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Abstract—Composition of multiple layers (or components/services) has been a dominant practice in building distributed systems,
meanwhile aggregation has become a typical pattern of data flows nowadays. However, the efficiency of data aggregation is usually
impaired by multiple layers due to amplified delay. Current solutions based on data/execution flow optimization mostly counteract
flexibility, reusability, and isolation of layers abstraction. Otherwise, programmers have to do much error-prone manual programming to
optimize communication, and it is complicated in a multithreaded environment. To resolve the dilemma, we propose a new style of
inter-process communication that not only optimizes data aggregation but also retains the advantages of layered (or component-based/
service-oriented) architecture. Our approach relaxes the traditional definition of procedure and allows a procedure to returnmultiple times.
Specifically, we implement an extended remote procedure calling framework Quatrain to support the new multireturn paradigm. In this
paper, we establish the importance of multiple returns, introduce our very simple semantics, and present a new synchronization protocol
that frees programmers frommultireturn-related thread coordination. Several practical applications are constructedwith Quatrain, and the
evaluation shows an average of 56% reduction of response time, comparedwith the traditional calling paradigm, in realistic environments.

Index Terms—Distributed programming, distributed systems, data communications, interfaces, system integration and implementation,
asynchronous/synchronous operation, client/server, frameworks, patterns, procedures, functions, and subroutines

1 INTRODUCTION

COMPLEXITY of building large distributed systems is con-
trolled via layers abstraction. We use the term layer to

mean a tier in the multi-tier architecture [1], a component in
the component-based architecture [2], or a service in the
service-oriented architecture (SOA) [3]. Under such abstrac-
tion, a system is divided into layers and layers interact with
each other via defined interfaces. Layers raise the isolation,
flexibility, and reusability of elements in a distributed system
and therefore largely facilitate system development.

Between layers, remote calling acts as a pervasive and
fundamental programmingparadigm. Specific forms include:
the traditional remote procedure call (RPC), such as Java
remote method invocation (RMI) [4], Microsoft. NET remot-
ing [5] and Apache Thrift [6]; SOAPweb services [7]; RESTful
HTTP request and response [8] where the callee is a resource;
etc.

Meanwhile, data aggregation becomes a typical pattern
among and inside data centers. For example, on the shuffle
phase of MapReduce [9], a reducer gathers its portions of
intermediate data from all mappers. Actually, the partition/
aggregate design pattern constitutes foundation of many
large scale applications [10], such as web search, and social
network content composition. Under the application layer,

socket-level logs also identify the “scatter-gather” (a synonym
of aggregation here) traffic pattern [11] in data centers.

However, when data aggregation meets multiple layers,
traditional remote calling mechanisms are caught in a dilem-
ma. As illustrated in Fig. 1, when a clientmaking a remote call
to the server interface for data aggregation, not all required
data are produced at the same time during either sequential
(a) or parallel (c) execution. Somedatamayget gatheredmuch
faster than others, but the server does not return anydata until
the slowest one is ready, since the called procedure can only
return once. The meaningless wait for slow data results in
increased response time (the average arrival time of required
data).

In this paper we propose Quatrain, a new programming
and communication mechanism that solves the problem.
Quatrain challenges the traditional assumption that a proce-
dure returns only once, and allows the called procedure to
make multiple returns during its execution. We extends a
most popular form of remote calling, RPC, to implement our
prototype. Application of RPC can be seen inMapReduce [9],
RAMCloud [12], the Facebook infrastructure [6], etc.

Quatrain allows the server-side procedure to return partial
replies at anyposition for any timeswithin itsmain threador in
any other thread it creates1. Consequently, the caller receives
partial replies as soon as they are ready, without waiting for
the whole to return for once, as illustrated in Fig. 1(b) and (d).
Quatrain enables the caller to process parts of data in parallel
to form pipelines, and also overlaps network transmission
with data production. Moreover, granularity of return (e.g.,
each record of data, or a specific subset of records) can be
flexibly controlled by the procedure to reach optimal
performance.
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1.1 Motivation
Delay by layers is practically a serious problem. First, the
diversity of arrival times of aggregated data is large, andmore
diversity causes more delay of early data. According to our
evaluation, thediversity can even reach 2 orders ofmagnitude
for a production service (Section 5.3).What isworse, stragglers
may add much to such diversity. A straggler refers to any
node who encounters very low efficiency. Several investiga-
tions [13], [14] have revealed that stragglers significantly
prolong job completion. Causes of stragglers are quite com-
mon, including hardware and software failures, unevenwork
partition, temporarily overloading, network congestion [11],
etc. Second, in a typical layered architecture, the delay accu-
mulates each time data flow across a layer boundary, so that
the negative impact is amplified by multiple layers. Third,
evenminor improvements on response time are significant for
service providers. Experiments at Amazon showed 1% sales
decrease for every additional 100 ms response time, and
experiments at Google showed that increasing the time to
display search results by 500 ms reduced revenues by 20%
[15]. An Internap white paper [16] describes latency as the
“Achilles heel of cloud computing”.

Why parallel calling cannot solve the problem? Parallel
RPC [17], [18] enables the client to send parallel requests to
many servers. Intuitively, making parallel RPC can get early
data without delay. However, the current system situations

are different with twenty years ago when parallel RPC was
invented. Firstly, parallel RPC requires the client to maintain
all target servers’ information andmanually split a singleRPC
into several ones, but in current practice it is usually hard for
clients to decide how work is partitioned or which nodes to
call. For example, the work may be partitioned and allocated
dynamically to variable nodes by a coordinator according to
some schedule policy on the server side. Secondly, a parallel
RPC requires the client to manually handle stragglers (slow
replies). In large-scale systems, stragglers are notorious and
not negligible. Dealing with stragglers adds extra complexity
and burden to programmers. Thirdly, the parallel RPC vio-
lates layers abstraction. Take a typical service structure in
Fig. 2 for example. If the client uses parallel RPC to realize one
logic call to a front node, it has to directly call the depended
layers (dashed arrow lines from “Client”, instead of the solid
arrow line); if a component uses parallel RPC to make a logic
call to some interface of another layer, it has to directly call the
internal components inside that layer in parallel (dashed
arrow lines from “Front node”). In either case, the interface
or system boundary is broken, violating basic isolation in
large systems. Exposure of internal components behind inter-
face or system boundary shall almost definitely cause archi-
tectural or security issues. Moreover, in SOA, a depended
service may be from a third party and out of control, which
makes cross-layer parallel RPC impossible. By contrast, Qua-
train still uses a single RPC for one logic request, similar to a
traditional one, but covers all the issues internally.

A research trend in next-generation data center networks
illuminates another potential advantage of multi-return par-
adigm. [19] is a new control protocol that strives to meet
flow deadlines by explicit rate control. When flows with the
same deadline cannot be all satisfied, sheds some load to

Fig. 2. A typical layered architecture. Solid arrow lines and dashed ones
are mutually exclusive, respectively denoting the normal calling and the
layer-breaking calling. Gray circles are where data delay may happen.

Fig. 1. Execution flows: (a) traditional RPC with sequential execution;
(b) multi-return RPC with sequential execution; (c) traditional RPC with
parallel execution; (d) multi-return RPC with parallel execution.
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ensure that a good fraction of flows meet the deadline, rather
than to delay all. However, if the upper-layer application still
needs to wait the shed flows, the benefits of such networks
would be in vain to end users. This property on the network
layer takes better effect when the multi-return paradigm
enables the application layer to make use of the partial early
data instead of waiting for all.

Quatrain aims at providing a convenient and efficient
abstraction to alleviate the delay-by-layers problem, avoiding
complex combination of traditional techniques. A similar case
is MapReduce [9], which does not aim at solving a problem
unsolvable via existing techniques, but provides a neat pro-
gramming model that frees programmers from involved
issues and labor. For a large system, the remote calling
primitive, as a most basic code block, should be as small and
simple as possible.WithoutQuatrain, however, a programmer
needs multiple parallel/sequential calling plus streaming/
message-based communication plusasynchronous invocation
plus manually coded thread coordination to realize similar
optimization.

1.2 Contributions
We summarize the contributions of this paper as follows.
First,we establish the significanceofmulti-returnparadigm in
distributed systems. It accelerates data aggregation by reduc-
ing average response time, pipelines workload in fine grain
by breaking data into smaller blocks, tolerates stragglers
by not letting them drag others, overlaps data production
with transmission, and well supports some potential next-
generation data center networks. More importantly, all these
features are achieved in the precondition that benefits of layers
abstraction are not traded off. Existing solutions hardly hold
such advantage.

Second, we introduce new semantics of preturn and reply
set. To keep Quatrain’s interfaces as simple as possible is a
challenge, and we best limit the changes brought to current
languages and conventions. Only one new primitive preturn
(partial return) is necessary, and the original reply (a number
of records) is extended into a reply set, whose elements are
records of the original reply. The preturn requires no extra
parameters other than the returned data, and programmers
do not have to deal with any multi-return-related threading
details.

Third, we design a partially ordering protocol (POP) to
coordinate all preturns and the final signal that notifies the
caller to stop waiting. Supporting multi-threading as well as
the event-based model adds to the complexity, and these
issues should be transparent to programmers. Our protocol
guarantees that the end notification is after all preturns have
sent back their replies, and sufficiently saves programmers’
error-prone manual work.

Our work is an improvement to RPC for distributed
systems. Although the high-level concept (multi-return) has
appeared in some programming languages [20]–[22], using it
in distributed environment is never seen. And the difference
between them is fundamental, like between normal proce-
dure calling and RPC.

Compared with some data flow optimizing solutions [23],
[24], Quatrain provides a more flexible and less intrusive
primitive for distributed systems development. Our model

is flexible in the sense that it only requires replacement of
traditional RPC and is not bound to a specific computing
model. Quatrain is not intrusive in the sense that rewriting is
only needed to replace original RPC, without any destruction
to existing architecture (all logic except RPC-related). In
contrast, other frameworks mostly need a thorough switch
for existing solutions to a new defined processing model.

Section 2 describes the basic usage of multi-return RPC.
Section 3 articulates implementation issues, including the
basic architecture, the ordering protocol and scalability. The
general application of Quatrain is demonstrated in Section 4,
and its effectiveness is evaluated in Section 5. We discuss
related work in Section 6, and finally conclude in Section 7.

2 SEMANTIC DESIGN

One critical principle ofQuatrain’sdesign is simplicity,which
is the original intention and the most advantage of RPC.
Programmers should still use similar semantics as traditional
RPC, and keep a traditional view of the programming logic.
Our solution merely introduces two new library-level exten-
sions visible to programmers:

1. preturn (partial return) is a server-side library function
that sends partial results back to their caller. This func-
tion can be called at any position for any times in any
created thread. Such flexibility allows fine control on the
granularity of each preturn. Meanwhile, it requires no
extra parameters other than the exact replied object, like
return.

2. Reply set is an client-side object for the caller to enu-
merate replies, either sequentially or in parallel, until
null is encountered or hasMore returns false. For each
nextElement , the caller is blocked until either a new
reply or null returns.

2.1 Sample Codes
Based on the simple semantics, programmers can invoke
multi-return RPC in a very familiar way. Since the client’s
processing on replies is application-specific and therefore not
our focus, only sample codes for sequential access are posted
here (using Java’s Enumeration interface in our
implementation).

Sample Code 1. Client

1 ReplySet replies = client.invoke(String.

class, "SampleProcedure", parameter);

2 //incrementally handle parts

3 while replies hasMore {

4 // do work on each

5 doWork(replies.nextElement());

6 }

7 //judge whether all replies arrive

8 if (replies.isPartial())

9 Log.info("Some replies omitted.");
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A remote procedure can be called via the invoke method
as Line 1, or via a proxy instance just like invoking a local
method (a compiler can be provided to generate necessary
codes for programmers as Thrift [6] does, or even Quatrain
can be integrated into Thrift, but these are pure engineering
workandnot the focus of this paper). The replies come into the
ReplySet object in batches, and an enumeration interface
offers each element (Line 5). ReplySet’s method hasMore

may be blocked (Line 3) until next element or end notification
arrives, and isPartial tells whether current set covers all
expected replies.

The following code snippet shows a multi-threaded user-
defined remote procedure on the server side.

Sample Code 2. Server

1 public void SampleProcedure(int count {

2 for (int < count; ++i) {

3 new Thread(new Runnable() {

4 public void run {

5 preturn("in any thread.");

6 preturn("for many times.");

7 }

8 }). start();

9 }

10 preturn("at any position.");

11 }

This procedure creates a number of worker threads (Line
3), and each thread uses preturns to reply to the caller. The 3
preturns demonstrate their flexibility (it can be used in any
thread for any times at any position). The granularity of
preturn can be adjusted according to specific applications.
Moreover, the preturn requires no extra parameters other
than the returned data. Other implicit parameters (e.g. the
caller to return data to) are all handled within Quatrain for
programmers’ convenience.

Without Quatrain, programmers have to write several tens
of times the number of code lines of the above samples to reach
similar optimized functionality. Generally speaking, our work
is designed for service/system developers (experts rather than
end users) who meet data aggregation and want to wrap all
delay-by-layers issues within a simple RPC interface.

3 IMPLEMENTATION

In this section, we present our Java implementation of multi-
return RPC based on TCP sockets and Hprose [25] encoder/
decoder. After a brief introduction to Quatrain components,
we articulate the new synchronization protocol for partially
ordering. The issue of scalability is also discussed.

3.1 Architecture
The basic architecture of Quatrain is similar to any traditional
RPC implementation [26], except that a management

component for reply sets and a thread coordination mecha-
nism for multiple preturns are respectively working on the
client and the server. Fig. 3 depicts Quatrain’s high-level
architecture, and features are explained as below.

3.1.1 Client
Quatrain offers the invoke method for programmers to call
remote procedures. Within the method, new connections are
established to the server andRPC requests are sent. Then each
connection is registered to a listener, which selects sockets to
detect replies from the server. All connections are initialized
from the client and are active until the end notification arrives.

On invocation, a new data object ReplySet is created.
Every reply set is restored on a hash table with a unique call
ID. Reply sets in such hash table are allwaiting for replies. The
call IDs gowith all requests and replies to have themproperly
dispatched. The listener takes charge in adding all replies to
their corresponding reply sets.

3.1.2 Server
On the server side, the daemon thread listenerutilizes a selector
to accept connections from clients and reads in requests. Then
the listener creates a handler for each request and puts it on
to a execution queue. A thread pool takes charge of executing
all queued handlers. When it runs, each handler invokes the
target user-defined procedure via Java reflection. Each
handler and all its forked threads share a variable that stores
the caller’s ID.

preturn is a method defined in the server and used by any
user-defined procedure to send replies. In runtime, it creates a
responderwho does the actual socket write operations. Similar
with the handler, each responderwaits for a executor from a
thread pool.When it runs, the responder serializes the call ID
as well as replies, and transmit data through the connection.

Another coreutility defined in server is theThread class that
extends standard java.lang.Thread. Programmers have to use
this Thread rather than its origin, because extra operations
are necessary to implement the synchronization protocol in
Section 3.2. In addition, using a thread pool within a user-
defined procedure is also supported. The only requirement is
that programmers should create an object of our Runnable
class (usage is similar with Thread). Then it can be queued to
the thread pool as normal.

3.2 Partially Ordering Protocol
One critical issue of multiple preturns is how to notify the
caller at the right time to stop waiting for additional replies.

Fig. 3. Framework of multi-return RPC.
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Without such end notification, the client has no way to judge
whether all expected replies are returned.

3.2.1 Problem Statement and Complexity
Our goal is to hide all multi-return-related threading details
from programmers and introduce no additional semantics
other than the simple andflexible preturn.We artificially add
onefinal preturn in the handler to send end notification after
invocation of the called procedure. Then if we consider all the
network output operations triggered by preturns as a set, the
set should be in partial order under the relation that any other
network output operation is no later than the end notification.
Thus we name our new protocol the partially ordering proto-
col (POP).

Complexity of the problem is demonstrated through some
flawed naive solutions, which also vindicate the necessity of a
formally verified protocol.

First of all, this problem is not covered by native thread
synchronization (like join , because use of threads is arbi-
trary in the user-defined procedure, and there is a queue
between the handler and the responder. Even if the
handler and all its forked subsidiary threads have terminat-
ed, it is still uncertain when and in what order the actual
network outputs happen.

The most intuitive method is to set up for each procedure
an atomic reference count that is increased when a preturn is
invoked anddecreased after its network outputfinishes. Then
the final preturn waits until the count equals zero. Since we
do not determine when a thread actually executes after it
starts, a counter-example is shown in Fig. 4(a), where the final
preturn goes before some later scheduled thread that owns
preturn.

Despite of the uncertainty ofmulti-threading, one thingwe
can assure is when a new thread is created. So there is an
improvement thatmoves increment to thread start. However,
Fig. 4(b) shows again a counter-example, where an extra
preturn called by the procedure decreases the reference count
to zero before the thread invokes preturn.

Here we have named a few examples among all the pains
we took to only find a small possibility of failure after
thousands or even tens of thousands of normal calls, which
shows the necessity of a formally verified protocol.

3.2.2 Protocol and Verification
POPemploys one reference count to realizepartially ordering.
Amore straightforward way of our protocol can use multiple
reference counts for different threads, but it is lengthy and
less cost-efficient. Our solution requires a formal verification
of the validity to use only one consolidated reference count,
but makes implementation very concise.

We firstly offer an intuitional description here. The POP’s
purpose is toarrange,withinacomplex task, afinalactionafter
others (recall that pure thread synchronization is not enough).
Thenwefind thatworkers of a taskfinish theirwork in stages.
The protocol guarantees that each stage of each worker makes
a mark before its next stage is triggered, and the triggered stage
revokes that mark after it finishes. So the final action should
wait until all marks are revoked. These marks can be consoli-
dated to a single reference count, andwemapped the relations
and actions to a graph for formal verification.

A reference count is an integer variable assigned to a called
procedure and visible to all forked threads. It supports two
atomic operations: decreases the count by one, and
increases the count by one. Since its initial value is zero and
should finally reach zero again before the end notification, we
can make all P and V operations into pairs (see proof in
Appendix Property 1). For convenience, we color all P/V
pairs and denote a pair with the kth different color by

, where N . For the kth color, we set an inde-
pendent sub-count (only for verification purpose), and
suppose performs on . Then we have

, so the actual reference count equals to R( )
where is the max color number.

If one thread creates another, we call it the parent of the
created one which is then called the child. All threads derive
from a root thread (in our case, the called procedure can be
seen as the root). Each type of threads is associated with a
different color.

Then we use a directed acyclic graph to express the rela-
tionship between threads and determine which sub-count a
P/V operation should perform on. The graph models the
relationship between static thread types (or classes) including
dynamic type binding, rather than the runtime thread in-
stances.Wemade such choice because it facilities the adoption
of the protocol, and is friendly to use by compilers or program
analysis tools.

In the graph , each thread type is denoted as a
vertex , andall events required to bepartially ordered are
abstracted to one vertex , namely both threads and
events are separately expressed as vertexes. An edge

lies from a parent thread to its child if and only
if . If a thread triggers an event one ormore times, there
exists . Another vertex we distinguish is the root
thread . Then we can view the graph as a flow network from
the source to the sink . The color of a vertex is numbered as
the length of the longest path from to . Fig. 5 illustrates an
example thread structure.

Now we map the P/V operations onto the graph:
Map 1. Each vertex is associated with a P operation with

the vth color if and only if is reachable from .
Map 2. Each edge corresponds to a V operation

with the vth color if and only if v is associated with a P
operation.

Fig. 4. Counter-examples for naive solutions. Timelines are top-down,
and preturns are set on separate timelines for clarity. (a) and (b) denote
wrong final preturns when the count becomes zero. Gray blocks are
omitted data.
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Considering events as a special thread type, the protocol
is as follows:

Rule 1.When a thread of type creates a thread of type ,
the V operation associated with the edge from ’s vertex to
’s vertex is carried out if it exits.
Rule 2. When a thread of type finishes, the P operation

associated with the ’s vertex is carried out if it exists.
Rule 3.Thefinal event is scheduled after allV-operations of

root.
Rule 4. The final event does not happen until the reference

count equals to zero.
Before the main proof of POP, we have to demonstrate its

two important properties.

Property 1. P and V operations of the same color are in pairs.

Proof. According to Map 2, all edges pointing to a P opera-
tion are associated with V operations. Meanwhile, con-
sidering events as a special type of threads, we have the
reasoning as follows.

If any P operation is on a thread, Rule 1 ensures that the
thread is created with a V operation (which has the same
color). On the other hand, the thread must end at some
time, so its associated P operationmust be invoked accord-
ing to Rule 2.

Therefore, all P andVoperationswith the same color are
in pairs, namely Property 1 holds. ◽

Property 2. Any is invoked from the root thread , or
between a first V( ) and a second P( ), where < .

Proof. We only need to consider the s invoked by non-
root threads.

First, we are to verify that any is located on an edge
, where is associated with and < . Accord-

ing to Map 1, such edge must start from a vertex that has
some P operation. Then we suppose , the longest
path from to passing is at least of length > ,
which conflicts with the definition of ’s color number. So,
we must have < .

Then, with the same reasons in the verification of
Property 1, the vertex must be wrapped in a first V
operation and a second P operation. As the must be
invoked while the ’s thread is still alive, it must be
invoked within that pair.

Therefore, the V( ) must be invoked between a first
and a second where < . Then, Property 2

holds. ◽

Based on these rules and properties, we guarantee that the
final event is ordered after all other events. Below goes our
verification.

Proof. According to Rule 4, to proof that the final event
happens after all other events, we only have to
demonstrate that, at the point of final event, the zero
reference count indicates end of all other events.

We carry out a mathematical induction to reach the
conclusion. First of all, the color number is a finite natural
number, and we suppose its max value is , since it
equals to the color number of vertex . For convenience,
we denote with color number 0, and consider execution
of events as .

Statement If becomes zero (not the initial state), all
operations must have been invoked.

Base As for , all V(1) edges come from root,
according to Property 2. Then Rule 3 guarantees that, at
the point of final event, all these V(1) operations have
executed.

Induction As for , any operation’s
edge must stem from a vertex associated with ,

< , i.e., . Then as includes
, all must have done (Property 2).

Meanwhile, includes as well, so all
must have been done tomake zero. According

to Rule 1 and Rule 2, since any operation has already
performed with its V( ), the must have been
invoked between them.

Conclusion As for , the statement indicates that
all have been invoked, namely all these events
have happened. Notice that equals to the reference
count, then our protocol is verified. ◽

Specifically, we implement POP in the Quatrain server
as follows: (1) the Quatrain Thread inserts a V operation
before the actual start() runs, and the Quatrain Runnable
performs a V operation in its constructor; (2) we wrap
user-defined run() method with a P operation inserted
after the actual run(); (3) preturn invokes a V operation
before passing replies to the responder that does a P operation
after each network output operation; (4) a final preturn is
invoked after every called procedure. The correspondingfinal
network output operation wait until the reference count
equals zero.

POP’s implementation is of high efficiency, since all opera-
tions are lightweight without any coarse-grained lock-wait-
notify synchronization.

3.3 Exception and Failure
Quatrain is not ambitious to guarantee a transaction, but
instead try best to get as more results as possible even when
some remote problems happen. Actually, the multi-return
RPC confines the impact of remote partial failures, since the
survival results may independently become available. And
the reply set offers sufficient information on the state of the
corresponding call, such as an errormessage,whether it is still
meaningful to wait, and whether the already received replies
are partial or complete.

The main mechanism for failure control in Quatrain is
timeout, namely the maximum amount of time a RPC would
like to wait. From the user’s perspective, we define a exception
as when the server finishes the call before timeout but replies
are still partial. And a failure means that the call is timed out.
Usually, exceptions happenwhen the server encounters some

Fig. 5. An example of a thread structure.

1212 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 5, MAY 2014



managed internal error, while failures indicate that the server
may fail or the connection is broken.

Programmers handle sever-side exceptions or errors in a
similar manner as local procedures, and an error type can be
sent back via preturn. The multi-return RPC is robust and
remains graceful when exceptions or failures happen. All the
unexpected states are exposed via the reply set’s flags, while
available partial replies, if any, are still retrievable. This
property is rarely supported in other RPC frameworks, since
they only have one chance to reply all.

3.4 Scalability
Scalability is a vital issue for Quatrain. It is long been dis-
cussedwhat is the best structure for highly concurrent servers.
Event-driven implementation [27] bases the task manage-
ment on event notification and queues. Meanwhile, some
other practice supports thread-based style [28], leaving all
management load to threads. As for the new multi-return
paradigm, we implement both models, named thread-based
Quatrain and event-based Quatrain (the above described
architecture is event-based, and the thread-based version
cancels all queues and thread pools). Our experiences are
articulated in the Section 5.

4 APPLICATION AND CASE STUDY

The essential value ofQuatrain is reducing the averagedelay of
aggregated data, rather than the end-to-end delay (in a worst
case, the last partial return of a request may determine the
end-to-end delay). Quatrain is not a solution for all, but has
advantages in two basic scenarios: (1) The follow-up task is
data-parallel, namely individual early partial return makes
sense (Sections 4.1 and 4.2). Take Corsair (Section 4.1) for
example, each partial return corresponds to some messages
to send, so users averagely experience lower latency to
receive messages. (2) Partial data can be utilized to con-
struct or preview the final results. Take MapReduce Online
(Section 4.3) for example, preview can be made and approxi-
mate results are enough sometimes [29] (then rest of work
can be cancelled). The following subsections demonstrate the
wide types of applications Quatrain applies to.

4.1 Corsair: Multi-site or Peer-to-peer System
Quatrain is suitable for multi-site or peer-to-peer systems in
that their data are widely dispersed, and processing a request
usually requires data from various sources that are volatile.
Quatrain can minimize the negative effects of stragglers.

Corsair is a production data-sharing platform deployed in
7 universities in China. With Corsair, students can join to-
gether to create a community with a dedicated storage space.
Till Mar. 2011, there are already over 19k active users, and
500+ communities in Tsinghua University. A new extension
we made to current Corsair systems is enhancing its social
network facilities. We enable users to join groups in other
universities and send phone messages to other group
members.

In the new federative system, effectively collecting cross-
site users’mobile phone numbers to support instant commu-
nication is a basic requirement. But anymessage sendingmay

involve several other sites. A straight design is either to set up
a single master or to synchronize related cross-site users’ data
locally. However, the current system structure is not central-
ized, and some site administrators argue that local users’
personal information can be queried but should not be held
on any other site for security and privacy concerns. Another
solution is to forward each message to its receivers sites and
avoid data aggregation. But not all sites have the messaging
component as it involves telecom business.

Limited by these non-technology factors, data and compu-
tation placement hardly get optimized in our practice. So our
final choice is to collect data via multi-return RPC, which
largely cuts off extra delay caused by waiting for some long-
distance data transmission or slow nodes, and overlap data
query with message sending. The average response time is
remarkably reduced as evaluated in Section 5.2.

4.2 Glickr: Mashup Services and SOA
Mashup [30], [31] is a new form of web development, which
construct new applications based on existing services. It
usually involves aggregation of data from various sources.
This architecture illustrates the design pattern of service-
oriented architecture (SOA) [32], andRPC is one of the choices
to realize service-oriented computing. The multi-layered ser-
vices and complex inter-service dependencies all magnify the
negative impact of the network latency and outlier response
time.

Meanwhile, the “server push” technology [33] enables
multi-return RPC in web application. Although current Qua-
train have not yet implemented a JavaScript client, our serial-
ization component [25] fully supports it, and already has a
standard-RPC version of JavaScript client.

Glickr is a mashup service combining Google Earth API2

and Flickr API3. Google Earth APIs display a 3D digital globe
in web browsers, and Flickr APIs provide location informa-
tion of photos. Taking advantage of these unique functions,
Glickr displays the photo album in a novel way - placing
photos on their actual locations in the globe.Whenyou search,
for example, “tower”, all related photos just sit on where the
towers locate.

We suppose that our photo services include many local
photo search engines to provide better results on specific
countries. When ourmashup collects photo information from
different services and reply them to the client, Quatrain plays
its important role in delivering available results as soon as
possible and preventing stragglers from affecting others.
Prototype of the core Glickr functionality and its evaluation
is introduced in Section 5.3.

4.3 Pipelined MapReduce
MapReduce Online [29] extends the popular computing
framework MapReduce [9] by breaking the “barrier” that
any reduce task does not begin until all map tasks have
finished. This work enables snapshot preview, continuous
queries, and other attractive features.

2. http://code.google.com/apis/earth/

3. http://www.flickr.com/services/api/
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In implementation, MapReduce Online meets several ob-
stacles. (1) In the original design, reduce tasks invoke RPC to
pull data frommap tasks, which is not suitable for pipelining.
(2) If map tasks are modified to push data to reduce tasks,
there may be not enough slots for all corresponding reduce
tasks. (3) Network I/O operations my block the map task
since the map function is invoked in the same thread.

Their solution makes pull and push operations inter-
weaved. When some reduce tasks are not scheduled due to
limited slots, map tasks store the intermediate data into disks,
and afterwards these behind reduce tasks will pull data in
traditionalmanner. And they specifically solve the I/O block-
ing problem by running separate threads.

Actually, such logic is more naturally expressed with
Quatrain. Whenever a reduce task is available, it invokes
multi-return RPCs to corresponding map tasks, just like the
pull. On the other hand, whenever intermediate data are
deliverable, either from local storage or from newly produced
buffer, themap task uses preturn to make a partial reply, just
like the push. And there is naturally no problem on I/O
blocking, since the preturn is not blocked. Original tricky
details are all easily handled by Quatrain in a more elegant
manner, which illustrates the true value of Quatrain.We have
realized a Quatrain-based MapReduce with evaluation in
Section 5.4.

5 EVALUATION

Evaluation of Quatrain starts with micro benchmarks that
analyze performance of individual RPC under both light and
heavy workloads. Then we evaluate three practical applica-
tions based on Quatrain: multi-site Corsair (Section 5.2),
Glickr (Section 5.3) and pipelined MapReduce (Section 5.4).
The three experiments separately emphasize on the realistic

network environment, the realistic service response time, and
the realistic computing cloud environment.

Since the traditional definition of response time assumes
only one response for a request and does not cover the
situation when the returned data records arrive at different
times, we define the average arrival time (AAT) as our
metrics. This measurement calculates the average value of
delays between the request time and each returned data
record’s arrival time.

5.1 Micro Benchmarks
Our micro benchmarks evaluate the overheads of Quatrain
and compare thread-based as well as event-based implemen-
tations. We deploy two dedicated physical servers to sepa-
rately simulate the client(s) and the server in concept. The
two physical servers have identical configurations: 4 Intel(R)
Xeon(R) CPUs X5660 (6 cors, 2.80 GHz), 24G memory
(1.3 GHz), 1 Intel(R) PRO/1000 network connection (1000
Mbps); Ubuntu Sever 11.04 64-bit, Oracle/Sun JDK 7.

The server provides twoprocedures for remote calling: one
executes a task in a single thread (sequential execution, SE),
while the other executes it in parallel (parallel execution, PE).
Tasks have afixed total execution time =100ms, 1 s, or 10 s.A
task is evenly divided into parts. Accordingly, each part
prepares a proper number of data records as a partial reply,
sleep for a proper mount of time ( ), and invokes preturn.
When a task only uses a single preturn, the results approxi-
mate performance without multi-return.

To simulate low stress, we invoke RPCs one by one to the
server and calculate AAT. Fig. 6 reports the results over the
number of parts that a task is divided for preturns. We can
see that both event-based and thread-based implementations
approach the ideal situations (lines almost overlap),
with acceptable CPU overheads brought by multi-return

Fig. 6. AAT under low stress over the number of parts that a task is divided into.
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mechanisms (mostly less than 5% for event-based Quatrain).
Generally, the event-based Quatrain brings lower overheads
than the thread-based version.

To simulate high stress, we start numerous parallel calling
threads to reach a specified number of requests per second.
Fig. 7 (a) reports results on sequential execution mode, and
we can see that the thread-based Quatrain largely outper-
forms the event-based one, for the reason that sequential tasks
take threads for long and many tasks are overstocked in
queues.

Fig. 7 (b) shows performance of parallel execution. As the
tasks are more fine-grained, event-based implementation
shows advantages of queues. Highly concurrent tasks are
efficiently handled with controlled threadmanagement over-
heads. Especially, when 100-ms tasks are divided into over 12
parts each, the response time of thread-basedQuatrain sharp-
ly raises due to thread overheads.

Based on these experimental results, we can arrive at some
basic suggestions about when multi-return RPC produces
most benefits and which implementation should be adopted.
In a lightly loaded sever, multi-return RPC gains large im-
provement. In a heavily loaded server, such againdepends on
the procedure type and implementation choice: if the proce-
dure is sequentially executed, the thread-based implementa-
tion ispreferred, and if theprocedure invokesparallel threads,
the event-based implementation is the best. However, if
the server is extremely overloaded without any margin to

provide an enhanced service quality, the multi-return RPC is
not proper to use as it may aggravate the overload.

5.2 Multi-site Corsair
In order to demonstrate the effectiveness of Quatrain in a
realistic network environment, we deployed the multi-site
Corsair (Section 4.1) on world-wide geo-distributed data
centers.

We set up cloud servers on all available data center regions
provided by three leading cloud service providers - Amazon
EC2, GoGrid, and Rackspace - totally 10 ones separately
located in Virginia US (A1), Northern California US (A2),
Ireland (A3), Singapore (A4), Japan (A5), Chicago US (R1),
Dallas US (R2), London UK (R3), Ashburn US (G1) and San
Francisco US (G2). Ax servers are Amazon large instances
with 7.5 GBmemory, 4 EC2 computing units (2 virtual cores);
Gx servers are GoGrid instances with 8 GBmemory, 8 virtual
cores(Intel(R) Xeon(R) CPU X5650, 2.67 GHz); and Rx servers
are Rackspace instances with 8 GB memory, 4 virtual cores
(Six-Core/Quad-Core AMD Opteron(tm) Processor 2423/
2374HE).All nodsuseUbuntu 10.04/11.04(64-bit).Generally,
all above settings well support our Corsair components with
extra capacity. Since this evaluation investigates the latency of
gatheringuser information for instantmessaging, only related
components (based on MySQL 5.1 and OpenJDK 1.6.0) were
deployed on these nodes, without need for large volume
storage.

Fig. 7. AAT under high stress over the number of parts that a task is divided into. “TB/EB” stands for thread-based/event-based Quatrain. In (b), level
lines show the best performance of either TB or EB. Error bars show the standard deviation of each sample.
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On each node, the Quatrain server exports a RPC-based
API for service consumers (clients) to fetch users’ mobile
phone numbers of a specified group. If the group contains
cross-site users, the Quatrain server has to query other
peers to fetch relatedusers’phone numbers.We record arrival
times of each phone number and calculate their AAT. Actu-
ally, this is a typical example where parallel RPC is not
applicable, as the cross-site users and their nodes are instan-
taneously calculated on the server side and are not known in
advance by the clients (who consequently cannot decide the
nodes to call in parallel).

The single-node configuration is set according to the actual
running instance in our university, with 19,366 users,
512 communities, and 24,253 user-community relations.
We suppose that a community has cross-site users from an
average of 5 other nodes. All databases arefilledwith random
data.

For each node, 100 groups are selected and sequential
requests are made for each group. Fig. 8 compares AATs in
standard parallel mode and multi-return mode. The left-side
two columns of each cluster display the results in “normal”
condition without any node failure. Considering queries on
each node as an independent test case, the geometric mean
value of the relative improvements is 55.7%, with maximum
61.0% and minimum 49.5%.

Furthermore, we evaluate the AAT improvements when
there is one failure among nodes. We shut down a MySQL

process so that requests sent to this node are all timed out
(over 8 s). In Fig. 8, the right-side two columns of each cluster
display the results in node-failure condition. The AAT reduc-
tion remarkably increases as the standard RPCs are largely
delayed until the timeout.

Further statistics are summarized in Table 1. In normal
condition, the average response time ofmulti-return queries is
only 43.9% that of standard queries, effectively improving
users’ experiences onmessage instantaneity. In case of failure
or straggler, standard queries may reach several seconds,
which is hardly acceptable by the instant messaging require-
ment. Meanwhile, multi-return queries remain confined be-
low 400 ms, enabling instant messaging even on hostile
conditions.

5.3 Mashup Glickr
To reflect performance of Quatrain over realistic service
response time, we evaluate Glickr (Section 4.2) based on the
widely acknowledged service Flickr.

Glickr is designed as a service aggregator that combines
local photo search engines to display required photos on a
virtual globe, like Panoramio4. Herewe onlymeasure the core
process of aggregation, and compile statistics of AAT in
retrieving required photos’ information. In Flickr, there are
many geography groups where people share photos of spe-
cific places, such as theUSA, France, andChina.Weutilize the
group search to simulate multiple local search engines.

We collect 100 most common nouns5 (e.g., cat, lake) as
keywords, and send sequential requests to the aggregator
server, which then query all local search engines in parallel to
retrieve related photos and their location information. We
recorded arrival time of each expected photo location and
compare the AAT of standard parallel calls and multi-return
ones. The hardware setting is identical to the micro-bench-
marks experiment in Section 5.1.

Fig. 9 depicts the response times of all local search engines
for some keywords. We can see that the cumulative distribu-
tion of AATs for a specific keyword goes through several
“stairs”, each of which denotes a relative cluster of response
times. Intervals between “stairs” show obvious time early
results waste on waiting for later ones. Moreover, the long

Fig. 8. AATunder normal and failure conditionover nodes. “std” stands for
standardRPC, and “mr” formultireturnRPC. In failure condition, A4 is shut
down.

TABLE 1
Corsair Performance under Different Conditions

Note: “geo-mean” stands for the geometric mean value, and only applies
to rows with relative values. “Failure” refers to the condition when A4 is
shut down.

Fig. 9. Cumulative distribution of response times for individual
keywords.

4. http://www.panoramio.com

5. http://www.flickr.com/photos/tags/
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tails of some curves (eg. “animals”, “autumn”) indicate the
existence of stragglers who may drag the whole response
time. Note that our word choice is not biased, and they are
typical according to our observation on other words. The
whole set of response time values cover 3 orders of magni-
tude. In addition, basic statistics are listed in Table 2. On
average, the multi-return mode costs only 58.7% time of the
traditional parallel mode, thanks to Quatrain’s tolerance for
stragglers and response time diversity.

Based on such realistic characteristics, the two versions of
aggregation service separately based on standard-parallel
andmulti-return RPCperformdifferently as shown in Fig. 10.
SinceAAT values are somewhat in randommanner, we order
keywords on x tics by their multi-return AATs, in order to
better show what proportion of standard-parallel-mode va-
lues are above (slower than) the multi-return values. The
average improvement is over 41%, thanks to the multi-return
tolerance for stragglers and diversity. Recall the experiments
in Google andAmazon [15] mentioned in Section 1. This level
of improvement is highly valuable for real services.

5.4 Pipelined MapReduce
In order to evaluate Quatrain’s usability and scalability in
large-scale computing environment, we modify the imple-
mentation of MapReduce Online (Section 4.3) named HOP6,
and replace its original data transfer mechanism with
Quatrain.

We launched 100 high-CPUmedium instances onAmazon
EC2 to carry out this evaluation. Each node has 1.7 GB
memory, 5 EC2 compute units (2 virtual cores), andmoderate
I/O Performance. According to the paper of MapReduce
Online, we choose the same application WordCount in its
package. Data are stored on HDFSwith 512MB blocks, and 2
replica.

We configure 400 map tasks and 50 reduce tasks to count
200GBdata, and use theHOPprogress report to observemap
and reduce tasks. Fig. 11 shows the progress results of three
MapReduce types: the blocking mode of HOP, the pipelining
mode of HOP and the pipelining mode of Quatrain-based
HOP. As we can see, Quatrain multi-returns the map inter-
mediate data and speeds up reduce tasks.

Although end time is not largely improved due to the
sorting phase, the raised reduce progress enables features of
MapReduce Online, such as snapshot preview. According to
[29], a Top-K query that finds 20 most frequent words get the
final results bypreviewusingonly 60%of the time tofinish the
whole task. This illustrates themeaning of the raised progress

curve by Quatrain. Moreover, the total data transfer via
Quatrain is over 60 GB through 100 nodes, illustrating the
scalability of Quatrain.

6 RELATED WORK

A similar multi-return pattern [20] has appeared in some
modern programming languages, e.g., “yield return” in C#
[21] and “yield” in Python [22].However, their usage is highly
confined and far less flexible than preturn in Quatrain. For
example, the C# yield statement can only be used inside an
iterator block. More essentially, the yield mechanism works
by repeatedly pending and resuming the called procedure,
fundamentally different with the parallel remote execution in
Quatrain. By contrast, preturn achieves similar concise syn-
tax as yield, butwell supportsmulti-threaded and distributed
programming.

An optimization for data aggregation similar to Quatrain
has been done in FlumeJava [23], where an invocation emit

can be decoupled and fused into follow-up operations to
avoid waiting slow peers. However, this mechanism resides
in a specific programming model and therefore lacks gener-
ality. Furthermore, FlumeJava and other data/execution flow
optimizers (e.g., DryadLINQ [24]) are not compatible with
traditional layers abstraction (that means existing services
and interfaces need architectural reconstruction to adopt such

Fig. 10. AAT of aggregation services over ordered keywords.

TABLE 2
Comparison of Standard-Parallel-Mode and

Multi-Return-Mode Glickr

Note: “geo-mean” stands for the geometric mean value, and only applies
to rows with relative values.

Fig. 11. Progress of map and reduce tasks over time.

6. http://code.google.com/p/hop/
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data/execution flow optimization) and therefor not suitable
for pervasive service-based systems (they can only apply
internally to a single service within such a system). Although
Quatrain does not provide comprehensive optimization as
they do, it is easy-to-use and more generally applicable.
Systems do not need architectural reconstruction to adopt
Quatrain.

Asynchronous RPC uses non-blocking invocation. Some
implementations [34], [35] even do not support reply; some
others enable clients to retrieve replies later by querying
specific objects, such as Promises [36]. Quatrain also returns
immediately and incrementally offers replies, but the essential
difference is that asynchronous RPC still treats the replies as a
whole. In addition, asynchronous RPC aims at parallelism,
rather than lowest response time. Since Quatrain’s multi-
return RPC can work in almost a blocking manner when
obtaining the next data element, we can regard multi-return
RPC as semi-asynchronous.

More recently, RPC Chains [37] propose a new communi-
cation primitive for a serious of sequential RPCs to several
servers, so that the intermediate data can directly flow
between servers instead of involving the client in every call.
Theirwork applies to chainedRPCswhile ours to nested ones.

Finally, we should clarify the relationship between Qua-
train and the message passing system, such as Amazon
Simple Queue Service (Amazon SQS) [38]. From high level
of view, remote calling frameworks aremostly based on some
form of message passing system. Actually, Quatrain can use
Amazon SQS as its underlying communication infrastructure
instead of sockets. For end programmers, it requires more
labor to directly use low level communication techniques. In
that case, programmers have to directly handle most intricate
issues in Quatrain implementation as discussed in Section 3.

7 CONCLUSION

Quatrain provides a new angle to address the delay-by-layers
issue.As far asweknow, it is thefirst practical framework that
realizes a multi-return programming paradigm for distribut-
ed systems. We contributed the initial simple semantics,
underlying partially ordering protocol, and implementation
experiences of both thread-based and event-based structures.

Our work illustrates, through theory as well as practical
applications, the fourmain benefits ofmulti-return paradigm:
early data arrival, workflow pipelining, straggler/fault toler-
ance, and support for potential next-generation data center
networks.

We expect wide implementation and application of the
multi-return paradigm. Our implementation in Java and all
experiment data are open-source via http://github.com/
stanzax (codename: Quatrain). Moreover, our key ordering
protocol is designed friendly to language level extensions
which may bring higher efficiency and more convenience for
users. We leave this for future work.
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