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ABSTRACT 
As the most widely used parallel job scheduling strategy in pro-
duction schedulers, EASY has achieved great success, not only 
because it can balance fairness and performance, but also because 
it is universally applicable to most HPC systems. However, un-
fairness still exists in EASY. For real workloads used in this work, 
our simulation shows that a blocked job can be delayed by later 
jobs for more than 90 hours. In addition, EASY cannot directly 
employ parallel job runtime prediction techniques, because this 
would lead to a serious situation called reservation violation.  

In this paper, we aim at guaranteeing strict fairness (no job is 
delayed by any jobs of lower priority) while achieving attractive 
performance, and employing prediction without causing reserva-
tion violation in parallel job scheduling. We propose two novel 
strategies, shadow load preemption (SLP) and venture backfilling 
(VB), which are together integrated into EASY to construct a 
preemptive venture EASY backfilling (PV-EASY) strategy. Expe-
rimental results on three workloads of real HPC systems demon-
strate that: First, PV-EASY guarantees strict fairness, in addition 
to avoiding reservation violation when employing job runtime 
prediction techniques in scheduling; Second, PV-EASY achieves 
the same performance as EASY, and outperforms prediction em-
ployed EASY; Third, the preemption in PV-EASY is not resource 
costly and simple enough to be implemented in all HPC systems 
where EASY works. These advantages make PV-EASY more 
attractive than EASY in parallel job scheduling, both from aca-
demic and industry perspectives.   

Categories and Subject Descriptors 
D.4.1 [Operating Systems]: Process Management – Scheduling.  

General Terms 
Algorithms, Management, Performance 

Keywords 
Scheduling, preemptive, prediction, backfilling 

1. INTRODUCTION 
Parallel job scheduling is critical in large-scale high performance 
computing (HPC) systems, such as Clusters, Grids and Clouds, 
since different scheduling policies can result in different user 
experiences and resource utilization. Fairness and performance 
are two eternal topics in parallel job scheduling. Previous works 
either focus on providing fair scheduling [24][28][29] or improv-
ing performance [15][19][20][32]. However, fairness and perfor-
mance should be considered in concert. First Come First Serve 
(FCFS) mainly guarantees fairness, while Short Job First (SJF) [6] 
mainly targets performance. This explains why they are rarely 
used alone in practice. EASY backfilling [1] leverages fairness 
and performance in a simple and efficient manner. It allows later 
jobs to backfill in idle processors that cannot satisfy the request of 
the first blocked job, provided these backfilled jobs would not 
delay the expected start time (reservation) of the first blocked job 
in the queue. EASY can guarantee “relaxed” fairness to jobs 
through reservation, as well as achieve good performance by al-
lowing shorter jobs to be shifted forward. Because of a better 
balance between fairness and performance, EASY is the most 
widely used job scheduling strategy in high performance parallel 
computing systems. It has been adopted by a number of major 
production schedulers, including IBM’s LoadLever, Cluster Re-
sources’ Moab and Maui, Platform’s LSF, Altair’s OpenPBS and 
PBS-Pro, and Sun’s GridEngine[9]. 

In order to obtain better fairness while achieving attractive per-
formance, many approaches have been proposed to improve 
EASY in the past. While they provide better fairness in schedul-
ing, most of them suffer from the same problem: they mix up 
fairness and performance by trying to measure the fairness of 
schedulers with performance metrics, such as Slowdown Queuing 
Fairness (SQF) [28], fair-slowdown [10] and fair start time [29]. 
We claim that fairness has to be guaranteed independently from 
performance metrics. Unfortunately, our results show that this 
does not happen yet, and on production systems, EASY still suf-
fers from unfairness. Based on the definition of strict fairness (no 
job is delayed by any jobs of lower priority), a blocked job can be 
delayed by later jobs for up to 90.7 hours in the simulation with 
real workloads. Moreover, to the best of our knowledge, no exist-
ing studies can guarantee strict fairness. Therefore, our first objec-
tive is to guarantee strict fairness as well as achieve attractive 
performance in parallel job scheduling. 

Another interesting phenomenon is that job runtime prediction 
technologies are rarely employed in real production schedulers of 
EASY, though EASY is built on highly inaccurate user estimates 
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of jobs’ runtime[3][30][16]. This is due to two reasons. First, 
there is a misconception that inaccurate user estimates of jobs’ 
runtime can improve performance [3][37][38]. Second, replacing 
user estimates directly with system-generated prediction in EASY 
would lead to reservation violation, which means a blocked job in 
the queue cannot start at its reservation time. The delay from res-
ervation time can be as large as 32.9 hours in the simulation with 
real workloads. These two reasons cause lots of prediction tech-
niques [33][34][35] to be put on the shelf, even if they were re-
ported to have better prediction accuracy than user estimates. In 
order to solve the dilemma of prediction techniques, our second 
objective is to employ prediction techniques without causing res-
ervation violation. 

In this paper, we propose a novel preemptive venture EASY back-
filling (PV-EASY) which integrates shadow load preemption 
(SLP) and venture backfilling (VB) into EASY. Our paper makes 
two main contributions: 

(1) Propose shadow load preemption (SLP) to guarantee strict 
fairness and employ prediction techniques without causing 
reservation violation, which makes PV-EASY more attractive 
than EASY with regard to fairness. 

The running load of a system is classified into sunny load and 
shadow load (Section 4.1), and SLP (Section 4.2) can preempt the 
processors occupied by shadow load to start blocked jobs accord-
ing to the definition of strict fairness. Preemption in SLP can 
guarantee strict fairness in scheduling and avoid reservation viola-
tion. Additionally, as observed from the experiments performed 
on three workloads collected from real HPC systems, the Mean 
Bounded Slowdown (MBS) and Mean Weighted Bounded Slow-
down (MWBS) of blocked jobs in PV-EASY are mostly lower 
than that in EASY. 

(2)Propose venture backfilling (VB) to promote performance, 
which makes PV-EASY more attractive than EASY in terms 
of performance. 

VB (Section 4.3) can counteract the negative effects of the 
kill/restart preemption mode in SLP and therefore promote per-
formance. After backfill decisions made based on runtime predic-
tion, high priority jobs may still be venturesomely backfilled if 
there still exist idle processors, without considering job runtime 
and reservation. Benefiting from VB, PV-EASY with the simplest 
Last Model predictor can achieve the same MBS and MWBS as 
EASY. Moreover, PV-EASY better employs prediction tech-
niques than EASY on performance. If both PV-EASY and EASY 
adopt the same existing job runtime prediction techniques, PV-
EASY achieves better MBS and MWBS than EASY. 

We validate the effectiveness of our proposed solution by means 
of real workloads from production HPC systems. Our results 
show that, due to low resource waste and simple implementations, 
PV-EASY can easily facilitate all HPC systems where EASY 
works, which makes PV-EASY attractive in real production envi-
ronments. PV-EASY employs the simple kill/restart preemption 
mode and Last Model predictor. Unlike suspend/resume and 
checkpoint/restart preemption modes, or predictors which use 
profiling, machine learning, etc, PV-EASY does not need the 
support of any complex system features and thus can be  easily 
implemented in HPC systems and production schedulers. Addi-
tionally, even by employing kill/restart preemption, the wasted 

resources in PV-EASY are controlled at a low level 
(2.48%~5.66%), and therefore do not affect system throughput 
when the system load is close to 80% (the common upper load in 
production HPC systems). 

The rest of this paper is organized as follows. Section 2 provides 
the background and related work of parallel job scheduling, in-
cluding EASY and its variants. In Section 3 we discuss the moti-
vations of this paper, and then we propose our novel PV-EASY in 
Section 4. The experimental design and results are presented in 
Section 5. In section 6 and 7 we discuss and conclude. 

2. BACKGROUND AND RELATED WORK 
In the past, besides the most natural and simplest First Come First 
Serve (FCFS) strategy, many kinds of order-based parallel job 
scheduling strategies[4][5] have been proposed, such as Shortest 
Job First (SJF), Smallest Job First[6], and Smallest Cumulative 
Demand First[6][7], etc. But all of them share similar inherent 
problems: 1) Due to different sizes of jobs, if the first waiting job 
is blocked, some processors would be idle and a “hole” would 
appear in the system as time goes by, and therefore results in low 
system utilization; 2) Most of the above order based scheduling 
strategies, except FCFS, can cause unfairness, even starvation. A 
successful approach to solve these two problems is backfilling[1]. 

2.1 Backfilling and Variants  
Backfilling allows later jobs to fill in the hole created by the first 
blocked job in the waiting queue as long as they do not delay the 
expected start time (reservation) of blocked jobs in the queue. In 
this way, system utilization is improved by filling the holes, and 
starvation is avoided by assigning reservations to the blocked jobs. 
The implementation of backfilling relies on user estimates of 
jobs’ runtime, based on which the scheduler can determine reser-
vations and which job can be backfilled without violating the 
reservations of its predecessors. Generally, the possible runtime 
of jobs is estimated by users. If a job runs beyond its estimated 
time, it will be killed and never restart. 

There exist two major versions of backfilling, conservative and 
aggressive backfilling. Conservative backfilling only backfills 
jobs that would not delay any previous jobs in the queue, while 
aggressive backfilling takes a more aggressive approach that se-
lects backfilled jobs provided they would not delay the expected 
start time of the first job in the queue. Aggressive backfilling has 
been reported to have better performance than conservative back-
filling [2]. Additionally, EASY backfilling[1], the original ag-
gressive backfilling algorithm in practice, is the most widely used 
scheduling strategy in parallel job scheduling, and has been 
adopted by most major production schedulers, including IBM’s 
LoadLever, Cluster Resources’ Moab and Maui, Platform’s LSF, 
Altair’s OpenPBS and PBS-Pro, and Sun’s GridEngine[9].  

To enhance the performance of EASY from different perspectives, 
many variants of EASY have been proposed, most of which can 
be classified by their changes in the following two aspects: 

·Reservation Calculation: Generally, a loosened reservation of 
a blocked job in EASY would result in better performance, such 
as small average slowdown, because a longer reservation allows 
more jobs to be backfilled. Ward et al. [12] explored the possibili-
ty of using a relaxed backfill strategy, where jobs with lower 
priorities could be backfilled as long as they would not delay the 
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job that holds the highest priority too much. Dynamic backfilling 
[14] allows the scheduler to overrule a previous reservation under 
the condition that a slight delay will considerably get utilization 
improvement in return. Talby et al. [15] presented a slack based 
backfilling, which assigns each waiting job a slack to determine 
how long it has to wait before running. Srinivasan et al. [11] de-
signed a selective backfilling where a reservation is selectively 
made when a job’s expected slowdown exceeds a certain thre-
shold. These variants could improve performance by enabling 
more small jobs to be backfilled than EASY, while sacrificing the 
blocked jobs. 

·Backfill Selection: Some existing works modified the selection 
sequence of backfilled jobs in EASY. Chiang et al. [10] reported 
that prioritizing jobs by decreasing runtime estimates or increas-
ing expected slowdown can improve the performance of schedul-
ing. Shmueli et al. [13] proposed a look-ahead optimizing schedu-
ler to generate the local optimal backfill selection by using dy-
namic programming. Some other existing works employ system-
generated runtime prediction to replace the request time estimated 
by user. Tsafrir et al.[16] integrated system-generated prediction 
into EASY, only keeping user estimates as the kill time of jobs. 
Cuim et al. [18] proposed a resource usage aware backfilling, by 
using LessConsume resource selection policy to decide which job 
has to be executed and how jobs have to be backfilled. 

Besides the above two major backfilling variants of EASY, Thebe 
et al. [17] examined the concept of giving every job a short trial 
run to allow immediate detection of job failures and benefit short 
jobs that can finish during the trial run. Based on market-inspired 
utility functions, utility-based scheduling [32][36] strategies have 
also been proposed recently and claimed performance improve-
ments ranging from 4% to 20% compared with backfilling[36]. 
But utility-based scheduling is rarely deployed in practice [8], due 
to its potential harm of fairness. 

2.2 Scheduling Metrics 
Performance is an important factor that attracts users of HPC 
systems. So, many existing works (e.g.,[15][19][20][32]) paid a 
lot of attention to promoting the performance of schedulers on 
certain  metrics, including user-aware metrics (e.g., turnaround 
time, slowdown) and system-aware metrics (e.g., utility and ener-
gy saving).Shorter turnaround time and smaller slowdown of jobs 
would stimulate users to submit more jobs [21], and higher utility 
and more energy saving are appreciated by the owners of HPC 
systems.  

However, it is also known that users in queue systems are sensi-
tive to fairness [25][26], and they might consider fairness even 
more important than productivity in HPC systems [21]. Due to 
this reason, various fairness metrics have been proposed to eva-
luate the fairness of scheduling, such as Resource Allocation 
Queuing Fairness Metric (RAQFM) [22][23], Slowdown Queuing 
Fairness (SQF) [28] and fair-slowdown metrics [11]. In [27], each 
job is assigned a “fair start time” and fairness is measured by 
judging whether a job starts after its “fair start time”. J. Ngubiri et 
al. [29] examined the characteristics of three fairness evaluation 
approaches in parallel job scheduling. All these works about fair-
ness mainly focus on fairness measurement and promoting aver-
age fairness according to their fairness metrics, rather than de-
signing a scheme to guarantee a certain level of fairness. 

2.3 Prediction in EASY Backfilling 
EASY backfilling is built on jobs’ runtime estimates given by 
users, which 1) determine how long jobs can execute before they 
are killed, 2) compute the reservation of blocked jobs, and 3) 
decide which waiting job can be backfilled. In EASY, users are 
required to estimate “request time” for their jobs [1] based on the 
hypothesis that users would be motivated to provide as accurate 
runtime estimates as they can, due to a tradeoff that short (long) 
request time of a job would make it have more (less) chance to be 
backfilled and therefore achieve better (worse) performance, 
while also enlarging (reducing) its risk of being killed before it 
successfully finish. 

Unfortunately, the above hypothesis often fails in practice. User 
estimates of jobs’ runtime are reported to be highly inaccurate 
[3][16][30]. Even worse, most users are unable or reluctant to 
provide better job runtime estimates when they submit their jobs 
to HPC systems [31]. These facts stimulate researchers to propose 
more accurate system-generated runtime prediction techniques. 
Notice that, in the rest of this paper, we use “estimate” to denote 
the request time of job forecasted by users, and use “prediction” 
to indicate the result of system-generated runtime prediction. 
Several existing studies propose various runtime prediction me-
thods by learning from historical data [33][34][35], and they are 
all reported to have better accuracy than user estimates.  

However, prediction techniques are rarely integrated into EASY 
in real production systems, due to two misconceptions. First, in-
accurate runtime estimates of jobs can improve performance [3]. 
Due to this misconception, some previous works even suggested 
using randomized [37] or doubled [38] runtime estimates in 
EASY. Second, users would not tolerate their jobs being killed 
just because predictions were too short. In [16], the authors well 
clarified how the first misconception failed in three aspects: 1) 
perfect estimates improve performance more than doubling origi-
nal user estimates; 2) the performance gained from doubled esti-
mate is derived from a “heel and toe” dynamic [39] which allows 
more short jobs to be backfilled, but also gradually pushes away 
the start time of the first blocked job in the queue; 3) a reliable job 
runtime prediction method could facilitate advance reservation in 
grid resource allocation and co-allocation. The second misconcep-
tion is handled by still using user estimates as kill-time while 
employing prediction in scheduling [16]. With these misconcep-
tions removed, prediction is integrated into EASY [16]. 

3. MOTIVATION 
The wide use of EASY in production schedulers and HPC sys-
tems has already proved its practicability. But unfortunately, 
EASY and its variants still suffer from some serious problems that 
were partly discussed in the previous section and will be further 
analyzed in this section. These analyses motivate us to propose a 
more powerful parallel job scheduler to guarantee strict fairness 
and employ prediction. 

3.1 Guarantee Strict Fairness 
Existing works of parallel job scheduling pay more attention to 
performance than fairness. However, as mentioned in Section 2.2, 
HPC users might be more sensitive to fairness than performance 
[21]. We believe that fairness and performance are both important 
to attract users in parallel job scheduling. 
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Current studies mainly focus on proposing various metrics to 
measure the fairness of schedulers[22][23][11][28], and try to 
deliver as best average fairness as possible[27][29]. In addition, 
many existing works mix up fairness and performance by measur-
ing the fairness of schedulers through performance metrics 
[11][28][29]. In fact, fairness is independent from performance 
and unsuitable to be measured by performance metrics. For ex-
ample, people might keep going to the same restaurant as long as 
its service is quick most of the time, even if occasionally the ser-
vice time is unstable and lengthened. But, suppose once you were 
seriously unfairly served in that restaurant, for instance, no waiter 
responded to your order and you were served after 10 people who 
came later than you, would you go there again? That’s the point 
which distinguishes fairness from performance: fairness is more 
like a baseline that needs to be guaranteed and cannot be broken, 
like laws, rather than being judged by metrics which pay more 
attention to the average situation, like performance. For fairness, 
what users concern about is that they never want to be treated 
unfairly, or in other words, they need services with guaranteed 
fairness. 

A question is naturally raised, what is the guaranteed fairness in 
parallel job scheduling? Fairness judgment depends on priority 
factors. Submission time is regarded as a natural priority factor of 
jobs in most parallel computing systems. FCFS can be regarded as 
an absolutely fair scheduling strategy, which holds the view that 
users are sensitive to service sequences, and jumping the queue is 
unacceptable. It is clear that this kind of fairness definition is 
proper for systems where every job needs to fully occupy all re-
sources and the resource availability has only two statuses, idle or 
full. 

Does the view of fairness in FCFS still work in parallel job sche-
duling? Our answer is no. Because in a parallel system with N 
resources, most jobs cannot occupy all the system resources and 
the resource availability has N+1 statuses, from completely idle 
(0/N), 1/N, 2/N, …, to completely full(N/N). Suppose the priority 
factor of jobs in a parallel system S is submission time. Job A is 
blocked because of insufficient idle resources in S. If the jobs 
submitted later than job A can run on these idle resources without 
delaying the start time of A, we believe the user of A would not 
raise any complains. Thus we define the notion of “strict fair-
ness” in parallel job scheduling: If no job is delayed by any jobs 
with lower priority, this scheduling sequence can be viewed as 
strict fair. 

EASY backfilling maintains a view which is similar to strict fair-
ness, but it is only a “relaxed fairness” that a job can be backfilled 
if it would not delay the “expected” start time (reservation) of the 
first blocked job in the waiting queue. But actually these back-
filled jobs often cause the blocked job to be unfairly treated ac-
cording to the definition of strict fairness. Because of the “heel 
and toe” dynamic [39], the start time of the blocked job is often 
gradually pushed away by its later jobs, which therefore results in 

unfair experiences of the blocked jobs. We have observed signifi-
cant unfairness in EASY from the experiment performed on three 
real production workloads (Section 5.1.3). Results are summa-
rized in Table 1. It is clear that around 20% of the blocked jobs in 
each workload suffered from unfairness (delayed by later jobs, 
denoted as delay jobs). On average, they were delayed 80, 169, 
and 133 minutes in CTC, SDSC-BLUE and SDSC-DS respective-
ly by later jobs. Moreover, the maximum delay caused by later 
jobs can be as long as 90 hours or more (in SDSC-BLUE). 

In order to overcome the misconception of existing works about 
fairness and help the blocked jobs suffering from unfairness in 
EASY, our objective is to design a scheduler that can guarantee 
strict fairness. Besides, because fairness and performance are both 
attractive to users, we do not want to sacrifice performance in 
exchange for strict fairness. Thus, our first motivation of design-
ing a new scheduler can be specified as follows: 

Objective 1: Our scheduler should guarantee strict fairness to 
the jobs with attractive performance. 

3.2 Employ Prediction 
In parallel job scheduling, EASY backfilling also achieves great 
success based on user estimates of jobs’ runtime, even if these 
estimates are highly inaccurate [3][16][30]. 

Performance modeling and runtime prediction technologies (e.g., 
[33][34][35]) have been reported to have better accuracy than user 
estimates. However, these advanced prediction techniques are 
rarely applied in real production schedulers, because of the mis-
conceptions stated in Section 2.3. D. Tsafrir[16] well clarified 
how these misconceptions failed and proposed an EASY variant 
that adopts prediction by separating the role of kill-time from 
prediction. It seems that the obstacles of prediction techniques in 
parallel job scheduling are eliminated in this way. But unfortu-
nately, we found that directly replacing user estimates with pre-
diction in EASY as it is proposed in [16] can lead to lots of prob-
lems. These problems, as analyzed below and demonstrated in 
Figure 1, are derived from inherent and unavoidable properties of 
prediction, underestimate (shorter than jobs’ actual runtime) and 
overestimate (longer than jobs’ actual runtime and shorter than 
user estimates). Notice that user estimates has been proven to be 
suitable to play the role of kill-time [16] and we hold the same 
view, so prediction that exceeds user estimates is meaningless 
since a job will be killed when it reaches its estimated time. Thus 
overestimate in this analysis is defined as the interval between 
runtime and user estimates.  

·Overestimate of running jobs’ runtime might lead to resource 
waste. Because the prediction is shorter than the user estimates, 
the reservation time is shorten and fewer jobs can be backfilled, 
thus more holes are left and more computational resource is 
wasted, compared with EASY which adopts estimates of users. 
On the contrary, overestimate of waiting jobs can result in better 
performance than EASY, for more jobs can be backfilled because 
of shorter predictions compared with user estimates. These conse-
quences of overestimate are easy to be deduced, and due to space 
limitation, they are not shown in Figure 1. 

·Underestimate of running jobs’ runtime would shorten the res-
ervation of the first blocked job in the queue and therefore reduce 
the possibility of other waiting jobs being backfilled. Moreover, 

Table 1. Start time delay of blocked jobs in EASY.             
(# denotes the number) 

Workload #JobDelay / 
#JobBlocked 

Mean Delay Time 
of Delay Jobs 

Maximum 
Delay Time 

CTC 736/3833 80.05 min 14.81 hour
SDSC-BLUE 1770/10409 169.08 min 90.70 hour

SDSC-DS 827/4147 133.23 min 17.25 hour
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this reservation would be violated because the running jobs can-
not actually finish before reservation and release sufficient pro-
cessors for the blocked job (user estimates act kill-time). Figure 
1(b) demonstrates one possible case of this issue. If job 1 is unde-
restimated (Figure 1 (b)), job 3 is unable to be backfilled as in 
EASY (Figure 1(a)), and six squares of CPUTime resource (num-
ber of processors X Time) is wasted before job 2 starts (Figure 
1(b)), while in EASY (Figure 1(a)) only four squares of CPUTime 
is wasted before job 2 starts. Furthermore, job 2 actually starts at 
T=2 and violates its reservation T=1. However, this situation can 
be viewed as “benign”, because the reservation of the blocked job 
is actually delayed by its predecessors, so the user of the blocked 
job would unlikely feel uncomfortable.   

·Underestimate of waiting jobs’ runtime would lead to the back-
filling of a job whose execution time is actually longer than the 
reservation of the first blocked job, and thus push away the actual 
start time of the first blocked job to exceed its reservation. This 
undesired situation, which is called “reservation violation” in this 
paper, damages the original intention of reservation in backfilling. 
As demonstrated in Figure 1(c), job 5 is underestimated to be able 
to finish in four time units (it actually takes six time units) and 
would not delay the start time of the blocked job 2, so job 5 is 
backfilled at time T=0. But actually job 5 cannot finish before the 
reservation of job 2 at time T=5 and job 5 keeps running until 
time T=6. Therefore job 2’s reservation guaranteed by EASY is 
violated.  

To prove the existence of reservation violation caused by directly 

replacing user estimates with prediction in EASY, we imple-
mented a prediction-based EASY backfilling as [16] by replacing 
user estimates with predictor when calculating reservations and 
choosing backfilled jobs, and performed a simulation on three real 
workloads (more detail in Section 5.1.3). The “benign” situation 
that illustrated in Figure 1(b) was filtered out, and we only fo-
cused on the most serious situation: reservation violation. The 
predictor in this experiment is Last Model, which predicts the 
lifetime accuracy (runtime / user estimates) of a job to be the 
same as the last job of the same user, and if no such predecessor 
exists, user estimates will be used instead. 

Simulation results are shown in Table 2. In each workload, tens or 
hundreds (92~407) of jobs suffered from serious reservation vi-
olation. The start time of these jobs are delayed more than 100 
minutes from their reservations on average. In the worst cases, 
some jobs even experienced a reservation violation of more than 
30 hours. Additionally, the bounded slowdown (defined in Sec-
tion 5.1.2) of these victims dramatically increased, the average 
slowdown increment (SI) is 4.78 in CTC, 36.13 in SDSC-BLUE, 
and 40.78 in SDSC-DS. The maximum SI was even up to 1581 in 
SDSC-DS. If a job’s reservation is violated, its owner would have 
the illusion that this job is starving. Furthermore, as shown in the 
column of Mean Parallelism, Table 2, most of these victims are 
large parallel jobs, which are the target jobs of HPC systems. 

All above analyses indicate that prediction cannot be directly 
integrated into EASY as some previous works (e.g., [16][38]) did, 
mainly due to the existence of reservation violation caused by 
unavoidable prediction errors. Even worse, most EASY variants 
also suffer from this problem, because they all inherit the same 
framework of reservation calculation and backfill selection as 
EASY. So how can current studies of performance modeling and 
runtime prediction, from serial job runtime prediction, to more 
complicated workflow runtime prediction [40] and parallel job 
runtime prediction [33][35][42], be able to facilitate parallel job 
scheduling strategies, especially for the most widely used EASY 
in real production? In this paper, we answer this question from a 
different perspective: design a scheduler that can limit the bad 
consequences caused by inaccurate predictions. Based on this 
motivation, the second objective of our ideal scheduler is: 

Objective 2: Our scheduler should employ prediction without 
causing reservation violation. 

4. PREEMPTIVE VENTURE EASY BACK-
FILLING 
In this section, we first introduce our view about the classifica-
tions of running load in EASY. Then we propose a shadow load 
preemptive (SLP) backfilling scheduling scheme which can guar-
antee strict fairness and employ prediction based on EASY. Af-
terwards, we propose a venture backfilling (VB) strategy, which is 
used to improve the performance of SLP. We integrate SLP and 
VB into the traditional EASY to form a new preemptive venture 
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Table 2. Reservation Violation caused by Last Model in EASY. (Reservation Violation is denoted as RV; Delay Time from 
Reservation is denoted as DTR; Slowdown Increment caused by Reservation Violation is denoted as SI ) 

Workload #JobDelay Mean_ParallelismRV/ System Processors Mean  DTR Mean SI Maximum DTR Maximum SI
CTC 92 147.78/ 430 100.19 min 4.78 15.13 hour 137.60 

SDSC-Blue 407 533.48/ 1152 154.76 min 36.13 32.90 hour 1320.63 
SDSC-DS 152 680.33/ 1664 110.69 min 40.78 16.62 hour 1581.00 
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EASY backfilling (PV-EASY) parallel job scheduling strategy. 
When a new job is submitted, or a running job is finished, PV-
EASY will firstly try to schedule jobs according to their priorities, 
from high to low, until the idle resource is not sufficient for the 
highest priority job in the queue. Then PV-EASY will start SLP, 
and afterwards start VB. 

4.1 Classifications of Running Load in EASY 
The load of a parallel computing system consists of a set of run-
ning jobs and thus it is called “running load” in this paper. In our 
view, if a running job’s priority is higher than all the jobs in the 
waiting queue, it is likely running under the sunshine that no one 
can question its rights of holding the resources. So the running 
load consists of this kind of jobs is called “sunny load”.  

On the contrary, if a running job’s priority is lower than any 
waiting jobs, one might consider that this running job got its 
resources through improper means, and therefore it is more likely 
running in the shadow (not willing to be noticed by others). We 
call the running load that consists of this kind of running jobs 
“shadow load”. 

In EASY, a job can be either “regularly” started (called regular 
job) if it holds the highest priority in the queue, or otherwise 
started by backfilling. Every regular job has the highest priority in 
the queue and deserves its running, so it definitely belongs to the 
sunny load during its whole lifetime. Backfilled jobs start only 
when the idle resources cannot satisfy the highest priority job in 
the queue, so they belong to the shadow load at the beginning of 
their lifetime. However, a backfilled job could transit from sha-
dow load to sunny load during its lifetime. Suppose that jobs 1,2,3 
are sequentially submitted, job 1 is blocked and job 2 is backfilled 
at time t1, then a previous running job is finished and job 1 is 
started at time t2. In this situation, job 2 belongs to the shadow 
load from t1 to t2, and after t2, job 2 transits to the sunny load.  

4.2 Shadow Load Preemption 
The objectives of this work include guaranteeing strict fairness, as 
well as employing job runtime prediction technologies without 
causing reservation violation. In order to do so, a novel shadow 
load preemption (SLP) strategy is proposed based on the frame-
work of EASY. 

Shadow load is the root cause of unfairness in EASY. Recall from 
Section 3.1 that according to the definition of strict fairness, un-
fairness always happens in the blocked jobs within the waiting 
queue of EASY. Because of inaccurate estimates of the blocked 
jobs’ reservation and the backfilled jobs’ runtime, the start time of 
blocked jobs could be delayed by the backfilled jobs submitted 
later. It is clear that the jobs that cause unfairness all belong to the 
shadow load.  

Also, the shadow load could lead to reservation violation and thus 
hinders the employment of prediction technologies in EASY. As 
analyzed in Section 3.2, underestimate of a waiting jobs’ runtime 
would mislead EASY to backfill jobs with long runtime (exceeds 
the reservation of blocked jobs) and therefore cause reservation 
violation. It is clear that these backfilled jobs with long runtime 
belong to the shadow load.  

Jobs in the shadow load must be unnoticeable. They should not 
delay the running of other jobs, especially the blocked jobs with 

higher priorities. But unfortunately, shadow load is treated the 
same as sunny load in EASY, which exposes the existence of jobs 
in the shadow load and affects blocked jobs, thus leading to un-
fairness and reservation violation. One approach to solve this 
inherent issue of EASY is to restrict the activities of the jobs in 
the shadow load within the scope of real “invisible shadow”, and 
prevent them from delaying the start of higher priority jobs, by 
implementing shadow load preemption (SLP):  

When the idle resources of a system are not sufficient for the 
highest priority job in the waiting queue, the system can 
preempt the resources occupied by the jobs in the shadow 
load if this preemption can enable the highest priority job to 
start right away. The preemption occurs according to job 
priorities, from low to high, and the preempted jobs are 
killed and returned to the waiting queue.  

By integrating SLP into EASY, strict fairness can be guaranteed 
and prediction will not cause reservation violation anymore. In 
SLP, because of preemption, the shadow load is invisible to the 
blocked jobs, and thus the backfilled jobs of the shadow load 
would no longer delay the start of the blocked jobs. If the jobs in 
the shadow load are underestimated by the predictor, SLP ignores 
their existence and preempts their resources. Therefore, the risk of 
reservation violation is eliminated. 

We select preempted jobs in the shadow load according to their 
priorities, from low to high, by considering 1) strict fairness(lower 
priority jobs should not delay higher priority jobs), and 2) the 
possible role switching of a job from the shadow load to the sunny 
load. By preempting from lower priority jobs to higher ones, high 
priority jobs can be left in the shadow load as long as possible, to 
maximize their opportunity of transition to the sunny load, and 
therefore minimize the number of jobs that suffer from kill and 
save computational resources. 

4.3 Venture Backfilling 
Not all existing HPC systems and applications can support sus-
pend/ resume or checkpoint/restart of jobs. In order to make our 
study be able to work in existing systems and for all kinds of jobs, 
the simplest and universally supported kill/restart preemption 
mode is adopted in SLP.  

The kill/restart mode in SLP is resource costly and may lead to 
performance degradation. If a backfilled job in the shadow load is 
preempted unluckily, all the work it has already done will be to-
tally lost and it has to restart from its origin next time. In addition, 
due to inaccurate runtime prediction, though a waiting job can 
actually finish before future preemption happens, it might be mi-
sunderstood by SLP that it cannot survive from possible preemp-
tion. In this situation, these jobs cannot be backfilled and some 
holes would appear without full utilizing system resources. 

We propose a venture backfilling (VB) to maximize the surviving 
opportunity of backfilled jobs in the shadow load and increase the 
utilization of the system, so as to reduce resource waste and im-
prove performance. The process of VB is stated as follows: 

1) Computes the reservation time of the first blocked job in the 
waiting queue. Only the sunny load is used to compute the 
reservation based on runtime prediction, while in EASY the 
whole load (including the sunny load and shadow load) is 
used to compute reservation based on user estimates. 

245



2) Determines the possible runtime of waiting jobs by employ-
ing system-generated prediction. While EASY adopts user 
estimates. 

3) Selects waiting jobs that can be satisfied by idle resources 
and have the largest likelihood of successful completion be-
fore preemption to be backfilled, from the nearest predicted 
completion time to the furthest within the reservation time. 

4) If there still exist idle resources, selects waiting jobs to be 
backfilled according to their priorities, from high to low, no 
matter whether the prediction indicates they could success-
fully complete before possible preemption or not. 

Step 3) aims to reduce the occurrence of preemption, and the pur-
pose of Step 4) is to make full use of the computational resources.  

Step 4) is a novel but adventurous approach which is different 
from existing EASY variants. It seems that the jobs backfilled in 
Step 4) have very little chance to survive from preemption. How-
ever this is not true, because prediction is always inaccurate and 
they may have opportunities, and recall from Section 4.2, preemp-
tion in SLP occurs from low priority to high priority, so the back-
filled jobs with high priority in Step 4) would still have opportuni-
ties to successfully transit to the sunny load and complete.  

5. EVALUATION 
In this section, we first introduce the experimental design that is 
used to evaluate our PV-EASY, including the simulator, metrics 
and workloads. Then we present and analyze the experimental 
results.  

5.1 Experimental Design 
5.1.1  Simulator 
We have constructed an event-based simulator to mimic different 
scheduling strategies in generic parallel computing clusters. It is 
driven by the workloads collected from real HPC systems (Sec-
tion 5.1.3 for more details). Events in this simulator are job sub-
mit, start, finish, and kill. Upon submit and finish, the scheduler is 
informed to schedule the jobs in the waiting queue, and generate 
job start or kill events by scheduling decisions. Once a job is 
scheduled to start, a finish event related to this job is created 
based on the real runtime of this job from the workload, but this 
runtime is invisible to the scheduler. Our simulator considers the 
processor request of each job, as most existing works [1][3][8] do, 
because computational resources are usually the scarcest re-
sources in HPC systems. 

5.1.2 Metrics 
In this study, two metrics, Mean Bounded Slowdown (MBS) and 
Mean Weighted Bounded Slowdown (MWBS), are used to eva-
luate user-aware performance in parallel job scheduling. Slow-
down is defined as turnaround time (wait time + runtime) norma-
lized by runtime. Bounded slowdown eliminates the influence of 
very short jobs on the metric [3], and it is defined as follows:  
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In this paper, we use a threshold of 10 seconds, which is often 
used in existing works. 

MBS is an arithmetic mean value of all jobs’ bounded slowdown. 
Every job is regarded as equal in MBS implicitly, without consi-
dering the number of processors used. In fact, the purpose of 
building HPC systems is to enable the running of large parallel 
jobs rather than serial jobs. By considering the number of proces-
sors used by each job as weight, we propose the metric MWBS be 
defined as follows: 
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Where the Parallelismj is the number of processors occupied by 
job j, and N is the total job counts. 

We do not employ turnaround time as an independent metric to 
evaluate schedulers in this paper, because they are already impli-
citly included in MBS and MWBS. 

In order to measure system-aware performance, we adopt system 
load as the metric. Load is computed as the CPUTime consumed 
by all jobs divided by the total CPUTime available in the system 
(System Processor capability X log time), which demonstrates the 
utilization rate of an HPC system under a certain scheduling strat-
egy.  

Unlike existing works which prefer to measure the fairness, we do 
not employ any fairness metrics in this paper. We aim at provid-
ing strict fairness to all the jobs, and with the help of preemption, 
our method does achieve this objective and can guarantee that no 
job is delayed by any jobs with lower priorities than it.  

5.1.3 Workloads 
The workload traces used to evaluate our PV-EASY are collected 
from real HPC systems. They are composed of job entries that 
record submission and execution information of jobs. Typically 
the following data fields of each job in the workload are used to 
drive our simulator and scheduling strategies. In our experiments, 
the values of these data fields are faithful to the original workload. 

·Job ID: is determined by the sequence of submission 
·Job Submission Time: the time that a job is submitted 
·Job Parallelism: the number of processors occupied by a job  
·Job Request Time: the possible job runtime estimated by user 
·Job Runtime: actual runtime of a job 

From the collection of Parallel Workload Archive (PWA) [41], 
we selected three workload traces (CTC, SDSC-BLUE and 
SDSC-DS) to evaluate our PV-EASY and other scheduling strate-
gies. These workload traces are all named by the names of their 
HPC systems and their affiliations. CTC is a 512-processor IBM 
SP2 machine located at the Cornell Theory Center, but only 430 
processors are dedicated to running batch jobs. Therefore in our 
experiments, the computational capacity of CTC is set to 430 
processors. SDSC-BLUE and SDSC-DS are all located at the San 
Diego Supercomputer Center (SDSC). SDSC-BLUE is a 144-
node (8 processors per node) IBM SP machine. SDSC-DS is a 
184-node IBM eServer pSeries 655/690 machine, and totally cov-
ers 1664 processors (DS is short for DataStar). 

An overview of these three workloads is given in Table 3. They 
are all collected during long production periods (at least one year) 
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and contain a large amount of job entries, with a regular load 
between 60% and 80%. The jobs in these workloads use tens of 
processors on average, and their mean runtime always exceeds 1 
hour.  

Other traces of PWA were not selected, because 1) some systems 
of the workloads are too small, for example, SDSC-SP2 has only 
128 processors; 2) some workloads contain too many jobs that 
failed to record job parallelism or runtime, such as SHARCNET 
and LLNL-Altas; 3) some workloads only contain serial jobs, like 
LPC EGEE; and 4) some workloads are used for system testing 
rather than production, like LLNL-uBGL. 

5.2 Experiments and Results 
Motivated by guaranteeing strict fairness with well performance 
and employing prediction without causing reservation violation in 
parallel job scheduling, we propose PV-EASY in this paper. In 
this sub-section, we demonstrate and analyze how PV-EASY 
achieves above two attractive objectives based on experimental 
results. Besides, PV-EASY employs the simple but resource cost-
ly kill/restart preemption mode, so the problem of resource waste 
is also analyzed.  

We only use EASY as a comparison target in our experiments. 
Because the default setting of most parallel schedulers remains 
plain EASY [9], and furthermore, it is statistically reported that 
90%~95% of the parallel scheduler installations do not change 
this default configuration [43]. 

In our experiments, the priority factor in all parallel scheduling 
strategies is the submission time of jobs, as generally used in most 
production environments. If not specified, the job runtime predic-
tor used in each of the scheduling strategies is Last Model, which 
predicts the lifetime accuracy (runtime / Request Time) of a job to 
be the same as the last job of the same user, and then generates 

runtime prediction with this lifetime accuracy and Request Time. 
If no such user exists, Request Time (user estimates) will be used 
as prediction result instead. 

5.2.1 Benefits of Maintaining Strict Fairness 
Benefiting from shadow load preemption (SLP), strict fairness is 
guaranteed in our PV-EASY. Therefore, there is no need to meas-
ure PV-EASY with fairness metrics (Section 5.1.2). Instead, ad-
vantages of maintaining strict fairness in PV-EASY can still be 
demonstrated from another perspective: how blocked jobs benefit 
from guaranteed strict fairness. 

Based on the definition of strict fairness (Section 3.1), the blocked 
jobs often suffer from unfairness due to the “heel and toe” dynam-
ic [39]. Because strict fairness is guaranteed in PV-EASY, the 
performance of these blocked jobs should be theoretically pro-
moted. In this part of the experiments, we simulate the scheduling 
of PV-EASY and EASY on 3 workload traces, and compare the 
performance of the blocked jobs between these two scheduling 
strategies. In order to analyze the impacts of guaranteeing strict 
fairness on different sizes of jobs, the blocked jobs are grouped 
according to their parallelism. As shown in Figure 2, the MBS of 
big blocked jobs (job parallelism larger than 1/4 of the system 
processor numbers) in PV-EASY are mostly smaller than that 
those in EASY. As shown in Figure 3, in terms of the MWBS of 
the blocked jobs, big blocked jobs are also better treated in PV-
EASY than in EASY. Notice that due to their large parallelism, 
big jobs are more likely to suffer from blocking and serious delay 
than small jobs in EASY. The experimental results clearly indi-
cate that the performance of big (large parallelism) blocked jobs 
are promoted without the delay of later jobs in PV-EASY.  

Small blocked jobs (job parallelism smaller than 1/4 of system 
processor numbers), as shown in the three workloads of Figure 2 
and Figure 3, do not receive better treatment in PV-EASY com-

Table 3. An overview of the workloads. Load in this section is denoted as the percentage of total CPUTime of running jobs in 
system capability (#Processors X (Submission Time of the last job - Submission Time of the first job)). 

Workload Duration #Processors #Job Load (%) Mean Parallelism Mean Runtime
CTC Jun 1996 ~ May 1997 430 77222 66.18 10.9853 11277 s 

SDSC-BLUE Apr 2000 ~ Jan  2003 1152 223407 76.21 41.5910 4381 s 
SDSC-DS Mar 2004 ~ Apr 2005 1664 85003 63.02 60.9240 7569 s 

 

 
Figure 2. Mean Bounded Slowdown (MBS) comparison of Blocked Jobs in PV-EASY and EASY. 

 

 
Figure 3. Mean Weighted Bounded Slowdown (MWBS) comparison of Blocked Jobs in PV-EASY and EASY. 
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pared with EASY. The reason is that, in order to guarantee strict 
fairness, big blocked jobs can preemptively start in PV-EASY. So 
it is harder for small jobs to successfully finish when they are 
backfilled, and therefore leads to more small jobs being killed. 
These killed jobs are returned to the waiting queue, re-backfilled, 
or blocked and finally regularly started after previous jobs release 
the processors. This process lengthens their turnaround time and 
bounded slowdown. Table 4 gives a statistic of the number of 
backfilled jobs and blocked jobs in PV-EASY and EASY. The 
common characteristic of these three workloads is that the number 
of backfilled jobs in PV-EASY is smaller than that in EASY, 
while the number of blocked jobs in PV-EASY is larger than that 
in EASY. These data indicate that compared with EASY, fewer 
jobs are finished during their backfill period and more jobs are 
regularly started in PV-EASY.  

This performance degradation of small blocked jobs in PV-EASY 
can be viewed as a “benign consequence” of guaranteeing strict 
fairness, because fairness and performance are always a tradeoff, 
and we will further demonstrate that the overall performance of 
PV-EASY is also attractive in Section 5.2.3.  

5.2.2 Employing Prediction 
Another objective of PV-EASY is to employ prediction without 
causing reservation violation. By applying preemption in PV-
EASY, reservation violation can be theoretically and practically 
prevented (In our experiments, no reservation violation occurs in 
PV-EASY). Moreover, PV-EASY provides better supports to 
prediction than EASY. By employing the same prediction tech-
nique, PV-EASY achieves better performance than EASY.   

In this part of the experiments, we integrate prediction into differ-
ent scheduling strategies and compare their performances with 
different job runtime prediction accuracies. To present a fair 
comparison, besides commonly used EASY backfilling which 
employs FCFS strategy to choose backfilled jobs (denoted as 
FCFS-EASY in the rest of this sub-section), we also introduce a 
SJF-EASY which selects backfilled jobs according to the order of 
Short Job First (SJF) into the comparison, because PV-EASY 
selects backfilled jobs according to their runtime prediction (Sec-
tion 4.3, step 3)), using Short Prediction Job First. Notice that we 
do not adopt any existing prediction technologies (e.g. Last Model) 
in this experiment. Instead, a “virtual” predictor is used to gener-
ate prediction with the maximum error of ±x% (implemented by 
setting the prediction to be %))~%(1( xxrandomruntime −+× , 
and the mean absolute prediction error of this “virtual” predictor 
is around x/2). This “virtual” predictor replaced the Last Model in 
PV-EASY, and also replaced user estimates (job Request Time) in 
FCFS-EASY and SJF-EASY in this part of experiments. For 
every scheduling strategy implemented on every trace with every 
x value, we repeated the simulation ten times, and then report the 
mean results.  

As shown in Figure 4, PV-EASY achieves much better perfor-
mance than FCFS-EASY and SJF-EASY in the three workloads. 
PV-EASY outperforms FCFS-EASY and SJF-EASY when run-
time prediction error is bounded within maximum 10% (mean 
absolute prediction error is around 5%) on MBS and MWBS. 
Considering that existing parallel job runtime prediction tech-
niques (e.g., [33][35][42]) have been reported to achieve mean 
absolute prediction error of more than 20% (corresponding to the 
maximum runtime prediction error 40% in Figure 4), we believe 
that PV-EASY can much better support prediction techniques in 
parallel job scheduling than EASY in the long term, until the time 
that prediction techniques could successfully limit the mean abso-
lute runtime prediction error within less than 5% in real produc-
tion applications and environments. 

5.2.3 Performance Comparison with EASY  
Fairness and performance are both attractive to users, but they are 
always a tradeoff in parallel job scheduling and overemphasizing 
any factors is unacceptable in reality. A successful scheduling 
strategy must well balance these two factors. Thus, recall from 
Section 3.1, our objective is not only guaranteeing strict fairness, 
but also providing attractive performance. 

In SLP, kill/restart preemption mode would cause computational 
resource waste and result in performance degradation. On the 
other hand, because of inaccurate prediction, computational re-
sources might still be left idle in SLP. So we proposed venture 
backfilling in PV-EASY to solve these performance problems. 
Figure 5 and Figure 6 show the comparison between PV-EASY 
and EASY on two performance metrics, MBS and MWBS, re-

Table 4. Backfilled and Blocked Jobs in PV-EASY and 
EASY 

                      Workload 
Job Counts (#) 

CTC SDSC-
BLUE 

SDSC-
DS 

# Total Job 77222 223407 85003
# JobBackfilled EASY 38726 166014 51370

PV-EASY 29061 148937 38683
# JobBlocked EASY 3833 10409 4147 

PV-EASY 6403 19262 8736 
 

 
Figure 4. Performance comparison among “virtual” predic-
tor integrated PV-EASY, FCFS-EASY and SJF-EASY, with 
different maximum runtime prediction errors. 
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spectively. It is clear that PV-EASY achieves smaller (in SDSC-
BLUE) or similar (in CTC and SDSC-DS) MBS and MWBS as 
EASY. In order to eliminate the doubt that such performance of 
our PV-EASY benefits from prediction method that is more accu-
rate than user estimates, we also compare PV-EASY with EASY-
Last (user estimates are replaced by Last Model in EASY). As 
shown in Figure 6, EASY-Last performs worst in three workloads, 
and we are therefore convinced that venture backfilling does suc-
cessfully promote the performance as we expected. 

These results indicate that in addition to guaranteeing strict fair-
ness, PV-EASY with the simplest prediction technique (Last 
Model can be integrated into any system without any additional 
modification on that system) can achieve as attractive perfor-
mance as EASY in real systems and workloads. Thus we can 
conclude that PV-EASY can better balance fairness and perfor-
mance than EASY. 

5.2.4  Resource Waste 
Kill/restart preemption in PV-EASY is simple (supported by all 
systems) but resource costly (the work that a job has already done 
can be totally lost when this job is preempted). Resource waste is 
an important issue that has already drawn the attention of industry. 
We analyze the total load and wasted load of the three workloads 
in PV-EASY, and the results are listed in Table 5. Notice that the 
definition of load in Table 5 is a little bit different from that in 
Table 3, because the system capability here is defined as System 
processor Number X (the time that all jobs finish – Submission 
Time of the first job). 

It is clear that even by employing kill/restart preemption, the 
wasted load of PV-EASY is relatively small for three workloads 
(2.48% to 5.66%) and it does not worsen the system throughput. 
Each workload (the load varies from 63.02% to 76.21%, Table 3) 
finishes within the same time in PV-EASY and EASY. This result 
can be explained as follows. 

First, as the statistical results of preempted jobs in PV-EASY 
shown in Table 6, maximum 13.17% jobs (in CTC) suffered from 
preemption (nearly 1 out of 8 jobs), and in SDSC-BLUE, this rate 
is as low as 7.77%. This small proportion of preempted jobs indi-
cates that PV-EASY does not disturb too many running jobs. 
Second, the impacts of kill/restart are not serious on these 
preempted jobs. In order to quantify these impacts, we employ 
two metrics, Mean Killed Times (MKT) and Run Time Waste 
(RTW). MTK counts the mean occurrences of killing among 
preempted jobs, and RTW is defined in formula (3): 

Runtime
RuntimeTimeRTW sum −

=               (3) 

Where Timesum is the accumulative runtime of a job, including its 
actual Runtime and the runtime it used before preemption hap-
pens. The results of MKT and RTW of PV-EASY are shown in 
Table 6. On average, preempted jobs in the three workloads were 
killed less than twice (1.72, 1.46 and 1.62 in CTC, SDSC-BLUE 
and SDSC-DS, respectively). Besides, these preempted jobs spent 
only 40%~50% additional time than their actual runtime. Based 
on the results of MKT and Mean RTW, we conclude that 
kill/restart mode does not significantly impact these preempted 
jobs.  

6. DISCUSSION 
EASY is widely applied and has achieved great success in HPC 
systems and production schedulers, not only because it can bal-
ance fairness and performance, but also due to its simple imple-
mentation. Based on EASY, lots of variants have been proposed. 
However, few of these variants really work in productions. Why? 
Because a production scheduler must be universally applicable to 
most HPC systems and EASY is the one that successfully 
achieves this. 

In order to truly facilitate HPC systems in production environ-
ments, PV-EASY also employs the simplest and universally ap-
plicable mechanisms supported by all HPC systems. In shadow 
load preemption (SLP), the kill/restart preemption mode is em-
ployed and in venture backfilling (VB), the simplest Last Model is 
used to perform prediction. Both kill/restart mode and Last Model 
are supported by all HPC systems and can be easily implemented 
and replace EASY in production schedulers. 

Currently, though suspend/resume and checkpoint/restart modes 
could better reduce resource waste than kill/restart mode, we do 
not adopt them in SLP, due to the following two consideration. 
First, both of these two modes need support from systems and 

 
Figure 5. Mean Bounded Slowdown Comparison among 

PV-EASY, EASY and EASY-Last 

 
Figure 6. Mean Weighted Bounded Slowdown            

Comparison among PV-EASY, EASY and EASY-Last 

Table 5. Load of PV-EASY in 3 workloads. 

Workload Total Load (%) Wasted Load (%)
CTC 68.6166  2.48 

SDSC-BLUE 81.7564 5.66 
SDSC-DS 66.4917 3.67 

Table 6. Preempted Jobs in PV-EASY 

Workload #JobPreempted /
# Total Job 

Rate 
(%) 

MKT Mean 
RTW (%)

CTC 10172/77222 13.17 1.72 38.95 
SDSC-BLUE 17364/223407 7.77 1.46 48.27 

SDSC-DS 10294/85003 12.11 1.62 45.33 
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applications, and it is also not realistic to ask existing application 
providers or users to modify their applications or jobs to fit these 
modes. Therefore, employing either of these two modes would 
limit the scope of the applicability of PV-EASY. Second, these 
two modes would still cause resource waste. Suspend and check-
point operations also need time to save runtime environments, so 
part of a job’s work would still be lost in checkpoint/restart mode. 

However, benefiting from virtualization and other techniques, live 
job migration and fast runtime environments save/load will be 
widely employed in HPC systems while operation cost will de-
crease as technology advances. In such cases, replacing the 
kill/restart mode with suspend/resume or checkpoint/restart mode 
in PV-EASY will become natural and definitely lead to better 
performance.  

Another noticeable phenomenon in our experiment is that even 
with poor accuracy, EASY with user estimates achieves smaller 
MBS and MWBS than both EASY-Last (Figure 5 and Figure 6) 
and EASY with a “virtual” predictor (Figure 4) whose maximum 
prediction error is limited within 10%. This phenomenon once led 
to a pessimistic view that accurate prediction is not useful in pa-
rallel job scheduling. Actually, when user estimates are inaccurate, 
a “heel and toe” dynamic [39] would occur, making EASY ap-
proximate SJF, and therefore achieves good performance via se-
rious sacrifice of fairness. Thus in our view, runtime prediction is 
helpful for parallel job scheduling, since it can enable schedulers 
to make better scheduling decisions to balance fairness and per-
formance. 

7. CONCLUSION 
EASY backfilling is one of the most widely applied parallel job 
scheduling strategies in production schedulers. However, jobs 
scheduled by EASY may suffer from serious unfairness, and 
EASY cannot directly support prediction because this would 
cause reservation violation. In this paper, we proposed a new 
preemptive venture EASY backfilling (PV-EASY) strategy, which 
integrates novel shadow load preemption (SLP) and venture back-
filling (VB) approaches. We designed an event-based parallel job 
scheduling simulator and conducted experiments on three work-
loads collected from real HPC systems. Results show that our PV-
EASY is very attractive from both academic and industry pers-
pectives in the following aspects: 

·PV-EASY can guarantee strict fairness because of SLP, and 
also achieves attractive performance compared with EASY due to 
VB. These facts indicate that PV-EASY can leverage fairness and 
performance much better than EASY in parallel job scheduling. 

·PV-EASY can benefit more from prediction techniques than 
EASY. PV-EASY can avoid reservation violation that arises from 
employing prediction in EASY. Moreover, PV-EASY can achieve 
much better performance than EASY with existing parallel job 
runtime prediction techniques, and will continue its superiority 
against EASY for the foreseeable future (as long as the maximum 
prediction error is not smaller than 10%, which is far beyond the 
capability of current prediction techniques). 

·PV-EASY is simple to implement and not resource costly. It is 
applicable to all kinds of HPC systems and production schedulers 
where EASY works, without introducing any additional system or 
application modifications.   
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