
PV-EASY: A Strict Fairness Guaranteed and Prediction
Enabled Scheduler in Parallel Job Scheduling

Yulai Yuan*, Guangwen Yang† , Yongwei Wu† ,Weimin Zheng†
Tsinghua National Laboratory for Information Science and Technology (TNList)

Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
*yuan-yl05@mails.tsinghua.edu.cn

† {ygw, wuyw, zwm-dcs}@tsinghua.edu.cn

ABSTRACT
As the most widely used parallel job scheduling strategy in pro-
duction schedulers, EASY has achieved great success, not only
because it can balance fairness and performance, but also because
it is universally applicable to most HPC systems. However, un-
fairness still exists in EASY. For real workloads used in this work,
our simulation shows that a blocked job can be delayed by later
jobs for more than 90 hours. In addition, EASY cannot directly
employ parallel job runtime prediction techniques, because this
would lead to a serious situation called reservation violation.

In this paper, we aim at guaranteeing strict fairness (no job is
delayed by any jobs of lower priority) while achieving attractive
performance, and employing prediction without causing reserva-
tion violation in parallel job scheduling. We propose two novel
strategies, shadow load preemption (SLP) and venture backfilling
(VB), which are together integrated into EASY to construct a
preemptive venture EASY backfilling (PV-EASY) strategy. Expe-
rimental results on three workloads of real HPC systems demon-
strate that: First, PV-EASY guarantees strict fairness, in addition
to avoiding reservation violation when employing job runtime
prediction techniques in scheduling; Second, PV-EASY achieves
the same performance as EASY, and outperforms prediction em-
ployed EASY; Third, the preemption in PV-EASY is not resource
costly and simple enough to be implemented in all HPC systems
where EASY works. These advantages make PV-EASY more
attractive than EASY in parallel job scheduling, both from aca-
demic and industry perspectives.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management – Scheduling.

General Terms
Algorithms, Management, Performance

Keywords
Scheduling, preemptive, prediction, backfilling

1. INTRODUCTION
Parallel job scheduling is critical in large-scale high performance
computing (HPC) systems, such as Clusters, Grids and Clouds,
since different scheduling policies can result in different user
experiences and resource utilization. Fairness and performance
are two eternal topics in parallel job scheduling. Previous works
either focus on providing fair scheduling [24][28][29] or improv-
ing performance [15][19][20][32]. However, fairness and perfor-
mance should be considered in concert. First Come First Serve
(FCFS) mainly guarantees fairness, while Short Job First (SJF) [6]
mainly targets performance. This explains why they are rarely
used alone in practice. EASY backfilling [1] leverages fairness
and performance in a simple and efficient manner. It allows later
jobs to backfill in idle processors that cannot satisfy the request of
the first blocked job, provided these backfilled jobs would not
delay the expected start time (reservation) of the first blocked job
in the queue. EASY can guarantee “relaxed” fairness to jobs
through reservation, as well as achieve good performance by al-
lowing shorter jobs to be shifted forward. Because of a better
balance between fairness and performance, EASY is the most
widely used job scheduling strategy in high performance parallel
computing systems. It has been adopted by a number of major
production schedulers, including IBM’s LoadLever, Cluster Re-
sources’ Moab and Maui, Platform’s LSF, Altair’s OpenPBS and
PBS-Pro, and Sun’s GridEngine[9].

In order to obtain better fairness while achieving attractive per-
formance, many approaches have been proposed to improve
EASY in the past. While they provide better fairness in schedul-
ing, most of them suffer from the same problem: they mix up
fairness and performance by trying to measure the fairness of
schedulers with performance metrics, such as Slowdown Queuing
Fairness (SQF) [28], fair-slowdown [10] and fair start time [29].
We claim that fairness has to be guaranteed independently from
performance metrics. Unfortunately, our results show that this
does not happen yet, and on production systems, EASY still suf-
fers from unfairness. Based on the definition of strict fairness (no
job is delayed by any jobs of lower priority), a blocked job can be
delayed by later jobs for up to 90.7 hours in the simulation with
real workloads. Moreover, to the best of our knowledge, no exist-
ing studies can guarantee strict fairness. Therefore, our first objec-
tive is to guarantee strict fairness as well as achieve attractive
performance in parallel job scheduling.

Another interesting phenomenon is that job runtime prediction
technologies are rarely employed in real production schedulers of
EASY, though EASY is built on highly inaccurate user estimates

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC'10, June 20–25, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-60558-942-8/10/06 ...$10.00.

240

of jobs’ runtime[3][30][16]. This is due to two reasons. First,
there is a misconception that inaccurate user estimates of jobs’
runtime can improve performance [3][37][38]. Second, replacing
user estimates directly with system-generated prediction in EASY
would lead to reservation violation, which means a blocked job in
the queue cannot start at its reservation time. The delay from res-
ervation time can be as large as 32.9 hours in the simulation with
real workloads. These two reasons cause lots of prediction tech-
niques [33][34][35] to be put on the shelf, even if they were re-
ported to have better prediction accuracy than user estimates. In
order to solve the dilemma of prediction techniques, our second
objective is to employ prediction techniques without causing res-
ervation violation.

In this paper, we propose a novel preemptive venture EASY back-
filling (PV-EASY) which integrates shadow load preemption
(SLP) and venture backfilling (VB) into EASY. Our paper makes
two main contributions:

(1) Propose shadow load preemption (SLP) to guarantee strict
fairness and employ prediction techniques without causing
reservation violation, which makes PV-EASY more attractive
than EASY with regard to fairness.

The running load of a system is classified into sunny load and
shadow load (Section 4.1), and SLP (Section 4.2) can preempt the
processors occupied by shadow load to start blocked jobs accord-
ing to the definition of strict fairness. Preemption in SLP can
guarantee strict fairness in scheduling and avoid reservation viola-
tion. Additionally, as observed from the experiments performed
on three workloads collected from real HPC systems, the Mean
Bounded Slowdown (MBS) and Mean Weighted Bounded Slow-
down (MWBS) of blocked jobs in PV-EASY are mostly lower
than that in EASY.

(2)Propose venture backfilling (VB) to promote performance,
which makes PV-EASY more attractive than EASY in terms
of performance.

VB (Section 4.3) can counteract the negative effects of the
kill/restart preemption mode in SLP and therefore promote per-
formance. After backfill decisions made based on runtime predic-
tion, high priority jobs may still be venturesomely backfilled if
there still exist idle processors, without considering job runtime
and reservation. Benefiting from VB, PV-EASY with the simplest
Last Model predictor can achieve the same MBS and MWBS as
EASY. Moreover, PV-EASY better employs prediction tech-
niques than EASY on performance. If both PV-EASY and EASY
adopt the same existing job runtime prediction techniques, PV-
EASY achieves better MBS and MWBS than EASY.

We validate the effectiveness of our proposed solution by means
of real workloads from production HPC systems. Our results
show that, due to low resource waste and simple implementations,
PV-EASY can easily facilitate all HPC systems where EASY
works, which makes PV-EASY attractive in real production envi-
ronments. PV-EASY employs the simple kill/restart preemption
mode and Last Model predictor. Unlike suspend/resume and
checkpoint/restart preemption modes, or predictors which use
profiling, machine learning, etc, PV-EASY does not need the
support of any complex system features and thus can be easily
implemented in HPC systems and production schedulers. Addi-
tionally, even by employing kill/restart preemption, the wasted

resources in PV-EASY are controlled at a low level
(2.48%~5.66%), and therefore do not affect system throughput
when the system load is close to 80% (the common upper load in
production HPC systems).

The rest of this paper is organized as follows. Section 2 provides
the background and related work of parallel job scheduling, in-
cluding EASY and its variants. In Section 3 we discuss the moti-
vations of this paper, and then we propose our novel PV-EASY in
Section 4. The experimental design and results are presented in
Section 5. In section 6 and 7 we discuss and conclude.

2. BACKGROUND AND RELATED WORK
In the past, besides the most natural and simplest First Come First
Serve (FCFS) strategy, many kinds of order-based parallel job
scheduling strategies[4][5] have been proposed, such as Shortest
Job First (SJF), Smallest Job First[6], and Smallest Cumulative
Demand First[6][7], etc. But all of them share similar inherent
problems: 1) Due to different sizes of jobs, if the first waiting job
is blocked, some processors would be idle and a “hole” would
appear in the system as time goes by, and therefore results in low
system utilization; 2) Most of the above order based scheduling
strategies, except FCFS, can cause unfairness, even starvation. A
successful approach to solve these two problems is backfilling[1].

2.1 Backfilling and Variants
Backfilling allows later jobs to fill in the hole created by the first
blocked job in the waiting queue as long as they do not delay the
expected start time (reservation) of blocked jobs in the queue. In
this way, system utilization is improved by filling the holes, and
starvation is avoided by assigning reservations to the blocked jobs.
The implementation of backfilling relies on user estimates of
jobs’ runtime, based on which the scheduler can determine reser-
vations and which job can be backfilled without violating the
reservations of its predecessors. Generally, the possible runtime
of jobs is estimated by users. If a job runs beyond its estimated
time, it will be killed and never restart.

There exist two major versions of backfilling, conservative and
aggressive backfilling. Conservative backfilling only backfills
jobs that would not delay any previous jobs in the queue, while
aggressive backfilling takes a more aggressive approach that se-
lects backfilled jobs provided they would not delay the expected
start time of the first job in the queue. Aggressive backfilling has
been reported to have better performance than conservative back-
filling [2]. Additionally, EASY backfilling[1], the original ag-
gressive backfilling algorithm in practice, is the most widely used
scheduling strategy in parallel job scheduling, and has been
adopted by most major production schedulers, including IBM’s
LoadLever, Cluster Resources’ Moab and Maui, Platform’s LSF,
Altair’s OpenPBS and PBS-Pro, and Sun’s GridEngine[9].

To enhance the performance of EASY from different perspectives,
many variants of EASY have been proposed, most of which can
be classified by their changes in the following two aspects:

·Reservation Calculation: Generally, a loosened reservation of
a blocked job in EASY would result in better performance, such
as small average slowdown, because a longer reservation allows
more jobs to be backfilled. Ward et al. [12] explored the possibili-
ty of using a relaxed backfill strategy, where jobs with lower
priorities could be backfilled as long as they would not delay the

241

job that holds the highest priority too much. Dynamic backfilling
[14] allows the scheduler to overrule a previous reservation under
the condition that a slight delay will considerably get utilization
improvement in return. Talby et al. [15] presented a slack based
backfilling, which assigns each waiting job a slack to determine
how long it has to wait before running. Srinivasan et al. [11] de-
signed a selective backfilling where a reservation is selectively
made when a job’s expected slowdown exceeds a certain thre-
shold. These variants could improve performance by enabling
more small jobs to be backfilled than EASY, while sacrificing the
blocked jobs.

·Backfill Selection: Some existing works modified the selection
sequence of backfilled jobs in EASY. Chiang et al. [10] reported
that prioritizing jobs by decreasing runtime estimates or increas-
ing expected slowdown can improve the performance of schedul-
ing. Shmueli et al. [13] proposed a look-ahead optimizing schedu-
ler to generate the local optimal backfill selection by using dy-
namic programming. Some other existing works employ system-
generated runtime prediction to replace the request time estimated
by user. Tsafrir et al.[16] integrated system-generated prediction
into EASY, only keeping user estimates as the kill time of jobs.
Cuim et al. [18] proposed a resource usage aware backfilling, by
using LessConsume resource selection policy to decide which job
has to be executed and how jobs have to be backfilled.

Besides the above two major backfilling variants of EASY, Thebe
et al. [17] examined the concept of giving every job a short trial
run to allow immediate detection of job failures and benefit short
jobs that can finish during the trial run. Based on market-inspired
utility functions, utility-based scheduling [32][36] strategies have
also been proposed recently and claimed performance improve-
ments ranging from 4% to 20% compared with backfilling[36].
But utility-based scheduling is rarely deployed in practice [8], due
to its potential harm of fairness.

2.2 Scheduling Metrics
Performance is an important factor that attracts users of HPC
systems. So, many existing works (e.g.,[15][19][20][32]) paid a
lot of attention to promoting the performance of schedulers on
certain metrics, including user-aware metrics (e.g., turnaround
time, slowdown) and system-aware metrics (e.g., utility and ener-
gy saving).Shorter turnaround time and smaller slowdown of jobs
would stimulate users to submit more jobs [21], and higher utility
and more energy saving are appreciated by the owners of HPC
systems.

However, it is also known that users in queue systems are sensi-
tive to fairness [25][26], and they might consider fairness even
more important than productivity in HPC systems [21]. Due to
this reason, various fairness metrics have been proposed to eva-
luate the fairness of scheduling, such as Resource Allocation
Queuing Fairness Metric (RAQFM) [22][23], Slowdown Queuing
Fairness (SQF) [28] and fair-slowdown metrics [11]. In [27], each
job is assigned a “fair start time” and fairness is measured by
judging whether a job starts after its “fair start time”. J. Ngubiri et
al. [29] examined the characteristics of three fairness evaluation
approaches in parallel job scheduling. All these works about fair-
ness mainly focus on fairness measurement and promoting aver-
age fairness according to their fairness metrics, rather than de-
signing a scheme to guarantee a certain level of fairness.

2.3 Prediction in EASY Backfilling
EASY backfilling is built on jobs’ runtime estimates given by
users, which 1) determine how long jobs can execute before they
are killed, 2) compute the reservation of blocked jobs, and 3)
decide which waiting job can be backfilled. In EASY, users are
required to estimate “request time” for their jobs [1] based on the
hypothesis that users would be motivated to provide as accurate
runtime estimates as they can, due to a tradeoff that short (long)
request time of a job would make it have more (less) chance to be
backfilled and therefore achieve better (worse) performance,
while also enlarging (reducing) its risk of being killed before it
successfully finish.

Unfortunately, the above hypothesis often fails in practice. User
estimates of jobs’ runtime are reported to be highly inaccurate
[3][16][30]. Even worse, most users are unable or reluctant to
provide better job runtime estimates when they submit their jobs
to HPC systems [31]. These facts stimulate researchers to propose
more accurate system-generated runtime prediction techniques.
Notice that, in the rest of this paper, we use “estimate” to denote
the request time of job forecasted by users, and use “prediction”
to indicate the result of system-generated runtime prediction.
Several existing studies propose various runtime prediction me-
thods by learning from historical data [33][34][35], and they are
all reported to have better accuracy than user estimates.

However, prediction techniques are rarely integrated into EASY
in real production systems, due to two misconceptions. First, in-
accurate runtime estimates of jobs can improve performance [3].
Due to this misconception, some previous works even suggested
using randomized [37] or doubled [38] runtime estimates in
EASY. Second, users would not tolerate their jobs being killed
just because predictions were too short. In [16], the authors well
clarified how the first misconception failed in three aspects: 1)
perfect estimates improve performance more than doubling origi-
nal user estimates; 2) the performance gained from doubled esti-
mate is derived from a “heel and toe” dynamic [39] which allows
more short jobs to be backfilled, but also gradually pushes away
the start time of the first blocked job in the queue; 3) a reliable job
runtime prediction method could facilitate advance reservation in
grid resource allocation and co-allocation. The second misconcep-
tion is handled by still using user estimates as kill-time while
employing prediction in scheduling [16]. With these misconcep-
tions removed, prediction is integrated into EASY [16].

3. MOTIVATION
The wide use of EASY in production schedulers and HPC sys-
tems has already proved its practicability. But unfortunately,
EASY and its variants still suffer from some serious problems that
were partly discussed in the previous section and will be further
analyzed in this section. These analyses motivate us to propose a
more powerful parallel job scheduler to guarantee strict fairness
and employ prediction.

3.1 Guarantee Strict Fairness
Existing works of parallel job scheduling pay more attention to
performance than fairness. However, as mentioned in Section 2.2,
HPC users might be more sensitive to fairness than performance
[21]. We believe that fairness and performance are both important
to attract users in parallel job scheduling.

242

Current studies mainly focus on proposing various metrics to
measure the fairness of schedulers[22][23][11][28], and try to
deliver as best average fairness as possible[27][29]. In addition,
many existing works mix up fairness and performance by measur-
ing the fairness of schedulers through performance metrics
[11][28][29]. In fact, fairness is independent from performance
and unsuitable to be measured by performance metrics. For ex-
ample, people might keep going to the same restaurant as long as
its service is quick most of the time, even if occasionally the ser-
vice time is unstable and lengthened. But, suppose once you were
seriously unfairly served in that restaurant, for instance, no waiter
responded to your order and you were served after 10 people who
came later than you, would you go there again? That’s the point
which distinguishes fairness from performance: fairness is more
like a baseline that needs to be guaranteed and cannot be broken,
like laws, rather than being judged by metrics which pay more
attention to the average situation, like performance. For fairness,
what users concern about is that they never want to be treated
unfairly, or in other words, they need services with guaranteed
fairness.

A question is naturally raised, what is the guaranteed fairness in
parallel job scheduling? Fairness judgment depends on priority
factors. Submission time is regarded as a natural priority factor of
jobs in most parallel computing systems. FCFS can be regarded as
an absolutely fair scheduling strategy, which holds the view that
users are sensitive to service sequences, and jumping the queue is
unacceptable. It is clear that this kind of fairness definition is
proper for systems where every job needs to fully occupy all re-
sources and the resource availability has only two statuses, idle or
full.

Does the view of fairness in FCFS still work in parallel job sche-
duling? Our answer is no. Because in a parallel system with N
resources, most jobs cannot occupy all the system resources and
the resource availability has N+1 statuses, from completely idle
(0/N), 1/N, 2/N, …, to completely full(N/N). Suppose the priority
factor of jobs in a parallel system S is submission time. Job A is
blocked because of insufficient idle resources in S. If the jobs
submitted later than job A can run on these idle resources without
delaying the start time of A, we believe the user of A would not
raise any complains. Thus we define the notion of “strict fair-
ness” in parallel job scheduling: If no job is delayed by any jobs
with lower priority, this scheduling sequence can be viewed as
strict fair.

EASY backfilling maintains a view which is similar to strict fair-
ness, but it is only a “relaxed fairness” that a job can be backfilled
if it would not delay the “expected” start time (reservation) of the
first blocked job in the waiting queue. But actually these back-
filled jobs often cause the blocked job to be unfairly treated ac-
cording to the definition of strict fairness. Because of the “heel
and toe” dynamic [39], the start time of the blocked job is often
gradually pushed away by its later jobs, which therefore results in

unfair experiences of the blocked jobs. We have observed signifi-
cant unfairness in EASY from the experiment performed on three
real production workloads (Section 5.1.3). Results are summa-
rized in Table 1. It is clear that around 20% of the blocked jobs in
each workload suffered from unfairness (delayed by later jobs,
denoted as delay jobs). On average, they were delayed 80, 169,
and 133 minutes in CTC, SDSC-BLUE and SDSC-DS respective-
ly by later jobs. Moreover, the maximum delay caused by later
jobs can be as long as 90 hours or more (in SDSC-BLUE).

In order to overcome the misconception of existing works about
fairness and help the blocked jobs suffering from unfairness in
EASY, our objective is to design a scheduler that can guarantee
strict fairness. Besides, because fairness and performance are both
attractive to users, we do not want to sacrifice performance in
exchange for strict fairness. Thus, our first motivation of design-
ing a new scheduler can be specified as follows:

Objective 1: Our scheduler should guarantee strict fairness to
the jobs with attractive performance.

3.2 Employ Prediction
In parallel job scheduling, EASY backfilling also achieves great
success based on user estimates of jobs’ runtime, even if these
estimates are highly inaccurate [3][16][30].

Performance modeling and runtime prediction technologies (e.g.,
[33][34][35]) have been reported to have better accuracy than user
estimates. However, these advanced prediction techniques are
rarely applied in real production schedulers, because of the mis-
conceptions stated in Section 2.3. D. Tsafrir[16] well clarified
how these misconceptions failed and proposed an EASY variant
that adopts prediction by separating the role of kill-time from
prediction. It seems that the obstacles of prediction techniques in
parallel job scheduling are eliminated in this way. But unfortu-
nately, we found that directly replacing user estimates with pre-
diction in EASY as it is proposed in [16] can lead to lots of prob-
lems. These problems, as analyzed below and demonstrated in
Figure 1, are derived from inherent and unavoidable properties of
prediction, underestimate (shorter than jobs’ actual runtime) and
overestimate (longer than jobs’ actual runtime and shorter than
user estimates). Notice that user estimates has been proven to be
suitable to play the role of kill-time [16] and we hold the same
view, so prediction that exceeds user estimates is meaningless
since a job will be killed when it reaches its estimated time. Thus
overestimate in this analysis is defined as the interval between
runtime and user estimates.

·Overestimate of running jobs’ runtime might lead to resource
waste. Because the prediction is shorter than the user estimates,
the reservation time is shorten and fewer jobs can be backfilled,
thus more holes are left and more computational resource is
wasted, compared with EASY which adopts estimates of users.
On the contrary, overestimate of waiting jobs can result in better
performance than EASY, for more jobs can be backfilled because
of shorter predictions compared with user estimates. These conse-
quences of overestimate are easy to be deduced, and due to space
limitation, they are not shown in Figure 1.

·Underestimate of running jobs’ runtime would shorten the res-
ervation of the first blocked job in the queue and therefore reduce
the possibility of other waiting jobs being backfilled. Moreover,

Table 1. Start time delay of blocked jobs in EASY.
(# denotes the number)

Workload #JobDelay /
#JobBlocked

Mean Delay Time
of Delay Jobs

Maximum
Delay Time

CTC 736/3833 80.05 min 14.81 hour
SDSC-BLUE 1770/10409 169.08 min 90.70 hour

SDSC-DS 827/4147 133.23 min 17.25 hour

243

this reservation would be violated because the running jobs can-
not actually finish before reservation and release sufficient pro-
cessors for the blocked job (user estimates act kill-time). Figure
1(b) demonstrates one possible case of this issue. If job 1 is unde-
restimated (Figure 1 (b)), job 3 is unable to be backfilled as in
EASY (Figure 1(a)), and six squares of CPUTime resource (num-
ber of processors X Time) is wasted before job 2 starts (Figure
1(b)), while in EASY (Figure 1(a)) only four squares of CPUTime
is wasted before job 2 starts. Furthermore, job 2 actually starts at
T=2 and violates its reservation T=1. However, this situation can
be viewed as “benign”, because the reservation of the blocked job
is actually delayed by its predecessors, so the user of the blocked
job would unlikely feel uncomfortable.

·Underestimate of waiting jobs’ runtime would lead to the back-
filling of a job whose execution time is actually longer than the
reservation of the first blocked job, and thus push away the actual
start time of the first blocked job to exceed its reservation. This
undesired situation, which is called “reservation violation” in this
paper, damages the original intention of reservation in backfilling.
As demonstrated in Figure 1(c), job 5 is underestimated to be able
to finish in four time units (it actually takes six time units) and
would not delay the start time of the blocked job 2, so job 5 is
backfilled at time T=0. But actually job 5 cannot finish before the
reservation of job 2 at time T=5 and job 5 keeps running until
time T=6. Therefore job 2’s reservation guaranteed by EASY is
violated.

To prove the existence of reservation violation caused by directly

replacing user estimates with prediction in EASY, we imple-
mented a prediction-based EASY backfilling as [16] by replacing
user estimates with predictor when calculating reservations and
choosing backfilled jobs, and performed a simulation on three real
workloads (more detail in Section 5.1.3). The “benign” situation
that illustrated in Figure 1(b) was filtered out, and we only fo-
cused on the most serious situation: reservation violation. The
predictor in this experiment is Last Model, which predicts the
lifetime accuracy (runtime / user estimates) of a job to be the
same as the last job of the same user, and if no such predecessor
exists, user estimates will be used instead.

Simulation results are shown in Table 2. In each workload, tens or
hundreds (92~407) of jobs suffered from serious reservation vi-
olation. The start time of these jobs are delayed more than 100
minutes from their reservations on average. In the worst cases,
some jobs even experienced a reservation violation of more than
30 hours. Additionally, the bounded slowdown (defined in Sec-
tion 5.1.2) of these victims dramatically increased, the average
slowdown increment (SI) is 4.78 in CTC, 36.13 in SDSC-BLUE,
and 40.78 in SDSC-DS. The maximum SI was even up to 1581 in
SDSC-DS. If a job’s reservation is violated, its owner would have
the illusion that this job is starving. Furthermore, as shown in the
column of Mean Parallelism, Table 2, most of these victims are
large parallel jobs, which are the target jobs of HPC systems.

All above analyses indicate that prediction cannot be directly
integrated into EASY as some previous works (e.g., [16][38]) did,
mainly due to the existence of reservation violation caused by
unavoidable prediction errors. Even worse, most EASY variants
also suffer from this problem, because they all inherit the same
framework of reservation calculation and backfill selection as
EASY. So how can current studies of performance modeling and
runtime prediction, from serial job runtime prediction, to more
complicated workflow runtime prediction [40] and parallel job
runtime prediction [33][35][42], be able to facilitate parallel job
scheduling strategies, especially for the most widely used EASY
in real production? In this paper, we answer this question from a
different perspective: design a scheduler that can limit the bad
consequences caused by inaccurate predictions. Based on this
motivation, the second objective of our ideal scheduler is:

Objective 2: Our scheduler should employ prediction without
causing reservation violation.

4. PREEMPTIVE VENTURE EASY BACK-
FILLING
In this section, we first introduce our view about the classifica-
tions of running load in EASY. Then we propose a shadow load
preemptive (SLP) backfilling scheduling scheme which can guar-
antee strict fairness and employ prediction based on EASY. Af-
terwards, we propose a venture backfilling (VB) strategy, which is
used to improve the performance of SLP. We integrate SLP and
VB into the traditional EASY to form a new preemptive venture

1
2

1
2

3
4

1
2

3
4

1

4
5

5 5

3
4

5

1
2

5
3

4
2

Actual Runtime

User estimate

System-generated Prediction

(a) EASY backfilling adopt user estimate

(b) Underestimation of running jobs

1
23

4
5

(c) Underestimation of waiting jobs

Reservation T= 5T=0

T=0

T=0

Reservation T= 1

Reservation T= 5

T=0 Actual Start T= 3

Actual Start T= 2T=0

T=0 Actual Start T= 6 !

3

User estimate

Prediction

Actual Runtime

Figure 1. Example of directly replacing user estimates with
prediction in EASY. Left side of each sub-figure is the

scheduling decision and right side is the actual job running
status corresponding to each scheduling decision.

Table 2. Reservation Violation caused by Last Model in EASY. (Reservation Violation is denoted as RV; Delay Time from
Reservation is denoted as DTR; Slowdown Increment caused by Reservation Violation is denoted as SI)

Workload #JobDelay Mean_ParallelismRV/ System Processors Mean DTR Mean SI Maximum DTR Maximum SI
CTC 92 147.78/ 430 100.19 min 4.78 15.13 hour 137.60

SDSC-Blue 407 533.48/ 1152 154.76 min 36.13 32.90 hour 1320.63
SDSC-DS 152 680.33/ 1664 110.69 min 40.78 16.62 hour 1581.00

244

EASY backfilling (PV-EASY) parallel job scheduling strategy.
When a new job is submitted, or a running job is finished, PV-
EASY will firstly try to schedule jobs according to their priorities,
from high to low, until the idle resource is not sufficient for the
highest priority job in the queue. Then PV-EASY will start SLP,
and afterwards start VB.

4.1 Classifications of Running Load in EASY
The load of a parallel computing system consists of a set of run-
ning jobs and thus it is called “running load” in this paper. In our
view, if a running job’s priority is higher than all the jobs in the
waiting queue, it is likely running under the sunshine that no one
can question its rights of holding the resources. So the running
load consists of this kind of jobs is called “sunny load”.

On the contrary, if a running job’s priority is lower than any
waiting jobs, one might consider that this running job got its
resources through improper means, and therefore it is more likely
running in the shadow (not willing to be noticed by others). We
call the running load that consists of this kind of running jobs
“shadow load”.

In EASY, a job can be either “regularly” started (called regular
job) if it holds the highest priority in the queue, or otherwise
started by backfilling. Every regular job has the highest priority in
the queue and deserves its running, so it definitely belongs to the
sunny load during its whole lifetime. Backfilled jobs start only
when the idle resources cannot satisfy the highest priority job in
the queue, so they belong to the shadow load at the beginning of
their lifetime. However, a backfilled job could transit from sha-
dow load to sunny load during its lifetime. Suppose that jobs 1,2,3
are sequentially submitted, job 1 is blocked and job 2 is backfilled
at time t1, then a previous running job is finished and job 1 is
started at time t2. In this situation, job 2 belongs to the shadow
load from t1 to t2, and after t2, job 2 transits to the sunny load.

4.2 Shadow Load Preemption
The objectives of this work include guaranteeing strict fairness, as
well as employing job runtime prediction technologies without
causing reservation violation. In order to do so, a novel shadow
load preemption (SLP) strategy is proposed based on the frame-
work of EASY.

Shadow load is the root cause of unfairness in EASY. Recall from
Section 3.1 that according to the definition of strict fairness, un-
fairness always happens in the blocked jobs within the waiting
queue of EASY. Because of inaccurate estimates of the blocked
jobs’ reservation and the backfilled jobs’ runtime, the start time of
blocked jobs could be delayed by the backfilled jobs submitted
later. It is clear that the jobs that cause unfairness all belong to the
shadow load.

Also, the shadow load could lead to reservation violation and thus
hinders the employment of prediction technologies in EASY. As
analyzed in Section 3.2, underestimate of a waiting jobs’ runtime
would mislead EASY to backfill jobs with long runtime (exceeds
the reservation of blocked jobs) and therefore cause reservation
violation. It is clear that these backfilled jobs with long runtime
belong to the shadow load.

Jobs in the shadow load must be unnoticeable. They should not
delay the running of other jobs, especially the blocked jobs with

higher priorities. But unfortunately, shadow load is treated the
same as sunny load in EASY, which exposes the existence of jobs
in the shadow load and affects blocked jobs, thus leading to un-
fairness and reservation violation. One approach to solve this
inherent issue of EASY is to restrict the activities of the jobs in
the shadow load within the scope of real “invisible shadow”, and
prevent them from delaying the start of higher priority jobs, by
implementing shadow load preemption (SLP):

When the idle resources of a system are not sufficient for the
highest priority job in the waiting queue, the system can
preempt the resources occupied by the jobs in the shadow
load if this preemption can enable the highest priority job to
start right away. The preemption occurs according to job
priorities, from low to high, and the preempted jobs are
killed and returned to the waiting queue.

By integrating SLP into EASY, strict fairness can be guaranteed
and prediction will not cause reservation violation anymore. In
SLP, because of preemption, the shadow load is invisible to the
blocked jobs, and thus the backfilled jobs of the shadow load
would no longer delay the start of the blocked jobs. If the jobs in
the shadow load are underestimated by the predictor, SLP ignores
their existence and preempts their resources. Therefore, the risk of
reservation violation is eliminated.

We select preempted jobs in the shadow load according to their
priorities, from low to high, by considering 1) strict fairness(lower
priority jobs should not delay higher priority jobs), and 2) the
possible role switching of a job from the shadow load to the sunny
load. By preempting from lower priority jobs to higher ones, high
priority jobs can be left in the shadow load as long as possible, to
maximize their opportunity of transition to the sunny load, and
therefore minimize the number of jobs that suffer from kill and
save computational resources.

4.3 Venture Backfilling
Not all existing HPC systems and applications can support sus-
pend/ resume or checkpoint/restart of jobs. In order to make our
study be able to work in existing systems and for all kinds of jobs,
the simplest and universally supported kill/restart preemption
mode is adopted in SLP.

The kill/restart mode in SLP is resource costly and may lead to
performance degradation. If a backfilled job in the shadow load is
preempted unluckily, all the work it has already done will be to-
tally lost and it has to restart from its origin next time. In addition,
due to inaccurate runtime prediction, though a waiting job can
actually finish before future preemption happens, it might be mi-
sunderstood by SLP that it cannot survive from possible preemp-
tion. In this situation, these jobs cannot be backfilled and some
holes would appear without full utilizing system resources.

We propose a venture backfilling (VB) to maximize the surviving
opportunity of backfilled jobs in the shadow load and increase the
utilization of the system, so as to reduce resource waste and im-
prove performance. The process of VB is stated as follows:

1) Computes the reservation time of the first blocked job in the
waiting queue. Only the sunny load is used to compute the
reservation based on runtime prediction, while in EASY the
whole load (including the sunny load and shadow load) is
used to compute reservation based on user estimates.

245

2) Determines the possible runtime of waiting jobs by employ-
ing system-generated prediction. While EASY adopts user
estimates.

3) Selects waiting jobs that can be satisfied by idle resources
and have the largest likelihood of successful completion be-
fore preemption to be backfilled, from the nearest predicted
completion time to the furthest within the reservation time.

4) If there still exist idle resources, selects waiting jobs to be
backfilled according to their priorities, from high to low, no
matter whether the prediction indicates they could success-
fully complete before possible preemption or not.

Step 3) aims to reduce the occurrence of preemption, and the pur-
pose of Step 4) is to make full use of the computational resources.

Step 4) is a novel but adventurous approach which is different
from existing EASY variants. It seems that the jobs backfilled in
Step 4) have very little chance to survive from preemption. How-
ever this is not true, because prediction is always inaccurate and
they may have opportunities, and recall from Section 4.2, preemp-
tion in SLP occurs from low priority to high priority, so the back-
filled jobs with high priority in Step 4) would still have opportuni-
ties to successfully transit to the sunny load and complete.

5. EVALUATION
In this section, we first introduce the experimental design that is
used to evaluate our PV-EASY, including the simulator, metrics
and workloads. Then we present and analyze the experimental
results.

5.1 Experimental Design
5.1.1 Simulator
We have constructed an event-based simulator to mimic different
scheduling strategies in generic parallel computing clusters. It is
driven by the workloads collected from real HPC systems (Sec-
tion 5.1.3 for more details). Events in this simulator are job sub-
mit, start, finish, and kill. Upon submit and finish, the scheduler is
informed to schedule the jobs in the waiting queue, and generate
job start or kill events by scheduling decisions. Once a job is
scheduled to start, a finish event related to this job is created
based on the real runtime of this job from the workload, but this
runtime is invisible to the scheduler. Our simulator considers the
processor request of each job, as most existing works [1][3][8] do,
because computational resources are usually the scarcest re-
sources in HPC systems.

5.1.2 Metrics
In this study, two metrics, Mean Bounded Slowdown (MBS) and
Mean Weighted Bounded Slowdown (MWBS), are used to eva-
luate user-aware performance in parallel job scheduling. Slow-
down is defined as turnaround time (wait time + runtime) norma-
lized by runtime. Bounded slowdown eliminates the influence of
very short jobs on the metric [3], and it is defined as follows:

)10,(
)10,(_

RuntimeMax
RuntimeMaxWaittimeSlowdownBounded +

= (1)

In this paper, we use a threshold of 10 seconds, which is often
used in existing works.

MBS is an arithmetic mean value of all jobs’ bounded slowdown.
Every job is regarded as equal in MBS implicitly, without consi-
dering the number of processors used. In fact, the purpose of
building HPC systems is to enable the running of large parallel
jobs rather than serial jobs. By considering the number of proces-
sors used by each job as weight, we propose the metric MWBS be
defined as follows:

∑

∑
−

=

−

=

×
= 1

0

1

0
)_(

N

j
j

N

j
jj

mParallelis

mParallelisSlowdownBounded
MWBS

 (2)

Where the Parallelismj is the number of processors occupied by
job j, and N is the total job counts.

We do not employ turnaround time as an independent metric to
evaluate schedulers in this paper, because they are already impli-
citly included in MBS and MWBS.

In order to measure system-aware performance, we adopt system
load as the metric. Load is computed as the CPUTime consumed
by all jobs divided by the total CPUTime available in the system
(System Processor capability X log time), which demonstrates the
utilization rate of an HPC system under a certain scheduling strat-
egy.

Unlike existing works which prefer to measure the fairness, we do
not employ any fairness metrics in this paper. We aim at provid-
ing strict fairness to all the jobs, and with the help of preemption,
our method does achieve this objective and can guarantee that no
job is delayed by any jobs with lower priorities than it.

5.1.3 Workloads
The workload traces used to evaluate our PV-EASY are collected
from real HPC systems. They are composed of job entries that
record submission and execution information of jobs. Typically
the following data fields of each job in the workload are used to
drive our simulator and scheduling strategies. In our experiments,
the values of these data fields are faithful to the original workload.

·Job ID: is determined by the sequence of submission
·Job Submission Time: the time that a job is submitted
·Job Parallelism: the number of processors occupied by a job
·Job Request Time: the possible job runtime estimated by user
·Job Runtime: actual runtime of a job

From the collection of Parallel Workload Archive (PWA) [41],
we selected three workload traces (CTC, SDSC-BLUE and
SDSC-DS) to evaluate our PV-EASY and other scheduling strate-
gies. These workload traces are all named by the names of their
HPC systems and their affiliations. CTC is a 512-processor IBM
SP2 machine located at the Cornell Theory Center, but only 430
processors are dedicated to running batch jobs. Therefore in our
experiments, the computational capacity of CTC is set to 430
processors. SDSC-BLUE and SDSC-DS are all located at the San
Diego Supercomputer Center (SDSC). SDSC-BLUE is a 144-
node (8 processors per node) IBM SP machine. SDSC-DS is a
184-node IBM eServer pSeries 655/690 machine, and totally cov-
ers 1664 processors (DS is short for DataStar).

An overview of these three workloads is given in Table 3. They
are all collected during long production periods (at least one year)

246

and contain a large amount of job entries, with a regular load
between 60% and 80%. The jobs in these workloads use tens of
processors on average, and their mean runtime always exceeds 1
hour.

Other traces of PWA were not selected, because 1) some systems
of the workloads are too small, for example, SDSC-SP2 has only
128 processors; 2) some workloads contain too many jobs that
failed to record job parallelism or runtime, such as SHARCNET
and LLNL-Altas; 3) some workloads only contain serial jobs, like
LPC EGEE; and 4) some workloads are used for system testing
rather than production, like LLNL-uBGL.

5.2 Experiments and Results
Motivated by guaranteeing strict fairness with well performance
and employing prediction without causing reservation violation in
parallel job scheduling, we propose PV-EASY in this paper. In
this sub-section, we demonstrate and analyze how PV-EASY
achieves above two attractive objectives based on experimental
results. Besides, PV-EASY employs the simple but resource cost-
ly kill/restart preemption mode, so the problem of resource waste
is also analyzed.

We only use EASY as a comparison target in our experiments.
Because the default setting of most parallel schedulers remains
plain EASY [9], and furthermore, it is statistically reported that
90%~95% of the parallel scheduler installations do not change
this default configuration [43].

In our experiments, the priority factor in all parallel scheduling
strategies is the submission time of jobs, as generally used in most
production environments. If not specified, the job runtime predic-
tor used in each of the scheduling strategies is Last Model, which
predicts the lifetime accuracy (runtime / Request Time) of a job to
be the same as the last job of the same user, and then generates

runtime prediction with this lifetime accuracy and Request Time.
If no such user exists, Request Time (user estimates) will be used
as prediction result instead.

5.2.1 Benefits of Maintaining Strict Fairness
Benefiting from shadow load preemption (SLP), strict fairness is
guaranteed in our PV-EASY. Therefore, there is no need to meas-
ure PV-EASY with fairness metrics (Section 5.1.2). Instead, ad-
vantages of maintaining strict fairness in PV-EASY can still be
demonstrated from another perspective: how blocked jobs benefit
from guaranteed strict fairness.

Based on the definition of strict fairness (Section 3.1), the blocked
jobs often suffer from unfairness due to the “heel and toe” dynam-
ic [39]. Because strict fairness is guaranteed in PV-EASY, the
performance of these blocked jobs should be theoretically pro-
moted. In this part of the experiments, we simulate the scheduling
of PV-EASY and EASY on 3 workload traces, and compare the
performance of the blocked jobs between these two scheduling
strategies. In order to analyze the impacts of guaranteeing strict
fairness on different sizes of jobs, the blocked jobs are grouped
according to their parallelism. As shown in Figure 2, the MBS of
big blocked jobs (job parallelism larger than 1/4 of the system
processor numbers) in PV-EASY are mostly smaller than that
those in EASY. As shown in Figure 3, in terms of the MWBS of
the blocked jobs, big blocked jobs are also better treated in PV-
EASY than in EASY. Notice that due to their large parallelism,
big jobs are more likely to suffer from blocking and serious delay
than small jobs in EASY. The experimental results clearly indi-
cate that the performance of big (large parallelism) blocked jobs
are promoted without the delay of later jobs in PV-EASY.

Small blocked jobs (job parallelism smaller than 1/4 of system
processor numbers), as shown in the three workloads of Figure 2
and Figure 3, do not receive better treatment in PV-EASY com-

Table 3. An overview of the workloads. Load in this section is denoted as the percentage of total CPUTime of running jobs in
system capability (#Processors X (Submission Time of the last job - Submission Time of the first job)).

Workload Duration #Processors #Job Load (%) Mean Parallelism Mean Runtime
CTC Jun 1996 ~ May 1997 430 77222 66.18 10.9853 11277 s

SDSC-BLUE Apr 2000 ~ Jan 2003 1152 223407 76.21 41.5910 4381 s
SDSC-DS Mar 2004 ~ Apr 2005 1664 85003 63.02 60.9240 7569 s

Figure 2. Mean Bounded Slowdown (MBS) comparison of Blocked Jobs in PV-EASY and EASY.

Figure 3. Mean Weighted Bounded Slowdown (MWBS) comparison of Blocked Jobs in PV-EASY and EASY.

247

pared with EASY. The reason is that, in order to guarantee strict
fairness, big blocked jobs can preemptively start in PV-EASY. So
it is harder for small jobs to successfully finish when they are
backfilled, and therefore leads to more small jobs being killed.
These killed jobs are returned to the waiting queue, re-backfilled,
or blocked and finally regularly started after previous jobs release
the processors. This process lengthens their turnaround time and
bounded slowdown. Table 4 gives a statistic of the number of
backfilled jobs and blocked jobs in PV-EASY and EASY. The
common characteristic of these three workloads is that the number
of backfilled jobs in PV-EASY is smaller than that in EASY,
while the number of blocked jobs in PV-EASY is larger than that
in EASY. These data indicate that compared with EASY, fewer
jobs are finished during their backfill period and more jobs are
regularly started in PV-EASY.

This performance degradation of small blocked jobs in PV-EASY
can be viewed as a “benign consequence” of guaranteeing strict
fairness, because fairness and performance are always a tradeoff,
and we will further demonstrate that the overall performance of
PV-EASY is also attractive in Section 5.2.3.

5.2.2 Employing Prediction
Another objective of PV-EASY is to employ prediction without
causing reservation violation. By applying preemption in PV-
EASY, reservation violation can be theoretically and practically
prevented (In our experiments, no reservation violation occurs in
PV-EASY). Moreover, PV-EASY provides better supports to
prediction than EASY. By employing the same prediction tech-
nique, PV-EASY achieves better performance than EASY.

In this part of the experiments, we integrate prediction into differ-
ent scheduling strategies and compare their performances with
different job runtime prediction accuracies. To present a fair
comparison, besides commonly used EASY backfilling which
employs FCFS strategy to choose backfilled jobs (denoted as
FCFS-EASY in the rest of this sub-section), we also introduce a
SJF-EASY which selects backfilled jobs according to the order of
Short Job First (SJF) into the comparison, because PV-EASY
selects backfilled jobs according to their runtime prediction (Sec-
tion 4.3, step 3)), using Short Prediction Job First. Notice that we
do not adopt any existing prediction technologies (e.g. Last Model)
in this experiment. Instead, a “virtual” predictor is used to gener-
ate prediction with the maximum error of ±x% (implemented by
setting the prediction to be %))~%(1(xxrandomruntime −+× ,
and the mean absolute prediction error of this “virtual” predictor
is around x/2). This “virtual” predictor replaced the Last Model in
PV-EASY, and also replaced user estimates (job Request Time) in
FCFS-EASY and SJF-EASY in this part of experiments. For
every scheduling strategy implemented on every trace with every
x value, we repeated the simulation ten times, and then report the
mean results.

As shown in Figure 4, PV-EASY achieves much better perfor-
mance than FCFS-EASY and SJF-EASY in the three workloads.
PV-EASY outperforms FCFS-EASY and SJF-EASY when run-
time prediction error is bounded within maximum 10% (mean
absolute prediction error is around 5%) on MBS and MWBS.
Considering that existing parallel job runtime prediction tech-
niques (e.g., [33][35][42]) have been reported to achieve mean
absolute prediction error of more than 20% (corresponding to the
maximum runtime prediction error 40% in Figure 4), we believe
that PV-EASY can much better support prediction techniques in
parallel job scheduling than EASY in the long term, until the time
that prediction techniques could successfully limit the mean abso-
lute runtime prediction error within less than 5% in real produc-
tion applications and environments.

5.2.3 Performance Comparison with EASY
Fairness and performance are both attractive to users, but they are
always a tradeoff in parallel job scheduling and overemphasizing
any factors is unacceptable in reality. A successful scheduling
strategy must well balance these two factors. Thus, recall from
Section 3.1, our objective is not only guaranteeing strict fairness,
but also providing attractive performance.

In SLP, kill/restart preemption mode would cause computational
resource waste and result in performance degradation. On the
other hand, because of inaccurate prediction, computational re-
sources might still be left idle in SLP. So we proposed venture
backfilling in PV-EASY to solve these performance problems.
Figure 5 and Figure 6 show the comparison between PV-EASY
and EASY on two performance metrics, MBS and MWBS, re-

Table 4. Backfilled and Blocked Jobs in PV-EASY and
EASY

 Workload
Job Counts (#)

CTC SDSC-
BLUE

SDSC-
DS

Total Job 77222 223407 85003
JobBackfilled EASY 38726 166014 51370

PV-EASY 29061 148937 38683
JobBlocked EASY 3833 10409 4147

PV-EASY 6403 19262 8736

Figure 4. Performance comparison among “virtual” predic-
tor integrated PV-EASY, FCFS-EASY and SJF-EASY, with
different maximum runtime prediction errors.

248

spectively. It is clear that PV-EASY achieves smaller (in SDSC-
BLUE) or similar (in CTC and SDSC-DS) MBS and MWBS as
EASY. In order to eliminate the doubt that such performance of
our PV-EASY benefits from prediction method that is more accu-
rate than user estimates, we also compare PV-EASY with EASY-
Last (user estimates are replaced by Last Model in EASY). As
shown in Figure 6, EASY-Last performs worst in three workloads,
and we are therefore convinced that venture backfilling does suc-
cessfully promote the performance as we expected.

These results indicate that in addition to guaranteeing strict fair-
ness, PV-EASY with the simplest prediction technique (Last
Model can be integrated into any system without any additional
modification on that system) can achieve as attractive perfor-
mance as EASY in real systems and workloads. Thus we can
conclude that PV-EASY can better balance fairness and perfor-
mance than EASY.

5.2.4 Resource Waste
Kill/restart preemption in PV-EASY is simple (supported by all
systems) but resource costly (the work that a job has already done
can be totally lost when this job is preempted). Resource waste is
an important issue that has already drawn the attention of industry.
We analyze the total load and wasted load of the three workloads
in PV-EASY, and the results are listed in Table 5. Notice that the
definition of load in Table 5 is a little bit different from that in
Table 3, because the system capability here is defined as System
processor Number X (the time that all jobs finish – Submission
Time of the first job).

It is clear that even by employing kill/restart preemption, the
wasted load of PV-EASY is relatively small for three workloads
(2.48% to 5.66%) and it does not worsen the system throughput.
Each workload (the load varies from 63.02% to 76.21%, Table 3)
finishes within the same time in PV-EASY and EASY. This result
can be explained as follows.

First, as the statistical results of preempted jobs in PV-EASY
shown in Table 6, maximum 13.17% jobs (in CTC) suffered from
preemption (nearly 1 out of 8 jobs), and in SDSC-BLUE, this rate
is as low as 7.77%. This small proportion of preempted jobs indi-
cates that PV-EASY does not disturb too many running jobs.
Second, the impacts of kill/restart are not serious on these
preempted jobs. In order to quantify these impacts, we employ
two metrics, Mean Killed Times (MKT) and Run Time Waste
(RTW). MTK counts the mean occurrences of killing among
preempted jobs, and RTW is defined in formula (3):

Runtime
RuntimeTimeRTW sum −

= (3)

Where Timesum is the accumulative runtime of a job, including its
actual Runtime and the runtime it used before preemption hap-
pens. The results of MKT and RTW of PV-EASY are shown in
Table 6. On average, preempted jobs in the three workloads were
killed less than twice (1.72, 1.46 and 1.62 in CTC, SDSC-BLUE
and SDSC-DS, respectively). Besides, these preempted jobs spent
only 40%~50% additional time than their actual runtime. Based
on the results of MKT and Mean RTW, we conclude that
kill/restart mode does not significantly impact these preempted
jobs.

6. DISCUSSION
EASY is widely applied and has achieved great success in HPC
systems and production schedulers, not only because it can bal-
ance fairness and performance, but also due to its simple imple-
mentation. Based on EASY, lots of variants have been proposed.
However, few of these variants really work in productions. Why?
Because a production scheduler must be universally applicable to
most HPC systems and EASY is the one that successfully
achieves this.

In order to truly facilitate HPC systems in production environ-
ments, PV-EASY also employs the simplest and universally ap-
plicable mechanisms supported by all HPC systems. In shadow
load preemption (SLP), the kill/restart preemption mode is em-
ployed and in venture backfilling (VB), the simplest Last Model is
used to perform prediction. Both kill/restart mode and Last Model
are supported by all HPC systems and can be easily implemented
and replace EASY in production schedulers.

Currently, though suspend/resume and checkpoint/restart modes
could better reduce resource waste than kill/restart mode, we do
not adopt them in SLP, due to the following two consideration.
First, both of these two modes need support from systems and

Figure 5. Mean Bounded Slowdown Comparison among

PV-EASY, EASY and EASY-Last

Figure 6. Mean Weighted Bounded Slowdown

Comparison among PV-EASY, EASY and EASY-Last

Table 5. Load of PV-EASY in 3 workloads.

Workload Total Load (%) Wasted Load (%)
CTC 68.6166 2.48

SDSC-BLUE 81.7564 5.66
SDSC-DS 66.4917 3.67

Table 6. Preempted Jobs in PV-EASY

Workload #JobPreempted /
Total Job

Rate
(%)

MKT Mean
RTW (%)

CTC 10172/77222 13.17 1.72 38.95
SDSC-BLUE 17364/223407 7.77 1.46 48.27

SDSC-DS 10294/85003 12.11 1.62 45.33

249

applications, and it is also not realistic to ask existing application
providers or users to modify their applications or jobs to fit these
modes. Therefore, employing either of these two modes would
limit the scope of the applicability of PV-EASY. Second, these
two modes would still cause resource waste. Suspend and check-
point operations also need time to save runtime environments, so
part of a job’s work would still be lost in checkpoint/restart mode.

However, benefiting from virtualization and other techniques, live
job migration and fast runtime environments save/load will be
widely employed in HPC systems while operation cost will de-
crease as technology advances. In such cases, replacing the
kill/restart mode with suspend/resume or checkpoint/restart mode
in PV-EASY will become natural and definitely lead to better
performance.

Another noticeable phenomenon in our experiment is that even
with poor accuracy, EASY with user estimates achieves smaller
MBS and MWBS than both EASY-Last (Figure 5 and Figure 6)
and EASY with a “virtual” predictor (Figure 4) whose maximum
prediction error is limited within 10%. This phenomenon once led
to a pessimistic view that accurate prediction is not useful in pa-
rallel job scheduling. Actually, when user estimates are inaccurate,
a “heel and toe” dynamic [39] would occur, making EASY ap-
proximate SJF, and therefore achieves good performance via se-
rious sacrifice of fairness. Thus in our view, runtime prediction is
helpful for parallel job scheduling, since it can enable schedulers
to make better scheduling decisions to balance fairness and per-
formance.

7. CONCLUSION
EASY backfilling is one of the most widely applied parallel job
scheduling strategies in production schedulers. However, jobs
scheduled by EASY may suffer from serious unfairness, and
EASY cannot directly support prediction because this would
cause reservation violation. In this paper, we proposed a new
preemptive venture EASY backfilling (PV-EASY) strategy, which
integrates novel shadow load preemption (SLP) and venture back-
filling (VB) approaches. We designed an event-based parallel job
scheduling simulator and conducted experiments on three work-
loads collected from real HPC systems. Results show that our PV-
EASY is very attractive from both academic and industry pers-
pectives in the following aspects:

·PV-EASY can guarantee strict fairness because of SLP, and
also achieves attractive performance compared with EASY due to
VB. These facts indicate that PV-EASY can leverage fairness and
performance much better than EASY in parallel job scheduling.

·PV-EASY can benefit more from prediction techniques than
EASY. PV-EASY can avoid reservation violation that arises from
employing prediction in EASY. Moreover, PV-EASY can achieve
much better performance than EASY with existing parallel job
runtime prediction techniques, and will continue its superiority
against EASY for the foreseeable future (as long as the maximum
prediction error is not smaller than 10%, which is far beyond the
capability of current prediction techniques).

·PV-EASY is simple to implement and not resource costly. It is
applicable to all kinds of HPC systems and production schedulers
where EASY works, without introducing any additional system or
application modifications.

8. ACKNOWLEDGMENTS
The authors would like to thank Dr. Zhiling Lan and Dr. Michela
Taufer for their shepherds of this paper. The authors would also
like to thank Dan Dwyer and Steve Hotovy for the CTC workload
logs, Travis Earheart and Nancy Wilkins Diehr for the SDSC-
Blue workload logs, and Victor Hazlewood for SDSC-DS work-
load logs, especially Dror Feitelson for his great work of collect-
ing and publishing high performance computing workloads in
Parallel Workload Archive on line. This Work is supported by
Natural Science Foundation of China (60803121, 60773145,
60911130371, 90812001, 60963005), National High-Tech R&D
(863) Program of China (2009AA01A130, 2006AA01A101,
2006AA01A108, 2006AA01A111, 2006AA01A117) and MOE-
Intel Foundation.

9. REFERENCES
[1] Lifka, D.A., The ANL/IBM SP scheduling system. In 1st

Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP), 1995.

[2] Feitelson, D.G., Experimental analysis of the root causes of
performance evaluation results: a backfilling case study.
IEEE Transactions on Parallel and Distributed Systems, 2005:
p. 175-182.

[3] Mu'Alem, A.W. and Feitelson, D.G., Utilization, predictabil-
ity, workloads, and user runtime estimates in scheduling the
IBM SP 2 with backfilling. IEEE Transactions on Parallel
and Distributed Systems, 2001. 12(6): p. 529-543.

[4] Karger, D., Stein, C., and Wein, J., Scheduling algorithms.
CRC Handbook of Computer Science, 1997.

[5] Sgall, J. On-line scheduling – a survey. In A. Fiat and G.
Woeginger, editors, On-Line Algorithms: The State of the
Art, Lecture Notes in Computer Science, pages 196–231.
Springer-Verlag, 1998.

[6] Majumdar, S., Eager, D.L., and Bunt, R.B., Scheduling in
multiprogrammed parallel systems. ACM SIGMETRICS
Performance Evaluation Review, 1988. 16(1): p. 104-113.

[7] Sevcik, K.C., Application scheduling and processor alloca-
tion in multiprogrammed parallel processing systems. Jour-
nal of Performance Evaluation, 1994. 19: p. 107-140

[8] AuYoung, A., Vahdat A., and Snoeren, A.C., Evaluating the
Impact of Inaccurate Information in Utility-Based Schedul-
ing. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis (SC), 2009.

[9] Etsion, Y. and Tsafrir, D., A Short Survey of Commercial
Cluster Batch Schedulers. Technical Report 2005-13,The
Hebrew University of Jerusalem, May 2005.

[10] Chiang, S.H., Arpaci-Dusseau, A., and Vernon, M.K., The
impact of more accurate requested runtimes on production
job scheduling performance. In 8th Workshop on Job Sche-
duling Strategies for Parallel Processing (JSSPP), 2002.

[11] Srinivasan, S., Kettimuthu,R., Subramani,V., and Sadayap-
pan, P., Selective reservation strategies for backfill job sche-
duling. In 8th Workshop on Job Scheduling Strategies for
Parallel Processing (JSSPP), 2002.

[12] Ward, W.A., Mahood, C.L. and West, J.E., Scheduling jobs
on parallel systems using a relaxed backfill strategy. In 8th

250

Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP), 2002.

[13] Shmueli, E. and Feitelson, D.G., Backfilling with lookahead
to optimize the packing of parallel jobs. Journal of Parallel
and Distributed Computing, 2005. 65(9): p. 1090-1107.

[14] Jones, J.P. and Nitzberg, B., Scheduling for parallel super-
computing: a historical perspective of achievable utilization.
In 5th Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP), 1999.

[15] Talby, D. and Feitelson, D.G., Supporting Priorities and
Improving Utilization of the IBM SP Scheduler Using Slack-
Based Backfilling. In Proceedings of the 13th International
Symposium on Parallel Processing (IPPS),1999.

[16] Tsafrir, D., Etsion, Y. and Feitelson, D.G., Backfilling using
system-generated predictions rather than user runtime estim-
ates. IEEE Transactions on Parallel and Distributed Systems,
2007. 18(6): p. 789.

[17] Thebe, O., Bunde, D.P. and Leung. V.J., Scheduling Restart-
able Jobs with Short Test Runs. In 14th Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP), 2009.

[18] Guim, F., Rodero, I. and Corbalan, J., The resource usage
aware backfilling. In 14th Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP), 2009.

[19] Kurian, R., Balaji, P. and Sadayappan, P., Opportune job
shredding: An effective approach for scheduling parameter
sweep applications. In Los Alamos Computer Science Insti-
tute Symposium, New Mexico, 2003.

[20] Sabin, G., et al., Scheduling of parallel jobs in a heterog-
eneous multi-site environment. In 9th Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP), 2003.

[21] Shmueli, E. and Feitelson, D.G., On simulation and design of
parallel-systems schedulers: are we doing the right thing?.
IEEE Transactions on Parallel and Distributed Systems, 2009.
20(7): p. 983-996

[22] Raz, D., Levy, H. and Avi-Itzhak, B., A resource-allocation
queueing fairness measure. ACM SIGMETRICS Perfor-
mance Evaluation Review, 2004. 32(1): p. 130-141.

[23] Avi-Itzhak, B., Levy, H. and Raz, D., Quantifying fairness in
queueing systems: Principles and applications, in the Engi-
neering and Informational Sciences, v.22 n.4, p.495-517, Oc-
tober 2008.

[24] Isard, M., et al., Quincy: Fair Scheduling for Distributed
Computing Clusters. In ACM SIGOPS 22nd symposium on
Operating systems principles (SOSP), 2009.

[25] Mann, L., Queue culture: The waiting line as a social system.
The American Journal of Sociology, 1969. 75(3): p. 340-354.

[26] Larson, R.C., Perspectives on queues: social justice and the
psychology of queueing. Operations Research, 1987. 35(6):
p. 895-905.

[27] Sabin, G. and Kochhar, G., Job Fairness in Non-Preemptive
Job Scheduling. In Proceedings of the 2004 International
Conference on Parallel Processing (ICPP), 2004

[28] Avi-Itzhak, B., Brosh, E. and Levy, H., SQF: A slowdown
queueing fairness measure. Performance Evaluation, 2007.
64(9-12): p. 1121-1136

[29] Ngubiri, J. and van Vliet, M., Characteristics of fairness
metrics and their effect on perceived scheduler effectiveness.
2007, Technical Report, Radboud University Nijmegen.

[30] Lee, C.B. and Snavely, A., On the user-scheduler dialogue:
Studies of user-provided runtime estimates and utility func-
tions. International Journal of High Performance Computing
Applications, 2006. 20(4): p. 495.

[31] Lee, C.B., et al., Are user runtime estimates inherently inac-
curate?. In 10th Workshop on Job Scheduling Strategies for
Parallel Processing (JSSPP), 2005.

[32] Tang, W., Lan, Z., Desai, N. and Buettner, D., Fault-Aware,
Utility-Based Job Scheduling on Blue Gene/P Systems. In
2009 IEEE International Conference on Cluster Compu-
ting (Cluster),2009.

[33] Susukita, R., et al. Performance prediction of large-scale
parallell system and application using macro-level simula-
tion, in Proceedings of the 2008 ACM/IEEE conference on
Supercomputing (SC),2008.

[34] Kapadia, N.H., Fortes, J. and Brodley, C.E., Predictive ap-
plication-performance modeling in a computational grid en-
vironment . In 8th IEEE Int’l Symp. on High Performance
Distributed Computing (HPDC), p. 6, Aug 1999.

[35] Krishnaswamy, S., Loke, S.W. and Zaslavsky, A., Estimat-
ing computation times of data-intensive applications. IEEE
Distributed Systems Online, 2004. 5(4).

[36] Lee, C.B. and Snavely, A.E., Precise and realistic utility
functions for user-centric performance analysis of schedulers,
In 16th International Symposium on High Performance Dis-
tributed Computing (HPDC),2007

[37] Perkovic, D. and Keleher, P.J., Randomization, speculation,
and adaptation in batch schedulers. in Proceedings of the
2000 ACM/IEEE conference on Supercomputing (SC). 2000.

[38] Zotkin, D. and Keleher, P.J., Job-Length Estimation and
Performance in Backfilling Schedulers. in Proceedings of the
8th IEEE International Symposium on High Performance
Distributed Computing (HPDC). 1999

[39] Tsafrir, D., Feitelson, D.G.: The dynamics of backfilling:
solving the mystery of why increased inaccuracy may help.
In: IEEE International Symposium on Workload Characteri-
zation, pp. 131–141 (2006)

[40] Nadeem, F. and Fahringer, T., Predicting the execution time
of grid workflow applications through local learning. In Pro-
ceedings of the Conference on High Performance Computing
Networking, Storage and Analysis (SC),2009

[41] Parallel Workloads Archive,
http://www.cs.huji.ac.il/labs/parallel/workload/.

[42] Yero, E. and Henriques, M., Contention-sensitive static per-
formance prediction for parallel distributed applications. Per-
formance Evaluation, 2006. 63(4-5): p. 265-277.

[43] Jackson, D., Maui/Moab default configuration. with CTO of
Cluster Resources, 2006

251

