-235.

J. MacQueen ef al., “Some methods for classification and analysis
of multivariate observations,” in Proceedings of the fifth Berkeley
symposium on Mathematical Statistics and Probability. Oakland, CA,
USA., 1967, pp. 281-297.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

(34]

[35]

[36]

[37]

(38]

[39]

[40]

(41]
(42]

[43]

15

A. Abdullah, A. Andoni, R. Kannan, and R. Krauthgamer, “Spec-
tral approaches to nearest neighbor search,” in Foundations of
Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on.
IEEE, 2014, pp. 581-590.

B. Pandya, U. Singh, and K. Dixit, “An analysis of euclidean
distance preserving perturbation for privacy preserving data min-
ing,” International Journal for Research in Applied Science and Engi-
neering Technology, vol. 2, 2014.

J. McNames, “A fast nearest-neighbor algorithm based on a prin-
cipal axis search tree,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 23, no. 9, pp. 964-976, 2001.

K. Mikolajezyk and C. Schmid, “A performance evaluation of
local descriptors,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 27, no. 10, pp. 1615-1630, 2005.

D. G. Lowe, “Object recognition from local scale-invariant fea-
tures,” in Computer vision, 1999. The proceedings of the seventh IEEE
international conference on, vol. 2. leee, 1999, pp. 1150-1157.

H. Feng, S. Mills, D. Eyers, X. Shen, and Z. Huang, “Optimal space
subdivision for parallel approximate nearest neighbour determi-
nation,” in Proceedings of 30th International Conference on Image and
Vision New Zealand. 1EEE, 2015.

G. Treen and A. Whitehead, “Efficient SIFT matching from key-
point descriptor properties,” in Applications of Computer Vision
(WACV), 2009 Workshop on. 1EEE, 2009, pp. 1-7.

R. E. G. Valenzuela, W. R. Schwartz, and H. Pedrini, “Dimension-
ality reduction through PCA over SIFT and SURF descriptors,” in
Cybernetic Intelligent Systems (CIS), 2012, pp. 58-53.

S. Lahabar and P. Narayanan, “Singular value decomposition on
GPU using CUDA,” in Parallel and Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on. IEEE, 2009, pp.
1-10.

W. Liu, H. Zhang, D. Tao, Y. Wang, and K. Lu, “Large-scale
paralleled sparse principal component analysis,” Multimedia Tools
and Applications, pp. 1-13, 2014.

J. Zhang and K. H. Lim, “Implmentation of a covariance-based
principal component analysis algorithm for hyperspectral imaging
applications with multi-threading in both CPU and GPU,” in
2012 IEEE International Geoscience and Remote Sensing Symposium
(IGARSS). IEEE, 2012, pp. 4264-4266.

G. H. Golub and C. Reinsch, “Singular value decomposition and
least squares solutions,” Numerische mathematik, vol. 14, no. 5, pp.
403-420, 1970.

J. A. Gunnels, G. M. Henry, and R. A. Van De Geijn, “A family of
high-performance matrix multiplication algorithms,” in Computa-
tional Science, ICCS 2001. Springer, 2001, pp. 51-60.

S. Williams, L. Oliker, R. Vudug, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of sparse matrix-vector multiplication on emerging
multicore platforms,” Parallel Computing, vol. 35, no. 3, pp. 178-
194, 2009.

G. Guennebaud, B. Jacob et al., “Eigen v3.2.8 JacobiSVD class
template reference,” http://eigen.tuxfamily.org/dox/classEigen_
1_1JacobiSVD.html/, 2016.

H. Feng, “PCAF: Pricipal conponent analysis based filtering,”
2016. [Online]. Available: https://github.com/c30268056 / PCAF
C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image
descriptor matching,” in Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on. 1EEE, 2008, pp. 1-8.

M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms
for high dimensional data,” Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, vol. 36, no. 11, pp. 2227-2240, 2014.

G. Guennebaud, B. Jacob et al., “Eigen: a C++ linear algebra
library,” http:/ /eigen.tuxfamily.org, 2014.

V. Hernéndez, J. E. Romén, and A. Tomads, “A robust and efficient
parallel SVD solver based on restarted Lanczos bidiagonaliza-
tion,” Electronic Transactions on Numerical Analysis, vol. 31, pp. 68—
85, 2008.

A. Oliva and A. Torralba, “Modeling the shape of the scene:
A holistic representation of the spatial envelope,” International
Journal of Computer Vision, vol. 42, no. 3, pp. 145-175, 2001.

N. Khan, B. McCane, and S. Mills, “Better than SIFT?” Machine
Vision and Applications, vol. 26, no. 6, pp. 819-836, 2015.

K. Bache and M. Lichman, “UCI machine learning repository,”
2013. [Online]. Available: http://archive.ics.uci.edu/ml

I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, “Result analysis of
the NIPS 2003 feature selection challenge,” in Advances in Neural
Information Processing Systems, 2004, pp. 545-552.

http://eigen.tuxfamily.org/dox/classEigen_1_1JacobiSVD.html/
http://eigen.tuxfamily.org/dox/classEigen_1_1JacobiSVD.html/
https://github.com/c30268056/PCAF
http://eigen.tuxfamily.org
http://archive.ics.uci.edu/ml

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2748131, IEEE

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]
[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computers

D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz,
“Human activity recognition on smartphones using a multiclass
hardware-friendly support vector machine,” in Ambient assisted
living and home care. Springer, 2012, pp. 216-223.

S. A. Nene and S. K. Nayar, “A simple algorithm for nearest
neighbor search in high dimensions,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 19, no. 9, pp. 989-1003, 1997.
G. Hua, M. Brown, and S. Winder, “Discriminant embedding for
local image descriptors,” in Computer Vision, 2007. ICCV 2007. IEEE
11th International Conference on. IEEE, 2007, pp. 1-8.

K. Mikolajczyk and J. Matas, “Improving descriptors for fast tree
matching by optimal linear projection,” in Computer Vision, 2007.
ICCV 2007. IEEE 11th International Conference on. IEEE, 2007, pp.
1-8.

Y. Ke and R. Sukthankar, “PCA-SIFT: A more distinctive represen-
tation for local image descriptors,” in Computer Vision and Pattern
Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer
Society Conference on, vol. 2. IEEE, 2004, pp. II-506.

G. Treen and A. Whitehead, “A PCA-based binning approach for
matching to large SIFT database,” in Computer and Robot Vision
(CRV), 2010 Canadian Conference on. IEEE, 2010, pp. 9-16.

A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high
dimensions via hashing,” in VLDB, vol. 99, no. 6, 1999, pp. 518-
529.

L. Paulevé, H. Jégou, and L. Amsaleg, “Locality sensitive hashing:
A comparison of hash function types and querying mechanisms,”
Pattern Recognition Letters, vol. 31, no. 11, pp. 1348-1358, 2010.

M. Bawa, T. Condie, and P. Ganesan, “LSH forest: selftuning
indexes for similarity search,” in Proceedings of the 14th international
conference on World Wide Web. ACM, 2005, pp. 651-660.

M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-
sensitive hashing scheme based on p-stable distributions,” in
Proceedings of the 12th annual symposium on Computational geometry.
ACM, 2004, pp. 253-262.

W. Dong, Z. Wang, W. Josephson, M. Charikar, and K. Li, “Mod-
eling LSH for performance tuning,” in Proceedings of the 17th ACM
conference on Information and Knowledge Management. ~ACM, 2008,
pp. 669-678.

W. Dong, “LSHKIT,” 2008. [Online]. Available: http://lshkit.
sourceforge.net/

J. V. Stone, “Independent component analysis: A tutorial introduc-
tion,” The Knowledge Engineering Review, vol. 20, no. 2, p. 198, 2005.
R. A. Fisher, “The use of multiple measurements in taxonomic
problems,” Annals of human genetics, vol. 7, no. 2, pp. 179-188,
1936.

A. Hyvirinen and E. Oja, “Independent component analysis:
algorithms and applications,” Neural networks, vol. 13, no. 4, pp.
411-430, 2000.

G. D. Brown, S. Yamada, and T. J. Sejnowski, “Independent compo-
nent analysis at the neural cocktail party,” Trends in neurosciences,
vol. 24, no. 1, pp. 54-63, 2001.

A. Delorme, T. Sejnowski, and S. Makeig, “Enhanced detection of
artifacts in EEG data using higher-order statistics and independent
component analysis,” Neuroimage, vol. 34, no. 4, pp. 1443-1449,
2007.

A.D.Back and A. S. Weigend, “A first application of independent
component analysis to extracting structure from stock returns,”
International journal of neural systems, vol. 8, no. 04, pp. 473484,
1997.

T. Zhang, D. Tao, and J. Yang, “Discriminative locality alignment,”
Computer Vision—-ECCV 2008, pp. 725-738, 2008.

D. Tao, X. Li, X. Wu, and S. J. Maybank, “Geometric mean
for subspace selection,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 31, no. 2, pp. 260274, 2009.

T. Zhou, D. Tao, and X. Wu, “Manifold elastic net: a unified
framework for sparse dimension reduction,” Data Mining and
Knowledge Discovery, vol. 22, no. 3, pp. 340-371, 2011.

W. Liu, Z.-]J. Zha, Y. Wang, K. Lu, and D. Tao, “p-Laplacian
regularized sparse coding for human activity recognition,” IEEE
Transactions on Industrial Electronics, vol. 63, no. 8, pp. 5120-5129,
2016.

Q. Gao, Y. Huang, H. Zhang, X. Hong, K. Li, and Y. Wang, “Dis-
criminative sparsity preserving projections for image recognition,”
Pattern Recognition, vol. 48, no. 8, pp. 2543-2553, 2015.

based filtering,” in Parallel Processing (ICPP), 2016 45th International
Conference on. 1EEE, 2016, pp. 638-647.

H. Feng, D. Eyers, S. Mills, Y. Wu, and Z. Huang, “PCAF: Scalable,
high precision k-nn search using principal component analysis

16

Huan Feng is a Ph.D candidate in Department
of Computer Science and Technology, Tsinghua
University. She received the bachelor degree
from Beijing Jiaotong University in 2011. Her
major research interests include high perfor-
mance computing, parallel computing, and dis-
tributed systems.

David Eyers is a Senior Lecturer in the Depart-
ment of Computer Science at the University of
Otago. He received his PhD in Computer Sci-
ence from the University of Cambridge in 2006.
His research research interests include high ef-
ficiency distributed systems and cloud security.

Steven Mills is a Senior Lecturer in the De-
partment of Computer Science at the University
of Otago. He received his BSc (Hons) in 1997
and PhD in 2000 from Otago, and has previ-
ously worked at the University of Nottingham and
in commercial research and development roles.
His research interests are in computer vision,
particularly the reconstruction of 3D scenes from
multiple images and he has published over 80
peer-reviewed research articles.

Yongwei Wu received the PhD degree in ap-
plied mathematics from the Chinese Academy
of Sciences in 2002. He is currently a professor
in computer science and technology at Tsinghua
University. His research interests include parallel
and distributed processing, and cloud storage.
Dr. Wu has published over 80 research pub-
lications and has received several best paper
awards. He is currently on the editorial board
of the IEEE Transaction on Cloud Computing,
Journal of Parallel and Distributed Computing.

He is an IEEE senior member.

Zhiyi Huang is an Associate Professor at the
Department of Computer Science, University of
Otago. He received the BSc degree in 1986 and
the PhD degree in 1992 from the National Uni-
versity of Defense Technology (NUDT) in China.
He was a visiting professor at EPFL (Swiss
Federal Institute of Technology Lausanne) and
Tsinghua University in 2005, Cambridge Uni-
versity in 2013, and a visiting scientist at MIT
CSAIL in 2009. His research fields include par-
allel/distributed computing, multicore architec-

tures, operating systems, signal processing, green computing, clus-
ter/grid/cloud computing, high-performance computing, bio-engineering,
and computer networks. He has more than 120 publications.

http://lshkit.sourceforge.net/
http://lshkit.sourceforge.net/

