
RandomWalks on Huge Graphs at Cache Efficiency
Ke Yang∗†‡

yangke14@mails.tsinghua.edu.cn
Xiaosong Ma†
xma@hbku.edu.qa

Saravanan
Thirumuruganathan†

sthirumuruganathan@hbku.edu.qa

Kang Chen∗‡
chenkang@tsinghua.edu.cn

Yongwei Wu∗‡
wuyw@tsinghua.edu.cn

Abstract
Data-intensive applications dominated by random accesses
to large working sets fail to utilize the computing power of
modern processors. Graph random walk, an indispensable
workhorse for many important graph processing and learn-
ing applications, is one prominent case of such applications.
Existing graph random walk systems are currently unable
to match the GPU-side node embedding training speed.
This work reveals that existing approaches fail to effec-

tively utilize the modern CPU memory hierarchy, due to
the widely held assumption that the inherent randomness
in random walks and the skewed nature of graphs render
most memory accesses random. We demonstrate that there
is actually plenty of spatial and temporal locality to harvest,
by careful partitioning, rearranging, and batching of opera-
tions. The resulting system, FlashMob, improves both cache
and memory bandwidth utilization by making memory ac-
cesses more sequential and regular. We also found that a
classical combinatorial optimization problem (and its exact
pseudo-polynomial solution) can be applied to complex deci-
sion making, for accurate yet efficient data/task partitioning.
Our comprehensive experiments over diverse graphs show
that our system achieves an order of magnitude performance
improvement over the fastest existing system. It processes a
58GB real graph at higher per-step speed than the existing
system on a 600KB toy graph fitting in the L2 cache.
∗Department of Computer Science and Technology, Beijing National Re-
search Center for Information Science and Technology (BNRist), Tsinghua
University, China.
†Qatar Computing Research Institute, Hamad Bin Khalifa University.
‡Beijing HaiZhi XingTu Technology Co., Ltd.

A large part of this work was carried out during the first author’s research
internship at QCRI.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSP ’21, October 26–28, 2021, Virtual Event, Germany
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8709-5/21/10. . . $15.00
https://doi.org/10.1145/3477132.3483575

CCS Concepts: • Mathematics of computing → Proba-
bilistic algorithms; • Computer systems organization
→Multicore architectures; • General and reference→
Performance.

Keywords: graph computing, random walk, memory, cache

ACM Reference Format:
Ke Yang, Xiaosong Ma, Saravanan Thirumuruganathan, Kang Chen,
and Yongwei Wu. 2021. Random Walks on Huge Graphs at Cache
Efficiency. In ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles (SOSP ’21), October 26–28, 2021, Virtual Event, Ger-
many. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3477132.3483575

1 Introduction
Modern computers have sophisticated memory hierarchies
designed for data-intensive applications. Multiple levels of
CPU cache, along with high DRAM bandwidth as well as
features like hardware prefetching and memory row buffers,
transparently help programs profit from temporal and spatial
locality. The former allows data reuse. The latter facilitates
large, sequential accesses, which tend to be much faster.
Unfortunately, applications that heavily perform random
accesses on a large working set obtain much lower bene-
fits from state-of-the-art CPU hardware. They often spend
the bulk of their execution time stalling for data, wasting
expensive data center or server resources.
One prominent example of such applications is graph

random walk [57], a graph workload that is becoming in-
creasingly important. It has been heavily used in indus-
try by companies such as Alibaba [3, 88], Facebook [4, 31],
Google [2, 65, 66], LinkedIn [55], Tencent [82, 91], and Twit-
ter [75]. Given an input graph, a random walk application
issues a certain number of walkers, each walking among
the vertices, by sampling one edge out of its current ver-
tex according to a certain transition probability specification.
An important and emerging application of random walks
is graph embedding [8, 18, 33, 37], used for diverse applica-
tions such as node classification [35, 37], link prediction [35],
recommendation [17, 27, 88], attribute prediction [95], and
community detection [12, 90]. More generally, randomwalks
are used for graph analytics (such as PageRank computa-
tion [43, 65]), sub-graph sampling [25, 47], aggregate estima-
tion [5, 20, 62], ranking [53, 100], data integration [11, 83],

311

https://doi.org/10.1145/3477132.3483575
https://doi.org/10.1145/3477132.3483575
https://doi.org/10.1145/3477132.3483575
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

cardinality estimation [76] for query optimization, predict-
ing drug interactions and functionality [14, 58], fake news
mitigation [44], epidemics study [16], etc.
Many graph random walk executions today feed edge or

path samples to graph embedding training, typically using
stochastic gradient descent (SGD) methods. Therefore recent
graph embedding frameworks (such as GraphVite [102] and
Tencent’s graph embedding system [91]) simultaneously per-
form graph random walk on CPUs and embedding training
(plus downstream applications) on GPUs. The much faster
compute power growth of GPUs relative to CPUs brings con-
tinuous pressure for the host-side random walk to keep up
with the GPU-side embedding computation. This pressure is
further intensified by the common adoption of multi-GPU
nodes for machine learning applications, where a few GPUs
could concurrently train independent graph embeddings us-
ing different hyper-parameters [2, 26]. In [91] the generated
random walks are used 10 times to hide the overhead of the
random walk engine in the pipeline.

Graph random walk has been assumed to have little local-
ity. The inherent randomness in its probabilistic operations
over large, irregular graph datasets renders most memory
accesses random. Existing systems process each walker se-
quentially and independently, sampling one edge on the fly
and moving wherever it leads to in DRAM. With such low
expectations, no coordination or scheduling is done among
walkers/vertices. Most systems adopt routine random walk
settings (such as having |𝑉 | walkers each walking 80 steps
within a round and repeating the process for 10 rounds), re-
gardless of graph size or topology. In most cases, only one
edge (the one sampled) stored in a cache line is used.

We argue that underneath the apparent random nature of
walking large graphs, there is plenty of spatial and temporal
locality to harvest, by careful partitioning, re-arranging, and
batching of operations. This work proposes FlashMob, a new
graph random walk design. It enables largely sequential
memory accesses, to graph partitions strategically cut to be
processed within different cache levels.
The result is an iterative graph random walk pipeline

reminiscent of the MapReduce workflow [21]: walkers resid-
ing on a partition of vertices are processed together, with
single-step transitions dumped as messages; the messages
are processed in a shuffling stage to regroup the walkers by
their new locations.

FlashMob’s streaming processing of partitions containing
similar-degree vertices subsequently enables multiple opti-
mizations. For the small number of high-degree vertices, we
harvest their access density, by batching walkers who hap-
pen to co-locate on these hot spots. For low-degree ones, we
exploit their regularity in degree, adopting simplified data
structures with direct indexing to reduce random memory
accesses in their processing.

We found challenging questions like “How to partition the
vertices” and “which cache level to fit a task” can be mapped

(a) Time (b) Cache miss count

Figure 1. Performance highlight: FlashMob achieves similar
per-step time on a 58GB graph (YH) as KnightKing on a
600KB toy graph that fits into L2.
to a known multi-constraint optimization problem, which
FlashMob solves efficiently by applying an existing dynamic
programming algorithm.

To our best knowledge, FlashMob is the first graph random
walk system that explicitly fits most of its computation into
the CPU cache, with fast streaming from/to the DRAM. It
brings an order of magnitude performance improvement
compared with the best baseline we could find. To give a
performance highlight, Figure 1a reports the per-walker-
step average execution time (our main performance metrics,
called per-step time for the rest of the paper) using the popular
DeepWalk algorithm [66].

The first 5 bars in blue are by KnightKing [94], a state-of-
the-art graph random walk engine, on three toy graphs sized
to fit the data footprint entirely into the L1, L2, and L3 capac-
ities respectively, plus two real-world graphs: YouTube (YT)
and YahooWeb (YH). Clearly the per-step walk time steadily
increases as the graph size grows, as more accesses go to the
next level of memory hierarchy. The final two bars, in white,
give FlashMob’s speed for much larger graphs including the
51MB YT graph and 58GB YH graph. FlashMob’s speed on
the YH graph, the largest among the 5 real-world graphs
in our evaluation, matches KnightKing’s performance on a
600KB toy graph. Figure 1b gives per-step cache miss count
breakdowns for KnightKing and FlashMob on YT and YH,
which confirms the latter’s significant reduction in cache
misses, especially at the L2 and L3 levels.

Finally, though the paper focuses on graph random walks,
insights and techniques here apply to a wider range of ap-
plications that rely on random sampling. For example, an
important component of approximate graph mining systems
(such as ASAP [41] and GraphSage [36]) performs neigh-
borhood sampling that expands sampled subgraphs, which
would also benefit from FlashMob’s cache-friendly design.

2 Background
2.1 Graph RandomWalk Basics
Given a graph 𝐺 = (𝑉 , 𝐸) and a starting vertex 𝑢 ∈ 𝑉 , a
random walker 𝑤 proceeds as follows. Each neighbor 𝑣 of
𝑢 is associated with a transition probability that determines
the likelihood that 𝑣 would be chosen as the next vertex.
Typically, the transition probability 𝑝 (𝑣 |𝑢) only depends on

312

𝑢, in which case we have a first-order random walk. In a
higher-order random walk, the probability is specified in the
form of 𝑝 (𝑣 |𝑢, 𝑡, 𝑠, . . .), where 𝑠, 𝑡 are the predecessors of 𝑢 in
the current walk, involving𝑤 ’s walk history in computing
the out-going edges’ transition probability. 𝑤 samples an
edge according to this probability and repeats until certain
termination criteria are satisfied. The termination could be
deterministic (after a given number of steps) or stochastic
(walkers exiting with a fixed probability at each step).

While random walks are widely used, here we give more
details on one application: node embeddings, today an essen-
tial component of graph learning. Given a graph 𝐺 = (𝑉 , 𝐸)
and a dimensionality 𝑑 ≪ |𝑉 |, the node embedding prob-
lem [8, 18, 33, 37] seeks to represent each 𝑣 ∈ 𝑉 as a 𝑑-
dimensional vector 𝐸𝑚𝑏 (𝑣) such that 𝐺 ’s structural infor-
mation is preserved. Intuitively, if a node pair 𝑢 and 𝑣 have
“similar” neighborhoods, then their embeddings 𝐸𝑚𝑏 (𝑢) and
𝐸𝑚𝑏 (𝑣) are also close to each other. In contrast, two nodes
with dissimilar neighborhoods will have embeddings farther
apart. This is achieved by training a deep learning model
over a collection of positive node pairs P and negative node
pairs N to learn node embeddings such that node embed-
dings for (𝑢, 𝑣) ∈ P are closer to each other while those for
(𝑢, 𝑣) ∈ N are farther from each other.
Typically, N is constructed by randomly picking node

pairs (given the sparsity of real-world graphs, they are un-
likely to be connected), while P is by random walks. Widely-
used node embedding algorithms such as DeepWalk [66] and
node2vec [35] differ in how they use random walks to mea-
sure neighborhood similarity, by giving different transition
probability definitions. More specifically, DeepWalk executes
a first-order uniform random walk. Node2vec, on the other
hand, is a second-order algorithm with hyper-parameters
to create a configurable interpolation between BFS and DFS.
In typical runs, both algorithms adopt default parameters
requiring 10 random walks, of length 40 and 80 respectively,
starting from each node in the graph [35, 66].

2.2 RandomWalk System Design
The current state-of-the-art approaches focus on algorithmic
improvements, such as improved edge sampling (Knight-
King [94]) or out-of-core walks on large graphs (Graph-
Walker [89]) that significantly reduces the memory require-
ment for complex random walk algorithms and enables in-
memory processing of very large graphs. However, once the
main walk task (sampling the next vertex) fits into memory,
all existing systems happily pay the random access costs.

Without exception, existing systems process walkers one
by one: during an iteration, all (active) walkers take turns
to each sample and follow one edge from the adjacency list
of its current vertex. Such common practice, while intuitive,
incurs huge resource waste. Unlike graph processing tasks,
graph random walk performs much more sparse processing,
by choosing one edge among potentially many candidates.

The majority of content from a sampled cache line (typically
storing a dozen or more edges) is therefore discarded. This
abuses the memory hierarchy in multiple ways: low utiliza-
tion of cached data in the fast and private L2 cache, low data
re-use rate in the shared L3 cache and increased total DRAM
traffic. Our work aims at mitigating such waste.

Aside from random accesses, current systems casually per-
form pointer-chasing. GraphVite [102] finishes one walker’s
entire path before starting another, while KnightKing [94] (a
distributed walk engine) moves a walker as much as possible
before it leaves the local graph partition, as an optimization.
The data dependency brought by such operations further
lowers their memory access efficiency.

2.3 Cache Hierarchy in Recent Processors
Recently, there has been a number of architectural inno-
vations targeting data center workloads that heavily use
virtualization. While here we discuss Intel’s current genera-
tion processors, processors from other major vendors also
have similar characteristics.

Figure 2. Changes in Intel processor cache design
As illustrated in Figure 2, recent Intel processors retain the

layered cache hierarchy of modern multi-core processors:
each core with its private L1 and L2 caches, while all cores
within a socket share an LLC (Last Level Cache, typically the
L3) that sits between the cores and the main memory. Prior
Intel CPUs (Broadwell family and earlier) adopt an LLC an
order of magnitude larger than the L2, with inclusive LLC
management. This means all the data brought into the much
smaller L2 cache also reside in the L3. With Intel’s current
Scalable Family (Skylake) processors, the relative size ratio
between L3 and L2 is dramatically reduced: e.g., a typical per-
core cache configuration is 1MB L2 and 1.375MB L3 (total
L3 size divided by the number of cores). The significantly
larger L2 is further promoted by a new, exclusive L3 design:
cache misses will bring data directly into L2 and not L3,
with the latter used to hold data evicted from L2, allowing
better overall cache capacity utilization and facilitating data
sharing among cores. Also, with the non-inclusive L3 design,
though the combined cache size actually shrinks from the
previous Broadwell architecture (from 2.5MB to 1.375MB per
core), more of such space is now on the faster L2 and holds
a disjoint set of data as the shared L3.

While these design changes are optimized for virtualized
and multithreaded workloads [40, 79], where a larger private
L2 accommodates more core-private data and reduces inter-
workload interference, they also bring fresh opportunities

313

for single-workload execution. By simultaneously executing
random and streaming accesses (as well as cache-aware data
organization and work partitioning), we allow the former to
consciously retain their working set within the L2 (or even
L1), and the latter to enjoy most of the shared L3 capacity
and the memory bandwidth.

Location L1C L2C L3C LocalMem RemoteMem
Sequential read 0.42ns 0.41ns 0.44ns 0.76ns 1.51ns
Random read 0.77ns 0.95ns 2.60ns 18.35ns 24.35ns

Pointer-chasing 1.69ns 5.26ns 19.26ns 116.90ns 194.26ns
Table 1. Load latency from memory hierarchy levels
On a server with the aforementioned architecture (Intel

Xeon Gold 6126), we measured the latency of loading a single
word from different locations along the memory hierarchy,
with varied access patterns. Results in Table 1 confirm that (1)
despite the random-access nature of this memory hardware,
there is a big latency gap between sequential and random
accesses; (2) sequential streaming brings affordable latencies
even from remote memory across NUMA nodes, while the
sequential-random performance gap grows fast as we go
down the hierarchy; and (3) pointer chasing is expensive,
whose cost renders accesses within the L3 cache slower than
simple random accesses to the DRAM.
Existing systems assume fitting the graph into DRAM is

the best one can hope for, running at latency levels largely
from the most expensive cases in Table 1 (marked in red).
In the next sections, we explain how FlashMob manages to
avoid these high-cost accesses and stay mostly within the
green territory, especially the cases highlighted in bold.

3 Approach Overview
The new architectural features and the inefficiencies found
with existing systems motivate us to design FlashMob, a
new solution to graph random walk. We first present a brief
yet concrete workload characteristics report, followed by an
overview of FlashMob’s major innovations.

Graphs <1% 1%∼5% 5%∼25% 25%∼100%

YT
𝐷 338.4 38.0 8.5 1.2
|E| 39.0% 21.9% 24.3% 14.9%
|W| 39.0% 21.9% 24.3% 14.9%

TW
𝐷 3463.0 291.2 50.5 7.9
|E| 49.1% 20.7% 17.9% 12.3%
|W| 49.1% 20.6% 17.9% 12.3%

FS
𝐷 1027.6 296.4 90.8 6.6
|E| 18.7% 26.9% 41.2% 13.2%
|W| 18.7% 26.9% 41.2% 13.2%

UK
𝐷 3874.8 264.8 69.4 12.9
|E| 46.4% 15.8% 20.8% 17.0%
|W| 56.8% 12.9% 17.7% 12.6%

YH
𝐷 856.7 78.0 22.0 3.1
|E| 46.5% 16.9% 23.8% 12.8%
|W| 53.0% 14.7% 21.3% 10.9%

Table 2. DeepWalk statistics by degree groups
RandomWalk Workload Characteristics. Table 2 sum-
marizes sample profiling results from running the Deep-
Walk [66] algorithm on five real-world graphs with varying

sizes (details in Table 4). The tests have |𝑉 | walkers, each
walking 80 steps, initially placed by uniformly sampling
among all edges. For each graph, we group its vertices into
4 buckets based on their degree percentile.

For each group, Table 2 lists their average degree (𝐷) and
share in two dimensions: total number of edges (|𝐸 |) and
number of walkers stopping by (|𝑊 |). The results confirm the
dramatic disparity in graph vertices’ popularity in random
walk (and graph sampling in general): the higher-degree
vertices attract most of the traffic. In particular, the first
group (the top 1% vertices with the highest degrees) occupies
around half of all visits with three graphs (TW, UK, and YH).

For all graphs, vertices from the first two columns (top 5%
in degree) possess 45.6% to 69.7% of visits. The vast majority
of the vertices (bottom 75%, last column), meanwhile, have
an average degree of 1.2 to 12.9 and attract under 15% of
walk traffic across all five graphs. Finally, while the absolute
average degree varies significantly among these graphs, for
each degree-based vertex group, its share of total visit counts
highly correlates with that of edge counts.

Figure 3. FlashMob vs. existing system design

Unlike existing systems, which handle all vertices uni-
formly, FlashMob’s design is based on this highly skewed
traffic pattern, as described below.
FlashMob Workflow and Innovations. Figure 3 depicts
the FlashMob architecture overview. We highlight its major
innovations while walking through its workflow.
Streaming processing of partitioned graph: Unlike existing
random walk implementations, FlashMob does not follow
walkers to visit the entire graph, even when there is ample
memory space to host the latter. Instead, it sorts all vertices
in descending order of degree and cuts them into many ver-
tex partitions. Figure 3 shows two such partitions, one with
a few high-degree vertices and the other with many low-
degree ones. A thread will only work on one task at a time,
to move all walkers currently on one partition by one step.
This obviously will require the walk to be decoupled into
stages: sample and shuffle in this case, introducing to graph
random walk a streaming model reminiscent of MapReduce.
Cache-friendly walker batching: All existing solutions move
walkers individually. FlashMob, recognizing the heavy traffic
on popular vertices, aggressively batches co-located walkers,

314

as enabled by its shuffle process. Instead of randomly fetch-
ing an edge for each walker independently, it can pre-sample
many edges, achieving both much cheaper sample genera-
tion and full utilization of cache lines bringing in such pre-
sampled edges. Combining vertex partitioning with walker
batching, FlashMob dramatically enhances memory access
efficiency by (1) fitting the working set of each task in cache
and (2) promoting sequential memory accesses. Essentially,
it performs “out-of-core” processing within CPU caches and
uses DRAM for fast data streaming.
Automatic policy/partition planning: The overall walk per-
formance depends on the intricate interplay of many factors,
such as the graph size and degree distribution, the size/speed
of each cache level, and the relative walker “density” on
the graph. Rather than hard-coding or leaving it to users to
configure important parameters such as partition and sam-
ple policy setting (when to enable pre-sampling), through
approximation FlashMob maps its optimization to the Multi-
Choice KnapSack (MCKP) problem [78]. As shown in Fig-
ure 3, it performs a quick, one-time automatic configuration
at the beginning of a run to cut its vertex array into partitions
and assign each partition an appropriate sample policy.

4 System Design
4.1 Frequency-Aware Vertex Grouping
A key design change brought by FlashMob is to partition the
graph and batch the walkers residing within each partition.
Vertex ordering. Table 2 clearly shows that random walks
disproportionately visit high degree vertices, echoing earlier
work on graph random walk [57, 94], as well as other graph
sampling algorithms [49].
Considering the overall high correlation between vertex

degree and their popularity in random walks, FlashMob ar-
ranges the vertices of the input graph in descending order
of their degree. The overhead of this pre-processing is quite
small, as to be shown in Sec 5.2.

Figure 4. Sample vertex partitions

Variable-size vertex partitioning. The sorted vertex ar-
ray is then cut into contiguous vertex partitions (VPs for
short) of varying sizes. Figure 4 demonstrates a sample graph,
whose 8 vertices are sorted by degree and cut into 3 VPs.
The VPs form the basic task units, whose sizes are optimized
based on both graph characteristics and system resource
constraints (details in Section 4.4). With vertices of simi-
lar degrees grouped, FlashMob handles them with different
strategies and gains performance from different sources, as
to be seen in Section 4.2.

Walker Data Organization. FlashMob also partitions
walker data so that during each walk iteration, a VP is pro-
cessed with a contiguous chunk of walker data to access and
update walker locations. To this end, FlashMob seeks to have
simple and compact walker state storage, which doubles as
“messages” to be shuffled between walk steps, and walkers’
path history (details in Section 4.3).

For the 𝑖th iteration, FlashMob adopts a simple 1-D array
W𝑖 , with length of |𝑊 |, where W𝑖[j] stores the current loca-
tion of walker𝑤 𝑗 , in vertex ID (VID). Additional walker meta-
data, if any, could be stored and shuffled alongside the walk-
ers. During the shuffle stages, the walkers are rearranged
so that those residing within the same vertex partition are
stored contiguously. At the beginning of the execution, W0
is initialized by assigning each walker a vertex as its start
point. Figure 5 gives a sample initial walker array.

4.2 Edge Sample Stage

Figure 5. FlashMob walker movement, with the locations
of the 5th walker circled

The edge sampling phase of FlashMob’s random walk
iteration performs the central task: finding one edge to move
along for each walker. More specifically, for a given VP,
FlashMob selects one sampling policy, either pre-sampling
(PS) or direct sampling (DS) (defined below), and consequently
adopts different data organization and access patterns.
Common to both policies, for the 𝑖-th walk iteration, a

FlashMob thread is assigned one VP at a time, along with a
contiguous chunk of the sorted walker array SW𝑖 , storing all
the walkers currently within this partition. It scans through
this chunk of SW, updating all walkers in order.

Once a walker𝑤 finds its outgoing edge from its current
location 𝑣 , either with PS or DS, FlashMob records it by over-
writing its VID (i.e., 𝑣) in SW𝑖 with its next stop. At the end
of one sample stage (and after a “reverse-shuffle” process
to be described later), the SW𝑖 becomes W𝑖+1, ready as the
input to the next shuffle stage. In Figure 5, W1 and W2 store
the locations of all walkers, in the original walker ID (WID)
order, after they make the 1st and 2nd steps, respectively.

315

In addition to having these bandwidth-aware in-place up-
dates, walker state accesses perform a single sequential scan,
leaving most of the cache space to edge data.
Pre-sampling (PS) This policy is designed for more fre-
quently visited vertices, maximizing cache utilization by
batching walkers on the same vertex. The main idea is to
sample in advance many edges, which are consumed sequen-
tially by the many co-located walkers. For a VP adopting
the PS policy, each vertex allocates a pre-sampled edge buffer,
where walkers retrieve edge samples. As mentioned earlier,
a vertex’s frequency of being visited is strongly correlated
to its degree, so we set the size of the pre-sampled buffer
of vertex 𝑣 to 𝑑 (𝑣). The thread processing the sample task
of a given VP is in charge of refilling the pre-sampled edge
buffers when they are empty. In Figure 5, only the first VP
adopts PS, where 𝑣0 and 𝑣1 have edge buffers of size 6 and 4.
With PS, one essentially decouples the edge sample pro-

duction and consumption phases. While this generates one
extra round of edge sample storing/retrieving operations, by
batching similar operations, the overall memory accesses
themselves are significantly more efficient.

In the production step, FlashMob throws the dice consec-
utively, to refill its pre-sampled edge buffer with the edge
transition probability. Note that this is done for one vertex
at a time, during which its edges (each on average sampled
once) could reside in the cache to allow fast random reads,
with one sequential write stream to the buffer being refilled.

In the consumption step, the filled buffer will feed 𝑑 (𝑣)
walkers departing from 𝑣 . For example, in Figure 5, walkers
on 𝑣0 would sequentially follow edge samples to 𝑣2, 𝑣3, 𝑣6,
etc. Though it appears that this buffer occupies exactly the
same space as 𝑣 ’s adjacency list, with contiguously stored,
ready-to-use edge samples, at any given time there is only
one active cache line accessed per vertex.
Direct sampling (DS) Intuitively, the benefit of pre-
sampling diminishes with lower-degree vertices. In the ex-
treme cases, for vertices with only one edge (who constitute
a proportion between 3.5% and 49.3% of vertices among our
5 real-world graphs), like VP3 in Figure 5, there is no need
for edge sampling at all. For those with a degree of 2 (who
make up another 5.0%-14.7% of vertices), like VP2 in Figure 5,
storing and sampling from their two edges saves both space
and time, as to be shown with profiling results later.
Therefore, FlashMob provides the option of DS, where a

walker throws a dice on the spot to select an outgoing edge
from the (often short) adjacency list. In Figure 5, whenever
a walker is within VP2, it randomly samples from the two
outgoing edges of a vertex. E.g., the 5th walker from its initial
location (𝑣2) selects 𝑣0 as the next stop.

Besides compact edge storage, DS allows FlashMob to ex-
ploit other sources of optimization. Real-world graphs’ long
tails produce many partitions of uniform-degree vertices
(like VP2 and VP3 here). While high-degree partitions have
to adopt the traditional CSR [70] graph representation, where

sampling 𝑣 ’s adjacency list requires one random access to
read 𝑣 ’s degree first, low-degree partitions allow simpler in-
dexing. Here FlashMob could easily keep track of the one
or a few distinct degree values for a partition, enabling it to
quickly access and sample using simple arithmetic.
Memory access patterns and partition sizing Besides
PS/DS selection, another dimension of FlashMob’s decision
making is the size of the VPs. Meanwhile, the sensitivity of
the sample stage performance to the VP size heavily depends
on a partition’s degree distribution and sampling policy. To
help understand such relationship, Table 3 summarizes the
major random walk memory access patterns, comparing our
proposed PS and DS policies with the naive direct sampling
approach used in prior random walk implementations.

Approach/Operation Access pattern

Common Read walker state Single-stream seq. read
Update walker state Single-stream seq. write

PS
Edge buffer refill Single-adj-list random read +

single-stream seq. write

Sample retrieval Multi-vertex random read +
multi-stream seq. read

DS Cache-aware partitioned Multi-adjacency-list random readdirect sampling
Prior Whole graph/subgraph Random read,

systems direct sampling potentially w. pointer chasing

Table 3. Major memory access patterns in edge sampling

Common to all approaches are the accesses involved in
reading and updating the walker state: the current- and next-
step locations of the walkers are sequentially retrieved /
stored in large arrays. As in existing systems, each FlashMob
thread processes a subset of walkers. The major difference
is its cache-friendly edge sampling that also partitions the
graph to fit the task in cache.

The random walk implementation in prior systems needs
to randomly access one vertex and randomly selects one of
its edges, either within the entire graph [34, 35, 66, 102] or
within an entire sub-graph staged to the local memory in
the case of out-of-core/distributed processing [51, 82, 89, 94],
often with extra speed bumps brought by pointer chasing.
With DS, FlashMob does not change the direct sampling
semantics or operation complexity but limits the scope to
the adjacency lists within the current VP.
With PS, FlashMob actually adds operation complexity:

pre-sampling performs random read within a single adja-
cency list and refills a single pre-sampled edge buffer with
sequential write. It then reads back such buffers in the actual
walk, with multi-stream sequential read (one per vertex) plus
a single random read to “seek” to the proper buffer position
for each walker on its current vertex. More memory accesses
are performed, but with further reduced scope and promo-
tion of sequential scanning, each access is much faster. As to
be seen later, reducing waste from discarding unused cache
line content also saves overall DRAM traffic.

The effectiveness of FlashMob’s cache-friendly edge sam-
pling is mainly determined by two factors. First, whether

316

(a) 1 walker/edge (b) 0.25 walker/edge

Figure 6. The per-step sample time for different sampling
policies and typical VP task sizes (categorized by active mem-
ory used, not graph size)

(and at which level) the random accessed working set fits
into cache, which depends mostly on the vertex partition
size. Note that although PS and DS both involve random
reads, PS has a smaller working set (one vertex’s data for
pre-sampling, then space to hold per-vertex pointers, plus
one active cache line per vertex for edge samples). DS, in
contrast, needs to fit in cache all edges within a VP. There-
fore, to fit into the same cache level (e.g., L2), PS allows much
larger partitions than DS does with high-degree vertices.

The other factor concerns data reuse rate, which leads us
to define walker density (density for short), as the average
number of walkers per edge on a graph. For a VP, this is sim-
ply the total number of walkers divided by the total number
of edges possessed by its member vertices. The higher the
density, the better chances for random accesses to hit cached
data, which is more pertinent to DS than to PS.

Figure 6 gives sample sensitivity results, on synthetic VPs
possessing a uniform degree, ranging from 1024 to 16. The
figures give the sample-stage performance at the density
of 1 (Figure 6a) and 0.25 (Figure 6b) walker/edge, under PS
(solid lines) and DS (dashed), each with VPs sized to fit the
working sets into L1, L2, L3, andDRAM (set at 8×L3 capacity),
respectively. A few observations can be made from these
figures:
1. Both policies benefit from fitting the working set into

faster caches.
2. The higher the degree is, the faster PS works, as higher

degree vertices attract more walkers, bringing higher uti-
lization of sequentially read cache lines. All the DS lines,
meanwhile, are insensitive to vertex degree.

3. When data fits into caches, both policies benefit from
higher walker density, which enhances cache utilization.
Otherwise they both stay insensitive to walker density.

4. Regarding specific strategies, DS-L1 performs the best as
it involves fewer accesses, which however would require
cutting a large graph into a huge number of VPs. PS-L1
follows closely, especially with higher degree vertices,
where cache lines for both sample production and con-
sumption get better utilized. PS-DRAM is significantly
slower than any other combinations, as when there are

more streams to fit one active cache line from each into
the cache, it pays the extra operations without benefiting
from sequential streaming of pre-sampled edges.

These figures illustrate FlashMob’s profiling data, reusable
across different graphs, allow comprehensive partitioning
optimization by considering the complex tradeoffs here in
the sample stage and in shuffling (to be discussed next).

4.3 Shuffle Stage
After each sample stage, walkers get dispersed from each VP.
In the subsequent shuffle stage, all threads work in parallel
to rearrange walkers, so that those now within the same
VP are again stored contiguously. With higher-order walks,
additional per-walker data needed by edge sampling (e.g.,
immediate walk history for node2vec) are shuffled together
with walkers’ current location.
Scalable walker-to-partition shuffling. As depicted in
Figure 5, the overall result is another 1-D array of the same
size, SW𝑖 , storing a permutation of W𝑖 , with array elements
ordered by their VP affiliation. Note that walkers within
each VP are not further grouped by vertex, hence the multi-
stream sequential or in-partition random access patterns as
discussed previously.
Since FlashMob adds this extra stage to facilitate cache-

local, mutually-independent edge sampling, it is critical that
the shuffling is done efficiently. Fast shuffling itself, in turn,
relies on cache-friendly design. Again we find the L2 cache
size provides a nice balance between capacity and speed.
Here, chunks of W𝑖 are scanned twice, first to count the num-
ber of walkers walking into the destination partitions (bins),
then after aggregating counting results, to write new walker
locations into appropriate locations in SW𝑖 .
Therefore, the L2 cache size determines the number of

VPs to be accommodated by a single level of shuffle, i.e., the
number of concurrent sequential write streams to SW𝑖 . If the
number of VPs goes over this limit, FlashMob is forced to
add a level of shuffle, which adds to the overall overhead.
This forms a major constraint on VP sizing, as to be formally
discussed in Section 4.4.
Compact walker state storage. Like in the sample stage,
threads work on disjoint array areas, simplifying synchro-
nization and eliminating the needs for locks. Meanwhile,
FlashMob aligns per-partition walker data to cache lines
to avoid false sharing. More importantly, care is taken to
minimize the message footprint. Rather than having explicit
key-value pairs like <𝑤 , 𝑣>, the W and SW arrays only store
VIDs (see Figure 5). Walker identities, meanwhile, are im-
plicitly carried by their consistent ordering in the W arrays.
For each vertex partition, the associated elements in SW𝑖

remain in the same order as encountered by a linear scan
of W𝑖 . Therefore after all the walkers make one step in the
sample stage and overwrite SW𝑖 to be SW′𝑖 (no data copy), by
scanning W𝑖 again we could find the shuffled location of each

317

walker in W𝑖+1 and retrieve its content there. This produces
W𝑖+1, input to the (𝑖+1)-th shuffle stage, which contains the
walkers’ updated placement after the 𝑖th iteration while pre-
serving the original walker ordering as in W0. In Figure 5, e.g.,
the 6 walkers on the first VP will have their new locations
(stored in SW′1) sequentially written to the W2 positions where
a scan of W1 would find vertices in the same VP.
By doing this, FlashMob trades off cheap computation

(with streaming memory access) to trim the walker array
footprint by half. It saves main memory bandwidth in both
sample and shuffle stages, as well as a non-trivial amount
of DRAM space. The latter in turn allows FlashMob to ac-
commodate more walkers in each round of random walk,
maximizing walker density for better data reuse.
Random walk paths output. At the end of an 𝑛-step ran-
dom walk, the (𝑛 + 1) W𝑖 arrays store the entire walk history
of all walkers. By transposing these arrays we can get |𝑤 |
1-D arrays, each carrying the (𝑛+1) VIDs forming a walker’s
output path. Alternatively, users could choose to stream the
sampled edges (<W𝑖[j], W𝑖+1[j]>) to the GPU performing
graph embedding training.
Throughout FlashMob’s workflow, a design guideline re-

peatedly followed is to perform sequential scans of regular,
compact data structures (1-D arrays in most cases). This may
increase total DRAM traffic in exchange for speed, as modern
processors handle sequential accesses very well, with the
help of hardware prefetching. Nevertheless, as to be shown
in Section 5, such increase is more than offset by DRAM
traffic savings from our cache-efficient edge sampling.

4.4 Walk Optimization with Dynamic Programming
With major FlashMob operations discussed in Section 4.2-
4.3, we propose a principled approach for partitioning the
vertices and assigning sampling policies, by formulating it
as a combinatorial optimization problem and obtaining an
efficient and optimal dynamic programming solution.
Problem definition. An input graph has vertices ordered
in descending degree, with vertex IDs from 0 to (|𝑉 | − 1),
VID 0 being the vertex with the highest degree. For cache-
friendly edge sampling, FlashMob needs to cut the vertices
into contiguous VPs, potentially of different sizes.
The main tradeoff lies between the VP sizes and counts:

smaller VPs fit into faster caches, but the benefit heavily
depends on factors such as the average degree within the VP
and the walk density; more VPs raise the shuffle overhead,
either by not fitting into cache or increasing levels of shuffle.
Problem simplification and mapping. We make two ap-
proximations to simplify our problem and reduce the solu-
tion search space, as FlashMob is designed to accommodate
a wide range of graph sizes. First, we group the sorted list of
vertices into𝐺 groups where𝐺 is a hyper-parameter (in our
experiments, 𝐺 is set between 64 and 128). All groups, ex-
cept the last one, are equally sized, containing a power-of-2
number of vertices for easy indexing. Since the vertices are

sorted by degree, the average degree of the group will not
vary drastically from the degrees of its individual members.
Member vertices of a group will be again cut into equal-size
VPs of power-of-2 sizes, while vertex partition sizes may
vary across groups. Second, the sampling policy is to be
decided at partition level: vertices in each resulting VP are
assigned to use either PS or DS.

The problem can now be reduced to a classical combinato-
rial optimization problem called Multiple-Choice Knapsack
Problem (MCKP) [78]. With MCKP, a set of items, each with
a profit and weight, are partitioned into classes. The goal is to
select exactly one item out of each class of items, to maximize
the total profit while satisfying the total weight limit.

Figure 7. FlashMob’s MCKP problem formulation, demon-
strated by zooming into one group’s optimization. Though
not depicted, each candidate partitioning size will look up
both PS and DS profiling results for the generated partitions.
Figure 7 shows the MCKP problem formulation. Our 𝐺

groups map to𝐺 classes. For each class, the candidate “items”
are the 2-D combinations of VP sizes and the per-VP sampling
policy. For example, an item “(PS, DS, PS, DS)” specifies that
the group has 4 uniform-size partitions, each with the given
sampling policy. As VP sizes are required to be a power of 2,
there are quite limited candidate sizes within a group.
For each candidate VP size (item), we define its profit as

the negative value of its total sampling cost: the sum of the
sampling time of all VPs within a group. The latter, in turn,
comes from the lower between the PS and DS times for each
individual VP. Its weight, on the other hand, is the number
of VPs generated within a group using this VP size.
FlashMob’s shuffle stage comes into play as the hyper-

parameter 𝑃 , giving the total weight limit. On a given ma-
chine, FlashMob sets 𝑃 as the total number of VPs allowed
to fit each outer-level shuffle task into the L2 cache (2048
on our test platform). For each group, FlashMob assesses
the option of adding an internal, additional level of shuffle,
whose cost is added to this candidate item’s sampling time
in formulating its total profit while increasing this group’s
weight to -1 in calculating the MCKP total weight.
Offline profiling for profit calculation. FlashMob con-
ducts preliminary profiling to quantify a certain VP size-
policy combination’s sampling cost, i.e., the profit value of
the corresponding candidate item. This is done by running

318

micro-benchmarks collecting performance curves similar to
those in Figure 6. We sample the relevant parameter space
in terms of VP size (in vertex count), average degree, and
walk density, to measure and record the per-VP sampling
time under PS and DS, respectively.

One key insight here is that the profiling itself is machine-
dependent yet graph-independent: with the VP size, degree,
and density parameters set, under FlashMob’s streaming
model, each data point’s execution is not affected at all by
the graph topology, making such offline profiling a one-time
effort reusable across different graphs. Its absolute cost is
also quite modest: with our rather fine-grained sampling
at 5% degree increment, across the space applicable to our
largest graph, it costs 258 seconds, about 28% of FlashMob’s
DeepWalk run time on the same graph.
At runtime, based on the graph size and degree distribu-

tion, FlashMob decides the number of walkers it could hold
in DRAM for each round of walk. This allows it to estimate
the walker density for each VP and look up the appropriate
offline profiling data points (see Figure 7), feeding FlashMob
with all the MCKP parameters.
Solution via dynamic programming. Finally, FlashMob
solves the fully instantiated optimization problem at the be-
ginning of a random walk execution. MKCP is known to
be NP-complete. However, it can be solved by a pseudo-
polynomial dynamic programming (DP) algorithm [24, 48]
with a time complexity of 𝑂 (𝐶𝑃𝐼) and space complexity of
𝑂 (𝐶𝑃), which we implement in FlashMob. Here 𝐶 is the
number of MCKP classes, 𝑃 is the total weight limit, and
𝐼 is the maximum number of items to choose from. With
𝐶, 𝑃, 𝐼 ≪ |𝑉 |, the DP algorithm execution itself has negligible
overhead. FlashMob’s vertex partitioning, including generat-
ing candidate policies and solving the MCKP problem, takes
0.34 seconds on our largest graph. The DP algorithm alone
requires just 0.01 seconds.

Note that with this DP-based optimization, the aforemen-
tioned new cache architecture automatically generates im-
pact. Recall that the exclusive L2 is much closer in speed to
L1 than to L3 (Table 1). Also, the private L2 is much larger
than before, while per-core L3 size is smaller, making fitting
data into L2 both fast and scalable to more threads, by avoid-
ing L3 pollution brought by inclusive L2. These are implicitly
reflected in the profiling curves, leading the MCKP algorithm
to often favor L2-size VPs, then chop leftover lower-degree
vertices into larger chunks (skipping the L3 category) to
satisfy the weight constraint (results in Figure 10).

4.5 Cross-socket Walk
Common servers today possess the NUMA (Non-Uniform
Memory Access) architecture with multiple sockets, where
CPU cores on each socket have faster accesses to the “local”
memory. With single-socket sampling policy and VP sizing
optimized using dynamic programming, finally, we take one

step back and examine cross-socket walks. The unique na-
ture of updating many independent walkers gives us more
flexibility in work decomposition. To this end, FlashMob
investigates two distribution modes, as described below.
With the first mode, FlashMob-P (“P” for graph partition-

ing), VPs are distributed across sockets, as well as walker
arrays. E.g., on a 2-socket server, threads on socket 0 will
always sample for the first half of VPs and shuffle the first
half of walkers. Its only remote memory accesses occur in
the sample stage when its VPs need to process walkers as-
signed to socket 1 that currently reside on socket 0 VPs. With
walkers already shuffled, such remote accesses are strictly
streaming-only, avoiding the super-expensive remote ran-
dom accesses (Table 3). As the shuffle stage performs more
scans than the sample stage, keeping its accesses local re-
duces overall remote memory traffic.

The second mode, FlashMob-R (“R” for graph replication),
avoids remote memory accesses altogether when possible.
When the entire graph, along with auxiliary data such as
the pre-sampled edge buffers, fits in single-socket DRAM,
one could simply replicate such graph data at each socket
and run multiple independent instances of random walk
simultaneously. For graphs of moderate sizes, this eliminates
all remote data accesses and cross-socket synchronization. A
hidden caveat, however, is that by replicating the graph itself,
FlashMob-R has less memory for the walker arrays, leading
to reduced walk density and lower reuse rate of cached data.
Existing solutions are happy with fitting a graph into

DRAM. When unable to do so, out-of-core systems [51, 89]
use DRAM as a large cache to host parts of graph data. Our
evaluation results comparing the above two modes (Sec-
tion 5.4) demonstrate that FlashMob sustains its in-cache
processing efficiency performing cross-socket graph walk
with NUMA, which shows strong promise for its future ex-
tension to walk disk-resident graphs at cache speed.

5 Evaluation
5.1 Experimental Setup
Test platform. All experiments use a Dell PowerEdge R740
server running Ubuntu 20.04.1 LTS. It has two 2.60GHz Xeon
Gold 6126 processors, each with 12 cores and 296GB DRAM.
Each core has a private 32KB L1 and 1MB L2 caches, while
all cores within a socket share a 19.75MB L3 cache (LLC).
Graph Datasets. We test with 5 real-world graph datasets
commonly used in graph systems (Table 4), including three
social networks (YouTube [64], Twitter [50], and Friend-
ster [93]), and two web graphs (UK-Union [7] and Ya-
hooWeb [92]). Their degree distribution information was
given earlier in Table 2.
Systems for Comparison. We compare with two state-of-
the-art systems, both released in 2019. GraphVite [102] is the
first high-performance CPU-GPU hybrid node embedding
system for shared-memory environments, using CPU for

319

Graphs |V| |E| CSR Size
YouTube (YT) [64] 1.14M 4.95M 50.8MB
Twitter (TW) [50] 41.65M 1.47B 11.4GB
Friendster (FS) [93] 65.61M 1.81B 14.2GB
UK-Union (UK) [7] 131.81M 5.51B 42.5GB
YahooWeb (YH) [92] 720.24M 6.64B 57.5GB
Table 4. Graphs used (0-degree vertices removed)

edge sampling by random walks and GPU for training node
embeddings, reporting a speedup of up to 50× over major
CPU-based node embedding systems [35, 66, 81]. Here we
compare FlashMob with GraphVite’s random walk compo-
nent. KnightKing [94] is a general-purpose random walk
engine delivering orders of magnitude speedup over prior
systems. While it was originally designed for distributed en-
vironments, KnightKing’s latest release has been optimized
for single-node executions.
RandomWalk Algorithms. We evaluate FlashMob with
two popular node embedding algorithms: (1) DeepWalk [66],
a first-order walk with static transition probability that se-
lects nodes uniformly at random, and (2) node2vec [35], a
second-order walk with dynamic transition probability that
interpolates between BFS and DFS.
Common practice in graph random walk evaluation

executes 10 episodes, each with |𝑉 | walkers walking 80
steps [35, 66, 94]. Here we adopt the same tradition and walk
10|𝑉 | walkers in total, each for 80 steps, though our number
of walkers per episode is configured at runtime based on
DRAM capacity. Results reported are averaged over 5 runs,
with error bars omitted due to small variance.

5.2 Overall Performance
Pre-processing overhead FlashMob requires certain pre-
processing, whose overhead is rather insignificant. More
specifically, sorting vertices by their degree on YH, our
largest graph, takes 7.7 seconds using the𝑂 (|𝑉 |)-complexity
counting sort [71], which can be further reduced by a multi-
threaded implementation. FlashMob’s vertex partitioning, in-
cluding generating candidate policies and solving the MCKP
problem, takes 0.34 seconds on YH. Overall, the total pre-
processing overhead occupies 0.04% − 0.7% of the random
walk time, across all five graphs evaluated. For the rest of our
performance discussion, this pre-processing time is excluded.

Also, following common practice [32, 42, 94], the random
walk time measurement does not include common tasks
shared by all graph processing systems, such as loading
graph data from disk and creating CSR.
Random walk performance Figure 8 gives the overall
walk performance on our 5 real-world graphs, in per-step
time, comparing FlashMob with the two baseline systems.

Figure 8a shows results for DeepWalk, where KnightKing
is 2.2-3.8 times faster than GraphVite, due to its more efficient
edge accesses. FlashMob, meanwhile, brings a speedup of 5.4-
13.7× over KnightKing, finishing a walk step in under 40ns.

(a) DeepWalk (b) node2vec

Figure 8. Overall speed. DeepWalk with FlashMob (short
bars): 21.5, 29.0, 32.4, 36.1, and 36.7ns/step, respectively.

For smaller graphs, it is able to achieve even faster speed, by
fitting more sampling tasks into faster caches (more details
below). Also, except for the smallest graph (YT), KnightKing
delivers quite similar performance on other graphs, except
for the UK outlier that we will explain next. FlashMob, in
contrast, manages to harvest additional optimizations for
smaller graphs, gradually lowering its per-step time from
37ns on YH to 21ns on YT.

Figure 8b gives node2vec results. Here we omit GraphVite
as it significantly lags behind and would heavily skew the
data presentation. The 2nd-order walk makes edge sam-
pling much more complex. Still, FlashMob achieves a 3.9-
19.9× speedup over KnightKing. The smaller profit margin is
mainly due to the lower access locality as node2vec involves
a connectivity check between a walker’s sampled destination
(candidate for its next stop) and its previous stop. Though
FlashMob again batches such lookups, computation is no
longer constrained within a single VP. For the rest of the
paper, we focus on DeepWalk that is representative of the
widely used first order random walks.

KnK-FS FMob-FS KnK-UK FMob-UK
L1-hit|miss/step 76.6 | 3.0 21.1 | 3.5 66.6 | 2.0 31.4 | 2.9
L2-hit|miss/step 0.1 | 2.9 2.8 | 0.7 0.6 | 1.5 2.1 | 0.8
L3-hit|miss/step 0.1 | 2.8 0.3 | 0.4 0.2 | 1.1 0.2 | 0.7

L1-bound time 16.8ns 2.0ns 9.3ns 2.1ns
pct. 3.8% 6.1% 4.8% 5.2%

L2-bound time 5.3ns 0.7ns 2.0ns 0.6ns
pct. 1.2% 2.2% 1.0% 1.4%

L3-bound time 60.5ns 1.4ns 24.3ns 1.2ns
pct. 13.7% 4.3% 12.5% 2.9%

DRAM-bound time 307.1ns 12.1ns 115.7ns 18.4ns
pct. 69.5% 37.4% 59.5% 44.8%

Total data-bound time 389.7ns 16.2ns 151.3ns 22.3ns
pct. 88.2% 50.0% 77.8% 54.3%

Avg. DRAM BW 15.7GB/s 51.1GB/s 11.7GB/s 57.1GB/s
DRAM traffic/step 310.4B 74.0B 101.8B 92.1B

Table 5. Memory hierarchy profiling case studies

Now we zoom into two test cases to take a closer look at
differences in memory access behavior between KnightKing
and FlashMob. Table 5 gives profiling details for the FS and
UK graph runs, where FlashMob delivers the highest and
lowest speedup over KnightKing, respectively.

320

The first rows list cache hit/miss count per step at each
cache level measured via perf [56]. As expected, FlashMob
reports significantly lower misses/step in both L2 and L3
than KnightKing’s. Most importantly, the miss counts show
L2 “catches” most of the L1 misses. KnightKing on FS, in con-
trast, has very similar miss counts across all cache levels and
very low L2/L3 hits, indicating “straight misses” to DRAM.
Its much higher L1 hit count is actually due to computation:
it uses the Mersenne Twister [63] random number genera-
tor. FlashMob adopts the simpler xorshift* algorithm [61],
reducing related computation time by more than 5×.

However, this cost (around 20ns/step) occupies a tiny frac-
tion of KnightKing’s total run time as it is dominantly data-
bound. Changing to xorshift* only speeds up KnightKing
by 4% and 9% on FS and UK, respectively. The next rows in
Table 5 also confirm this, by the amount and percentage of
per-step execution time bound on different memory hier-
archy levels, measured with the Intel VTune Profiler [39].
FlashMob cuts the L3- and DRAM-bound time by up to 43.2×
and 25.4 × respectively from KnightKing, producing a 24.1×
saving in total data-bound time. As a result, only half of its
execution time is data-bound, delivering much higher CPU
efficiency than KnightKing.

Meanwhile, its faster walk speed and streamlined sequen-
tial accesses achieve higher overall memory bandwidth (total
DRAM traffic divided by total execution time): 3.3-4.9× over
KnightKing. Yet with its two-stage processing and multiple
scans added for shuffling, its DRAM access volume per step
is only 1/4 of KnightKing’s for the FS graph, thanks to more
efficient use of full cache lines storing pre-sampled edges.

The last observation holds for 4 out of the 5 graphs, with
UK being the only exception. Our memory traffic profiling
results help explain KnightKing’s better performance on the
UK graph (hence FlashMob’s smaller improvement). The
UK graph encompasses stronger locality and lower “walker
mobility”. E.g., its estimated diameter is much larger (147
vs. FS’s 32 with only twice as many vertices). With walkers
initialized by uniform distribution on vertices, neighboring
walkers are likely to remain “close” in their walks, leading
to better data reuse. This also explains KnightKing’s better
cache hit/miss counts on UK as compared to FS.

In addition, though not included in the table, we evaluated
the impact of adopting simpler, regular graph data structures
for low-degree partitions using DS. Our results show that
overall, compared to using standard CSR, FlashMob reduces
L2/L3 misses by 33%/30% with UK and 13%/20% with FS. This
is noteworthy as only a small portion of walkers visit these
lower-degree vertices (especially with FS, where 80.9% of
walkers are in VPs adopting PS).

5.3 Effectiveness of DP-based Optimization
We evaluate FlashMob’s DP algorithm for automatic vertex
partitioning and sampling policy optimization by giving the
breakdown of total walk time across FlashMob stages in the

(a) Time breakdown across stages (b) DP vs. alternative approaches

Figure 9. DP-algorithm optimization results

DP-identified solution (Figure 9a). There the “Other” cat-
egory includes all costs outside of the sample and shuffle
stages, such as initialization and final output. The time split
indicates the non-trivial challenges our optimization faces:
partitioning and shuffling enable fast sampling by fitting
working sets within cache, which in turn renders the relative
cost of shuffling itself quite comparable with sampling.

Figure 9b compares the DP-identified solution with several
alternatives. We test two uniform partitioning strategies that
cut the graph into 2048 equal-sized VPs (to allow single-level
shuffle), adopting pre-sampling (PS) and direct sampling
(DS), respectively. In addition, we include “Manual Opt”,
our best-effort partitioning and sample policy optimization,
adopted in our prototype before we identified the MCKP
mapping. Results show that the DP-based MCKP solution
delivers significantly better overall performance than the
uniform strategies, confirming the margin of improvement
brought by adaptively sizing data and tasks. As expected, it
also significantly beats our manual optimization, which is
based on the heuristic of adopting PS for low-walker-density
or high-degree vertices and DS for the others.

(a) By partitions (b)Weighted by walkers

Figure 10. DP-identified solution for FlashMob auto-
configuration. For each graph, the top bar gives the “VP
size” decisions along the sorted vertex array, while the bot-
tom one gives the “sampling policy” decisions. Figure 10a has
each VP occupying equal bar length. Figure 10b shows the
percentage of walker-steps on these VP size and sampling
policy combinations.

Figure 10 illustrates the DP-identified solutions for each
graph. First, the DP algorithm chooses to stay with single-
level shuffle (limiting the total number of partitions to 2048).

321

(a) Growing |𝑉 | w. synthetic graphs (b) Growing # of walkers on TW

Figure 11. FMob speed w.r.t. graph size and walker density

This might change for larger graphs. Second, for the small-
est YT graph, which affords to use DS all the way, DP does
not use up the total partition number allowance, as further
partitioning lower-degree vertices to fit into L1 is found by
profiling to hurt performance. Finally, the overall distribution
of VP sizes and policies is quite intuitive: the high-degree
vertices on the left of the bars are cut into smaller (mostly
L2-size) VPs and assigned to use SP; the lowest degree ver-
tices are usually using DP, and fitting into L3 does not help.
MCKP’s preference of L2 over L3 here reflects the impact
of the current large private L2 cache design introduced in
Section 2.3. Meanwhile, the exact places to cut in the ver-
tex degree spectrum do not appear to follow easy patterns,
making the DP algorithm especially helpful.
For the larger graphs, YH and UK, DP can fit some of its

higher-degree vertices into L2-sized VPs, but not all. With
each L3- and DRAM-sized VPs containing much more ver-
tices each, when weighted by walkers the L2-sized VP re-
cedes in its share, illustrating the DP algorithm’s bias toward
the highest-degree vertices.

5.4 Scalability
We now assess FlashMob’s scalability by scaling up the graph
size and walker density. The former (Figure 11a) is done by
generating synthetic graphs using the degree distribution
of YH, the largest real-world graph we tested. As expected,
as |𝑉 | grows (eventually to a 168GB graph), the sampling
cost steadily rises as VPs get larger and more VPs are forced
to adopt DS (again the DP algorithm chooses to stay with
1-level shuffle due to the considerable shuffling cost).

The latter (Figure 11b) is by simply doubling the total
number of walkers (as multiples of𝑉) on the TW graph. One
sees that clearly higher density allows more efficient edge
sampling (32.6% reduction in per-step sampling cost with
8|𝑉 | than with |𝑉 | walkers). The benefit, however, levels off
at that point, indicating that we do not need 100s of walkers
per vertex for peak performance. Note that with traditional
random walk systems, even 8|𝑉 | on a medium-sized graph
is often not possible as it substantially blows up DRAM
consumption. FlashMob’s streaming approach, on the other
hand, paves the way for future out-of-core processing while
using DRAM to increase the walker density.

(a) Walk speed (b) Walker density

Figure 12.Walkw. NUMA: graph partitioning vs. replication

Finally, in Figure 12 we compare the two NUMA exe-
cution modes discussed in Section 4.5, tested on our dual-
socket server, each running 12 threads. Across the 5 graphs,
FlashMob-P and FlashMob-R actually show quite similar per-
formance, as seen from Figure 12a. Recall that FlashMob-R
avoids remote memory accesses altogether, while FlashMob-
P saves DRAM space (by storing one rather than two copies
of the graph) to accommodate more walkers simultaneously
in each round. The latter is confirmed by the walker density
comparison in Figure 12b: FlashMob-P almost doubles the
density from FlashMob-R, promoting data reuse.
The VTune profiler reports that FlashMob-P only has

0.0023 and 0.0011 memory accesses per step that incur L3
cache misses leading to remote memory access on FS and
UK, respectively. It proves that streaming data from remote
memory does not slow down our cache-efficiency random
walk, echoing the profiling results in Table 1. This further
lends confidence for our future work extending FlashMob
to out-of-core processing by streaming data from the disk.
For example, FlashMob completes the 80-step DeepWalk in
881s. A larger graph streamed through the DRAM 80 times
(assuming walk path results streamed to GPUs for consump-
tion) would consume an I/O bandwidth of 5GB/s, below the
capability of today’s commodity NVMe SSDs.

6 Related Work
Streaming methods for graph systems. Drunkard-
Mob [51] implemented out-of-core random walk on top of
GraphChi [52]. Recent systems such as GraphWalker [89]
mainly focus on optimizing I/O utilization and thus are or-
thogonal to our work. GraphChi [52], X-Stream [69], and
GridGraph [101] are out-of-core graph analytic systems that
process cache-friendly partitions in a streaming manner.
However, typical graph engine tasks have vertices traverse
all their edges, creating mostly sequential accesses, while
graph random walks perform much sparser computation. To
our knowledge, FlashMob is the first system to apply parti-
tioning to speedup graph sampling and the first to explicitly
fit such computation into CPU caches when possible.
Exploiting architectural features for graph computa-
tion. There have been extensive investigations on how
graph analytics is impacted by novel hardware such as
NVM [23, 29, 60], GPUs [15, 28, 45, 46, 72, 73], and SSDs [38].

322

FlashMob follows this tradition by targeting the effective
use of the current-generation Intel cache hierarchy. In gen-
eral, our work is motivated by similar inefficiencies found
in graph random walk implementations and addresses the
problem with cache-aware system designs.
A number of existing frameworks [6, 13, 77, 97, 99] per-

form cache-aware processing of specific graph analytics
tasks. However, we are not aware of any prior work that
improves upon graph sampling using cache locality.
Speeding up random walks. There have been increas-
ing interest in performance optimization of random walks.
Unfortunately, the randomness inherent in random walks
obviates many of the optimizations in common graph an-
alytics frameworks [13, 32, 59, 77, 99]. Hence, many prior
studies are tailored towards accelerating specific applications
of random walk such as PageRank [65] or SimRank [43].
There has been a paucity in application-agnostic ap-

proaches accelerating arbitrary random walk approaches.
Classical techniques such as inverse transform sampling [22]
and alias table [85] seek to perform pre-processing and/or
use additional storage for faster edge sampling. Recent sys-
tems [74, 94] proposed algorithmic techniques based on re-
jection sampling to speed up a single random walk step. A
number of recent production platforms for deep learning
on graphs (e.g., Plato [82], Euler [3], and AGL [96]) leverage
these approaches for accelerating random walks. These opti-
mizations have significantly reduced the (amortized) com-
putation complexity but not not address the inefficiency
brought by the predominantly random memory accesses.
Other efforts have focused on reducing computation or

enhancing parallelism. E.g., Spark-Node2Vec addresses the
bottleneck of edge sampling for high-degree vertices by only
considering a subset of 30 neighbors [34] or approximating
transition probabilities [98]. A recent random walk system,
NextDoor [42] uses intelligent scheduling and caching strate-
gies to accelerate graph sampling on GPUs. However, GPU
memories are much smaller than that of CPUs and the GPU-
based systems perform best when the graph completely fits
in the GPU memory, otherwise experiencing a steep perfor-
mance drop. For example, onDeepWalk, Nextdoor is reported
to be 436× faster than KnighKing on the smallest graph with
50K vertices, 26.1 × −38.9× faster on the 3 medium-size
graphs with 3M-5.8M vertices, and 3× slower on the largest
graph (FS), on which FlashMob is 13.6× faster than KnightK-
ing. Again, all prior systems dominantly perform random,
whole-graph memory accesses.

We argue that since GPUs are highly optimized for linear-
algebraic operations, efficient CPU-side random walks com-
plement their strength by supplying their learning computa-
tionwith fast edge sampling, both improving overall resource
utilization and shortening end-to-end computation. Recent
systems such as GraphVite [102] adopt such CPU-sampling
and GPU-training paradigm.

Finally, a very recent work, ThunderRW [80], also ad-
dresses the irregular memory access patterns of random
walk, using a step interleaving technique to hide the mem-
ory access latency, which is orthogonal to our approach.
Node embeddings. An overview of algorithms for learning
embeddings can be found in [8, 18, 33, 37]. Broadly, there
are three types of approaches. Matrix factorization based
approaches [9, 67, 68, 90] factorize a proximity matrix 𝑀

where each entry𝑀 [𝑢, 𝑣] quantifies the proximity between
vertices 𝑢, 𝑣 ∈ 𝑉 . Alternatively, one could use deep learn-
ing models such as autoencoders [10, 86], LSTM [84] and
GANs [19, 87] to learn the node embeddings. Both of these
approaches are expensive and do not scale to large graphs.
Random walk based approaches [35, 66, 81] are widely used
as they are flexible, easily parallelizable, and can scale to
large graphs. GraphAny2Vec [30] and GraphVite [102] are
recent examples of following this approach, whose focus is
on building systems to compute node embedding on large
graphs. FlashMob’s optimization techniques are orthogonal
to their efforts and could be used to accelerate the above
existing systems.

7 Conclusion and Future Work
In this work, we debunk the long-held assumption that ran-
domwalks on large graphs need to settle with randomDRAM
accesses. Our proposed system, FlashMob, manages to ex-
ploit hidden spatial and temporal locality from the random
walk semantics, through careful partitioning, rearranging,
and batching of operations. Our results reveal that modern
servers’ caches enable efficient “out-of-cache” processing
even for data-driven programs with random and irregular
computation. We also found that with the large disparity
between sequential and random DRAM accesses, it is worth-
while to add access volume by performing more scans, which
may end up saving both time and actual DRAM traffic.

Besides extending FlashMob to walk disk-resident graphs,
we are also exploring other avenues involving sampling,
where random accesses could be converted to sequential
ones without affecting their statistical guarantees.

Acknowledgments
We thank the anonymous reviewers for their valuable com-
ments and suggestions, and in particular our shepherd Phillip
Gibbons for his detailed guidance. We thank the excel-
lent support we have received from the QCRI local cloud,
with high-end processors and profiling tools. We specifi-
cally thank Ahmed Tawfik, Anurag Shrivastava, and Mah-
mood Gajem for their excellent support. We are grateful
to our graph data sources, including the Stanford SNAP
Datasets [54], the Laboratory for Web Algorithmics [1], and
the Yahoo Webscope Program [92]. This work has been par-
tially supported by National Key Research & Development
Program of China (2018YFB1003505) and Natural Science
Foundation of China (61877035).

323

References
[1] [n.d.]. Laboratory for Web Algorithmics. http://law.di.unimi.it/

datasets.php.
[2] Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, and Alexander A

Alemi. 2018. Watch your step: Learning node embeddings via graph
attention. InAdvances in Neural Information Processing Systems. 9180–
9190.

[3] Alibaba. 2020. Euler. https://github.com/alibaba/euler
[4] Lars Backstrom and Jure Leskovec. 2011. Supervised random walks:

predicting and recommending links in social networks. In WSDM.
635–644.

[5] Ziv Bar-Yossef, Alexander Berg, Steve Chien, Jittat Fakcharoenphol,
and Dror Weitz. 2000. Approximating aggregate queries about web
pages via random walks. In VLDB. 535–544.

[6] Scott Beamer, Krste Asanović, and David Patterson. 2017. Reducing
pagerank communication via propagation blocking. In 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 820–831.

[7] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. 2008. A large
time-aware web graph. SIGIR Forum 42, 2 (2008), 33–38.

[8] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang.
2018. A comprehensive survey of graph embedding: Problems, tech-
niques, and applications. IEEE Transactions on Knowledge and Data
Engineering 30, 9 (2018), 1616–1637.

[9] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning
graph representations with global structural information. In Proceed-
ings of the 24th ACM international on conference on information and
knowledge management. 891–900.

[10] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2016. Deep neural net-
works for learning graph representations.. In AAAI, Vol. 16. 1145–
1152.

[11] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuru-
ganathan. 2020. Creating embeddings of heterogeneous relational
datasets for data integration tasks. In Proceedings of the 2020 ACM
SIGMOD International Conference onManagement of Data. 1335–1349.

[12] Sandro Cavallari, Vincent W Zheng, Hongyun Cai, Kevin Chen-
Chuan Chang, and Erik Cambria. 2017. Learning community em-
bedding with community detection and node embedding on graphs.
In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management. 377–386.

[13] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. Power-
Lyra: Differentiated graph computation and partitioning on skewed
graphs. In Proceedings of the Tenth European Conference on Computer
Systems. 1–15.

[14] Xing Chen, MingXi Liu, and GuiYing Yan. 2012. Drug–target inter-
action prediction by random walk on the heterogeneous network.
Molecular BioSystems 8, 7 (2012), 1970–1978.

[15] Yan-HaoChen, Ari B. Hayes, Chi Zhang, Timothy Salmon, and Eddy Z.
Zhang. 2018. Locality-aware software throttling for sparse matrix
operation on GPUs. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). 413–426.

[16] Robert M Christley, GL Pinchbeck, Roger G Bowers, Damian Clancy,
Nigel P French, Rachel Bennett, and Joanne Turner. 2005. Infection
in social networks: using network analysis to identify high-risk indi-
viduals. American journal of epidemiology 162, 10 (2005), 1024–1031.

[17] Colin Cooper, Sang Hyuk Lee, Tomasz Radzik, and Yiannis Siantos.
2014. Random walks in recommender systems: exact computation
and simulations. In Proceedings of the 23rd International Conference
on World Wide Web. 811–816.

[18] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2018. A survey
on network embedding. IEEE Transactions on Knowledge and Data
Engineering 31, 5 (2018), 833–852.

[19] Quanyu Dai, Qiang Li, Jian Tang, and Dan Wang. 2018. Adversarial
network embedding. In 32nd AAAI Conference on Artificial Intelligence.

2167–2174.
[20] Arjun Dasgupta, Gautam Das, and Heikki Mannila. 2007. A random

walk approach to sampling hidden databases. In Proceedings of the
2007 ACM SIGMOD international conference on Management of data.
629–640.

[21] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified
data processing on large clusters. Commun. ACM 51, 1 (2008), 107–
113.

[22] Luc Devroye. 2006. Nonuniform random variate generation. Hand-
books in operations research and management science 13 (2006), 83–
121.

[23] Laxman Dhulipala, Charles McGuffey, Hongbo Kang, Yan Gu, Guy E.
Blelloch, Phillip B. Gibbons, and Julian Shun. 2020. Sage: parallel
semi-asymmetric graph algorithms for NVRAMs. 13, 9 (2020), 1598–
1613.

[24] Krzysztof Dudziński and StanisławWalukiewicz. 1987. Exact methods
for the knapsack problem and its generalizations. European Journal
of Operational Research 28, 1 (1987), 3–21.

[25] Peter Ebbes, Zan Huang, Arvind Rangaswamy, et al. 2010. Subgraph
sampling methods for social networks: The good, the bad, and the ugly.
Technical Report.

[26] Alessandro Epasto and Bryan Perozzi. 2019. Is a single embedding
enough? Learning node representations that capture multiple social
contexts. In The World Wide Web Conference. 394–404.

[27] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and
Dawei Yin. 2019. Graph neural networks for social recommendation.
In The World Wide Web Conference. 417–426.

[28] Prasun Gera, Hyojong Kim, Piyush Sao, Hyesoon Kim, and David
Bader. 2020. Traversing large graphs on GPUs with unified memory.
Proceedings of the VLDB Endowment 13, 7 (2020), 1119–1133.

[29] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and
Keshav Pingali. 2020. Single machine graph analytics on massive
datasets using Intel optane DC persistent memory. In Proceedings of
the VLDB Endowment, Vol. 13. 1304–1318.

[30] Gurbinder Gill, Roshan Dathathri, Saeed Maleki, Madan Musuvathi,
Todd Mytkowicz, and Olli Saarikivi. 2021. Distributed training of
embeddings using graph analytics. In 2021 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). 973–983.

[31] Minas Gjoka, Maciej Kurant, Carter T Butts, and AthinaMarkopoulou.
2010. Walking in facebook: A case study of unbiased sampling of
osns. In IEEE INFOCOM. IEEE, 1–9.

[32] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and
Carlos Guestrin. 2012. PowerGraph: Distributed graph-parallel com-
putation on natural graphs. In the Proceedings of the 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
12). Hollywood, CA, 17–30.

[33] Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques,
applications, and performance: A survey. Knowledge-Based Systems
151 (2018), 78–94.

[34] Aditya Grover and Jure Leskovec. 2016. Node2vec on Spark. https:
//github.com/aditya-grover/node2vec.

[35] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd ACM SIGKDD inter-
national conference on Knowledge discovery and data mining. ACM,
855–864.

[36] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive
representation learning on large graphs. In Proceedings of the 31st
International Conference on Neural Information Processing Systems.
1025–1035.

[37] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Representa-
tion learning on graphs: Methods and applications. IEEE Data(base)
Engineering Bulletin 40 (2017), 52–74.

[38] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee,
Min-Soo Kim, Jinha Kim, and Hwanjo Yu. 2013. TurboGraph: A fast
parallel graph engine handling billion-scale graphs in a single PC.

324

http://law.di.unimi.it/datasets.php
http://law.di.unimi.it/datasets.php
https://github.com/alibaba/euler
https://github.com/aditya-grover/node2vec
https://github.com/aditya-grover/node2vec

In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining. 77–85.

[39] Intel. 2009. VTune Performance Analyzer. https://software.intel.com/
content/www/us/en/develop/home.html.

[40] Intel. 2020. Second Generation Intel Xeon Scalable Proces-
sors. https://www.intel.com/content/dam/www/public/us/en/
documents/product-briefs/2nd-gen-xeon-scalable-processors-
brief-Feb-2020-2.pdf.

[41] Anand Padmanabha Iyer, Zaoxing Liu, Xin Jin, Shivaram Venkatara-
man, Vladimir Braverman, and Ion Stoica. 2018. ASAP: Fast, approxi-
mate graph pattern mining at scale. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18). 745–761.

[42] Abhinav Jangda, Sandeep Polisetty, Arjun Guha, and Marco Serafini.
2021. Accelerating graph sampling for graph machine learning using
GPUs. In Proceedings of the 16th European Conference on Computer
Systems. ACM, 311–326.

[43] Glen Jeh and JenniferWidom. 2002. SimRank: Ameasure of structural-
context similarity. In Proceedings of the eighth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining. ACM,
538–543.

[44] Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong. 2017. Random
walk based fake account detection in online social networks. In 2017
47th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). IEEE, 273–284.

[45] Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat McCormick, Mattan
Erez, and Alex Aiken. 2017. A distributed multi-GPU system for fast
graph processing. Proceedings of the VLDB Endowment 11, 3 (2017),
297–310.

[46] Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken.
2020. Improving the accuracy, scalability, and performance of graph
neural networks with ROC. Proceedings of Machine Learning and
Systems 2 (2020), 187–198.

[47] Nadav Kashtan, Shalev Itzkovitz, Ron Milo, and Uri Alon. 2004. Effi-
cient sampling algorithm for estimating subgraph concentrations and
detecting network motifs. Bioinformatics 20, 11 (2004), 1746–1758.

[48] Hans Kellerer, Ulrich Pferschy, and David Pisinger. 2004. Themultiple-
choice knapsack problem. In Knapsack Problems. Springer, 317–347.

[49] Maciej Kurant, AthinaMarkopoulou, and Patrick Thiran. 2010. On the
bias of BFS (breadth first search). In 2010 22nd International Teletraffic
Congress (lTC 22). IEEE, 1–8.

[50] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010.
What is Twitter, a social network or a news media?. In Proceedings of
the 19th international conference on World Wide Web. ACM, 591–600.

[51] Aapo Kyrola. 2013. Drunkardmob: Billions of random walks on just a
PC. In Proceedings of the 7th ACM conference on Recommender systems.
257–264.

[52] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. Graphchi:
Large-scale graph computation on just a PC. In 10th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 12).
31–46.

[53] Sangkeun Lee, Sang-il Song, Minsuk Kahng, Dongjoo Lee, and Sang-
goo Lee. 2011. Random walk based entity ranking on graph for
multidimensional recommendation. In Proceedings of the fifth ACM
conference on Recommender systems. 93–100.

[54] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large
Network Dataset Collection. http://snap.stanford.edu/data.

[55] LinkedIn. 2017. Random Walks on Large Scale Graphs with Apache
Spark. https://www.slideshare.net/databricks/random-walks-
on-large-scale-graphs-with-apache-spark-with-min-shen, Last ac-
cessed on 2020-12-10.

[56] Linux. 2009. perf. https://perf.wiki.kernel.org/.
[57] László Lovász et al. 1993. Random walks on graphs: A survey. Com-

binatorics, Paul erdos is eighty 2, 1 (1993), 1–46.
[58] Kathy Macropol, Tolga Can, and Ambuj K Singh. 2009. RRW: Re-

peated random walks on genome-scale protein networks for local

cluster discovery. BMC bioinformatics 10, 1 (2009), 283.
[59] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehn-

ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel:
A system for large-scale graph processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of data. 135–
146.

[60] Jasmina Malicevic, Subramanya Dulloor, Narayanan Sundaram, Na-
dathur Satish, Jeff Jackson, and Willy Zwaenepoel. 2015. Exploiting
NVM in large-scale graph analytics. In Proceedings of the 3rdWorkshop
on Interactions of NVM/FLASH with Operating Systems and Workloads.
1–9.

[61] George Marsaglia et al. 2003. Xorshift rngs. Journal of Statistical
Software 8, 14 (2003), 1–6.

[62] Laurent Massoulié, Erwan Le Merrer, Anne-Marie Kermarrec, and Ay-
alvadi Ganesh. 2006. Peer counting and sampling in overlay networks:
random walk methods. In Proceedings of the twenty-fifth annual ACM
symposium on Principles of distributed computing. 123–132.

[63] Makoto Matsumoto and Takuji Nishimura. 1998. Mersenne twister: A
623-dimensionally equidistributed uniform pseudo-random number
generator. ACM Transactions on Modeling and Computer Simulation
(TOMACS) 8, 1 (1998), 3–30.

[64] Alan Mislove, Massimiliano Marcon, Krishna P Gummadi, Peter Dr-
uschel, and Bobby Bhattacharjee. 2007. Measurement and analysis
of online social networks. In Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement. 29–42.

[65] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
1999. The PageRank citation ranking: Bringing order to the web. Tech-
nical Report. Stanford InfoLab.

[66] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk:
Online learning of social representations. In Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and
data mining. 701–710.

[67] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan
Wang, and Jie Tang. 2019. NetSMF: Large-scale network embedding
as sparse matrix factorization. In The World Wide Web Conference.
1509–1520.

[68] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie
Tang. 2018. Network embedding as matrix factorization: Unifying
DeepWalk, LINE, PTE, and node2vec. In Proceedings of the Eleventh
ACM International Conference on Web Search and Data Mining. 459–
467.

[69] Amitabha Roy, IvoMihailovic, andWilly Zwaenepoel. 2013. X-stream:
Edge-centric graph processing using streaming partitions. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles. 472–488.

[70] Yousef Saad. 2003. Iterative methods for sparse linear systems. SIAM.
[71] Harold Herbert Seward. 1954. Information sorting in the application

of electronic digital computers to business operations. Ph.D. Disserta-
tion. Massachusetts Institute of Technology. Department of Electrical
Engineering.

[72] Mo Sha, Yuchen Li, Bingsheng He, and Kian-Lee Tan. 2017. Acceler-
ating dynamic graph analytics on GPUs. 11, 1 (2017), 107–120.

[73] Mo Sha, Yuchen Li, and Kian-Lee Tan. 2019. GPU-based graph tra-
versal on compressed graphs. In Proceedings of the 2019 International
Conference on Management of Data. 775–792.

[74] Yingxia Shao, Shiyue Huang, Xupeng Miao, Bin Cui, and Lei Chen.
2020. Memory-aware framework for efficient second-order random
walk on large graphs. In Proceedings of the 2020 ACM SIGMOD Inter-
national Conference on Management of Data. 1797–1812.

[75] Aneesh Sharma, Jerry Jiang, Praveen Bommannavar, Brian Larson,
and Jimmy Lin. 2016. GraphJet: Real-time content recommendations
at Twitter. Proceedings of the VLDB Endowment 9, 13 (2016), 1281–
1292.

325

https://software.intel.com/content/www/us/en/develop/home.html
https://software.intel.com/content/www/us/en/develop/home.html
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/2nd-gen-xeon-scalable-processors-brief-Feb-2020-2.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/2nd-gen-xeon-scalable-processors-brief-Feb-2020-2.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/2nd-gen-xeon-scalable-processors-brief-Feb-2020-2.pdf
http://snap.stanford.edu/data
https://www.slideshare.net/databricks/random-walks-on-large-scale-graphs-with-apache-spark-with-min-shen
https://www.slideshare.net/databricks/random-walks-on-large-scale-graphs-with-apache-spark-with-min-shen
https://perf.wiki.kernel.org/

[76] Suraj Shetiya, Saravanan Thirumuruganathan, Nick Koudas, and
Gautam Das. 2020. Astrid: Accurate selectivity estimation for string
predicates using deep learning. Proceedings of the VLDB Endowment
14, 4 (2020), 471–484.

[77] Julian Shun and Guy E Blelloch. 2013. Ligra: A lightweight graph
processing framework for shared memory. In ACM Sigplan Notices,
Vol. 48. ACM, 135–146.

[78] Prabhakant Sinha and Andris A Zoltners. 1979. The multiple-choice
knapsack problem. Operations Research 27, 3 (1979), 503–515.

[79] Don Soltis, Irma Esmer, Adi Yoaz, and Sailesh Kottapalli. 2017. The
New Intel Xeon Processor Scalable Family (Formerly Skylake-SP). In
IEEE Hot Chips 32 Symposium.

[80] Shixuan Sun, Yuhang Chen, Shengliang Lu, Bingsheng He, and
Yuchen Li. 2021. ThunderRW: An in-memory graph random walk
engine.. In Proc. VLDB Endow., Vol. 14. 1992–2005.

[81] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and
Qiaozhu Mei. 2015. LINE: Large-scale information network embed-
ding. In Proceedings of the 24th International Conference on World
Wide Web. 1067–1077.

[82] Tencent. 2019. Plato. https://github.com/Tencent/plato
[83] Saravanan Thirumuruganathan, Nan Tang, Mourad Ouzzani, and

AnHai Doan. 2020. Data curation with deep learning.. In EDBT.
277–286.

[84] Ke Tu, Peng Cui, Xiao Wang, Philip S Yu, and Wenwu Zhu. 2018.
Deep recursive network embedding with regular equivalence. In
Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 2357–2366.

[85] Alastair J Walker. 1977. An efficient method for generating discrete
random variables with general distributions. ACM Transactions on
Mathematical Software (TOMS) 3, 3 (1977), 253–256.

[86] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep
network embedding. In Proceedings of the 22nd ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. 1225–1234.

[87] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang,
Fuzheng Zhang, Xing Xie, and Minyi Guo. 2018. GraphGAN: Graph
representation learning with generative adversarial nets. In Proceed-
ings of the AAAI conference on artificial intelligence, Vol. 32. 2508–
2515.

[88] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao,
and Dik Lun Lee. 2018. Billion-scale commodity embedding for e-
commerce recommendation in Alibaba. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. 839–848.

[89] Rui Wang, Yongkun Li, Hong Xie, Yinlong Xu, and John C. S. Lui.
2020. GraphWalker: An I/O-efficient and resource-friendly graph
analytic system for fast and scalable random walks. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20). 559–571.

[90] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang
Yang. 2017. Community preserving network embedding.. In AAAI,
Vol. 17. 203–209.

[91] Wanjing Wei, Yangzihao Wang, Pin Gao, Shijie Sun, and Donghai Yu.
2020. A distributedmulti-GPU system for large-scale node embedding
at Tencent. arXiv preprint arXiv:2005.13789 (2020).

[92] Yahoo! 2002. Yahoo! AltaVista Web Page Hyperlink Con-
nectivity Graph. https://webscope.sandbox.yahoo.com/
catalog.php?datatype=g

[93] Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating net-
work communities based on ground-truth. Knowledge and Informa-
tion Systems 42, 1 (2015), 181–213.

[94] Ke Yang, MingXing Zhang, Kang Chen, Xiaosong Ma, Yang Bai, and
Yong Jiang. 2019. KnightKing: A fast distributed graph random walk
engine. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles. 524–537.

[95] Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, Juncheng Liu, and
Sourav S. Bhowmick. 2020. Scaling attributed network embedding
to massive graphs. In Proceedings of the VLDB Endowment, Vol. 14.
37–49.

[96] Dalong Zhang, Xin Huang, Ziqi Liu, Jun Zhou, Zhiyang Hu, Xi-
anzheng Song, Zhibang Ge, Lin Wang, Zhiqiang Zhang, and Yuan Qi.
2020. AGL: A scalable system for industrial-purpose graph machine
learning. 13, 12 (2020), 3125–3137.

[97] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman Ama-
rasinghe, and Matei Zaharia. 2017. Making caches work for graph
analytics. In 2017 IEEE International Conference on Big Data (Big Data).
IEEE, 293–302.

[98] Dongyan Zhou, Songjie Niu, and Shimin Chen. 2018. Efficient graph
computation for node2vec. arXiv preprint arXiv:1805.00280 (2018).

[99] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.
2016. Gemini: A computation-centric distributed graph processing
system. In the Proceedings of 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16). USENIX Association,
Savannah, GA, 301–316.

[100] Xiaojin Zhu, Andrew B Goldberg, Jurgen Van Gael, and David An-
drzejewski. 2007. Improving diversity in ranking using absorbing
random walks. In Human Language Technologies 2007: The Conference
of the North American Chapter of the Association for Computational
Linguistics; Proceedings of the Main Conference. 97–104.

[101] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph:
Large-scale graph processing on a single machine using 2-level hi-
erarchical partitioning. In USENIX ATC ’15 Proceedings of the 2015
USENIX Conference on Usenix Annual Technical Conference. 375–386.

[102] Zhaocheng Zhu, Shizhen Xu, Jian Tang, and Meng Qu. 2019.
GraphVite: A high-performance CPU-GPU hybrid system for node
embedding. In The World Wide Web Conference. 2494–2504.

326

https://github.com/Tencent/plato
https://webscope.sandbox.yahoo.com/catalog.php?datatype=g
https://webscope.sandbox.yahoo.com/catalog.php?datatype=g

	Abstract
	1 Introduction
	2 Background
	2.1 Graph Random Walk Basics
	2.2 Random Walk System Design
	2.3 Cache Hierarchy in Recent Processors

	3 Approach Overview
	4 System Design
	4.1 Frequency-Aware Vertex Grouping
	4.2 Edge Sample Stage
	4.3 Shuffle Stage
	4.4 Walk Optimization with Dynamic Programming
	4.5 Cross-socket Walk

	5 Evaluation
	5.1 Experimental Setup
	5.2 Overall Performance
	5.3 Effectiveness of DP-based Optimization
	5.4 Scalability

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

